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As already said by Ingemar during the first lecture, it is enough to open
Wald’s book [1] and see what he does, which is the following.

Electromagnetic waves in Minkowski space. Let’s open [1] and go
to page 64. Read one page and a half. Then you know that, in absence
of external electromagnetic currents (ja = 0), we can consider an electro-
magnetic wave with constant amplitude in Minkowski spacetime, having the
following form,

Aa = Cae
iφ. (1)

Note that Wald uses S for the phase of the wave, which I do not like, so
I will use φ. Ca is a constant 1-form (covector), i.e. it is a 1-form with
constant norm and always parallel to itself.

The Maxwell equations in the Lorentz gauge tell us that,

∂aφ∂
aφ = 0, (2)

and differentiating this we get,

(∂aφ) ∂a(∂b φ) = 0. (3)

Now, the wave vector field, by definition, is the vector field which is or-
thogonal to the surfaces of constant phase φ, therefore it is ka := ηab∂b φ.
Equation (2) tells us that ka is a null vector, and (3) tells us that ka is
a vector field tangent to a family of geodesics. Hence, if we follow ka, we
follow null geodesics.

Remainder 1. A geodesic γ(τ), by definition, is a curve whose tangent
vector ta is parallel to itself when transported along γ(τ) [1, eq. 3.3.1], i.e.

ta∇atb = 0, or equivalently ∇γ̇ γ̇ = 0. (4)

In our case, (3) is exactly (4) for ka.

At this point, we define the frequency of the wave observed by an observer
with 4-velocity ua, as minus the rate of change of the phase of the wave,
projected on ua [1, eq. 4.2.38],

ω := −ua∂aφ = −uaka. (5)
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The redshift factor. Our metric is

ds2 = −dt2 + F (t− z)2dx2 +G(t− z)2dy2 + dz2, (6)

with F (t− z) = 1 + (t− z)Θ(t− z) and G(t− z) = 1− (t− z)Θ(t− z), and
Θ(x) the Heaviside distribution. For t 6= z, this metric is nothing but the
Minkowski metric, written in Rosen coordinates.

We have two electromagnetic waves traveling in the direction x and y.
The procedure is the same for both waves, so we will make the explicit
computations only for the one traveling in the x direction. Then, the wave
vector point in the x direction.

Now we notice that, at the event of emission P1 and at the event of
detection P2 of the wave, we are in Minkowski space, and therefore we have
ten Killing vector fields (namely, the generators of the Poincaré group). One
of them is ξa = (∂x)a, the generator of translations along the x direction
(which is also one of our basis vectors).

Remainder 2. As explained in [1, Appendix C], a Killing vector field ξa

is defined as a vector field whose integral curve is a path along which the
metric is invariant, i.e. the diffeomorphism induced by the Killing vector
field is an isometry for the metric. In formulae,

Lξc gab = 2∇(aξb) = 0, (7)

where ∇(aξb) =
1

2
(∇aξb +∇bξa) and Lξc is the Lie derivative along ξc.

When a Killing vector field is present (i.e., a symmetry is present), a
quantity is conserved along the geodesic motion. If the tangent vector to
the geodesic is ta, then taξa = const. is conserved [1, Proposition C.3.1,
p. 442]. In our case, this quantity reads kaξ

a. Let’s keep this in mind for
later.

We want to compute the redshift factor of the electromagnetic wave, so
we need the frequency. We know that it is ω = −kaua, with ua 4-velocity
of the observer. Now we suppose that the observer (the detector) is at rest,
so that ua = (1, 0, 0, 0).1 Then, the projection of ka onto ua must be minus
the projection of ka onto the (x, y, z) hyperplane, because ka is a null vector
(i.e., it is inclined by 45 degrees with respect to the hyperplane (x, y, z) and
the t axis; we are in natural units). In formula,

kau
a = projua(ka) = −proj(x,y,z)(k

a), (8)

where the minus sign follows from the fact that we are in Minkowski space,
not Euclidean. On the other hand, we know that ka ‖ (∂x)a = ξa, so the

1Note that the index a is boldface, following the Penrose’s convention. Boldface indices
can assume numeric values, i.e. they are not abstract indices.
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projection onto (x, y, z) is,

proj(x,y,z)(k
a) = − kaξ

a

(ξaξa)1/2
, (9)

where the normalization of the Killing vector field follows from the definition
of projection itself.

Now we have an expression for the frequency of the wave,

ω = −kaua =
kaξ

a

(ξaξa)1/2
. (10)

All we need to do is to compute the norm of the Killing vector field ξa,

(ξaξa)
1/2 = (ηabξ

aξb)1/2 =
√
F (t− z)2 = 1 + (t− z)Θ(t− z). (11)

At this point, we remember that kaξ
a is a conserved quantity, so it is

the same at the event of emission P1 and the event of detection P2. Then,
from (10) we find, [

ω(ξaξa)
1/2
]∣∣∣
P1

=
[
ω(ξaξa)

1/2
]∣∣∣
P2

, (12)

which implies,

ωdet

ωem
=

[
(ξaξa)

1/2
]∣∣
P1[

(ξaξa)1/2
]∣∣
P2

=
1 + (t1 − z1)Θ(t1 − z1)
1 + (t2 − z2)Θ(t2 − z2)

. (13)

Then, the redshift factor is easily computed,

z :=
λdet − λem

λem
=
ωem

ωdet
− 1 =

1 + (t2 − z2)Θ(t2 − z2)
1 + (t1 − z1)Θ(t1 − z1)

− 1. (14)

If we define u := t− z, then we can write,

z =
ωem

ωdet
− 1 =

1 + udetΘ(udet)

1 + uemΘ(uem)
− 1. (15)

For the wave in the y direction, all we have to do is to use G(t− z) instead
of F (t − z) (the Killing vector field would be ∂y, and the norm would be
different), and find,

z =
ωem

ωdet
− 1 =

1− udetΘ(udet)

1− uemΘ(uem)
− 1. (16)
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