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Preface

The first two chapters here are intentionally very sketchy. The remaining chap-
ters will depend to some extent on the reaction to the two first, and will be
written as the lectures proceed. This is to say that the aim of the first two
lectures is that I should learn something about the audience.

You will find some books and papers recommended in footnotes. It is prob-
ably a good idea to have a look. Two books stand out as so useful that they
need no recommendation, namely

R. M. Wald: General Relativity, Chicago UP, 1984.

T. W. Baumgarte and S. L. Shapiro: Numerical Relativity,
Cambridge UP, 2010.

Many books can be recommended, including J. L. Synge: Relativity: The Gen-

eral Theory (brilliant), S. W. Hawking and G. F. R. Ellis: The Large Scale

Structure of Space-Time (of course), M. Ludvigsen: General Relativity: A Ge-

ometric Approach (life made easy), and so on.
My hope is that I can ‘examine’ the students using hand-in exercises. They

will be concerned with points that I do not discuss well enough in my lectures.
I expect the solutions to be written up with some care, so that I can hand
them out as supplementary reading.

I will be using a mixture of different notations. I don’t apologize for this.
On the contrary, that’s life. All my conventions are consistent.

PS: At the end, let me admit that using a mixture of different notations was
a bad idea. Due to lack of time, I never lectured on Chapters 6, 10, or 11, so
I don’t know if they make sense. Also, Chapters 8 and 9 are much too brief.
Still, at least one person (me) enjoyed the course!



1 A confusing introduction

At great expense, a number of giant interferometers have been built recently.
They have arm lengths of up to 4 kilometers. At the end of the arms, mirrors
are attached to masses that are suspended from the roof so they can move
freely in the horizontal plane (as long as they do not move too far in any
direction). When a gravitational wave hits such an interferometer, the lengths
of the arms are affected differently, and the resulting change in the interference
pattern is observable.

There are a number of problems with this. For instance, in Hanford, Wash-
ington, scientists have to ask themselves how the interference pattern will be
affected, should one of the arms be hit by a tumbleweed. Moreover, in that
part of the US, people tend to shoot at anything they do not recognize, and
special measures must be taken to deal with this difficulty. But what we would
like to centre on now is a difficulty often raised by some gentleman in the back
row whenever this project is presented to the public: since gravity affects ev-
erything equally, will not the gravitational wave change the length of the laser
wave train in such a way that the change in the length of the arm is neutral-
ized? Why did the detector detect anything at all, besides tumbleweed?

As theorists, we can investigate this question by hitting the detector with an
exact solution of Einstein’s equations, describing a plane gravitational wave
oriented in such a way that the interferometer will perform in an optimal
manner. That is to say, let the arms protrude along the x and y axes, and
choose the polarisation of the plane wave so that

ds2 = −dt2 +dz2 +(1+(t−z)Θ(t−z))2dx2 +(1− (t−z)Θ(t−z))2dy2 , (1.1)

where Θ denotes Heaviside’s step function. This description of a plane wave is
due to Rosen, and we are looking at a particular kind of wave, called impulsive,
where the first derivative of the metric is discontinuous. Spacetime is flat up
to the null plane described by t = z, and then something happens. Despite
appearances, it is flat on the other side of that null plane too. To see this,
perform the coordinate change

X = (1+u)x Y = (1−u)y U = u V = v+(1+u)x2−(1−u)y2 (1.2)

where u = t − z and v = t + z are standard null coordinates in Minkowski
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space. After the wave front has passed, the metric then takes the manifestly
flat form

ds2 = −dUdV + dX2 + dY 2 . (1.3)

The way the two flat half spaces are glued together across the wave front—
where the curvature will have a delta function spike—remains non-trivial.

Now let us think what the suspended masses at the ends of the arms are
doing. Since they are freely movable in the horizontal plane they are freely
falling as far as our analysis is concerned, so we can regard them as moving
along geodesics. It is easy to check that the curves defined by (x, y, z) = (a, 0, 0)
and (x, y, z) = (0, a, 0) are geodesics, and we can set the constant a to 4 km.
The detector follows the geodesic (x, y, z) = (0, 0, 0). Before the wave these
three geodesics are at constant distance from each other, but after the wave
has passed they are in relative motion as seen in the inertial coordinate system.
And this relative motion (in Minkowski space!) is certainly detectable through
the Doppler shift of signals exchanged between them. In the original Rosen
coordinates this will appear in a way that is formally similar to the redshift
familiar in Friedmann cosmology, that is the wave length at detection is related
to the wavelength at emission through a scale factor that can be read off from
the metric. In fact the calculations are identical, because we have the spatial
Killing vector fields ∂x and ∂y available. If we assume that the signals are
exchanged along the x–axis, and denote the Killing vector field by ξa, we get

λdet

λem

=

√

ξ2
det

√

ξ2
em

=
1 + udetΘ(udet)

1 + uemΘ(uem)
. (1.4)

The conclusion is that the passage of the wave is observable.
But there is a moral to be drawn. The passage of the wave is observable only

because signals are exchanged between the various test particles concerned.
What is actually observed is the colour of light when it arrives at a detector.
Or, as Einstein put it:1

All our space-time verifications invariably amount to a determination of space-time

coincidences.

This is interestingly different from quantum theory, where conceptual difficul-
ties are usually met by stressing that predictions of the theory concern the
determination of measured data given a prepared state. But this is by the
way. Einstein said many things in that 1916 review article of his. Here is one
statement:

... this requirement of general co-variance, which takes away from space and time the

last remnant of physical objectivity.

In modern parlance, this is a statement about the gauge group of relativity
theory. It can be translated into: In theories where diffeomorphisms act as
gauge transformations the points of the manifold are not observables—where

1 A. Einstein, Die Grundlage der allgemeinem Relativitätstheorie, Ann. Phys. 49 769 (1916).
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“observable” carries the technical meaning that the word has in gauge theo-
ries. There is an argument known as Einstein’s hole argument that leads to
this conclusion in a very direct way. It will be worth our while to state this
argument carefully, beginning with electrodynamics where the gauge group is
much easier to understand. Thus, consider a “hole” in space-time. To the past
and to the future of the hole, the electromagnetic field Aa as well as the current
density Ja take some prescribed form. For simplicity, assume that the current
vanishes inside the hole. In spite of this the situation within the hole is not
determined: We can find a function Λ which is non-zero only inside the hole.
Given any vector potential Aa within the hole consistent with the situation
prescribed outside, we will then find that the vector potential Aa + ∂aΛ will
be consistent with that information too.

Determinism seems to be at stake here. In electrodynamics the resolution is
that only gauge invariant quantities count as observables in the theory. In elec-
trodynamics the gauge invariant quantities are easily identified, and include
the electric and magnetic fields as well as integrals of the vector potential
around closed loops. Once Aa(x) and Ja(x) are prescribed outside the hole,
the observables are determined inside it, and the apparent difficulty vanishes.
There are various ways of making this work in the context of an initial value
formulation. For instance, one can show that the gauge ambiguity allows us
to impose the Lorenz gauge ∂ · A = 0 on the initial data. One then replaces
Maxwell’s equations with a new set,

�Aa − ∂a∂ · A = Ja → �Aa = Ja . (1.5)

The second set leads to a well-behaved initial value problem, and the matter
is clinched by showing that the new equations imply that �∂ · A = 0, so that
the Lorenz gauge is preserved by the time evolution.

We are now ready to face Einstein’s hole argument for gravity. In relativity
theory a space-time is defined by a triplet (M, g, φ), where M is a four dimen-
sional manifold, gab is a Lorentzian metric, and φ stands for some collection
of matter fields. It is assumed that Einstein’s equation hold. We will adopt
the modern “holographic” way of phrasing the problem, that is to say we ask
whether Einstein’s equations admit an initial data formulation, so that the
future is determined by some kind of initial conditions on a spacelike hyper-
surface in spacetime.

Consider a diffeomorphism Φ : M → M, that is to say a map of the
manifold into itself with suitable differentiability properties. Then the triplet
(M,Φ∗g, φ ◦ Φ−1) is a spacetime too, that is to say it obeys Einstein’s equa-
tions. (The funny notation will reappear in Figure 2.1, which comes later.) The
entire field configuration can be moved around within M without disturbing
the equations in any way. We choose the diffeomorphism so that it equals
the identity on the initial data hypersurface, but we can choose it freely to
the future. It would seem to follow, immediately, that the future cannot be
predicted from the initial data!

It used to be argued that the Earth moves around the Sun, along an orbit
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Figure 1.1. a) In Newtonian theory initial data at t = 0 ensure that the Earth
goes around the Sun. b) In Einstein’s theory initial data at t = 0 do no such
thing, because we can perform diffeomorphisms to the past and to the future
of t = 0 (taking the point P1 to a point P ′

1 of our choosing).

that can be precisely predicted once the initial conditions of the two bodies are
known. But we now see that Einstein’s theory cannot agree with this, because
we can choose the diffeomorphism so that the Sun is unaffected, while the
future orbit of the Earth is made to coincide with any arbitrary timelike curve.
As Eddington said, the Earth goes where it wants to go.2 This is disconcerting,
but on closer scrutiny not a disaster. We will still be able to define a notion of
proper time on the Earth and on the Sun, and we will be able to determine the
distances between events happening on these two heavenly bodies. Thus we can
lay down a network of observable relations between events in spacetime, and
there is hope that these relations will be determined by the initial conditions.
The GPS system provides quite convincing evidence that this is true.

What the argument does is to deny any physical significance of the manifold
M, and the points of M, as such. Once a metric tensor on M has been specified
we can begin to define observables. This explains the Einstein quote given
above. Einstein went on to say:3

If we imagine the gravitational field to be removed, there does not remain a space,

but absolutely nothing.

His arguments have often been misunderstood, because the distinction between
passive and active coordinate transformations has not been drawn. Yet they
are very different operations. The confusion comes about because a set of
functions x′(x) can be used to describe them both. The thing to remember
is that a coordinate system is a map from M to R4. In a passive coordinate
transformation, called simply “coordinate transformation” from now on, we
are changing that map so that the coordinates used to describe the point P
are changed from x to x′. In an active coordinate transformation, called a
diffeomorphism from now on, we are mapping the point P , whose coordinates
under the map to coordinate space are x, to the point P ′, whose coordinates

2 He said this in The Nature of the Physical World, Cambridge 1928. For a version of the hole
argument closer to Einstein’s original, see C. Rovelli, Class. Quant. Grav. 8 297 (1991).

3 A. Einstein, Relativity and the problem of space, appendix to Relativity, Methuen, London 1954.
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Figure 1.2. A coordinate system is a one-to-one map from (a region of) the
manifold to (a region of) RN . The double arrow is a passive coordinate trans-
formation, the triple arrow a diffeomorphism. Both can be described by the
functions x′(x).

Figure 1.3. Four objects in labeled boxes. We can change (“actively”) the lo-
cation of the objects, or (“passively”) their labels.

are x′. In the process the coordinate system is kept fixed. These are very
different operations. To clarify the distinction further, think of four objects A,
B, C, and D, placed in four boxes labelled 1, 2, 3, and 4. We can describe this
situation by means of a function x(A) = 1, x(B) = 2, x(C) = 3, x(D) = 4. We
can change this function into, say, x′(A) = 4, x′(B) = 1, x′(C) = 2, x′(D) = 3.
A little reflection shows that there are two very different meanings that one
can give to this change in the function, depending on whether one moves the
objects or relabels the boxes. Both of these interpretations are respectable and
useful, but it is important not to confuse them. Coordinate transformations
can be applied to any theory. Invariance under diffeomorphisms is a deep
property of some theories.

After this preamble, we can state Einstein’s equations in full, in the way
he first wrote them down. Given a metric tensor gab, we define the Christoffel
symbols

Γ c
ab =

1

2
gcd(gda,b + gdb,a − gab,d) , (1.6)

the Riemann curvature tensor

R d
abc = ∂bΓ

d
ac − ∂aΓ

d
bc + Γ e

ac Γ d
be − Γ e

bc Γ d
ae , (1.7)

the Ricci tensor Rab = R c
acb , and the curvature scalar R = gabRab. Then

Einstein’s equations are
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Rab −
1

2
Rgab + λgab = 8πκTab , (1.8)

where the right hand side is constructed out of the metric and the matter
fields (if any). The arbitrary cosmological constant λ provides a scale for the
left hand side. If both Tab and λ are set to zero one finds that the equations
are scale invariant, in the sense that agab is a solution whenever gab is, for
any real number a. As Eddington said, “setting the cosmical constant to zero
would knock the bottom out of space”. The constant κ = G/c4 is usually set
to 1 by means of a choice of units.

Considered as a coupled non-linear system of partial differential equations
(PDEs) for the ten indendent functions that make up the metric tensor, this
looks—to say the least—complicated. However, after a hundred years of close
scrutiny, we have learned that the system has very special properties. Indeed,
more is known about the long-term evolution of its solutions than what is
known for the superficially much simpler Navier–Stokes equations. Moreover,
Einstein’s equations have given rise to amazing discoveries about things whose
existence was unheard of when the equations were first written down, such as
black holes. They have also given us a consistent framework for discussing the
evolution of the Universe as a whole—although it has to be admitted that,
at present, the correctness of the equations seems to hang on the existence of
undiscovered “dark matter”. Hence there are challenges too. There is probably
no reason, at the moment, to think that relativity is “essentially understood”.4

⋄ Problem 1.1 Calculate, in the Rosen coordinates u, v, x, y, the Ricci tensor
of the metric (1.1). Convince yourself that there is curvature on the hyperplane where
the derivative of the metric is discontinuous, but that Einstein’s equations do hold.

⋄ Problem 1.2 Verify Eq. (1.4) in full detail.

4 Experts do not think so: H. Friedrich, Is general relativity essentially understood?, Annalen Phys.
15 (2005) 84.
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We have yet to define “manifolds” and “tensors”. To make sure that these
lectures get anywhere in the available time, I will be very sketchy about this.
It is anyway the case that the definitions are best appreciated by working out
examples, taking note of conceptual points as they arise. Thus I will take man-

ifolds and scalar fields (real valued functions on the manifold) as given, and
only remark that a modern way of defining a differentiable manifold starts by
postulating the set (or “ring”) of scalar fields one wishes to consider. In this
way one prepares the ground for generalization to “non-commutative geome-
try”, and this may turn out to become important in the future.1

We now focus on a point P of the manifold, and consider the set of all curves
that are passing through it. At P each curve has a tangent vector, and the set
of these tangent vectors form a vector space T called the tangent space at P .
Linear algebra then allows us to construct the dual vector space U consisting
of all linear maps from T to the real numbers, as well as—by taking tensor
products of these two basic vector spaces—the vector spaces T⊗T⊗ · · · ⊗T,
U⊗U⊗· · ·⊗U, and mixed products such as T⊗U. Elements of these vector
spaces are called tensors at a point.

We must now deal with notation. Physicists usually proceed with indices
(and, in the past, meant the indices to label the tensor components), while
mathematicians usually prefer an index-free notation (because they do not
want to commit themselves to any special coordinate system). A golden middle
road is available. According to Penrose’s abstract index notation the elements
of these vector spaces are denoted

V a ∈ T , Ua ∈ U , V ab ∈ T ⊗T , V a
b ∈ T ⊗ U , (2.1)

and so on. The map from V to R provided by a vector in U is denoted
UaV

a ∈ R. It has to be a linear map, in the sense that

Ua(fV a
1 + gV a

2 ) = fUaV
a
1 + gUaV

a
2 . (2.2)

This is the condition ensuring that Ua is a vector. At a point, f and g are

1 I strongly recommend you to read the early parts of R. Penrose, Structure of space-time, in C. M
DeWitt and J. A. Wheeler (eds.): Batelle Rencontres, Benjamin, New York 1967. See also chapter
4 of R. Penrose and W. Rindler: Spinors and space-time I, Cambridge U. P. 1984.
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arbitrary numbers. More generally they are scalar fields, and then this con-
dition may become non-trivial to check. We adopt the convention that round
brackets around a set of indices denote symmetrization, and square brackets
denote antisymmetrization. Thus, for a tensor that belongs to the symmetric
subspace of U ⊗U we can write

gab = g(ab) ∈ (U ⊗ U)sym . (2.3)

Antisymmetric tensors, and complicated objects with index symmetries like

Rabcd = R[ab][cd] = R[cd][ab] , R[abc]d = 0 , (2.4)

are defined similarly.
It is important to realise that the abstract indices are not supposed to take

one out of four possible values, and the index contraction does not denote a
sum—the indices just serve as markers telling us to which vector space the
object they are attached to belongs.

But we will need concrete indices also. For this purpose we introduce a set
of four basis vectors in T, and can then expand any vector in T according to

V a = V aea
a

. (2.5)

Thus V a denotes the four components of the vector V a, when expanded in the
given basis. We also choose a dual basis in U. It is dual in the sense that

ea
a
eb

a = δb

a
, (2.6)

and it is assumed that

ea
a
ea

b = δa
b ∈ T ⊗ U . (2.7)

Einstein’s summation convention is in force for concrete indices.
Using these conventions we find that

UaV
a = Uae

a

aV
bea

b
= UaV

bea

ae
a
b

= UaV
bδb

a
= UaV

a . (2.8)

It may be a bit difficult to see the point, but the distinction between abstract
indices—labels on an object that tell us to which vector space it belongs—and
concrete indices—labels of the components of the object when it is expanded
in a basis of its vector space—is important in the sense that it takes care of
a conceptual point. I may not uphold the distinction between abstract and
concrete indices all that strictly, but one should try to interpret any equation
in terms of abstract indices whenever possible.

So far we have been sitting at a particular point in spacetime. But we want
tensor fields, defined all over the manifold. The important thing is to define
the vector fields. Everything else will follow. A standard way is to consider all
possible curves passing through a point. Each has a tangent vector, obtained
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by differentiating along the curve, and once these tangent vectors have been
divided into suitable equivalence classes we obtain the tangent space at the
point. Since derivatives have entered the game, this leads to the definition of
vector fields ~V as maps taking scalar fields to scalar fields. If k is a real number
and f , g, are scalar fields, the defining rules are that

(i) ~V (k) = 0

(ii) ~V (f + g) = ~V (f) + ~V (g)

(iii) ~V (fg) = f ~V (g) + g~V (f) .

The last requirement is Leibniz’ rules for derivatives, and indeed once a coor-
dinate system is given the vector fields so defined are differential operators,

~V (f) = V a∂af . (2.9)

This provides us with a convenient set of basis vectors for the tangent space T,
namely the differential operators ∂a. In abstract index notation these vector
fields are denoted ∂a

a
, and the components of the metric tensor in this basis

are

gab = gab∂
a
a
∂b
b

. (2.10)

A dual basis in the cotangent space consists of four differentials dxa, defined
by

dxa(∂b) = δa

b
. (2.11)

If x is one of the coordinates (or any function on the manifold for that matter)
we can use abstract index notation to write

dxa = ∇ax , (2.12)

where ∇a is a derivative operator (such that ∇af = ∂af for all scalar functions
f).

Once it is realized that vector fields are differential operators, the question
whether they commute raises its head. In general they do not. Rather

[X,Y ]a = Xb∂bY a − Y b∂bXa = L ~XY a , (2.13)

where the Lie derivative of the vector field ~Y along the vector field ~X occurs
on the right hand side. Given a vector field, we can always choose a coordinate
that runs along it, so that (for instance)

Xa∂a = ∂x , (2.14)

where x is the coordinate that runs along the vector field ~X . Given two vector
fields, we can introduce two coordinates running along them if and only if they
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commute. In general the commutator of two vector fields is a non-vanishing
vector field in itself. A key question one can ask about it is whether it belongs
to the linear span of the two vector fields from which it was formed. If this is
the case the two vector fields are said to be surface forming.2

The coordinate system can be changed. It used to be that tensors were
defined directly in the coordinate basis, and by the way they transform under
coordinate changes.3 You can easily check that all the transformation rules
come out correctly from the definitions we just gave. Thus, if we perform the
coordinate transformation x → x′(x) we find that

V a∂a = V b
∂xa

′

∂xb
∂a′ ⇒ V a

′

(x′) =
∂xa

′

∂xb
V b(x) . (2.15)

If we reinterpret this as an active coordinate transformation we see something
very important, namely that contravariant tensors (with indices ‘upstairs’) are
pushed forward by the map, while a similar calculation for covariant tensors
shows them to be pulled back. Of course, diffeormorphisms are invertible, and
if a metric is available this distinction can become very blurred. But it will be
important in Chapter 7.

Figure 2.1. Mapping, say of N into M, pullback, and pushforward. A metric g
on M is pulled back to the metric Φ∗g on N by the map Φ.

In coordinate free language, let the map N → M be called Φ. If is clear that
a function f : M → R will be “pulled back” by the map to give a function
f ◦Φ : N → R. But from the abstract definition of a vector field ~V on N it is
clear that this will give a vector field Φ∗(V a) on M, defined by

Φ∗(~V )(f) = ~V (f ◦ Φ) . (2.16)

The vector field has been pushed forward in the direction of the map Φ. Given
that, a covariant vector field Ua on M will then give rise to a covariant vector
field Φ∗(Ua) on N, defined by how it acts on an arbitrary vector field V a by

Φ∗(Ua)V
a = UaΦ

∗(V a) . (2.17)

The covariant vector field has been pulled back against the direction of the

2 Here lurks a theorem due to Frobenius. See Chapter 3, or look it up in Wald’s appendices.
3 A particularly clear exposition is E. Schrödinger: Space-Time Structure, Cambridge U. P., 1950.
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map. To remember this, observe that the usual terminology, “co”- and “contra”-
variant vectors, is maximally misleading.

Metric tensors are usually given, in terms of coordinates, as quadratic forms

ds2 = gabdxadxb . (2.18)

Here the notation is completely different from the one we used so far. What is
being meant is that the length squared of the tangent vector ds, at the point
whose coordinates are xa, are given as a quadratic form in its components dxa.
For some reason, this old-fashioned piece of notation has survived intact. If
you do not like it, you can write—using abstract indices—

ds2 = dx2 + dy2 → gab = ∇ax∇bx + ∇ay∇by . (2.19)

In the second formulation no coordinates have been chosen, but it is assumed
that we have agreed on a definition of the two scalar fields x and y.4

It remains to define connections, covariant derivatives, and curvature. Co-

variant derivatives ∇a are best defined as maps from V to U⊗V, subject to
certain rules. First one declares that ∇af is the usual gradient of the function
f . Then one insists that

∇a(X
b +Y b) = ∇aX

a +∇aY
b and ∇a(fXb) = ∇afXa +f∇aX

b . (2.20)

Finally the action of ∇a on arbitrary tensors is defined using Leibniz’ rule.
These rules do not tie down the covariant derivative uniquely however. To do
so we impose the conditions that

[∇a,∇b]f = 0 no torsion

∇agbc = 0 metric compatible .
(2.21)

The resulting covariant derivative defines the Levi-Civita connection, and I
assume that you know how to express it in terms of Christoffel symbols and
so on. The Riemann tensor is best defined by the Ricci identity

[∇a,∇b]Vc = R d
abc Vd . (2.22)

This is also a convenient way of stating one’s conventions for the Riemann
tensor. See Problem 2.1.

We now look at coordinates in more detail. A coordinate is a real valued
function defined on a manifold. In fact it is a scalar field. A coordinate chart on
a D-dimensional manifold is a map from the manifold into RD which is locally
one-to-one, so we need four such functions, suitably chosen, to coordinatize
spacetime. Often one needs an entire atlas of partially overlapping charts in
order to cover the whole manifold.

4 When I was young, George Sudarshan told me that students must get used to confusion at an
early stage. So I feel free to use whatever notation I find convenient at the moment.
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Choosing coordinates is an art, in which one tries to adapt them to some
structure, or problem, one is interested in. The usual Cartesian coordinates
(x, y) on the flat Euclidean plane provide an example. On the one hand x and
y are affine parameters along two plane-filling geodetic congruences, on the
other hand the coordinate vectors ∂x and ∂y form Killing vector fields. These
coordinates are adapted both to the geodetic structure and to the symmetries
of the plane.

A simple observation is that the vector field ∂x points along the lines of
constant y. Now consider the coordinate transformation

X = x , Y = x + y . (2.23)

The x-coordinate has been left unchanged but the y-coordinate has changed.
As a result, ∂x changes but ∂y remains the same:

∂X = ∂x − ∂y , ∂Y = ∂y . (2.24)

I bring this up because it may look confusing at first sight.
Another useful coordinate system is obtained by letting one coordinate φ

run along the Killing vector field which describes rotation around the origin,
and another coordinate r run along geodesics emerging from there. This is
called a geodetic polar coordinate system. We know that the metric becomes

ds2 = dx2 + dy2 = dr2 + r2dφ2 . (2.25)

The polar coordinate system breaks down at the origin because the Killing
vector field has a fixed point there, and the geodesics that are supposed to form
coordinate lines meet. Playing the same game in 1+1 dimensional Minkowski
space we find

{

t = τ cosh σ
x = τ sinh σ

⇒ ∂σ = x∂t + t∂x (2.26)

ds2 = −dt2 + dx2 = −dτ 2 + τ 2dσ2 . (2.27)

This is called a Rindler coordinate system, and it has been adapted to a
Lorentz boost around the origin. The coordinate τ measures the proper time
from the origin to the Killing orbit it labels. We tacitly assumed that |t| > |x|.
Another set of Rindler coordinates must be used to cover the remaining two
quadrants of Minkowski space. The coordinate singularity at the origin of the
polar coordinate system has grown to a coordinate singularity along the null
cone emanating there. This had to be so because all points on that cone are
at the same distance (namely zero) from the origin, so the coordinate τ fails
there.

If such coordinates are introduced in 3 + 1 dimensions they lead to a
Robertson-Walker metric known as the metric of the Milne universe, because
the astrophysicist Milne thought that the real universe has to be like this. The
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habit of thinking that the Universe has to be in a certain way has led to many
mistakes, but it has scored some successes too.

A coordinate problem also occurs with the Rosen coordinates we used to
describe the plane wave (1.1). A linearly polarized plane wave is given in Rosen
coordinates by

ds2 = −2dudv + F 2dx2 + G2dy2 , F = F (u) , G = G(u) . (2.28)

The Ricci tensor has only one non-vanishing component, and the metric is a
solution of Einstein’s equations if and only if

Ruu = −F,uu

F
− G,uu

G
= 0 . (2.29)

The coordinate lines u = τ , with v, x, y held constant, are null geodesics. They
can meet if F or G vanish, and then the Rosen coordinates fail. The coordinate
transformation (1.2) resolved this difficulty in a special case, and can easily
be generalized. First we set

x =
X

F
, y =

Y

G
, u = U . (2.30)

This will give rise to cross-terms in the metric that we prefer to avoid, so we
follow it up with

v = V − 1

2

F,u

F
X2 − 1

2

G,u

G
Y 2 . (2.31)

The result is

ds2 = −2dUdV +

(

F,uu

F
X2 +

G,uu

G
Y 2

)

dU 2 + dX2 + dY 2 . (2.32)

The vector field ∂U is not a null vector field, but the Killing vector field ∂V is.
The coordinates we have arrived at are known as Brinkmann coordinates.

The most general plane wave spacetime is given, in terms of them and a two-
by-two matrix Aij , by

ds2 = −2dUdV + Aijx
ixjdU 2 + dX2 + dY 2 , Aij = Aij(U) . (2.33)

The indices i, j run from 1 to 2, and x1 = X, x2 = Y . A calculation shows
that the only non-vanishing components of the Riemann tensor are given by

RUiUj = Aij . (2.34)

The Ricci tensor vanishes if the matrix Aij is traceless, so the most general
vacuum plane wave spacetime is given by
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ds2 = −2dUdV +
(

A(U)(X2 − Y 2) + 2B(U)XY
)

dU 2 + dX2 + dY 2 . (2.35)

The polarization is described by two degrees of freedom, just as one would
expect from the linearized approximation.

An interesting feature of the Brinkmann coordinates is that they obey

Γa ≡ gbcΓ a
bc = 0 . (2.36)

This is the defining property of a harmonic coordinate system. Using

Γ c
ac =

√−g,a√−g
(2.37)

it can be rewritten as

∂c(
√−ggac) = 0 . (2.38)

It can also be written, for each of the scalar fields xa that serve as coordinates,

�gx
a = gbc∇b∇cx

a = −Γa = 0 . (2.39)

This shows that, locally, such coordinates can always be found by solving the
wave equation. It also explains why these coordinates are called “harmonic”,
although “wave coordinates” would be a better name. The reason why this is
interesting is that the condition Γa = 0 is an analogue of the Lorenz gauge in
electrodynamics. If Γa = 0 one finds, for the Ricci tensor,

Rab = ∂cΓ
c

ab −∂aΓ
c

bc +Γ e
ab Γ c

ce −Γ e
cb Γ c

ae = −1

2
gcdgab,cd +Qab(g, ∂g) . (2.40)

The point is that all the “mixed” second derivatives of the metric have gone
away, and one is in the position to begin to apply general existence theorems
about partial differential equations (PDEs) to this system. The analogy to
the Lorenz gauge in electrodynamics should be clear, and similar consistency
issues have to be dealt with in both cases.5 Variants of this idea are widely used
in numerical relativity. The first breakthrough simulation of inspiral, merger,
and ringdown of two black holes used one of them.6

We go on to something more special. A spacetime is spherically symmetric
if it admits an SO(3) group of isometries. This group will act transitively on
round spheres embedded in spacetime, and it can be shown that the metric
can always be written on the block diagonal form

ds2 = gABdxAdxB + r2dΩ2 , (2.41)

5 This goes back to Y. Choquet-Bruhat. For her own account of the history, see Beginnings of the
Cauchy problem, arXiv:1410.3490.

6 F. Pretorius, Evolution of binary black-holes spacetimes, Phys. Rev. Lett. 95 (2005) 121101.
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where dΩ2 is the metric on the round unit sphere and gAB is some 1+1 di-
mensional Lorentzian metric. The round spheres have radii equal to r. There
are spacetimes—such as the Nariai solution of Einstein’s equations including a
cosmological constant—for which r is constant, but in most cases it is possible
to use r as a local coordinate on the 1+1 dimensional part. We do so from
now on. Then r is known as the area coordinate, since the area of the surfaces

of transitivity is precisely 4πr2.
Thus the area coordinate has an invariant meaning, and so has

||∇r||2 = gab∇ar∇br = grr , (2.42)

where the last equality is valid in our adapted coordinate system only. There
is a coordinate singularity when the gradient vector field ∇ar vanishes. At this
point it is conventional to define the Misner-Sharp mass function m through

||∇r||2 = 1 − 2m

r
. (2.43)

It is a function on the 1+1 dimensional quotient space with a clear geometrical
meaning. The metric on the quotient space can always be written on diagonal
form, and then our metric is

ds2 = −e2β

(

1 − 2m

r

)

dt2 +
dr2

1 − 2m
r

+ r2dΩ2 . (2.44)

Here β = β(t, r) and m = m(t, r). The function β can be changed by repara-
metrizations of t, and unlike m it does not have an invariant meaning.

These spacetimes admit a congruence of radially ingoing null geodesics, and
it makes considerable sense to adapt the coordinate system to it. The geodesics
obey

dt

dr
= − e−β

1 − 2m
r

. (2.45)

We then introduce a coordinate that (together with the angles) labels these
geodesics. This coordinate is denoted v, and is referred to as advanced time.
Thus we perform the coordinate transformation

dv = dt + e−β dr

1 − 2m
r

. (2.46)

Then v is constant along every ingoing radial null geodesic. To solve explicitly
for v = v(t, r) we need to specify the arbitrary functions m and β, but we do
not need to do this yet. Eq. (2.46) is enough to show that the metric takes the
Eddington-Finkelstein form

ds2 = −e2β

(

1 − 2m

r

)

dv2 + 2eβdvdr + r2(dθ2 + sin2 θdφ2) . (2.47)



16 Manifolds, tensors, and coordinates

It is noticeable that the coordinate singularity at r = 2m has evaporated.
A coordinate system using retarded time, labelling outgoing null geodesics, is
also possible.

If we impose Einstein’s vacuum equations, and set the cosmological constant
to zero, the only spherically symmetric solution is given by

m(v, r) = M = constant , β(v, r) = 0 . (2.48)

This is the Schwarzschild solution.
Quite incidentally, if we now introduce a brand new time coordinate t such

that v = t + r we find that the Schwarzschild metric takes the form

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) +
2M

r
(dt + dr)2 . (2.49)

This is the form in which Eddington actually wrote it down.7 It was later
generalized to metrics of the Kerr-Schild form

gab = ηab + Flalb , (2.50)

where F is some function of the coordinates, ηab is the Minkowski metric, and
la is a null vector with respect to both metrics,

la = gablb = ηablb , lal
a = 0 . (2.51)

Note that

gab = ηab − Flalb . (2.52)

What is not so obvious, but still true, is that some physically very important
metrics that do not have spherical symmetry can be written in this form.

⋄ Problem 2.1 Calculate the Riemann tensor as given by Einstein, (1.7), from
the definition (2.22). Do this on three consecutive days, or for however many days it
takes until you can do it in less than five minutes.

⋄ Problem 2.2 Derive the claims of equations (2.38) and (2.39). Also prove
that the Brinkmann coordinates are harmonic.

7 A. S. Eddington, A comparison of Whitehead’s and Einstein’s formulæ, Nature 113 (1924) 192.
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Give us the tools, and we will finish the job.

Winston Churchill

This is the first of two chapters in which we will be concerned only with
differential geometry. We focus on one-dimensional curves, and on congruences
of curves. After a much needed break (in the form of static black holes) we
will then devote ourselves to surfaces and hypersurfaces (for instance trapped
surfaces, and hypersurfaces on which initial data are set) in part II.

3.1 More about diffeomorphisms

A curve is a map from from the real numbers to a manifold M, given in terms
of coordinates by

[a, b] → M : σ̃ → xa(σ̃) . (3.1)

We insist that there is an everywhere non-vanishing tangent vector

ta =
dxa

dσ̃
6= 0 . (3.2)

On the other hand the curve is allowed to intersect itself, should it wish to do
so. If we change the parametrization, σ̃ → σ = σ(σ̃), the tangent vector will
change according to the chain rule. This provides us with an opportunity to
make a canonical choice of parameter, but before coming to this we will discuss
the important role that curves are playing as flowlines of diffeomorphisms. For
this purpose we assume that we have a congruence of curves, one through each
point of (a region in) spacetime. A point sitting on a particular curve, and
labelled by the coordinates xa(σ̃0), is transformed by a diffeomorphism Φσ̃ to
another point on the same curve, labelled xa(σ̃0 + σ̃). In continuum mechanics
this is how flows of matter are described. There one also introduces a set of
Lagrangian coordinates labeling the individual flowlines. Since the congruence
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is space-filling the Lagrangian coordinates, together with the parameter along
the curves, form a coordinate system for spacetime.

Every (reasonable) one-parameter subgroup Φσ̃ of the diffeomorphism group
gives rise to a congruence of curves. The transformation rules for tensors under
diffeomorphisms allows us to define the Lie derivative along the flow, at the
point P , as

L~tV
a = lim

σ̃→0

1

σ̃

(

V a
|P − Φ∗

σ̃(V a)|P
)

. (3.3)

Here we are comparing the vector field existing at a particular point P along
the flow with that pushed forward to P from a point further upstream. Pro-
fessor Arnold calls it the “fisherman’s derivative”. The flow carries all possible
differential geometric objects past the fisherman, who sits at P and differen-
tiates them.

Figure 3.1. Vectors at σ̃ = σ̃0 are carried forwards by the flow along the congru-
ence (in panel a). But there may already be a vector field along the congruence
(as in panel b). If the two vector fields disagree, the Lie derivative along the
tangent vector of the flow is non-zero.

To see what the fisherman catches it is convenient to express the diffeomor-
phism using a fixed coordinate system,

xa → xa
′

= xa
′

(x) ≈ xa + σ̃ta(x) . (3.4)

Calculating to first order in σ̃ we find that the vector field is pushed forward
according to

V a
′

(x′) =
∂xa

′

∂xc
V c(x) ≈ V a(x) + σ̃∂ct

aV c(x) . (3.5)

However, we want the transformed vector field evaluated at the point P , which
by assumption has coordinates x, not x′. This is

V a
′

(x) ≈ V a(x − σ̃t) + σ̃∂ct
aV c(x) ≈ V a(x) − σ̃tc∂cV

a + σ̃V c∂ct
a . (3.6)

Inserting this in the definition (3.3) we obtain



3.1 More about diffeomorphisms 19

L~tV
a = lim

σ̃→0

1

σ̃

(

V a(x) − V a
′

(x)
)

= tc∂cV
a − ∂ct

aV c . (3.7)

In coordinate-free language this is

L~tV
a = tc∇cV

a −∇ct
aV c . (3.8)

It does not matter which derivative operator we use in this expression. When
we replace the coordinate based partial derivative with a torsion free covariant
derivative we find that the extra terms cancel because the Christoffel symbols
are symmetric.

The Lie derivative of arbitrary tensors can be worked out in the same way,
or more conveniently they can be found using Leibniz’ rule. For instance

L~t(UaV
a) = tc∇c(UaV

a) =

(3.9)

= (tc∇cUa + ∇at
cUc)V

a + Ua(t
c∇cV

a −∇ct
aV c) = L~tUaV

a + UaL~tV
a .

A particularly important case is the Lie derivative of the metric tensor. One
finds

L~tgab = tc∂cgab + ∂at
cgcb + ∂bt

cgac = ∇atb + ∇bta , (3.10)

where the metric compatible derivative operator ∇a was used in the second
step.

An important point is that we can use the diffeomorphism to define a tensor
field, starting from tensors that are defined only at xa(σ̃0). We simply insist
that L~tV

a = 0, L~tgab = 0, and so on. The tensors are carried along by the
flow. If, on the other hand, a tensor field such as gab is defined already, we
can compare it to the tensor field created by the diffeomorphism. If they
agree, it means that we have stumbled on a flow of diffeomorphisms such
that L~tgab = 0. Such diffeomorphisms are called isometries, and their tangent
vectors ~t are called Killing vectors.

Finally, let me explain the unease that some of us feel when it is argued that
gravity is “emergent”, in the same sense as phonons (say) are emergent in con-
densed matter physics. There the idea is that one relies on a fixed background
metric to divide a system into small boxes. The boxes serve as a cut-off, and
excitations with wavelengths that fit into a box are integrated out. Meanwhile,
the Milky Way performs its stately rotation, with a period of a hundred mil-
lion years or so (depending on where you are in the galaxy). But the relativist
can perform a diffeomorphism causing the entire Milky Way to flow into one
of the small cut-off boxes. The idea to integrate out everything that happens
within the Milky Way is not so attractive.
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3.2 Curves and congruences

With these matters out of the way, we take up the study of individual curves.
We introduce a convenient notation for differentiation along the curve,

v̇a ≡ ∇~tv
a ≡ tb∇bv

a =
dva

dσ̃
+ Γ a

bc tbvc , (3.11)

where va = va(σ) is any vector field defined on the curve. Concerning the
last member of the equation, it has probably dawned on you by now that the
game is to hide the non-tensorial object Γ a

bc from sight, whenever we can.
It will appear only in explicit coordinate calculations. I should also say that
the dot-notation used on the left is unusual. If ~̇v = 0 the vector is said to be
parallel transported along the curve.

Now consider the vector

ṫa = tb∇bt
a . (3.12)

We will insist that ~t · ~̇t = 0. An exercise using the chain rule shows that this
can always be arranged, provided we choose a canonical parameter σ = σ(σ̃)

along the curve. It is assumed that we can solve for σ̃(σ). Let ~̇told and ~̇tnew be
the vector calculated using σ̃ and σ, respectively. Then the calculation goes as
follows:

ṫaold =
d2xa

dσ̃2
+ Γ a

bc

dxb

dσ̃

dxc

dσ̃
=

dσ

dσ̃

d

dσ

(

dσ

dσ̃

dxa

dσ

)

+

(

dσ

dσ̃

)2

Γ a

bc

dxb

dσ

dxc

dσ
=

(3.13)

=

(

dσ

dσ̃

)2(
d2xa

dσ2
+ Γ a

bc

dxb

dσ

dxc

dσ

)

−
d2σ̃
dσ2

(

dσ̃
dσ

)3

dxa

dσ̃
=

(

dσ

dσ̃

)2

ṫa
new −

d2σ̃
dσ2

(

dσ̃
dσ

)3 ta
old .

If ṫa
old has a component in the tangent direction, we can ensure that ṫa

new has
none by solving a differential equation. The resulting canonical parameter σ
is called an affine parameter, and from now on we assume that this choice
has been made. The only ambiguity that remains is a choice of scale and zero
point of σ. Unless ~t is a null vector the scale is completely fixed by insisting
that

~t · ~t = gabt
atb =

{

1 if ~t is spacelike

−1 if ~t is timelike .
(3.14)

The curve is now parametrized using arc length. If the curve is timelike the
preferred parameter σ is called proper time, and usually denoted by τ .

The curve is a geodesic if its tangent vector is parallel transported along
itself,

ṫa = tb∇bt
a = 0 . (3.15)
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This is a system of ODEs (ordinary differential equations) that determines
the curve uniquely for some interval in σ, given the initial vector ~t. If the
solution exists for all σ the geodesic is said to be complete. (You may know
that spacetimes containing incomplete geodesics are said to be ‘singular’.)

Now suppose that the curve is given, but suppose the right hand side of the
equation is non-zero. Let the curve be parametrized by arclength, and write

ṫa = κ1n
a , (3.16)

where the vector ~n, known as the principal normal, is normalized so that
~n · ~n = ±1. Actually it can be null, but we ignore this case for the time being.
The function κ1 will be referred to as the first curvature, or as the proper

acceleration if the curve is timelike. If the curve changes from timelike to
spacelike then κ1 diverges, which is forbidden for the worldline of an observer.
It is important to know whether ~n is spacelike or timelike. In 2+1 dimensional
Minkowski space, an example of a curve with a spacelike normal is obtained
by intersecting two lightcones with vertices on the time axis. A circle of radius
r arises this way, and incidentally it has

κ1 =
1

r
. (3.17)

A spacelike curve with constant curvature and timelike normal can be found
by intersecting two lightcones with vertices on a space axis. In the 2 + 1
dimensional spacetime diagram it looks like a hyperbola.

To cut down the ambiguities we momentarily assume that we are in a 3-
dimensional space with a positive definite metric (so that all vectors are space-

like). Given that ~n · ~n = 1 we know that ~̇n is orthogonal to ~n. Moreover, since
~t · ~n = 0, we find that

ṅata = −naṫ
a = −κ1nan

a = −κ1 . (3.18)

Carrying on in this way we arrive at the Frenet–Serret equations

ṫa = κ1n
a

ṅa = −κ1t
a +κ2b

a

ḃa = −κ2n
a .

(3.19)

The vector ~b is called the binormal, because one has to call it something, and
the function κ2 is the second curvature or torsion (since it determines how
the curve is ‘twisting’ in space). Doing the same exercise in four dimensions
would result in three curvatures. In Lorentzian cases there will be extra signs,
depending on which one of the vectors is timelike—or perhaps either ~t or ~n is
null, in which case one has to think again.

Once this procedure is completed we have an orthonormal triad of vectors
spanning the tangent spaces that are encountered by the curve, so that the
metric there can be written as
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gab = tatb + nanb + babb , (3.20)

with an extra sign inserted somewhere if we are in Minkowski space. In the
field theory literature this expression would normally be written as

gab = δijea
i e

b
j , (3.21)

and the triad vectors are called ‘dreibeins’. However, after going through all
the work needed to adapt the triad vectors to the geometric object we are
studying, it seems better to give them separate names such as ~t ≡ ~e1.

As soon as one tries to do a concrete example one realizes that quite some
work is involved. Let us consider a helix spiraling around the z-axis in Eu-
clidean space,

xa(σ̃) =





r cos σ̃
r sin σ̃
aσ̃ + h



 , (3.22)

where r, h, a are constants. The first thing one finds is that σ̃ is not normalized
according to the rules, and has to be replaced by the arclength parameter σ,

σ̃ =
σ√

r2 + a2
. (3.23)

This gives a tangent vector of unit length. One then has to separate out a
factor κ1 to ensure that the normal ~n has unit length, and finally a small
calculation is needed to solve for the binormal, using

κ2b
a = ṅa + κ1t

a . (3.24)

When all is said and done we obtain

ta =
1√

r2 + a2





−r sin σ̃
r cos σ̃

a



 , na =





− cos σ̃
− sin σ̃

0



 ,

(3.25)

ba =
1√

r2 + a2





a sin σ̃
−a cos σ̃

r



 , κ1 =
r

r2 + a2
, κ2 =

a

r2 + a2
.

We will return to this result shortly, but first we observe that the particular
triad or moving frame that we have attached to the curve may not be the most
useful one for physical applications.

Another option is the Fermi-Walker frame. The usual context is that of an
observer following a timelike worldline in spacetime, with acceleration ~a = κ1~n.
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She wants to set up a frame (~t, ~e1, ~e2) such that the spatial vectors are non-
rotating, in the sense that they are changing only in the direction of the tangent
vector. If we start with a Frenet frame we can make the Ansatz

ea
1 = αna + βba , ea

2 = −βna + αba , (3.26)

and use Frenet’s equations to deduce that

ėa
1 = κ1αta + (α̇ − κ2β)na + (β̇ + κ2α)ba . (3.27)

Setting the unwanted terms to zero gives a pair of linear ODEs, with the
solution

ea
1 = cos

(∫ σ

κ2dσ

)

na − sin

(∫ σ

κ2dσ

)

ba . (3.28)

Using the acceleration vector ~a = κ1~n we can define

ωab = taab − tbaa , (3.29)

and arrive at the attractive formulas

ṫa = ωa
bt

b , ėa
1 = ωa

be
a
1 , ėa

2 = ωa
be

a
2 . (3.30)

We can check this, for instance

ṫa = taabt
b − aatbt

b = aa , (3.31)

which is just right. The point is that there is no rotation in the plane spanned
by ~e1 and ~e2. If the observer carries out Newton’s bucket experiment she will
find no effect precisely if the water does not rotate relative to a Fermi-Walker
frame. (It remains to explain why distant galaxies do not rotate relative to
this frame. There are solutions of Einstein’s equations in which they do.1)

Now we go back to the equation (3.22) that defines the circular helix, but
we allow r and h to vary. In this way we obtain a space-filling congruence of
curves labeled by the Lagrangian coordinates r and h (where h is a periodic
coordinate). A relevant question about a congruence is whether it is hypersur-

face orthogonal. The idea is that, at each point in space, the tangent vector of
the curve defines a hyperplane element in tangent space, spanned by vectors
orthogonal to the tangent. In the case of the helix we studied, the hyperplane
elements are two-dimensional planes in each tangent space, spanned by the
vectors ~n and ~b. Can one fit those plane elements together so that they be-
come the tangent planes of a surface? Suppose that this surface exists, and
is given by an equation f(x) = 0. It will have a normal vector given by the
gradient ∇af . More generally we can rescale the normal, so that the normal
vector of the surface is given by g∇af , where g is another function. But we

1 I. Ozsváth and E. Schücking, The finite rotating universe, Ann. Phys. 55 166 (1969).
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are asking for a surface with a normal in the direction of the tangent vector ~t,
so we must find functions f and g such that

ta = g∇af . (3.32)

The condition that this be (locally) possible is

t[a∇btc] = 0 . (3.33)

We can easily apply this criterion to our congruence of helices. We find that

ǫabcta∇btc = 2κ2 6= 0 . (3.34)

(For the calculation you may find it convenient to express the vector field
~t in Cartesian coordinates.) So the answer is no. The curves in the helical
congruence are not everywhere orthogonal to any surface. The plane elements
orthogonal to the tangent vectors are horizontal at the z-axis, but when you
go out from there they twist relative each other in such a way that you cannot
draw a single surface through any selection of such plane elements.

Note that you may be familiar with this kind of argument from thermody-
namics. Without going into the details of the kind of differential form notation
used there, one considers vectors given by

dU + pdV + µdN + . . . , (3.35)

and states as a Law that they are surface forming, and can be set equal to
a vector TdS, normal to surfaces given by S = constant. Note also that in
two dimensions the question trivializes, because then the orthogonal plane
elements are one-dimensional vector fields, and vector fields can always be
fitted together as tangent vectors of a family of curves. And note finally that we
are dealing with a special case of Frobenius’ theorem. It says that a collection
of vector fields are surface forming if and only if their commutators belong
to the subspace of tangent space that they span. The hypersurface case is
the easy one, because it can be discussed in terms of the unique dual vector
orthogonal to all the vectors tangent to the hypersurface.2

Actually we have associated three vector fields to our helical congruence,
and a quick calculation confirms that

n[a∇bnc] = b[a∇bbc] = 0 . (3.36)

Hence the distributions of plane elements spanned by (~t,~b) and by (~t, ~n) are
integrable, and do form surfaces. An effort at visualization shows that in the
former case we obtain cylinders, and in the latter case we obtain surfaces
known as helicoids. They have equations like

2 For the details, see Wald’s appendices.
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f = z − a arctan
y

x
= 0 . (3.37)

Although this equation does not work globally, it is a useful one because it
describes the surface as a graph of a function. It is easily checked that

ta∂af = na∂af = 0 , (3.38)

so the helicoid does have ~t and ~n as tangent vectors. We will come back to this
surface, because it provides a standard example of a minimal surface. (Make
a helix out of a steel wire and dip it in a soap solution. You should be able
to see a helicoid when you take it out again. Although it is easier to do the
locally isometric catenoid.3)

Congruences of curves are of considerable interest, partly because they can
be thought of as the flowlines of moving matter in the form of freely falling
‘dust’ (like the galaxies in Friedmann models of the universe), and for many
other reasons. Congruences may develop caustics if followed long enough, but
here we will be interested in a local description where this kind of behaviour is
excluded. A typical question is this: Focus on one curve in the congruence, and
at some particular parameter time surround it with a geodetic ball. This picks
out a particular set of curves for consideration. Let the parameter time grow
and let the ball be comoving with the flow. What shapes will then be assumed
by the ball? We take the ball to be small, so it will be enough to analyse the
normal vectors attached to the original curve. They define the geodesics that
we are using as radii of our ball. We focus on timelike curves, because they
can be thought of as representing a matter flow.4

For this purpose let us think of a Jacobi field ~η, that is to say a vector field
that is Lie dragged along the congruence:

L~tη
a = 0 ⇔ [t, η]a = 0 . (3.39)

Since the two vector fields commute the vector field ~η points along some La-
grangian coordinate line. Intuitively the vector ~η connects two neighbouring
flowlines. Because the Lie derivative vanishes we see that

η̇a = tb∇bη
a = ∇bt

aηb ≡ Ba
bη

b , (3.40)

where we defined

Bab ≡ ∇bta = ta;b . (3.41)

(The old-fashioned notation for covariant derivatives makes it easy to re-
member the ordering of the indices here.) We assume that the congruence

3 C. V. Boys: Soap bubbles, their colours and the forces which mold them, Courier Corporation,
1959. The classic reference for curves and surfaces in Euclidean space is D. J. Struik: Lectures on
Classical Differential Geometry, Dover, New York 1961.

4 A classic description is by J. Ehlers, 1961, reprinted as Contributions to the relativistic mechanics
of continuous media, Gen. Rel. Grav. 25 (1993) 1225.
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is geodetic—it is a family of test particles in free fall, if you like. (If we do not
assume this we will have to carry an extra term along.) Then

tb∇bt
a = 0 ⇒ tbBab = tbBba = 0 . (3.42)

Hence, at a point, the tensor Bab belongs to the vector space T⊥ ⊗T⊥, where
T⊥ is the orthogonal complement of the tangent vector.

The next step is to introduce a metric on the orthogonal hypersurface ele-
ments, namely

hab = gab + tatb , habt
b = 0 . (3.43)

This metric tensor belongs to (T⊥⊗T⊥)sym. We use it to decompose the tensor
Bab into irreducible parts:

Bab =
1

3
θhab + σab + ωab . (3.44)

Here θ is the expansion, the symmetric traceless tensor σab (i.e. habσab = 0) is
the shear, and the antisymmetric tensor ωab is the rotation of the congruence.
The idea is that if we look at a small spherical bundle of geodesics, then we
find that θ causes the sphere to grow as we move along the congruence, σab

turns it into an ellipsoid, and ωab causes it to rotate.
Let us be completely explicit about the expansion, and rewrite it in two

useful ways:

θ = habBab = hab∇atb =







= ∇at
a

= 1
2
habL~thab .

(3.45)

If we introduce
√

h ≡
√

dethab, measuring the volume of a 3-dimensional
co-moving volume element, we can write

θ =
1

2
hab

L~thab =
L~t

√
h√

h
. (3.46)

We see that, indeed, the expansion measures how a co-moving volume expands
or shrinks as it is carried along the flow.

But the expansion, shear, and rotation themselves change as we move along
the congruence. To see how, observe that

Ḃab = tc∇c∇bta = tc∇b∇cta + tc[∇c,∇b]ta =

(3.47)

= ∇b(t
c∇cta) −∇bt

c∇cta + tcR d
cba td = −Bc

bBac − Rcbdat
ctd .

(The geodesic equation enabled us to drop one term. Notice also the general
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rule: whenever two covariant derivatives act on a tensor, we can bring the
Riemann tensor into the game by changing their order.) It follows that

θ̇ = −1

3
θ2 − σabσ

ab + ωabω
ab − Rabt

atb . (3.48)

This is Raychaudhuri’s equation.
The strong energy condition requires that

Rabt
atb ≥ 0 (3.49)

for all timelike vectors ~t. Using Einstein’s equations it can be converted into
a condition on the stress-energy tensor Tab, which holds for most reasonable
types of matter. Anyway the conclusion is that if the strong energy condition
holds, and if the cosmological constant is zero, then the expansion of a rota-
tion free congruence can only decrease. Gravity has a focussing effect, which
becomes even stronger in the presence of matter obeying the strong energy
condition.

Concerning rotation: In a similar way one deduces that

ω̇ab = −2

3
θωab − 2σc

[bωa]c . (3.50)

If there is no rotation to start with, the congruence stays rotation free. Rota-
tion free geodetic congruences, if they exist, have an interesting property:

∇[atb] = 0 ⇔ ta = ∇af . (3.51)

The function f is known as a velocity potential. The forwards implication is
only local, but let us suppose it holds everywhere, and that the congruence
fills all of spacetime. This is interesting because there is a function increasing
along the timelike geodesics in the congruence. By setting its value to a con-
stant along all the curves we obtain a spacelike hypersurface of “simultaneous”
events, in other words this function serves as a global time function. Because
the function grows monotoneously the spacelike hypersurface can be crossed
in one direction only by timelike curves. In this way the existence of a global
time function guarantees that there are no closed timelike curves. The con-
verse is not true in general—relativity theory allows rotating universes that
do not have closed timelike curves. But some rotating universes have them.5

Concerning shear:

5 K. Gödel, An example of a new type of cosmological solutions of Einstein’s field equations, Rev.
Mod. Phys. 21 (1949) 447. Gödel’s solution uses a negative cosmological constant to balance the
‘centrifugal force’ of the rotation. Its topology is R

4. The Ozsváth–Schücking solution on the
other hand has no CTCs.
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σ̇ab = −2θ

3
σab − σacσ

c
b − ωacω

c
b +

(3.52)

+
1

3
hab(σcdσ

cd − ωcdω
cd) + Ccbdat

ctd +
1

2
R̃ab ,

where

R̃ab = hachbdR
cd − 1

3
habhcdR

cd , (3.53)

and Cabcd is the Weyl tensor. (When one splits the Riemann tensor into irre-
ducible pieces, the Weyl tensor is the piece that is algebraically unconstrained
by Einstein’s equations. It is “trace free” by construction.) The message is
that even in vacuum gravity (where the Ricci tensor vanishes), a congruence
that starts out shear free will develop shear if there is a non-zero Weyl tensor.
The shear then enters the Raychaudhuri equation and causes focussing there.

One look at Raychaudhuri’s equation (3.48) reveals something disturbing.
Suppose the rotation is zero. Then it stays zero. Suppose also that θ is negative
to start with. When the strong energy condition holds it follows that the
derivative of θ along the congruence is negative, and θ will grow more negative
as the absolute value of θ grows. More precisely,

θ̇ ≤ −1

3
θ2 ⇒ d

dτ

(

1

θ

)

≥ 1

3
⇒ θ(τ) ≤ 1

θ(0) + τ
3

. (3.54)

For a negative initial value θ(0) it follows that θ → −∞ in finite proper
time. When this happens the geodesics in the congruence come together, and
a caustic occurs. While this is not disturbing as such, suppose that we con-
sider the rotation-free timelike congruence along which the galaxies in a dust
filled Friedmann universe are moving. As θ diverges, the dust density ρ is also
diverging, leading via Einstein’s equations to a curvature singularity. Hence,
without any symmetry assumptions, we can conclude (by letting the parame-
ter grow in the negative time direction) that if the Universe is expanding at
some particular moment (as defined by the global time function) then there
must have been a singularity in the past.

This observation was, in fact, Raychaudhuri’s original point. Some years
later a much more serious singularity theorem, not relying on the details of
the matter model, was proved by Penrose.6

⋄ Problem 3.1 Prove, by introducing extra coordinates kept constant on a
curve, that

6 For this history, see J. M. M. Senovilla and D. Garfinkle, The 1965 Penrose singularity theorem,
Class. Quant. Grav. 32 (2015) 124008.
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ta =
dxa

dσ
⇔ ta∇aσ = 1 . (3.55)

This is the coordinate independent way of introducing a parameter along the curve.

⋄ Problem 3.2 Write down the Frenet–Serret equations for a timelike curve
in a four-dimensional spacetime.

⋄ Problem 3.3 Our helical congruence is not hypersurface orthogonal. If you
think about it, you will realize that the set of its binormals can be regarded as the
tangent vectors of another helical congruence—which is everywhere orthogonal to the
helicoid. Clarify using pictures rather than formulas why this difference arises.

⋄ Problem 3.4 You obtain a cone by identifying points connected with a
rotation < 2π. Misner space is obtained by identifying points (in Minkowski space)
connected by a Lorentz boost. Show that Misner space contains closed spacelike curves
whose normal is everywhere timelike. For definiteness, choose curves with constant
first curvature.

⋄ Problem 3.5 Given η̇a as defined in eq. (3.40), define aa = tb∇bη̇
a. Use eq.

(3.39) to prove the geodetic deviation equation

aa = ηbtctdR a
bcd . (3.56)
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An equilibrium state does not change with time. If a spacetime is to qualify as
an equilibrium state it must possess an everywhere timelike Killing vector, and
is then called stationary. We may also require that the spacetime in some sense
describes an isolated system, which presumable translates into the requirement
that it be asymptotically flat in a suitable sense. (It may be reasonable to ignore
the cosmological constant in this context.) Finally, an equilibrium state must
be stable under small perturbations if it is to be of physical relevance.

4.1 The Schwarzschild solution and its relatives

It is known that the only stationary and asymptotically flat solution of the
Einstein vacuum equation (with λ = 0) on a spacetime of topology R4 is flat
Minkowski space itself. The proof goes back to Einstein, and becomes very
simple if we assume that the spacetime is not only stationary but also static.
This assumption implies that one can find a coordinate system such that the
metric is independent of a time coordinate t, and moreover—this is the precise
meaning of static—invariant under the reflection t → −t. Alternatively one
demands that the Killing vector field ∂t be hypersurface orthogonal, and ev-
erywhere orthogonal to spatial hypersurfaces defined by setting the coordinate
t equal to a constant. Either way one arrives at the Ansatz

ds2 = −N 2dt2 + γijdxidxj , (4.1)

where xi are coordinates on the spacelike hypersurfaces orthogonal to the
Killing field, while γij and N are independent of the coordinate t. Asymptotic
flatness requires that the coordinate system can be chosen so that

N → 1 , γij → δab , (4.2)

at large distances. For the moment we pass lightly by the question of how fast
the fall-off has to occur.

Next one writes the Einstein equations for this Ansatz. Let ∇̄i be the 3-
dimensional covariant derivative defined using the metric γij, and let R̄ij be
its Ricci tensor. Then the result is



4.1 The Schwarzschild solution and its relatives 31

Rtt = −Nγij∇̄i∇̄jN = 0 (4.3)

Rij = R̄ij +
1

N
∇̄i∇̄jN . (4.4)

But the first equation here is the Laplace equation, and since we are assuming
that N → 1 at infinity we must have N = 1 everywhere. The second equation
then says that the spatial Ricci tensor vanishes, which implies that space is
flat. QED.

Of course the story is not quite over here. The Schwarzschild metric

ds2 = −
(

1 − 2m

r

)

dt2 +
dr2

1 − 2m
r

+ r2(dθ2 + sin2 θdφ2) (4.5)

is an asymptotically flat solution of Einstein’s equation, and it is of the form
(4.1). But the topology of the manifold is not R4, since the metric is defined
only on the coordinate range r > 2m. Actually 0 < r < 2m is a possibility
too, but then the metric is not static since r will be the time coordinate in
this case. The hypersurface forming Killing field has a norm given by

||∂t||2 = −V (r) = −
(

1 − 2m

r

)

. (4.6)

The Killing vector is timelike if r > 2m and spacelike if r < 2m. It is presum-
ably null if r = 2m, but this is outside the range of the coordinate system we
are using, so strictly speaking we are not allowed to draw that conclusion yet.
But it can be confirmed by switching to Eddington–Finkelstein coordinates.
Throughout I assume that the integration constant m > 0. A negative value
would not help since there is a curvature singularity at r = 0, and again the
spatial topology is not that of R3.

It is important to familiarize oneself with the Schwarzschild solution. The
story is best told with a few pictures. I hope you can make sense of all three,
although the third may be unfamilar.1 As Figure 4.1 makes clear, the solution
has some unphysical features. In particular there are two asymptotic regions,
and a ‘white hole’ in the past. Still, like the equilibrium states in statistical
physics, this is a state that can be approached (in a suitable sense) in the real
world.

The non-static region II repays scrutiny. For one thing it ends with a sin-
gularity, reached by timelike geodesics in finite proper time. At constant r the
spatial metric is

dl2 =

(

2m

r
− 1

)

dt2 + r2(dθ2 + sin2 θ) . (4.7)

1 Arguably the best explanations of how to draw Penrose diagrams were given by M. Walker, Block
diagrams and the extension of timelike two-surfaces, J. Math. Phys. 11 (1970) 2280. For Figure
4.3, see D. Marolf, Spacetime embedding diagrams for black holes, Gen. Rel. Grav. 31 919, 1999.
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Figure 4.1. The Penrose diagram of the completed Schwarzschild manifold.
Each point is a round sphere and radial light rays slope 45 degrees. Two inter-
esting hypersurfaces are marked, and four regions labelled.

Figure 4.2. Realistic sketches of the two spatial hypersurfaces occurring in the
Penrose diagram (with one dimension suppressed).

If we change r to a smaller value (that is to say, if we move to a later moment
of ‘time’), space expands in one direction and shrinks in two. This kind of
behaviour recurs in less symmetrical models of gravitational collapse, except
that there may be chaotic transitions between the expanding and the contract-
ing directions. Another interesting observation concerns null geodesics leaving
the round spheres at constant t in directions orthogonal to the spheres. That
is, imagine that the round sphere is emitting two flashes of light, giving rise a
moment later to two spherical wave fronts. The observation is that the area of
both wave fronts are shrinking. Nothing like it happens in region I, where the
ingoing wave front shrinks and the outgoing wavefront grows. A sphere such
that both wave fronts shrink is said to be trapped. The singularity theorems
proved by Penrose and others say (after the addition of some reasonable look-
ing extra conditions) that if trapped spheres are present then there necessarily
exist timelike or null geodesics that cannot be continued to infinite values of
their affine parameter. As is indeed the case with the geodesics that encounter
the Schwarzschild singularity.

More generally we can consider spherically symmetric and static spacetimes
with metrics of the form

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2(dθ2 + sin2 θdφ2) . (4.8)

This includes the Reissner–Nordström–(anti)–de Sitter solution, for which
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Figure 4.3. The geometry of the 1 + 1 dimensional Penrose diagram, with the
spheres suppressed. This surface is supposed to be embedded in a 2+1 dimen-
sional Minkowski space, with the singularities occurring “at infinity” in the
picture (but at finite distance within the surface).

V (r) = 1 − 2m

r
+

e2

r2
− λr2

3
=

1

r2

(

r2 − 2mr + e2 − λ

3
r4

)

. (4.9)

This is a solution of the Einstein-Maxwell equations, with non-vanishing elec-
tric field. The parameter e is an integration constant arising when the Maxwell
equations are solved, and equals the electric charge as evaluated by a surface
integral at infinity. There is no charged matter anywhere. To simplify matters
we set λ = 0 from now on. Then

V (r) =
1

r2
(r − r+)(r − r−) , r± = m ±

√
m2 − e2 . (4.10)

If m < |e| the solution is everywhere static and has a naked singularity at
r = 0, as is in fact required by Einstein’s theorem. If m > |e| the solution as

given splits splits into three region, and the Killing vector ~ξ = ∂t is spacelike
when r− < r < r+. There is an outer event horizon at r = r+ and an inner
horizon at r = r−. Once the solution has been analytically extended as far as
possible an infinite number of asymptotic regions appears. In the borderline
case m = e the function V (r) has a double root. This case is known as the
extremal Reisser-Nordström solution, and its Penrose diagram is dramatically
different from that of the generic case. In particular the inner and outer hori-
zons have merged together. The timelike singularities mean that strong cosmic

censorship is violated in both cases (because they will affect, very adversely,
the predictability of the evolution of the interior), but the weak censor is do-
ing her job, in the sense that the (future) singularity is invisible for an outside
observer.

Within this two-parameter family of spacetimes the spacelike singularity
that occurs when e = 0 is clearly non-generic. However, in a wider context,
it is the timelike singularity that fails to be generic. In the interior of the
Reissner–Nordström solution the inner horizon is a Cauchy horizon beyond
which predictability is lost. To a mathematical relativist, a Cauchy horizon
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Figure 4.4. The Reissner-Nordström spacetime to the left, and the extremal
Reissner-Nordström to the right. λ = 0. Ingoing Eddington–Finkelstein co-
ordinates cover regions I, II, and III, while outgoing Eddington–Finkelstein
coordinates cover regions I, II’, and III’.

is much more shocking than a singularity. Fortunately this Cauchy horizon
appears to be unstable under perturbations, while the event horizon is stable.2

From an astrophysical perspective the Reissner–Nordström solution is unin-
teresting. Black holes in the real world are likely to have effectively vanishing
electric charge. However, from the point of view of mathematical relativity—
where one of the aims is to show that the world is a ‘deterministic box’, albeit
not a very comfortable one due to singularities—it is interesting as a toy model
for the astrophysically interesting Kerr solution. The Kerr solution also has
Cauchy horizons in its interior, and one aims to prove that this is an unstable
feature, so that the full time evolution is predictable from initial data in the
generic case.

The overall conclusion so far is that the theory admits non-trivial equi-
librium states, which is surprising in view of Einstein’s theorem. However—
excepting flat spacetime—the static and asymptotically flat solutions of Ein-
stein’s equations that we have found are bounded inwards by a null hypersur-
face ruled by a Killing vector field which is null on the hypersurface itself. We
need to understand this null hypersurface better.

4.2 Killing horizons and surface gravity

First some facts about null hypersurfaces in general. Locally every hyper-
surface is defined by setting some function of the coordinates to zero. The

2 See M. Dafermos, Price’s law, mass inflation, and cosmic censorship, arXiv:gr-qc/0401121.
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gradient of that function defines the normal vector of the hypersurface, and
at each point of the hypersurface the tangent space contains all vectors or-
thogonal to the normal. If the normal vector is timelike the hypersurface is
spacelike, and conversely. But it can happen that the normal vector is null, in
which case it is orthogonal to itself—and the normal vector is then tangen-
tial to the hypersurface. Such a hypersurface is null. At every point of a null
hypersurface there is a preferred null direction within the hypersurface, along
which its null normal vector points.

Interestingly the preferred null vector field is always geodetic. To see this,
consider the equation f(x) = c, with c ∈ [−ǫ, ǫ] a constant. Locally this de-
scribes a one parameter family of hypersurfaces with normal vectors na = ∇af .
We asssume that

f = 0 ⇒ n2 = gab∇af∇bf = 0 . (4.11)

In words f = 0 describes a null hypersurface, but f = c may not. We now
compute

nb∇bna = nb∇b∇af = nb∇a∇bf = nb∇anb =
1

2
∇an

2 . (4.12)

Two cases arise. Either the parameter c does provide a one-parameter family of
null hypersurfaces, in which case n2 vanishes in a region. Then the right hand
side is zero, and the normal vector field ~n—which then lies within the null
hypersurfaces—is geodetic. Or else we have a null hypersurface only if c = 0,
in which case that particular hypersurface is singled out by the equation

n2 = gab∇af∇bf = 0 . (4.13)

At the hypersurface it follows that the gradient of f and the gradient of n2

point in the same direction, namely along the unique null direction on the
hypersurface. Therefore Eq. (4.12) says that the acceleration along the vector
field ~n is aligned with the vector field itself. As noted in Section 3.2 we can
then make the acceleration vanish by means of a reparametrization of the
parameter along the vector field, and again we conclude that there is a null
geodesic directed along that null direction. The conclusion is that every null
hypersurface is ruled by null geodesics.

The intrinsic metric on a null hypersurface is degenerate. Null hypersur-
faces, and null curves, are in many ways more ‘rigid’ than their spacelike and
timelike cousings. In a way a null hypersurface resembles a Newtonian space-
time, in which distances can be measured either in spacelike directions, or
along a preferred time direction (in the null hypersurface we use an affine pa-
rameter along the null geodesics), while a proper notion of spacetime distance
is missing.

But the inner boundary of the Schwarzschild solution is a very special null
hypersurface since it is ruled by a null Killing vector field. It is this property
that singles it out as an equilibrium state of the theory, as we will see.
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Figure 4.5. A bifurcate Killing horizon.

In all sufficiently small regions spacetime is close to flat. If spacetime has
a symmetry, and if you look at it with a sufficiently strong magnifying glass,
the Killing vector field will behave like some Killing vector field in Minkowski
space. There are then three main cases to consider: translations, rotations,
and boosts. There are also various linear combinations of these which we gloss
over. The various cases are distinguished by the nature of their fixed points
and by the nature of the hypersurfaces on which the norm squared of the
Killing vectors vanish.

Translations have no fixed points, and their norms are always non-zero.
Rotations do have fixed points—forming timelike 2-planes in Minkowski space.
Boosts are more interesting. In Minkowski space, with its standard coordinate
system, a typical boost is

~ξ = T∂X + X∂T ⇒ ~ξ · ~ξ = T 2 − X2 . (4.14)

There is a spacelike 2-plane of fixed points at T = X = 0. More is true; the
flow lines are lightlike on a two sheeted null hypersurface

T = ±X . (4.15)

More than that, the flow lines are not only lightlike, they are null geodesics.
The two sheets bifurcate at the fixed 2-plane. In general a null hypersur-
face where a Killing vector field becomes null is called a Killing horizon. The
Schwarzschild solution also has a Killing horizon, but its bifurcation surface

is a 2-sphere (represented by the central point of its Penrose diagram). The
Reissner–Nordström solution has several Killing horizons.

We define the surface gravity κ of a Killing horizon through the equation

∇aξ
2 = −2κξa , (4.16)

evaluated at the horizon itself. This equation will always hold, for some func-
tion κ, because we assume that the normal vector of the hypersurface defined
by ξ2 = 0 is null, and we also know that the Killing vector points along that
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same direction. It certainly can happen that a Killing vector field becomes null
on some timelike hypersurface, but then the story ends because Eq. (4.16) does
not hold—there is no Killing horizon.

Due to its definition in terms of Killing vectors the surface gravity κ must
be constant along each generator—obviously so because we can move in this
direction using an isometry. Now let v be a Killing parameter along the flow
lines of the Killing vector field, that is to say that

ξa∇av = 1 ⇔ ξa =
dxa

dv
. (4.17)

We recall that on the Killing horizon these flow lines are actually null geodesics.
As such, they admit a preferred affine parameter. This means that we have
two different notions of “preferred parameter” available, and it turns out that
we can interpret surface gravity as a measure of to what extent the Killing
parameter differs from the standard affine parameter along a geodesic. To see
this, we rewrite the defining equation a little;

κξa = −ξb∇aξb = ξb∇bξa . (4.18)

The conclusion, a necessary one in view of what we already know about null
hypersurfaces, is that within the horizon the Killing field is aligned with a
geodetic vector field. This is why there is another preferred parameter along
the generators, namely the affine parameter σ.

Before we proceed, let us make sure that we know how to calculate κ in
a concrete situation. It is likely that we already have a Killing parameter
defined, because when a spacetime admits a Killing vector field one usually
tries to place one of the coordinate lines along it. The usual Schwarzschild
coordinate system employs two Killing parameters, t and φ, running along the
Killing vector fields ∂t and ∂φ. In passing to Eddington–Finkelstein coordinates
by means of Eq. (2.46), the Killing parameter t is exchanged for the Killing
parameter v. They differ only by a function of r, so that on each individual
Killing flowline they are shifted relative to each other by an additive constant
only. Now, keeping spacetime as general as the Ansatz (4.8), and assuming that
there is a Killing horizon at r = rH so that V (rH) = 0, we want to calculate
its surface gravity. We do this using Eddington-Finkelstein coordinates. The
Killing vector is

~ξ = ∂v ⇒ ξa = ∇ar . (4.19)

Evidently then

∇aξ
2 = −∇aV (r) = −V ′(r)∇ar = −2

V ′(r)

2
ξa . (4.20)

This calculation shows first that the hypersurface V (r) = 0 is null, and
second—comparing to Eq. (4.16)—it permits us to read off that
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κ =
V ′(rH)

2
. (4.21)

And the calculation is complete. The subscript on the argument reminds us
that we must evaluate the expression at a zero of the function V (r). For the
event horizon in Schwarzschild we obtain

κ =
M

r2
H

=
1

4M
. (4.22)

A large black hole means a small surface gravity.
Now we go back to generalities. To find the relation σ = σ(v) between the

two preferred parameters along the null geodesics on the horizon, set

ta ≡ dxa

dσ
=

dv

dσ

dxa

dv
=

dv

dσ
ξa =

1

σ′
ξa , (4.23)

where the prime denotes differentiation with respect to the Killing parameter.
A quick calculation along the lines of (3.13) then shows that

ẋb∇bẋ
a =

1

σ′ 2

(

ξb∇bξ
a − σ′′

σ′
ξa

)

. (4.24)

We set this to zero. Comparing to Eq. (4.18) this leads to

σ′′

σ′
= κ . (4.25)

Ignoring two arbitrary integration constants the solution is

σ =

{

eκv if κ 6= 0
v if κ = 0 .

(4.26)

We see that κ enters this relation in an essential way. At the bifurcation surface
the affine parameter passes through zero while the Killing parameter v goes
to −∞.

The affine parameter, the Killing parameter, and the surface gravity are
defined only up to numerical factors. In asymptotically flat spacetimes the
standard convention is to insist that the norm of the Killing field tends to one
at infinity, and in any case to insist that the surface gravity is non-negative.
This normalization is used for the Killing vector ∂t in the Schwarzschild solu-
tion, but cannot be used for a boost in Minkowski space.

An explicit formula for the surface gravity is

κ2 = −1

2
∇aξb∇aξb . (4.27)

This formula can be used also on a bifurcation surface, where the Killing vector
field vanishes. To prove it is an interesting exercise. The starting point is the
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observation that the Killing horizon is a hypersurface, and therefore its normal
vector ~ξ is hypersurface orthogonal at least on the horizon itself, implying that

ξ[a∇bξc] = 0 (4.28)

on the horizon. Next we recall that ∇aξb = −∇bξa for any Killing vector field.
With a little dexterity, one sees that this can be used to rewrite the previous
equation as

ξa∇bξc = −2ξ[b∇c]ξa . (4.29)

Contracting with ∇bξc, and making use of the definition of κ twice, gives the
result.

With Eq. (4.27) in hand we go on to prove the important result that the
surface gravity is constant on any bifurcate Killing horizon, and not only along
each generator separately. To do so we first observe the fact that κ must be
constant along the Killing generators, so that it is enough to show that κ is
constant on any cross section of the horizon. Let us choose the bifurcation
surface for this purpose. Let ~s be a tangent vector to the bifurcation surface.
It follows that

κsa∇aκ = −1

2
sc∇c∇aξb∇aξb . (4.30)

But, for any Killing vector field

∇c∇aξb = −Rabcdξ
d . (4.31)

To prove this, observe that

∇a∇bξc + ∇b∇cξa = ∇a∇bξc −∇b∇aξc = R d
abc ξd . (4.32)

Write down all the cyclic permutations of this equation. Add two of them, sub-
tract one, and use the Jacobi identity for the curvature. We can now continue
the calculation in Eq. (4.30) to see that

κsa∇aκ =
1

2
scRcabdξ

d∇aξb = 0 (4.33)

on the bifurcation surface itself—because ~ξ vanishes there. This does it.
It is a weakness of the above proof of the constancy of κ that we had to

assume that there is a bifurcation surface. An alternative proof that avoids this
assumption can be given, but it relies on Einstein’s equation and a condition on
the stress-energy tensor known as the dominant energy condition (saying that
if ta is a future directed timelike vector, then −T a

bt
b is future directed timelike

or null). The alternative proof is somewhat lengthy. It is worth noticing that
a number of general statements, such as the theorem that the event horizon
of a stationary black hole has to be a Killing horizon, depend for their proof
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either on some geometrical restriction or on the field equations with a suitable
energy condition imposed.3

Since κ is constant all over the horizon it begins to feel a little like the
temperature of an object in equilibrium. This analogy is strengthened when
we realize that it has an absolute zero. A Killing horizon with vanishing surface
gravity is said to be degenerate. Returning to our explicit example we note that
as long as the zero of V (r) is a simple root the surface gravity (4.21) will be
non-zero. But if the root is repeated, so that V ′(rH) = 0, we have a degenerate
Killing horizon with κ = 0. This is what happens for the extremal Reissner-
Nordström black hole, see Figure 4.4. Indeed, by definition a black hole is said
to be extremal if its event horizon is a degenerate Killing horizon. Degenerate
Killing horizons, for which κ = 0 and σ = v, do not have a bifurcation surface.
They consist of a single sheet. A particularly simple example of a degenerate
Killing horizon is that of any null plane in Minkowski space. It is the Killing
horizon of a null translation, and obviously does not have a bifurcation surface.

To summarize: The overall scale of the surface gravity is arbitrary since it
can be changed by a constant renormalization of the Killing vectors, but it
has an absolute zero attained by degenerate horizons. Also the surface grav-
ity is the same all over the horizon. This is already enough to see that the
surface gravity has properties reminiscent of the temperature of an object in
equilibrium. A quantum field theory calculation first done by Hawking gives
the interpretation

κ = 2πTH (4.34)

to the surface gravity of a Killing event horizon, where TH is the Hawking

temperature of an evaporating black hole. An easier example of a similar nature
is that of the vacuum state as observed by constantly accelerating detectors in
Minkowski space. This is called the Unruh effect. It all stems from the fact that
the discrepancy between the affine and Killing parameters gives rise to two
different ways of splitting a field into positive and negative frequency modes,
and hence the definition of “particles” becomes ambiguous. But we do not go
into this here.4

It remains to explain the etymology of the name “surface gravity”. It comes
from an interpretation of κ valid for static black holes only. The argument
behind it is delicate, so we will go slowly through it. In static spacetimes there
is a natural notion of ‘standing still’. It means to follow a Killing flowline.
Suppose that ξ2 = −V (r) = −Λ2. This defines the useful redshift factor Λ.

Then an observer following a Killing flowline has velocity vector ~u = Λ−1~ξ.
This observer is subject to the acceleration

3 For more on this, see R. M. Wald, The thermodynamics of black holes, Living Reviews in Relativity
4:6, 2001.

4 The standard reference is R. M. Wald: Quantum Field Theory in Curves Spacetime and Black
Hole Thermodynamics, Chicago UP, 1994.
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aa = ub∇bua =
1

Λ
ξb∇bξa +

1

2Λ
ξaξ

b∇b(ξcξ
c) = − 1

Λ2
ξb∇aξb =

(4.35)

= − 1

2Λ2
ξb∇a(ξ

2) =
1

Λ
∇aΛ =

Λ′

Λ
∇ar ⇒ a =

√
aaaa = Λ′ .

The Killing equation was used twice in this calculation. By definition the
energy per unit mass of a particle following this worldline is

E = −uaξ
a = Λ . (4.36)

At infinity the energy of a particle equals mc2, a familiar result.
We will be interested in the work required to move a particle along some

path in space. This is a differential form dW . Only shifts in the radial direction
require work, so it must be that

dW = fadxa = frdr . (4.37)

Now work is force times distance, and the magnitude of the force acting on a
stationary particle is the acceleration a computed above. Therefore, if we act
with dW on a radial tangent vector of unit length, the result must be

dW (Λ∂r) = a ⇒ dW = a
dr

Λ
. (4.38)

Here we assumed that the metric takes the form (4.8). This gives the work
expended locally, when we move the particle.

But suppose that the particle hangs at the end of a massless inelastic string
suspended from a rocket ship including a stationary observer. How much work
W2 does the observer at r = r2 have to spend in order to perform an amount
of work W1 on the particle at r = r1? It is part of the definition of the string
that the lengths over which the two ends of the string move are equal at r2 and
r1. But the amounts of work are not. If W1 is subsequently transformed into
pure radiation and beamed back to the observer, this energy will be redshifted,
so energy conservation actually requires that W1 > W2. The exact relation is
given by introducing a redshift factor:

Λ2W2 = Λ1W1 . (4.39)

But the total work will be equal to force times distance. Since the distances are
the same, the force applied by the observer is smaller, by the redshift factor,
than the force acting on the particle:

F2 =
Λ1

Λ2

F1 . (4.40)

Suppose the observer is at infinity (Λ2 = 1), and the particle is kept hovering
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at the horizon. The force acting on the particle will then be infinite, but the
redshift factor Λ1 will vanish. The force exerted at infinity is

F∞ = (Λa)hor = (ΛΛ′)hor =
V ′(rH)

2
= κ . (4.41)

And this is why κ is referred to as “surface gravity”. The name is kept also
for the rotating Kerr black hole, even though the argument fails there—there
the Killing vector ∂t goes lightlike at the ergosphere, outside the horizon, and
it is not possible for a stationary observer to keep the particle hovering at any
point at or below the ergosphere. (It is still true that the event horizon is a
Killing horizon, as we will see in Chapter 6.)

⋄ Problem 4.1 Give the equations that go into Flamm’s paraboloid (shown in
Figure 4.2). That is, find functions x = x(r, φ), y = y(r, φ), z = z(r, φ) such that

ds2 = dx2 + dy2 + dz2 =
dr2

1 − 2m
r

+ r2dφ2 .

⋄ Problem 4.2 Find a timelike curve in Minkowski space that reaches ‘infinity’
in finite proper time. How is this relevant to Figure 4.3? Does it mean that Minkowski
space is “incomplete”, in the same sense as the Schwarzschild spacetime is incomplete
because timelike curves can disappear at finite proper time?

⋄ Problem 4.3 In Schwarzschild, introduce new coordinates

τ =
21/2

3
m−1/2r3/2 , ρ2 =

34/3

22/3
m2/3θ2 , z =

22/3

31/3
m1/3t . (4.42)

Then take the limit m → ∞. What happens?

⋄ Problem 4.4 In Minkowski space, find an example of a Killing vector field
that goes lightlike on a timelike hypersurface.

⋄ Problem 4.5 Suppose you have a theory that allows you to convert particles
to light and back again, and that gravity acts on the particles. Of course, constructing
perfect mirrors is not a problem in this theory. Show that you either have a redshift
factor, or that you can construct a perpetuum mobile.



5 A first look at gravitational collapse

We would now like to see a solution describing a physical system that ap-
proaches (in some sense) the Schwarzschild solution as it evolves. This can be
obtained by means of a method invented by the Irish relativist Synge. Synge’s

method is as follows.1 To solve

Gab = 8πTab , (5.1)

rewrite as

Tab =
1

8π
Gab , (5.2)

choose any metric tensor gab, compute its Einstein tensor Gab, and read off the
stress-energy tensor Tab from Eq. (5.2). The result is a solution of Eq. (5.1).
To avoid any misunderstanding, Synge meant this as a joke (and he did not
predict dark matter). A stress-energy tensor computed in this way is not likely
to obey any of the positivity conditions that are necessary for it to qualify as
physical.

Very occasionally the method works though. As our input metric we choose
a spherically symmetric metric in Eddington-Finkelstein coordinates, and spe-
cialize it to

ds2 = −
(

1 − 2m(v)

r

)

dv2 + 2dvdr + r2dθ2 + r2 sin2 θdφ2 . (5.3)

We then arrive at

Tab =
ṁ

4πr2
lalb , (5.4)

where the dot now means differentiation with respect to v and la is the inwards
directed null vector field

la = −∇av ⇔ la∂a = −∂r . (5.5)

1 His book, J. L. Synge: Relativity: The General Theory, North-Holland, Amsterdam, 1960, is not
only brilliant, its preface gives a very good rationale for why the subject should be studied in the
first place.
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Provided that ṁ ≥ 0 this is a perfectly respectable stress-energy tensor, de-
scribing a shell of incoherent electromagnetic radiation or “null dust” coming
in from past null infinity. You can easily check that both the strong and the
dominant energy conditions are obeyed (if you remember what those are). The
spacetime itself is called the Vaidya solution.

This is an interesting toy model of gravitational collapse. The rate at which
matter comes in is at our disposal, and we choose to set m = 0 when v < 0,
then let m grow at some rate that suits us, until it reaches some finite value
M at some later moment in advanced time. Thus, what we are describ-
ing is a spherically symmetric shell of matter falling into Minkowski space,
eventually—since we assume that ṁ eventually becomes zero—leaving a piece
of the Schwarzschild solution behind. Actually, to ensure that the solution be
asymptotically flat to the future it is enough if the total mass remains finite.
One can also start from a Schwarzschild black hole, and add a Vaidya region
to model black hole accretion, but we will touch only very lightly on this.
Vaidya originally thought of his solution with the opposite time orientation,
and referred to it as a solution for a radiating star.

With our choice the solution is divided into an initial flat region, a Vaidya
region, and a final Schwarzschild region created by infall of radiation into a
flat spacetime. There are pitfalls along the way: the radiation density will go
to infinity at the origin. This is known as a shell focusing singularity. The
geometry itself also misbehaves. The Kretschmann scalar—one of the scalars
functions one can construct out of the curvature tensor—is

RabcdR
abcd =

48m2

r6
. (5.6)

Hence the geometry is singular at r = 0. The question arises whether this is
due to the fact that we assumed exact spherical symmetry, or whether the
singularity will be present also if the initial data are changed so that they are
only approximatively spherically symmetric.

The singularity theorems—due mainly to work by Penrose, Hawking, and
Geroch—state that if there exists a trapped surface in a solution of Einstein’s
equations, the solution will be geodesically incomplete to the future provided
that the stress-energy tensor obeys a suitable positivity condition. A trapped

surface is a closed surface (in practice, a sphere) such that both of the two
orthogonal congruences of future directed null geodesics that emanate from
the surface are convergent when they leave the surface. For a closed surface
in Minkowski space the outgoing congruence would be divergent, i.e. outgo-
ing wavefronts are increasing their areas, so there are no trapped surfaces in
Minkowski space. On the other hand it is clear by inspection that the round
spheres in a general spherically symmetric spacetime will be trapped when-
ever r < 2m: the wavefronts will again be round spheres, the area of the
round spheres is 4πr2, and the coordinate r serves as a monotoneously de-
creasing time coordinate in such circumstances. The thing to observe is that
the trapped surface condition comes in the form of an inequality, which means
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that it will be valid also for small perturbations away from the initial data that
contain them. Hence the singularities found in spherically symmetric models
are not just artefacts of the special symmetry. Geodesically incomplete means
that there are geodesics (null or timelike) that disappear at a finite value of
their affine parameters in an irreparable way, that is to say that it is impos-
sible to find an extended spacetime free of this difficulty. More precisely, the
theorems show that it is not possible to isometrically embed the solution as a
subset of a larger geodesically complete manifold. Note that the restriction to
geodesics is important, since Minkowski space contains incomplete curves—
and Minkowski space certainly should count as regular. (Recall Figure 4.3.) It
is expected that the incomplete geodesics will encounter regions of diverging
curvature when they disappear, but this does not follow from the theorems.

Strong censorship states that in a generic spacetime no observations of a
future singularity can be made, that is to say that no future directed timelike
or null curves emerge from them. In effect this means that a generic space-
time is globally hyperbolic, and fully determined by initial data on a spacelike
Cauchy hypersurface. Weak censorship states that no observations of a future
singularity can be made close to infinity in a generic asymptotically flat space-
time, that is to say that they occur only inside the event horizon that bounds
the region that can be seen from infinity. In effect a black hole forms around
the singularity, so that astronomers cannot see it. Observable singularities are
called naked, and would wreak havoc with the predictive power of general
relativity if they occur.

These formulations are vague, in particular the meaning of the word “generic”
is not specified. It is known, for instance, that the Reissner-Nordström solution
contains locally naked singularities, but there are arguments to show that this
part of the solution is unstable against perturbations. The formulations can be
improved, but they will remain vague until the cosmic censorship hypothesis is
either proved or disproved. This will probably take a long time, and meanwhile
black hole physics rests on an unproved conjecture. One can try to argue that
astronomers would have alerted theoreticians that naked singularities are out
there—if they were.

We want to know if the singularity in the Vaidya solution is naked or not.
Note at the outset that if it is, this will not count as a serious failure of
cosmic censorship, but will be blamed on the matter model, which gives a poor
description of real world electromagnetic fields when the density becomes very
high. Nevertheless we will learn that the standard energy conditions imposed
on Tab are not in themselves enough to ensure cosmic censorship.

To investigate whether the Vaidya singularity is naked we study radially
directed null geodesics; they obey

ẋ2 = v̇

(

2ṙ −
(

1 − 2m

r

)

v̇

)

= 0 . (5.7)

The ingoing congruence is disposed of easily. It is described by
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v = constant , r = τ0 − τ , (5.8)

where τ is an affine parameter along the ray. Since the Eddington-Finkelstein
coordinates are perfectly adapted to the study of the Vaidya solution we will
sometimes draw pictures directly in the v-r-plane. This is quite confusing at
first, since the ingoing null geodesics will be parallel with the r-axis in the
diagrams. It is not too hard to get used to though. See Figure 5.3 for an
example.

To investigate the singularity we need the outgoing congruence, whose equa-
tion is

dv

dr
=

2

1 − 2m(v)

r

. (5.9)

To solve it we must specify the mass function m(v), but to begin with it is
enough to observe that the forwards light cones are pointing towards decreas-
ing r as soon as r < 2m. This means that if there are any signals coming out
from the singularity they must come from a single point in the v− r-diagram,
namely (r, v) = (0, 0). Given that m(0) = 0 this is just on the boundary be-
tween the flat and the Vaidya region. We can use a variant of Synge’s method
to investigate what happens there.2

We rewrite the geodesic equation as

2
dr

dv
= 1 − 2m

r
⇔ m(v) =

r

2

(

1 − 2
dr

dv

)

. (5.10)

Let us assume that, for small v, the outgoing geodesic is given by

r = βva , β > 0 , a > 0 . (5.11)

Clearly a geodesic that starts at r = 0 and goes into the region with positive
r-values must behave like this, with a positive coefficient β, to leading order
in v. We find that

m(v) =
1

2
βva(1 − 2βava−1) . (5.12)

There are now three cases to investigate.
First the case when the mass function grows very slowly in the initial stages.

Then

a > 1 : m(v) ∼ β

2
va . (5.13)

There are geodesics coming out of the singularity, and hence the singularity is
at least locally naked. The next case is

2 Y. Kuroda, Naked singularities in the Vaidya solution, Prog. Theor. Phys. 72 (1984) 63.
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a = 1 : m(v) =
1

2
β(1 − 2β)v ≡ µv . (5.14)

Since we insist that ṁ > 0 we must set 0 < β < 1/2, and we find that there
is a locally naked singularity provided that

m(v) = µv , µ ≤ 1

16
. (5.15)

Finally we have the case when the mass starts out growing quickly:

0 < a < 1 : m(v) ∼ −aβ2v2a−1 . (5.16)

But this is not allowed: the assumption that outgoing geodesics exist leads to
a contradiction with the condition that m(v) be a positive function. The con-
clusion is that there are no outgoing geodesics, and hence no naked singularity,
in this case.

Although convenient, Synge’s method is not needed to show this. A more
systematic approach is to rewrite Eq. (5.9) as an autonomous system of ordi-
nary differential equations, namely

dv

dσ
= 2r ,

dr

dσ
= r − 2m(v) . (5.17)

We are now interested in the phase portait in the r–v-plane, especially in the
neighbourhood of the obvious fixed point at the origin. (Recall that m(0) = 0.)
We linearize around the fixed point, using the definition

lim
v→0+

m(v)

v
= µ . (5.18)

We allow µ = 0 and µ → ∞, so all three cases are included. Close to the fixed
point we have the linear system

(

ṙ
v̇

)

=

(

1 −2µ
2 0

)(

r
v

)

. (5.19)

We can solve this exactly, but we do not need to do this in order to sketch the
picture we obtain in the v − r-plane. We introduce the angle-like variable

x =
v

r
, (5.20)

and observe that

ẋ =
v̇r − vṙ

r2
= 2 − x + 2µx2 = 2µ

(

(

x − 1

4µ

)2

+
16µ − 1

µ

)

. (5.21)
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Figure 5.1. If µ ≥ 1/16 the null geodesics surround the fixed point, and nothing
can come out. If µ = 1/16 there is a spray of geodesics coming out tangential
to the critical solution x = 4. If µ < 1/16 there are two critical solutions, with
null geodesics coming out in between. The dashed line is where the geodesics
are directed vertically. I adjusted the scale on the vertical v-axis to make the
pictures look nicer.

The value µ = 1/16 is critical. If µ is larger than this, x increases monoto-
neously. If µ = 1/16 then we find the special solution x = 4. If µ < 1/16
there are two special solutions of this kind, and ẋ < 0 in between. To draw
the picture it is useful to notice that, in all three cases,

dv

dr
=







2 if v = 0
∞ if r = 2µv
0 if r = 0 .

(5.22)

Also

d2v

dr2
=

1

16r

(

dv

dr

)3
(

(4µx − 1)2 + 16µ − 1
)

, (5.23)

from which we can easily read off the sign of the second derivative. We are
ready to draw, and the result can be seen in Figure 5.1.

We have found a (partial) failure of cosmic censorship. Whether this is se-
rious or not is a question we will have to think about. But so far we have
addressed the issue of strong cosmic censorship only. A locally naked singular-
ity may still be hidden behind an event horizon so that weak cosmic censorship
holds. This is a more difficult question. To answer it we must specify the mass
function and solve Eq. (5.9) for the outgoing geodesics also far from the fixed
point. In fact, depending on the mass function all three possibilities occur:
naked, locally but not globally naked, and clothed.

To exhibit the causal structure of the solution we will draw a Penrose dia-
gram. To do so we begin with the question how to draw the singularity. It will
always have a spacelike part, because radial null geodesics cannot come out
from it anywhere in the region where v > 0. But we have just seen that in some
cases a whole spray of them can come out of the point where (r, v) = (0, 0).
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Figure 5.2. Possible Penrose diagrams for the Vaidya solution. Matter comes
in in the dashed region. The singularity may be naked or clothed.

Whenever this is the case the singularity will have a null part. It cannot appear
as a timelike line in the diagram, and it must be slanted as shown, because
at fixed values of the angular coordinates only one incoming null geodesic can
hit this point. So we have to draw the singularity either as a spacelike line or
as a null line meeting a spacelike line. See Figure 5.2.

At this point you may have become nervous. I came close to saying that
the singularity “sits at r = 0”, and this cannot be quite right since this is
outside the range of our coordinates. There are no such points in the spacetime
manifold. But it is still true that the singularity has acquired some structure
and one can in fact talk, in a meaningful way, of spacelike, timelike, or null
singularities. To do this strictly one can define the “points” of the singularity
as equivalence classes of those curves that are leaving the spacetime manifold.
Effectively this is what we just did.

To complete our Penrose diagram we must locate the event horizon. To do
so we must specify the mass function, roll up our sleeves, and solve Eq. (5.9)
exactly. The easy case is

m =







0 if v < 0
µv if 0 < v < M/µ
M if v > M

(5.24)

where µ is a positive constant. From our analysis of Eq. (5.9) we already know
that the singularity is locally naked if µ ≤ 1/16. The linear mass function
is distinguished since the Vaidya solution then admits the homothetic Killing
field

~η = v∂v + r∂r ⇒ L~ηgab = 2gab . (5.25)

A homothety means that if you scale things up, everything remains the same.
Self-similar spacetimes are rather special, and it is somewhat dangerous to
draw general conclusions from them. But the extra symmetry leads to soluble
equations, and this is irresistible. For the Vaidya solution we note that
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ηaη
a = 2µvr

(

(

x − 1

4µ

)2

+
1

µ2

(

µ − 1

16

)

)

, (5.26)

where x is the dimensionless variable introduced above, in Eq. (5.20). The
homothetic Killing vector is spacelike in the entire Vaidya region provided that
µ > 1/16, that is whenever the solution is free of locally naked singularities.
In the Minkowski region it is timelike, and in the Schwarzschild region it does
not exist.

The problem of finding the path of the null geodesics in the Vaidya region
has now been reduced to that of solving the linear system (5.19). Or we can
address Eq. (5.9) directly.3 In the self-similar case, once we have rewritten it
in terms of the dimensionless variable x, it becomes

r
dx

dr
=

1

8µ

(4µx − 1)2 + 16µ − 1

1 − 2µx
. (5.27)

This can be solved using separation of variables, and routine calculation. Hav-
ing done so we can continue the event horizon from the Schwarzschild part of
spacetime (where it sits at r = 2M) back in time along null geodesics through
the Vaidya region. Due to spherical symmetry its spatial cross-sections are all
the time round spheres. When the null rays forming it emerge into Minkowski
space on the other side of the shell, they form a round lightcone with its tip a
point somewhere in flat space. This is the point where the event horizon first
begins to form, in anticipation of the disaster that is going to befall spacetime
in the future.

We have arrived at Figure 5.3. In drawing it we assumed that µ > 1/16,
so we are in the harmless case when no geodesics emerge from the origin of
the v − r-diagram. Thus strong cosmic censorship holds. This is gravitational
collapse, as we expect it to be.

To find the location of the event horizon we start in the Schwarzschild
region, where we know it—it is the inner boundary of the region that can be
seen from infinity.4 In our diagrams it is represented by a past directed radial
null geodesic. In the v − r-diagram it is a part of a vertical line. We match
it to that null geodesic in the Vaidya region which is momentarily vertically
directed at the value of v where the matching is made. When there are no
globally naked singularities this null geodesic can be continued into the flat
spacetime region, so a part of flat spacetime will be inside the event horizon.
This flat region is the intersection of the interiors of a backwards lightcone
(the inner boundary of the shell) and a forwards lightcone (the event horizon).
In other words it is a causal diamond, and can be drawn without conformal
distortion—the singularity sits at the top of the diamond and is situated at

3 A. Papapetrou, Formation of a singularity and causality, in N. Dadhich et al. (eds): A Random
Walk in Relativity and Cosmology, Wiley 1985.

4 Numerical relativists consider much more complicated situations, and moreover they do not have
“infinity” represented in their data. But the idea is the same. See R. A. Matzner et al., Geometry
of a black hole collision, Science 270 (1995) 941.
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Figure 5.3. Since we use Eddington-Finkelstein coordinates for all calculations
we use a v − r-diagram for visualization. The picture is for µ = 1/2 (a clothed
singularity) and includes the homothetic Killing and the Kodama vector fields,
selected future light cones, the event horizon EH, and the spacelike hypersurface
r = 2m, here referred to (with a slight abuse of terminology) as the apparent
horizon AH.

finite timelike distance from any point on the axis. Now consider the time an
observer can spend within this causal diamond, which is the flat part of the
interior of the black hole. This time will grow the larger the mass, and the
faster it comes in—because the event horizon then lies further out. Then the
observer will live longer inside the black hole, but if she follows the central
world line in the diagram she will never notice the incoming matter—until she
is suddenly killed.

All this makes perfect sense once one realizes that the event horizon is an
“upside down” concept. Its location is not determined by what has happened,
it is determined by what will happen. In particular its area grows quickly in
Minkowski space, its rate of growth drops when the incoming radiation crosses
it, and then the area stays constant in the Schwarzschild region.

Some further structure was added to Figure 5.3. In every spherically sym-
metric spacetime we define the Kodama vector field ~ξ as being orthogonal to
the round spheres (that have area 4πr2, whatever coordinate system we are
using), and such that

ξa∇ar = 0 , and ξaξ
a = −gab∇ar∇br . (5.28)

The Kodama vector field points in the direction in which the area of the
round spheres is unchanged. In the Schwarzschild spacetime it coincides with
a Killing vector field. But, because the area radius r of the round spheres has
a clear geometrical meaning, the Kodama vector field remains interesting also
in the presence of spherically symmetric matter. We notice that it manages
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Figure 5.4. Alice and Bob are sending signals to each other, at regular proper
time intervals. At t = 0 an event horizon forms. The prescient Bob immediately
starts accelerating at a constant rate in order to avoid it. Local measurements
in his spaceship suggest he is now in a constant gravitational field. The signals
sent by Alice before she crosses the horizon arrive with increasing redshift, the
ones sent later not at all. The signals sent by Bob arrive with modest redshift.

to stay timelike also in a part of the interior of the expanding event horizon.
It becomes null on a hypersurface that we call the apparent 3-horizon. In
the Schwarzschild part of spacetime the apparent 3-horizon coincides with the
event horizon, but unlike the event horizon the apparent 3-horizon never enters
Minkowski space. In the Vaidya part it is a spacelike hypersurface.

What is special about the apparent 3-horizon? Imagine that all the round
spheres in the solution emit two flashes of light, one directed outwards and
one directed inwards. If the Kodama vector field is spacelike, all available null
directions point in the direction of shrinking round spheres. Thus you can
conclude from Figure 5.3 that both of the wave fronts always shrink in area
once you are inside the apparent 3-horizon. We conclude that the apparent
3-horizon is the boundary of the region where round trapped spheres exist. It
is foliated by marginally trapped round spheres. We will return to the study of
apparent horizons and trapped spheres—round or not round—in Chapter 9.

An important difference between the apparent and the event horizon is that
the location of the former, on some spacelike hypersurface, can be deduced
without knowing anything about the future. The event horizon is a very dif-
ferent kettle of fish. In the flat part of the Vaidya solution it is just an ordinary
lightcone. (It is consistent with everything we know about the Universe that
we live inside a converging spherically symmetric shell of collapsing null dust.
If so, you may be passing the event horizon at the very moment that you read
this.) It is interesting to consider the exchange of signals between an observer
crossing the event horizon in free fall, and another that accelerates at a con-
stant rate in order to avoid it. The latter may continue to receive increasingly
redshifted signals from the former for all eternity, but they were all emitted
before she passed the horizon. See Figure 5.4—which plays out in a part of
flat spacetime.
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If the mass function m(v) grows slowly enough, in the self-similar case if
µ ≤ 16, Figure 5.3 no longer applies. Null geodesics would come out of the
singularity at the origin of the v−r-diagram. Then a Cauchy horizon appears,
and cosmic censorship fails. In the self-similar case the singularity is in fact
globally naked. On the face of it, this is serious: we now know for a fact that
the ingredients giving rise to singularities—in particular inequalities imposed
on the Ricci tensor via energy inequalities—do not suffice to cover them up.
However, the outcome is not a disaster. We can try to blame it on spherical
symmetry, which is a non-generic situation. We can also try to blame it on
the matter model, which is not physically realistic at high densities. Indeed,
because a singularity in the form of infinite dust density would occur also in
a flat background, its nakedness is usually dismissed as a pathology of the
matter model rather than as a threat to cosmic censorship.

Let us go back to Figure 5.2 once more. It is important that each point
in the Penrose diagram is a sphere—except the dotted line which describes
the spatial origin. The null part of the singularity is created as the incoming
matter shells converge to that point. Such a singularity is referred to as a shell

focusing singularity. According to our model the story ends there, but in the
real world something else would happen—the shells might continue through
there in a collisionless manner, or they would rebound inelastically. Hence our
description there is quite suspect. The spacelike part of the singularity—if you
like, the part that was successfully censored—is a different story. There the
matter shells remain spherical shells, and the problem is that due to spacetime
curvature the areas of the spheres are shrinking to zero.

If we reflect on our results we might reason as follows: in a fixed flat space-
time the collapse would lead to a singular mass density visible from afar. When
the backreaction on the metric is taken into account the strong cosmic cen-
sor hides this singularity—but only provided the departure from flat space is
strong enough. Intuitively this is a very reasonable conclusion, and it rather
supports the idea that there is a mechanism that tends to hide singularities.

This ends our analysis of naked and clothed singularities in the Vaidya so-
lution. Another exact solution in the same vein is the Oppenheimer–Snyder

solution. To obtain it, one does not have to solve any differential equation at all.
One starts from two known spherically symmetric solutions, the Schwarzschild
solution, and the closed Friedmann model describing an evolving 3-sphere filled
with matter in the form of dust moving on timelike geodesics. Consider initial
data at t = 0 in the former, and at the moment of maximal expansion in the
latter. Recall Figure 4.2. Glue suitable parts of these spaces together, to obtain
something that looks like a badminton ball. These initial data will evolve into
a spacetime that can be taken as a model of a collapsing spherically symmetric
homogeneous star (where pressure is overwhelmed by the gravitational attrac-
tion, and ignored). The full solution can be obtained by matching the two
solutions together across a timelike hypersurface ruled by timelike geodesics,
in the manner suggested by the Penrose diagram in Figure 5.5. However, as
you may recall from your electrodynamics course, matching two solutions de-
scribing two different media together requires a certain amount of delicate
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Figure 5.5. The Penrose diagram of a dust filled Friedmann model is at the
left. It describes expanding and recontracting 3-spheres, and the dust particles
follow timelike geodesics (directed vertically in the diagram). After cutting and
gluing, a part of this spacetime can be joined to a Schwarzschild exterior to
give a model of a collapsing star.

handling, and we will not have the means to discuss it until we have gone
through Chapter 7.

At the end of a long path starting from here stands a theorem, due to
Christodoulou, which supports cosmic censorship in spherically symmetric
models with a massless scalar field in the role of matter.5 As a matter model,
the massless scalar field is above suspicion. But the restriction to spherical
symmetry in itself defines a toy model of the real thing, so this does not settle
the question. As soon as spherical symmetry is dropped there will be gravita-
tional radiation filling some part of the region outside the event horizon.

⋄ Problem 5.1 Express the stress-energy tensor of the Vaidya solution in terms
of an ON basis (including one timelike vector). Show that it cannot be diagonalized
by means of Lorentz transformations.

⋄ Problem 5.2 Send in two self-similar Vaidya shells, one after the other with
some spacetime in between. Set µ = 1/2 and draw an exact picture like that of Figure
5.3, showing the event horizon as well as the location of the marginally trapped round
spheres.

⋄ Problem 5.3 The Friedmann model in Figure 5.5 has the metric

ds2 = a2
(

−dη2 + dχ2 + sin2 χ(dθ2 + sin2 θdφ2)
)

, a =
am

2
(1 + cos η) . (5.29)

Consider round spheres centred at the north poles of the 3-spheres. When are they

trapped?

5 For a review see D. Christodoulou, On the global initial value problem and the issue of singular-
ities, Class. Quant. Grav. 16A (1999) 23.



6 The Kerr spacetime

The Kerr solution provides an exact description of the most general isolated
stationary black hole that can exist in our Universe. The only scientific result
that can be compared to it, so far, is Newton’s solution of the non-relativistic
gravitational two-body problem.

I will simply present the solution in a reasonable looking coordinate system,
and then explain how one gradually understands its geometry.1 But to give
the story away: the solution will depend on two parameters m and a. Their
eventual interpretation will be that M = m is the total mass of this spacetime,
and J = am is its total angular momentum. If a ≤ m the solution describes
a spinning black hole, and if a > m it describes a nakedly singular spacetime.
The surprise is that this two-parameter family of metrics describes the most
general stationary black hole that can occur as a solution of the Einstein’s
vacuum equations, and that this black hole is stable under small perturbations.
A full proof of non-linear stability is an open problem that—rumour has it—is
close to its solution.

We begin by simply writing down the Kerr solution. In Boyer-Lindquist
coordinates it is

ds2 = −∆

ρ2
(dt−a sin2 θdφ)2 +

sin2 θ

ρ2
((r2 +a2)dφ−adt)2 +

ρ2dr2

∆
+ρ2dθ2 (6.1)

where

ρ2 ≡ r2 + a2 cos2 θ , (6.2)

∆ ≡ r2 − 2mr + a2 = (r − r+)(r − r−) , r± = m ±
√

m2 − a2 . (6.3)

There are two free parameters m and a. The most interesting case is that of
a2 < m2, because ∆ = 0 then has two real roots r±. We concentrate on this
case from now on.

If we introduce

1 A very readable book is B. O’Neill: The Geometry of Kerr Black Holes, A K Peters, Wellesley,
Massachusetts 1995.
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F ≡ (r2 + a2)2 − a2∆ sin2 θ = (∆ + 2mr)2 − a2∆ sin2 θ (6.4)

the metric can also be written as

ds2 = −∆ − a2 sin2 θ

ρ2
dt2 − 4mar sin2 θ

ρ2
dtdφ +

ρ2

∆
dr2 + ρ2dθ2 +

F sin2 θ

ρ2
dφ2 ,

(6.5)
The contravariant form of this metric is

∂2

∂s2
= − F

∆ρ2
∂2

t +
∆

ρ2
∂2

r +
1

ρ2
∂2

θ +
∆ − a2 sin2 θ

∆ρ2 sin2 θ
∂2

φ − 4Mar

∆ρ2
∂t∂φ . (6.6)

From the expression for grr we see that the range of the coordinate r can
be (r+,∞), (r−, r+), or (−∞, r−). When r → ∞ the solution tends to flat
spacetime, and resembles the Schwarzschild solution. When r → −∞ the
solution again tends to flat spacetime, but here it resembles the unphysical
negative mass Schwarzschild solution. We refer to these regions as (in order)
region I, II, and III:

Region I: r+ < r < ∞
Region II: r− < r < r+

Region III: −∞ < r < r−

The solution can be analytically extended by adding more copies of these
regions—much like the Reissner-Nordström solution discussed in Chapter 4—
but we will rest content if we understand the regions we already have.

There is only one cross-term in the metric, but it is still sufficiently compli-
cated that a computer algebra system is needed to proceed.2 The Kretschmann
scalar looks a little involved, but using the dual of the Weyl tensor (see Chapter
10) we find the complex scalar quantity

CabcdC
abcd + iC⋆

abcdC
abcd =

48m2

(r − ia cos θ)6
. (6.7)

Hence there is a genuine curvature singularity at (r, θ) = (0, π/2). On the
other hand the surfaces ∆ = 0 are (presumably) coordinate singularities only,
and curves can pass through the timelike hypersurface r = 0 if they avoid
the equator. Before jumping to any conclusion, note that the stability results
which are the pride of the Kerr solution apply to the late time behaviour
outside the event horizon, and not at all to its exotic interior.

There are two Killing vectors, ∂a
t and ∂a

φ, and as a matter of fact every
Killing vector is linearly dependent on those two. For large values of r the

2 Unless, like Kerr, you do not have one. Then smoking will do the trick. See R. P. Kerr, Discovering
the Kerr and Kerr–Schild metrics, in D. L. Wiltshire et al. (eds.): The Kerr Spacetime: Rotating
Black Holes in General Relativity, Cambridge UP, 2009.



The Kerr spacetime 57

former is timelike and the latter spacelike, so that the solution is stationary—
it admits a timelike Killing vector field—and axially symmetric—the flow lines
of the spacelike Killing vector field are closed. Using ta = gab∂

b
t it is easy to

check that

t[a∇btc] = 0 ⇔ a = 0 . (6.8)

According to Frobenius’ theorem this means that the timelike Killing vector
field is hypersurface orthogonal if and only if a = 0, that is in the Schwarzschild
case. Unlike the Schwarzschild spacetime the Kerr spacetime does not admit
a natural split into space and time, which is one reason why it is significantly
harder to understand the latter.

We observe that

||∂t||2 = −∆ − a2 sin2 θ

ρ2
, ||∂φ||2 =

F sin2 θ

ρ2
. (6.9)

The first of these becomes null on two hypersurfaces defined by

r2 − 2mr + a2 cos2 θ = 0 ⇔ r = m ±
√

m2 − a2 cos2 θ . (6.10)

The normal of this hypersurface is

na = ∇ar ∓
a2 cos θ sin θ√
m2 − a2 cos2 θ

∇aθ

⇒ (6.11)

||n||2 =
1

ρ2

(

∆ +
a4 cos2 θ sin2 θ

m2 − a2 sin2 θ

)

.

As long as a 6= 0 this is a spacelike vector, hence the hypersurface is timelike.
(Except if sin θ = 0, in which case the hypersurface touches the otherwise
distinct hypersurface ∆ = 0.) It is called the ergosphere of the black hole. For
now we just observe that inside the ergosphere (or rather in between the two
ergospheres) the Killing vector ∂t is spacelike.

We still need to know in what region of the solution there exists a timelike
linear combination of the two Killing vector fields. To this end we consider the
Killing bivector

κab = ∂a
t ∂b

φ − ∂b
t ∂

a
φ . (6.12)

At each point of spacetime the Killing bivector spans a 2-plane element, and
together these 2-plane elements can be fitted together into surfaces of constant
r and θ. In Boyer-Lindquist coordinates the only independent non-vanishing
component of κab is

κtφ = gttgφφ − g2
tφ = −∆ sin2 θ . (6.13)
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By the way, the condition that the Killing bivector is surface forming is

κ[ab∇c∂t] = κ[ab∇c∂φ] = 0 , (6.14)

and is obviously satisfied. Indeed this is the reason why this coordinate system
works. Of more importance at the moment is the norm of the bivector, namely

1

2
κabκ

ab = −∆ sin2 θ . (6.15)

The 2-plane is timelike if the above quantity is negative, and spacelike if it
is negative. Any vector in such a 2-plane is a Killing vector, so we conclude
that there are timelike Killing vectors throughout the region where ∆ > 0.
At ∆ = 0 we have—or will have, as soon as we have introduced a coordinate
system that permits us to include it in our spacetime—a null hypersurface.
This clearly suggests that the hypersurface ∆ = 0 should be the event horizon
of the Kerr black hole, so this is what we will call it from now on.

It is easy to find a Killing vector field that becomes null on the horizon, and
is timelike in a region outside it. It is

ξhor = ∂t +
a

2mr+

∂φ , (6.16)

||ξhor||2 = − r − r+

4m2ρ2r2
+

f , (6.17)

f =
(

4m2(2mr+ − a2) − a2(r2 + 2mr + a2) sin2 θ + a4 sin4 θ
)

(r − r−) −
(6.18)

−4m2a2 sin2 θ(r − r+) .

Hence the hypersurface ∆ = 0 is ruled by a null Killing field, and therefore it
is a Killing horizon—as it should be for the event horizon of a stationary black
hole. The horizon Killing vector field is also null whenever f = 0. This defines
a timelike surface outside the horizon, known as the velocity-of-light surface
(because an observer corotating with the event horizon would have to follow
this Killing vector field). In the extremal case a = M there is a complication,
namely that in a region around the equator the horizon Killing vector field is
actually spacelike outside the horizon itself.

It is somewhat worrying that ∂a
φ, which has closed flow lines, also can change

its causal character:

||∂φ||2 =
F sin2 θ

ρ2
. (6.19)

This means that there are closed timelike curves whenever

F = r4 + a2 cos2 θr2 + 2ma2 sin2 θr + a4 cos2 θ < 0 . (6.20)
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Figure 6.1. Carter’s view of the three blocks of the Kerr solution, with colouring
added by Helgi Freyr. The ergoregion is in red, and the horizon Killing vector
field is null at the boundary of blue and green (and the value of a is such that
that these surfaces happen to touch).

However, this can only happen for negative r, and then only close to the
singularity, so we may perhaps ignore it. Elsewhere, in particular when r > r+,
the coordinate t serves as a time function. The point is that hypersurfaces of
constant t have a normal vector ∇at, with norm

gab∇at∇bt = gtt = − F

ρ2∆
. (6.21)

The normal is timelike when F > 0. In this region these hypersurfaces are
spacelike, and the function t is monotoneously increasing function along any
timelike curve. This can be used to show that there are no closed timelike
curves in the region where r > r+, nor in region II of the solution. On the
other hand there are closed timelike curves through every point in region
III, basically because starting from any point there one can send a timelike
curve into the region where F < 0, spiral back in time, and then return to
the starting point along another timelike curve. This rather underscores the
unphysical nature of region III.

We are now in position to draw a picture of the Kerr solution. It is im-
possible to improve on the one drawn by Brandon Carter, so I simply copy
it.3 It gives a rather faithful picture of the submanifold parametrized by the
coordinates r and θ. To complete it you mentally add the ignorable coordi-
nate directions parametrized by t and φ. The picture should not be confused
with the usual picture of the Einstein-Rosen bridge at constant time t in the
Schwarzschild solution. The latter also has two asymptotic regions, but is com-

3 See the famous review by B. Carter, Black Hole equilibrium states. Part I: Analytic and geomet-
rical properties of the Kerr solutions, in C. DeWitt and B. DeWitt (eds.): Black Holes—les astres
occlus, Gordon and Breach, New York 1973.
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pletely symmetric between the two. The lower asymptotic region in Figure 6.1
is the unphysical region III, which has no Schwarzschild counterpart.

Although strictly speaking the coordinate system we are using does not
cover the event horizon it can still be used to identify its intrinsic metric.
More exactly the metric on the set of its generators—which are radial outgoing
geodesics—is

dγ2 = (r2
+ + a2 cos2 θ)dθ2 +

(r2
+ + a2)2 sin2 θ

r2
+ + a2 cos2 θ

(

dφ − adt

r2
+ + a2

)2

=

(6.22)

= (r2
+ + a2 cos2 θ)dθ2 +

(r2
+ + a2)2 sin2 θ

r2
+ + a2 cos2 θ

dφ̃2 ,

where we introduced a new angular coordinate φ̃ in an obvious way. The area
of a cross-section is easy to compute from the determinant det γ, and it is

A =

∫

S

(r2
+ + a2)dΩ = 4π(r2

+ + a2) = 4π(2m2 + 2m
√

m2 − a2) . (6.23)

Its Gaussian curvature is

k =
R̄

2
=

(r2
+ + a2)(r2

+ − 3a2 cos2 θ)

(r2
+ + a2 cos2 θ)3

. (6.24)

As a curiousity we observe that this becomes negative at the poles if the spin
is high enough, namely if a/m >

√
3/2.

More to the point, let us identify M = m, J = am, and also define the
entropy of the black hole as S = A/4π. Then we obtain the fundamental
thermodynamical relation of a Kerr black hole,

S = 2M2

(

1 +

√

1 − J2

M4

)

⇔ M =

√
S

2

√

1 +
4J2

S2
. (6.25)

The reason why one talks about thermodynamics here becomes clear after
taking the differential of M ,

dM = TdS + ΩdJ . (6.26)

The explicit expressions for T and Ω are

T =
1

8M

(

1 − 4J2

S2

)

, Ω =
J

MS
. (6.27)

One can check that T equals the Hawking temperature TH = κ/2, where κ is
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the surface gravity of the horizon.4 The quantity thermodynamically conjugate
to J ,

Ω =
J

MS
=

a

2mr+

, (6.28)

is known as the angular velocity of the horizon because Eq. (6.16) tells us
that this is the rate at which the horizon generators spin with respect to the
canonical time direction at infinity, where ∂a

t becomes orthogonal to the closed
flow lines generated by ∂a

φ.
To increase familiarity we introduce a pair of additional coordinate sys-

tems on the Kerr spacetime. They are somewhat analogous to the Eddington–
Finkelstein coordinates, and are here called Kerr coordinates. We introduce
new coordinates v and φ̃, such that

dv = dt +
r2 + a2

∆
dr dφ̃ = dφ +

a

∆
dr . (6.29)

We do not need v = v(t, r) or φ̃ = φ̃(φ, r) explicitly. It is enough that these
functions exist. Then

ds2 = −
(

1 − 2mr

ρ2

)

dv2 + 2dvdr + ρ2dθ2 +
F sin2 θ

ρ2
dφ̃2 −

(6.30)

−2a sin2 θdrdφ̃ − 4amr

ρ2
sin2 θdvdφ̃ .

Now there are three cross terms in the metric. The inverse metric is

∂2
s =

1

ρ2

(

a2 sin2 θ∂2
v + ∆∂2

r + ∂2
θ +

1

sin2 θ
∂2

φ̃
+

(6.31)

+2(r2 + a2)∂v∂r + 2a∂v∂φ̃ + 2a∂r∂φ̃

)

These coordinates are called ingoing Kerr coordinates, and indeed they cover
the event horizon at ∆ = 0. It will be observed that

a 6= 0 ⇒ gab∇av∇bv = gvv > 0 (6.32)

(except at the poles). Hence v is not a null coordinate except in the Schwarzschild
case. The hypersurfaces v = constant do approach null surfaces at large values
of r though, that is to say far away from the black hole.

It is still true that the curves defined by keeping v, θ, φ̃ constant are null
geodesics, with the coordinate r serving as an affine parameter along the rays.
(The geodesic equation reduces to r̈ = 0.) They form a space-filling congruence

4 The slight discrepancy with Eq. (4.34) is due to a new choice of Boltzmann’s constant, k = 1/π.
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of null geodesics that do not develop any caustics as they fall in towards the
centre. This is a remarkable property of the solution—and indeed provided Roy
Kerr with the handle needed to discover it in the first place. As an examination
of Eqs. (6.29) shows, the values of t and φ̃ diverge at the event horizon ∆ = 0.
If an observer at infinity could watch the progress of these null geodesics she
would have to wait an infinitely long time to see them reach the horizon, and
meanwhile she would see them wind around an infinite number of times.

There is also an outgoing variant of the Kerr coordinates. It is

du = dt − r2 + a2

∆
dr dφ̃ = dφ − a

∆
dr . (6.33)

The “untwisting” of the angular coordinate is now in the opposite direction.
Then

ds2 = −
(

1 − 2Mr

ρ2

)

du2 − 2dudr + ρ2dθ2 +
F sin2 θ

ρ2
dφ̃2 −

(6.34)

+2a sin2 θdrdφ̃ − 4aMr

ρ2
sin2 θdudφ̃ .

This is the coordinate system in which Kerr first presented the solution.
For many reasons, not least those connected to astrophysics, it is important

to understand the behaviour of geodesics in the Kerr spacetime. If we confine
ourselves to the equatorial plane θ = π/2 (where the accretion disk lies!) this is
a straightforward albeit lengthy exercise. We have two constants of the motion

E = −ua∂
a
t = (1 − 2m/r)ṫ +

2ma

r
φ̇ , L = ua∂

a
φ = −2ma

r
ṫ +

F

r2
φ̇ . (6.35)

They represent energy and angular momentum per unit rest mass. We also
have that

(1 − 2m/r)ṫ2 +
4ma

r
ṫφ̇ − r2

∆
ṙ2 − F

r2
φ̇2 = k =







1
0

−1 ,
(6.36)

depending on whether the geodesic is timelike, null, or spacelike. Solving for
ṫ and φ̇, and inserting, we obtain an equation for r that describes one dimen-
sional motion in an effective potential, namely

ṙ2

2
+ Veff(r;E,L) = 0 , (6.37)

where

Veff(r) = −km

r
+

L2

2r2
+

k − E2

2

(

1 +
a2

r2

)

− m

r3
(L − aE)2 . (6.38)
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From this much useful information can be extracted. For the Schwarzschild
black hole the innermost stable circular orbit, the ISCO, lies at r = 6m. This
is interpreted as the location of the inner edge of the accretion disk. The
binding energy of a particle orbiting at this radius is about 6 % of its rest
mass, meaning that this is the amount of energy that went out as radiation
as the particle spiralled in to this radius. (You can read this number out of
Eq. (6.47) below). For the Kerr black hole the location of the ISCO depends
on the sign of L, that is on whether the particle is co- or counter-rotating
with respect to the event horizon. It comes closer in the corotating case, and
in fact rISCO = m in the extremal case a = m, and then the binding energy
there is about 42 %. (This does not mean that the ISCO actually lies on the
event horizon however. In the extremal case the coordinate r fails badly there,
and the event horizon lies infinitely far away from any exterior point.) Thus
letting a particle spiral in towards a spinning black hole is a very effective way
of extracting the energy hidden in E = mc2. Moreover the radius of the inner
edge of an accretion disk provides a signature that allows us to estimate the
spin of the black hole.

Remarkably, exact solutions can be obtained also for geodesics out of the
equatorial plane. The two constants of the motion contributed by the Killing
vectors do not suffice for this, but it turns out that an extra constant of the
motion, known as Carter’s constant, is present and saves the day. This comes
about because the Kerr spacetime admits a non-trivial Killing tensor, that is
to say a tensor field Kab such that

∇(aKbc) = 0 . (6.39)

It is easily checked that this means that the quantity

K = Kabu
aub (6.40)

will be constant along any geodesic. As a result the Hamilton-Jacobi equation
for the geodesic motion is separable, and the geodesic can be solved for.

Circular orbits in the equatorial plane are the most important ones, and we
will analyze them in more detail.5 A circular orbit will exist at values of r such
that Veff(r) = V ′

eff(r) = 0. Stability of the orbit also requires that V ′′
eff(r) ≥ 0.

To handle these equations it is convenient to define V = 2r2Veff , and begin
with

V (r) + rV ′(r) = −4mr + L2 + (1 − E2)(3r2 + a2) = 0 . (6.41)

This can be solved for E. If the result is inserted in the equation V ′(r) = 0 a
fourth order equation for L results, which has two real roots. Using “computer-
assisted algebraic techniques” Bardeen, Press, and Teukolsky found the solu-
tions

5 Following J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Rotating black holes: Locally non-
rotating frames, energy extraction, and scalar synchrotron radiation, Astrophys. J. 178 (1972)
347.
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E =
r2 − 2mr ± a

√
mr

r
√

r2 − 3mr ± 2a
√

mr
(6.42)

L = ±
√

mr(r2 ∓ 2a
√

mr + a2)

r
√

r2 − 3mr ± 2a
√

mr
. (6.43)

The upper sign is for the corotating case. The condition for stability is easily
obtained by taking one more derivative of the left hand side of Eq. (6.41). It
is

1 − E2 ≥ 2m

3r
. (6.44)

If equality holds we are at the ISCO. Inserting Eq. (6.42) for E leads to

r2 − 6mr ± 8a
√

mr − 3a2 = 0 . (6.45)

This is a quartic equation for
√

r, and can be solved. Alternatively, we can
solve it as a quadratic equation for a. In the corotating case

a =

√
mr

3

(

4 −
√

3r

m
− 2

)

= m

√
z

3
(4 −

√
3z − 2) . (6.46)

Here we introduced the dimensionless variable z = r/m. Inserting this solution
into Eqs. (6.42-6.43) gives

EISCO =

√

1 − 2m

3r
=

√
3z − 2√

3z
(6.47)

LISCO =
2m

3
√

3

(

1 + 2

√

3r

m
− 2

)

=
2m

3
√

3
(1 + 2

√
3z − 2) . (6.48)

Bardeen put Eqs. (6.46-6.48) to an interesting use.6

Namely, suppose that the black hole is surrounded by a corotating accretion
disk, and also suppose that particles slowly drift inwards, so that there is
a soft rain of particles falling from the ISCO into the black hole. The mass
M = m and the angular momentum J = am of the black hole will then change.
Provided the particles are small enough this will happen in accordance with
the differential equation

dJ

dM
=

LISCO

EISCO

. (6.49)

6 J. M. Bardeen, Kerr metric black holes, Nature 226 (1970) 64. For more details, see J. Bolin, The
Angular Momentum of Kerr Black Holes, BSc Thesis, SU 2015.
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If we introduce the dimensionless variable a⋆ = a/m = J/M2 this equation
becomes

M
da⋆

dM
= M

dz

dM

da⋆

dz
=

1

M

LISCO

EISCO

− 2a⋆ . (6.50)

The use of the dimensionless variable z leads to some quite remarkable can-
cellations here. After writing it out, using Eqs. (6.46-6.48), we are left with

M
dz

dM
= −2z ⇒ z =

const

M2
. (6.51)

We choose the integration constant so that J = 0 at M = Mi, and obtain the
solution

a⋆ =

√

2

3

Mi

M

[

4 −
(

18M2
i

M2
− 2

)1/2
]

, Mi ≤ M ≤
√

6Mi . (6.52)

In this way a Schwarzschild black hole eventually becomes an extreme Kerr
black hole—and the process ends there, since the right hand side of Eq. (6.50)
vanishes when z = 1. There is no statement about the speed of this evolution.

Finally, how fast do we expect real black holes to spin? It depends. The
different ways in which black holes can be created apart, there are two main
mechanisms affecting the ratio a/m of an existing black hole. Suppose mat-
ter approaches from far away in a random fashion. Then one can show that
the capture cross section is greater if the angular momentum of the ingoing
particles is negative, which means that the black hole tends to spin down. On
the other hand the black hole may be accreting matter in an orderly way from
the inner edge of its accretion disk, and Bardeen’s argument shows that the
changes in angular momentum and in mass will be correlated in such a way
that a and m will evolve towards the extreme limit—although in reality one
will not actually reach the extreme limit. Not all the matter will be accreted
from the inner edge of the disk, and there are many complications including
radiation emitted by the disk, magnetic fields being dragged down the hole,
and more.

So it depends. Observations show that black holes with widely varying values
of a/m do (seem to) exist.

⋄ Problem 6.1 Calculate
√

g for the Kerr metric in Boyer–Lindquist coordi-
nates. Also calculate, by hand, at least two non-zero Christoffel symbols. Conclusions?

⋄ Problem 6.2 Use the method of effective potentials to discuss radial timelike
geodesics in the Reissner–Nordström solution.

⋄ Problem 6.3 Estimate the magnitude of the dimensionless quantity
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a⋆ =
cJ

GM2
(6.53)

for a) the Sun, b) the solar system, c) an electron.
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We now continue with differential geometry, focussing on surfaces and hy-
persurfaces sitting inside an ambient space. We define the codimension of a
submanifold to be the dimension of the full space minus its own dimension.
By definition, hypersurfaces have codimension 1. In spacetime, surfaces have
codimension 2 and curves have codimension 3. Although by now most of the
literature on the subject is in English, the language used is diverse when it
comes to notation, and my discussion takes this into account.

7.1 Surfaces and hypersurfaces

A general idea is that a manifold N of dimension n is embedded in a manifold
M of dimension m > n by means of a map from N to M. The number m − n
is the codimension. Of course our M comes equipped with a metric tensor
gab. Figure 2.1 then ticks in, and tells us that gab will be pulled back to N

and give rise to a tensor there. It goes under the traditional name of the first

fundamental form, and we denote it by γab. If the submanifold N is provided
with coordinates ui we can make things more concrete. The map, when given
in terms of coordinates, is provided by the parametric representation

N → M : xa = xa(u) . (7.1)

There are n distinct coordinates ui, and as many coordinate vector fields on
N. The map pushes them forwards to n vector fields on M,

ea

i ∂a =
∂xa

∂ui
∂a . (7.2)

From the point of view of the ambient space this is a set of n vector fields tan-
gent to the embedded submanifold, necessarily linearly independent because
we assume that the ui form an admissible coordinate system. We can also view
ea

i concretely as a rectangular matrix that can be used to perform projections.
In particular

γij = ea
i e

b
jgab . (7.3)
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At this point the discussion splits into three cases, depending on whether
γij is positive definite, Lorenzian, or degenerate. The discussion will be quite
intricate in any case. The last case includes the null hypersurfaces discussed
in Chapter 4, and it will be totally ignored in this chapter.

Once it has been understood that there is a map in the background, pulling
various objects back from M and pushing others forwards from N, we can
safely identify the embedded manifold with its image in M. At each point
on N the metric in the ambient space can be used to provide an orthogonal
decomposition of its tangent space T. If TT stands for the subspace spanned
by vectors tangential to N we get

T = TT ⊕T⊥ . (7.4)

This is the single most important equation in this chapter, so please commit
it to memory. Everything in sight will be decomposed in the same way. Unfor-
tunately this will put quite a strain on the notation. We already started the
habit of using a, b, . . . as indices in T and i, j, . . . as indices in TT. Thus the
tensor γij belongs to the vector space TT ⊗ TT. This is still true if I denote
the same object by γab, but then I have to keep the fact in my head. We could
introduce a third set of indices as markers for vectors belonging to T⊥, but
this is generally regarded as too much. Actually, at some point below we will
plump for the index-free notation used by mathematicians.

Curves were easy because their tangent vector is unique up to normalization.
For hypersurfaces there will be three linearly independent tangent vectors, but
the normal vector ~n will be unique up to normalization. We set n2 = ǫ, where
ǫ = +1 if it is spacelike and ǫ = −1 if it is timelike. Then

g b
a = γ b

a + ǫnan
b , (7.5)

where the first fundamental form γ b
a appears as a projector projecting vectors

in T to vectors in T⊥.
Surfaces of dimension two and codimension two need more work because

neither the tangent direction nor the normal direction is unique. In spacetime
there is the additional complication that the surface may be null, in which
case there will be a normal vector that coincides with a tangent vector (as we
saw in Chapter 4). Leaving this case aside, so that Eq. (7.4) applies, we will
find that either TT or T⊥ is a Lorentzian vector space. To avoid too many
sign choices we assume that the surface is everywhere spacelike, and then the
second alternative holds. This is the most important case for physics.

We now choose bases in both TT and T⊥. Since the surface is spacelike it
has a timelike normal vector, and we can choose a basis (~n,~e) for T⊥ such
that

nan
a = −1 , eae

a = 1 , nae
a = 0 . (7.6)

Of course this basis can be changed by a Lorentz transformation. However, if
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Figure 7.1. As bases in T⊥ we use either an orthogonal pair of one timelike
and one spacelike vector, or two null vectors. The picture shows how one basis
(white) is changed into another (black) by a Lorentz boost.

we consider spacelike surfaces embedded in spacelike hypersurfaces that are
themselves embedded in spacetime, then we can choose ~n to be the unique
normal to the hypersurface.

When T⊥ is a (1 + 1)-dimensional Minkowski space it contains two unique
null directions from the origin. Hence one natural choice of basis consists of
two null normals,

ka
± = na ± ea , ~k2

+ = ~k2
− = 0 , ~k+ · ~k− = −2 . (7.7)

We can decide that the null normals are future directed. Still they are not
fully determined by these conditions, since we can perform the change

ka
+ → ρka

+ , ka
− → 1

ρ
ka
− . (7.8)

If we insist that the null vectors are future directed, we only allow positive
functions ρ. Such a change results from a Lorentz boost in T⊥.

We can express the spacetime metric on a form analogous to Eq. (3.20),
using the first fundamental form on the surface:

gab = γab + eaeb − nanb = γab − 1

2
(ka

+kb
− + ka

−kb
+) . (7.9)

Again γ b
a works as a projector onto TT. But in this notation the indices do

not keep track of how the vectors sit relative to the orthogonal decomposition
of T, which is a bit of a drawback.

To our unholy mixture of notations we now add the index-free one, which
tends to make our calculations more understandable when the codimension
exceeds one. We begin by introducing a set of vector fields X, Y , Z tangential
to M. You will simply have to remember that X,Y,Z are vectors belonging to
TT. Similarly, n is a normal vector. In this notation we would write, say,

〈X,Y 〉 ≡ gabX
aY b , ∇XY ≡ Xb∇bY

a . (7.10)
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Thus ∇XY is again a vector. We also have

〈Y, n〉 = 0 ⇒ 〈∇XY, n〉 + 〈Y,∇Xn〉 = 0 . (7.11)

This is true because we assume that we are using the metric compatible con-
nection.

The index-free notation, which may be disconcerting at first, is useful when
we address the question: what kind of vector is ∇XY ? It is one of our main
objectives to study the decompositions

∇XY = (∇XY )T + (∇XY )⊥ (7.12)

∇Xn = (∇Xn)T + (∇Xn)⊥ , (7.13)

where the derivative is the standard metric compatible covariant derivative in
the ambient space, and Eq. (7.4) should be kept firmly in mind.

We first study the decomposition of ∇XY , and begin with the tangential
component (∇XY )T. That is, we first take the covariant derivative in a tangent
direction of a tangent vector, and afterwards project the resulting vector back
into the tangent space of the submanifold. This operation defines a covariant
derivative ∇̄i on the submanifold, consistently with the rules for such things
that we stated in Chapter 2. Thus

∇̄XY = (∇XY )T . (7.14)

But on the submanifold there already exists a unique covariant derivative com-
patible with the intrinsic metric γij . Fortunately, these two covariant deriva-
tives are identical. We prove this through the simple calculation

∇̄Xγab = (∇X(gab + nanb))
T

= (na∇Xnb + ∇Xnanb)
T

= 0 . (7.15)

.
The point being that (na)

T = 0, and I hope that the mixture of notations does
not confuse you. For definiteness we assumed a spacelike hypersurface, but the
argument goes through for all codimensions and for all kinds of hypersurfaces.
The conclusion is encouraging because it is as simple as it can be.

To see what it means, consider a great circle on a sphere in Euclidean space.
If X denotes its normalized tangent vector we know from the Frenet–Serret
equations that ∇XX points along a direction normal to the sphere. Therefore,
when we do the projection, we find that

∇XX = (∇XX)⊥ ⇒ (∇XX)T = 0 ⇒ ∇̄XX = 0 . (7.16)

So this is a geodesic in the curved intrinsic geometry of the sphere. For a circle
of constant latitude (not at the equator) the normal to the curve is not normal
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Figure 7.2. Take a rectangular piece of paper and draw geodesics on it as
shown. Glue the piece of paper together so that it forms a cylinder. You will
see one of the helices we discussed in Chapter 3. The normal vector of the
helix is normal to the cylinder, hence the helix is a geodesic with respect to the
intrinsic metric on the cylinder. Locally, the intrinsic metric of the surface is
unchanged by your operations.

to the sphere, and therefore such a circle is not a geodesic on the sphere. For
another example, see Figure 7.2.

Turning to the normal component we begin with the definition

K(X,Y ) = −(∇XY )⊥ . (7.17)

The question now is whether this expression defines a tensor. It does. What
we have to prove is linearity, namely that for arbitrary scalar fields f and g
there holds

K(fX1 + gX2, Y ) = fK(X1, Y ) + gK(X2, Y )

(7.18)

K(X, fY1 + gY2) = fK(X,Y1) + gK(X,Y2) .

The first one is obvious. For the second, we note that if ~n is any normal vector
field (obeying 〈Y, n〉 = 0) the definition can be rewritten as

〈K(X,Y ), n〉 = −〈∇XY, n〉 = 〈Y,∇Xn〉 = XaY b∇anb . (7.19)

Linearity, in both arguments, is now obvious. Hence we have defined a mixed
tensor, known as the Weingarten tensor.

Looking back at Eqs. (7.12) and (7.13), we see that the Weingarten tensor
accounts not only for (∇XY )⊥ but also for (∇Xn)T. The second description
is perhaps the more illuminating one. The Weingarten tensor determines the
extrinsic geometry of a submanifold by encoding how its normal directions are
changing in tangential directions as we move along it. Meanwhile its intrinsic

geometry is described by the first fundamental form.
At this point it may be helpful to see a few formulas written in index

notation, and indeed in concrete coordinates. We begin the translation by
writing
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K(X,Y ) = XbY cK a
bc = XiY jK å

ij , (7.20)

where we went to the length of introducing Swedish indices to mark vectors in
T⊥. Using a suitable basis for TT, consisting of a set of vectors ~ei, we translate
Eq. (7.19) to

Kij(n) ≡ K a
ij na = −nae

b
i∇be

a
j = eb

ie
a
j∇bna . (7.21)

If we have a parametric representation of the surface, so that Eq. (7.2) applies,
then we can use coordinates to write

K a
ij na = −nae

b
i∇be

a
j = −na

∂2xa

∂ui∂uj
− naΓ

a

bc

∂xb

∂ui

∂xc

∂uj
. (7.22)

This is a computationally friendly expression, and we will soon return to it.
Meanwhile, we just observe that it generalizes one of the Frenet–Serret equa-
tions for curves.

The coordinate based formula proves that the Weingarten tensor is sym-
metric in its lower indices. This can be proved in the index-free notation as
well. Imagining that the vector fields X, Y have been extended to the ambient
space in any arbitrary fashion, the calculation is

K(X,Y ) − K(Y,X) = −(∇XY −∇Y X)⊥ = −([X,Y ])⊥ = 0 . (7.23)

In the last step we use the fact X and Y are surface forming by construction,
and then Frobenius’ theorem guarantees that [X,Y ] belongs to TT.1

Continuing the calculation begun in Eq. (7.21), now with the understanding
that we are looking at a symmetric tensor, we obtain

Kij(n) =
1

2
ea

i e
b
j(∇anb + ∇bna) =

1

2
ea

i e
b
jL~ngab =

1

2
ea

i e
b
jL~nγab . (7.24)

This can be cleaned up a little by observing that the Lie derivative along
a normal direction applied to a vector in TT is again a vector in TT, and
similarly for tensors. Thus

Kij(n) =
1

2
L~nγij . (7.25)

The Weingarten tensor tells us how the first fundamental form changes if we
deform the surface in the direction of one of its normal vectors.

At this point, either you sit down to calculate the Weingarten tensor of a
sphere and of a cylinder, or else you will be totally lost. As our example here
we consider a round sphere embedded in a spherically symmetric spacetime

1 Since the discussion of this theorem (in Chapter 3) was rather sketchy, you may want to spend
another evening among Wald’s appendices.
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with metric (4.8). I will go over it very slowly. At first we assume that we are
in a region where V (r) > 0. The sphere is defined by the equations

t − t0 = 0 , r − r0 = 0 , (7.26)

where t0 and r0 are constants. A parametric representation of the surface is
completed by θ = u1 and φ = u2. The first fundamental form is then

γij = r2(θ,iθ,j + sin2 θφ,iφ,j) . (7.27)

A natural basis for T⊥ is provided by the gradients ∇at and ∇ar, but we need
to normalize these vectors. Thus we choose the normal (co-) vectors

na = −
√

V (r)∇at , ea =
1

√

V (r)
∇ar . (7.28)

The sign in front of the timelike normal ensures that the vector is future
directed. Our calculational formula (7.22) now gives

Kij(n) = −naΓ
a

bc
xb

,ix
c

,j =
√

V (r)
(

Γ t
θθ θ,iθ,j + Γ t

φφφ,iφ,j

)

= 0 (7.29)

Kij(e) = − 1
√

V (r)

(

Γ r
θθ θ,iθ,j + Γ t

φφφ,iφ,j

)

=

√

V (r)

r
γij . (7.30)

We used the fact that things were arranged so that xa

,ij = 0. If we had made the
calculation for a sphere embedded in Minkowsi space we might have preferred
to use Cartesian rather than polar coordinates. Then there would have been
a contribution from the second derivatives, but on the other hand all the
Christoffel symbols would have been zero. In polar coordinates we have to
calculate a few of those in order to reach the same conclusion.

Are the results as expected? Yes they are. If you deform the sphere by
moving it a little along the direction ~n it does not change, because ~n is in fact
our familiar Killing vector field ∂a

t . If you move it a little along the direction ~e
you are moving it outwards, and it will grow, equally in all directions, which
is precisely what the second equation says.

An alternative basis for T⊥ is provided by the two null vectors ~k± = ~n± ~e.
Clearly

Kij(k±) = Kij(n ± e) = Kij(n) ± Kij(e) = ±Kij(e) , (7.31)

which is just a way of repackaging the same information. Notice that these
tensors differ in their overall signs.

The above calculation suffers from the fact that we had to assume that
V (r) > 0. At the expense of inserting some new signs we can redo it under the
assumption that V (r) < 0, but we would like to cover also the case V (r) = 0.
Then more radical changes are called for, because −∇at and ∇ar point in
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the same direction when V (r) = 0. So we go over to Eddington–Finkelstein
coordinates, as in Eq. (2.46), meaning that

∇av = ∇at +
1

V (r)
∇ar . (7.32)

Our two null normal vectors are then given by

k−
a = −

√

V (r)∇av , k+
a =

2
√

V (r)
∇ar −

√

V (r)∇av . (7.33)

As they stand they are useless at V (r) = 0. However, we noticed in Eq. (7.8)
that there is some freedom left in their normalization. So we replace them with

k−
a = −∇av , ka

+ = 2∇ar − V (r)∇av . (7.34)

Of course this could have been written down directly, had we started in this
coordinate system. Redoing the calculation (which involves computing a few
Christoffel symbols in Eddington–Finkelstein coordinates) we arrive at

Kij(k−) = −1

r
γij , Kij(k+) =

V (r)

r
γij . (7.35)

This time we can conclude that the first fundamental form is unchanged if it is
deformed in the direction of ~k+ at a point where V (r) = 0. This is as it should
be, because at such points the vector is actually pointing along the direction
of a Killing vector field. Another conclusion we can draw is that if V (r) < 0
the sphere is shrinking when moved along any of its two future directed null
normals. In this region the round spheres are trapped surfaces.

I hope you are now convinced that the Weingarten tensor means something,
and that it can be calculated, so we can introduce some more terminology.
Because the Weingarten tensor is symmetric it makes sense to split it into its
trace and tracefree parts, using the first fundamental form for the purpose.
The trace part gives the mean curvature vector ~H,

Ha = γijK a
ij . (7.36)

The mean curvature vector is normal to the surface. It is a good candidate for
being the ‘principal normal’ of a submanifold of dimension larger than one.
We also define the null expansions of a spacelike surface as

θ+ = γijKij(k+) , θ− = γijKij(k−) . (7.37)

If both are negative the surface is trapped. If one of them is zero, the surface
is said to be marginally trapped. If θ+ = 0, and if ~k+ points “outwards” (say,
towards infinity) in some meaningful sense, then the surface is said to be
marginally outer trapped, regardless of the sign of θ−.
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Now choose a particular normal vector ~n. We can then define the second

fundamental form associated to this normal direction by

Kij(n) ≡ K a
ij na . (7.38)

If the submanifold is a hypersurface there is a unique normal direction at each
point, and then we talk of the second fundamental form. Indeed, in this case,

Kij ≡ Kij(n) ⇒ K a
ij = ǫKijn

a . (7.39)

In this formula ǫ = +1 if the normal is spacelike and ǫ = −1 if it is timelike.
Like the first fundamental form, the second fundamental form is a symmetric
tensor, and not at all a differential form. They are called “forms” because
they can be used to define quadratic forms in the components of a vector.
As you may recall, the first fundamental form γab is sometimes interpreted
as a quadratic form ds2 in the components dxa of a vector. This is closely
connected to the interpretation of extrinsic curvature given by Euler for the
case of a surface in Euclidean space. Given a normal vector ~n at a point on
the surface, and a tangent vector with components dxa, we single out a unique
2-plane intersecting the surface in a curve. This curve has a first curvature κ1,
and Euler showed that

κ1 =
Kabdxadxb

ds2
. (7.40)

By orienting the 2-plane suitably we find a maximum first curvature k1 and a
minimum first curvature k2. These are called the principal curvatures of the
surface at the point, and the corresponding curves intersect orthogonally. For
a round sphere in Euclidean space Eq. (7.30) gives

Kabdxadxb =
1

r
ds2 , (7.41)

and indeed all the sections give curves with κ1 = 1/r in this case.
The quick way to find the principal curvatures is to raise an index on the

second fundamental form, to obtain an operator K j
i with eigenvalues that are,

in fact, the two principal curvatures. You can now figure out why the trace
K = K i

i of the second fundamental form is called the “mean” curvature.
There are various kinds of surfaces that deserve special attention because of

the way they are embedded in the ambient space. We recognize them because
their Weingarten tensors have very special properties. If the mean curvature
vector (7.36) vanishes the surface is said to be minimal. To see why, let us
move the surface a little in a normal direction, and see how its area changes.
We actually know the answer from Eq. (3.45), although it is a little confusing
because what is called ~t there (when we thought of it as a tangent vector to
a congruence of curves) will now be replaced by f~n, where f is an arbitrary
function on the surface telling us how much to deplace the surface along the
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Figure 7.3. Together with a tangent vector the normal vector of a surface de-
fines a 2-plane, and a curve in that 2-plane having a definite curvature at a given
point. The second fundamental form summarizes all the relevant information.

normal direction ~n. With these changes made, we obtain the expansion of a
geodetic congruence emerging orthogonally from the surface as

θ = γab∇a(fnb) = fγab∇anb = fK . (7.42)

From Eq. (3.46) we see that the area is unchanged to first order in the dis-
placement if and only if K = 0. (If the codimension is higher than one, replace

K with ~H ·~n.) This means that the area of the surface is minimal, or perhaps
maximal. An example of a minimal surface is the helicoid from Chapter 3. An-
other example is the equator on the 3-sphere. This is the actually the largest
round sphere one can find embedded in the 3-sphere. Still its area grows under
every deformation such that the function f is non-vanishing only in a small
region of the surface, so it does deserve the name “minimal”. Because a global
deformation can shrink it, it is said to be an unstable minimal surface. Going
a bit against this terminology, a spatial hypersurface with K = 0 embedded
in a spacetime is by definition a maximal hypersurface.

A complementary definition is that of totally umbilic surfaces, for which
the first and second fundamental forms are everywhere proportional. A round
sphere in Euclidean space is an example, and in fact the only example one can
find there. It is not easy for a surface to be umbilic at every point.

Finally we come to the case when the Weingarten tensor vanishes. Then the
submanifold is called totally geodesic. From Gauss’ formulas (7.44) we see that
if X is tangent to a totally geodesic surface then

∇XX = ∇̄XX . (7.43)

Choose a point on the surface and solve the equation ∇XX = 0 to obtain the
unique geodesic that has X as its initial tangent vector. Evidently it also obeys
the equation ∇̄XX = 0. Therefore a geodesic that starts out tangential to a
totally geodesic surface is a geodesic with respect to the intrinsic metric as
well, and therefore it stays within the surface. This explains the name “totally
geodesic”. Totally geodesic surfaces are so special that there may well not exist
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any in a given curved space (except for one-dimensional ones). Higher dimen-
sional totally geodesic surfaces arise if the space has a reflection symmetry of
some sort. Thus, consider the spatial slice through the Schwarzschild solution
which is depicted (in two-dimensional caricature) in Figure 4.2. Clearly there
is a reflection symmetry there, and the waist of the paraboloid—which is the
event horizon to be—is a fixed point set of that reflection. But then it must
be totally geodesic. (Why? Because if we pick a point and a tangential vector
there, there is a unique geodesic starting in that direction from that point. The
point and the vector is untouched by the reflection. But if that geodesic were
able to stray out of the surface it would be moved by the reflection, contra-
dicting its uniqueness.) Similarly, the spatial slice t = 0 is a totally geodesic
hypersurface in the Schwarzschild spacetime, because it is a fixed point set
under the time reflection t → −t.

The main conclusion so far is that

∇XY = (∇XY )T + (∇XY )⊥ = ∇̄XY − K(X,Y ) . (7.44)

This is known as Gauss’ formulas. Our first objective has been reached. The
tangential component of ∇XY behaves very nicely, and the perpendicular com-
ponent defines an interesting geometric object. We also understand (∇Xn)T.

7.2 Projecting the Riemann tensor

We will use the index-free notation to tackle our second and final objective in
this chapter, which is to relate the Riemann tensor in the ambient space M to
objects that live on the submanifold. The first pieces of notation are

R(X,Y ) ≡ XcY dR a
cd b , R(X,Y )Z ≡ XcY dR a

cd bZ
b . (7.45)

If we use abstract indices, the left and right hand sides mean exactly the same
thing. Note the order of the indices, which must be kept in your head if you
use the index-free notation. Some formulas are messed up, notably the Ricci
identity:

R a
cd bZ

b = [∇c,∇d]Z
a ⇔ R(X,Y )Z = (∇X∇Y −∇Y ∇X)Z−∇[X,Y ]Z . (7.46)

Once this is swallowed (preferably by checking it explicitly) the calculations
are easy. The advantage is that we can (and will) take care of projections by
declaring that X,Y,Z are tangential vector fields. Using Gauss’ formulas we
see that

∇X(∇Y Z) = ∇X(∇̄Y Z − K(Y,Z)) =

(7.47)

= ∇̄X∇̄Y Z − K(X, ∇̄Y Z) −∇XK(Y,Z) .
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After some further work we find

R(X,Y )Z =
(

[∇̄X , ∇̄Y ] − ∇̄[X,Y ]

)

Z −∇XK(Y,Z) + ∇Y K(X,Z) −

−K(X, ∇̄Y Z) + K(Y, ∇̄XZ) + K([X,Y ], Z)

(7.48)

= R̄(X,Y )Z −∇XK(Y,Z) + ∇Y K(X,Z) −

−K(X, ∇̄Y Z) + K(Y, ∇̄XZ) + K(∇̄XY,Z) − K(∇̄Y X,Z) ,

where R̄ denotes the Riemann tensor formed from the intrinsic first funda-
mental form. From here we can derive useful formulas for the Riemann tensor
when projected into four or three tangential directions.

Equation (7.48) is a vector equation. If we take its scalar product with
an arbitrary tangent vector W ∈ TT the terms on the second line drop out
because they point in a normal direction. We also observe that

−〈∇XK(Y,Z),W 〉 = 〈K(Y,Z),∇XW 〉 = −〈K(Y,Z),K(X,W )〉 . (7.49)

With no further effort we obtain Gauss’ remarkable Theorema Egregium :

〈R(X,Y )Z,W 〉 =

(7.50)

= 〈R̄(X,Y )Z,W 〉 − 〈K(Y,Z),K(X,W )〉 + 〈K(X,Z),K(Y,W )〉 .

This is the desired relation between the Riemann tensor in the ambient space
and the Riemann tensor intrinsic to the submanifold.

For a hypersurface, where Eq. (7.39) allows us to trade the Weingarten
tensor for a unique second fundamental form, this is

Rijkl = R̄ijkl + ǫ(KilKjk − KikKjl) . (7.51)

(Recall that ǫ = +1 if the normal is spacelike, ǫ = −1 if it is timelike.) Now

γacγbdRabcd = (gac − ǫnanc)(gbd − ǫnbnd)Rabcd = R − 2ǫRabn
anb =

(7.52)

= ǫ(gabR − 2Rab)n
anb = −2ǫGabn

anb .

Here the Einstein tensor makes one of its actually rather rare appearances in
a purely geometric argument. We obtain

2Gabn
anb = −ǫR̄ + K2 − KabK

ab = −ǫR̄ + 2(k1k2 + k2k3 + k3k1) . (7.53)
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In the second step we used the principal curvatures, that is to say the eigen-
values of the operator Ka

b, to express the result in a more memorable form.
Let us consider the simpler case of a surface embedded in a three dimensional

flat space. Then the left hand side of Eq. (7.51) vanishes, and we see that

R̄ = ǫ
(

(TrK)2 − TrK2
)

= 2ǫk1k2 . (7.54)

With ǫ = +1 this was the content of Gauss’ original Theorema Egregium. It
pleased him very much, and rightly so because the left hand side is intrinsic
to the surface while the right hand side is constructed from two factors that,
individually, depend on the embedding.

The intrinsic geometrical meaning of the curvature scalar R is best seen by
surrounding a point by a sphere consisting of all the points at constant distance
r from the point. In this way we obtain a geodesic ball. It is assumed that r is
small enough so that the geodesics coming from the point do not intersect. We
then compare the total volume Vol(◦) of that ball to the corresponding volume
Vol0(◦) of a ball of the same radius in flat space. One finds, if R denotes the
curvature scalar evaluated at the centre of the ball and d is the dimension of
the space it lives in, that

Vol(◦)
Vol0(◦)

= 1 − r2R

6(d + 2)
+ o(r4) . (7.55)

A positive R causes the volume of the ball to grow more slowly with radius.
Conversely, if R < 0 there is more space than there is in flat space. The proof
uses Riemann’s normal coordinates, see Chapter 11. In Lorentzian geometry
this idea has to be modified somewhat, because a “sphere” is no longer a
natural concept, but the idea nevertheless survives.2

The Theorema Egregium was the starting point for the idea that the ge-
ometry of a surface can be studied by means of invariant quantities—in the
case of a two-dimensional surface, R̄ is the only one—formed from the purely
intrinsic first fundamental form itself. The geometry of a surface embedded
in space is captured by two quantities, the mean curvature k1 + k2 and the
Gaussian curvature k = k1k2. The first depends on the embedding, the second
not.

In Euclidean space ǫ = 1, and we find that the surface has positive intrinsic
curvature if and only if the two principal curvatures have the same sign. You
can make a rough estimate of the principal curvatures by looking at the surface.
Look at two osculating circles intersecting orthogonally at a point on the
surface, and ask where their normal vectors point. For a sphere they point the
same way, so k > 0. For a saddle shaped surface, k < 0. On a torus you will
find that k changes sign. Interestingly, if you integrate the Riemann scalar
over a torus you always find zero, regardless of how the torus is deformed.
For a spacelike surface in Minkowski space ǫ = −1, and the conclusion is

2 One considers the volume of causal diamonds centred at the point. See J. Myrheim, Statistical
geometry, CERN preprint CERN-TH-2538, 1978.
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the opposite one: the intrinsic curvature is positive for a surface that looks
saddle shaped in a spacetime diagram, while a hyperboloidal surface (say) has
negative intrinsic curvature.

We return to Eq. (7.48), and look at the normal component. The term
involving R̄(X,Y ) does not contribute, but the rest of the expression is a hard
nut to crack. However, let us assume that we are looking at a hypersurface.
This simplifies things, because

〈∇Xn, n〉 = −〈n,∇Xn〉 ⇒ (∇Xn)⊥ = 0 . (7.56)

There is only a tangential component. Reverting to abstract indices, we see
that in the codimension one case

(∇XK(Y,Z))
⊥

=
(

Xb∇b(Y
cZdǫKcdn

a)
)⊥

=

(7.57)

=
(

XbY cZdǫ∇bKcdn
a
)⊥

+ K(∇XY,Z) + K(Y,∇XZ) .

So when we project in the normal direction the terms occupying the second
line in (7.48) are non-zero, but they are cancelled by terms coming from the
first line. When contracting with the normal vector we are left with

(Rabcdn
c)T = −∇̄aKbd + ∇̄bKad ⇒ (Racn

c)T = ∇̄bK
b

a − ∇̄aK . (7.58)

This is known as the Codazzi equation for a hypersurface.
It should not escape your attention that if we are sitting at a point in a

spatial slice through spacetime, with normal vector ~n and tangent vectors
~v, then the Gauss and Codazzi equations together encapsulate four of the
Einstein equations,

nanbGab = 0

navaGab = 0







⇒







R̄ + K2 − KabK
ab = 0

∇̄bK
b

a − ∇̄aK = 0 .
(7.59)

Strikingly, these components of the Einstein equations involve only quantities
that can be defined using the intrinsic and extrinsic geometry of the spatial
hypersurface itself. But this is another story, to be told in Chapter 8.

We have still to discuss the case of the Riemann tensor projected into two
tangent vectors and two normal vectors. The equation that describes this is
known as the Ricci equation. We postpone it to the next chapter, in which
the codimension is one. When the codimension exceeds one the story becomes
rather intricate. The normal bundle and something called the third fundamen-
tal form enter into it. The normal bundle is a vector bundle over the embedded
manifold M such that its fibres are copies of T⊥. A cross section of the normal
bundle is a particular normal vector field. The third fundamental form arises
as a connection on the normal bundle.
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⋄ Problem 7.1 Compute the first and second fundamental forms of the helicoid,
Eq. (3.37), and verify that this is a minimal surface. Also calculate its Gaussian
curvature.

⋄ Problem 7.2 A surface of revolution in Euclidean space is defined by an
equation of the form z = f(r). Write down their first and second fundamental forms,
and show that there exists an essentially unique minimal surface of revolution. (It is
called a catenoid.) Compute its Gaussian curvature.

⋄ Problem 7.3 Can you embed a metrical 2-sphere in 3-dimensional Minkowski
space? There is an elegant solution provided one cuts the sphere open along a meridian
and embeds its infinite covering space. A particular SO(2) subgroup of the isometry
group of the sphere will be decompactified, and realized as a Lorentz boost in the
embedding space. Find this embedding explicitly.

⋄ Problem 7.4 Consider spatial hypersurfaces of constant r in the interior of
the Schwarzschild spacetime. Is there a maximal hypersurface (with K = 0) among
them?



8 Initial data

An initial value formulation of Einstein’s equations can be set up once we
have understood how to describe spacelike hypersurfaces in spacetime. Once
we have it, we can change perspective and regard spacetimes as something
that grows out of suitable data set on spacelike 3-manifolds.

8.1 3 + 1 decompositions

We are concerned with a foliation of spacetime by hypersurfaces. We as-
sume that there exists a function t on spacetime such that the individual
hypersurfaces—the leaves of the foliation—are given by setting t equal to
some constant. Each leaf is equipped with a metric γij and a symmetric tensor
field Kij , and the question is what conditions these tensors have to obey if
they are to arise as the first and second fundamental forms induced on the
hypersurfaces when the spacetime in which they are embedded obeys Ein-
stein’s equations. For simplicity we assume that we are in vacuum, so that the
Einstein tensor of the spacetime metric vanishes. From Chapter 7 we already
know one part of the answer: the Gauss-Codazzi equations (7.59) must hold.
But this answer is only partial, because we will need to know how γab and Kab

change as we move from one hypersurface to another.
It will be useful to begin by studying the normal vector to a given hyper-

surface. Let it be given by

na = −N∇at , nan
a = −1 , N > 0 . (8.1)

Note that we are assuming very little about the function t, only that it should
be possible to find a function N , known as the lapse function, such that the
the normal vector na is a timelike future pointing unit vector. We do assume
that the hypersurface forms a leaf of a foliation of spacetime, which means
that we get, at least locally, a congruence of curves pointing along the vector
field ~n. We define the “acceleration vector”

aa = nb∇bna ∈ TT . (8.2)

(Equation (7.4) must be kept firmly in mind throughout this chapter.) It
follows that

∇anb = Kab − naab . (8.3)
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(To see this, contract the left hand side first with na and then with nb.)
Comparing to Eq. (3.44) we see that the second fundamental form takes care
of the expansion and shear of the congruence. There is no rotation because
the congruence is hypersurface forming by assumption, but there is an extra
term because the curves do not have to be geodesics. Making use of Eq. (8.1)
it is not difficult to show that

aa =
1

N

(

∇aN + nan
b∇bN

)

=
1

N
∇̄aN , (8.4)

and as an easy consequence

∇̄aab =
1

N
∇̄a∇̄bN − aaab . (8.5)

These equations will become useful very soon.
We now want to know how γab and Kab change as we move away from a

hypersurface. From Eqs. (7.25) and (7.39) we already know that

L~nγab = 2Kab . (8.6)

It remains to compute

L~nKab = nc∇cKab + ∇an
cKcb + ∇bn

cKac . (8.7)

We can bring the Riemann tensor projected into two normal directions into
this formula by focussing on the first term on the right hand side,

nc∇c(∇anb + naab) = ncR d
cab nd + nc∇a∇cnb + nc∇c(naab) . (8.8)

Furthermore

nc∇a∇cnb = ∇aab −∇an
c∇cnb . (8.9)

Some welcome cancellations occur when we make use of Eq. (8.3), so that our
evolution equation becomes

L~nKab = ncR d
cab nd + ∇aab + aaab + K c

b Kac + ncna∇cab + nba
cKac . (8.10)

We test this expression by contracting it, first with na and then with nb. The
right hand side is zero in both cases, which means that we can project the
whole formula into TT without losing any information. Then we obtain

L~nKab = ncR d
cab nd + ∇̄aab + aaab + K c

b Kac . (8.11)

Finally we make use of Eq. (8.5) to arrive at the attractive form

L~nKab = ncR d
cab nd +

1

N
∇̄a∇̄bN + K c

b Kac . (8.12)

This is known as the Ricci equation. Deriving a similar formula for the Riemann
tensor projected into two normal vectors is a considerably more involved affair
if the codimension of the embedded surface exceeds one, but since we are
concerned with hypersurfaces in this chapter we rest content with the result
as it stands.
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8.2 The action principle

We gain an interesting perspective on Einstein’s equations if we start from a
variational principle, and more precisely from the Hilbert action

S[g] =

∫

R =

∫

d4x
√−ggab(∂cΓ

c
ab − ∂aΓ

c
cb + Γ e

ab Γ c
ce − Γ d

ca Γ c
bd ) . (8.13)

We want to show that Einstein’s equations are the Euler–Lagrange equations
following from this action principle. This is actually very easy if done in the
right way, especially if we ignore surface terms so that we can perform partial
integrations without comment.1

We are looking for the extremals over a very infinite-dimensional set of
objects, and it is occasionally useful to know what the notation we are going
to use actually means. We will look at one-parameter families of metrics gab(s),
and for each such family we define

δgab ≡
d

ds
gab|s=0

. (8.14)

The variation of the action will be required to vanish for all such families.
More mundanely, recall that

δg = ggabδgab = −ggabδg
ab ⇒ δ

√−g = −1

2

√−ggabδg
ab . (8.15)

It is also useful to observe that while the affine connection Γ c
ab is not a tensor,

the ‘difference’ between two such objects is, that is to say that δΓ c
ab is a tensor.

With this understanding, we obtain

δS =

∫

d4x
√−g

(

δgab(Rab −
1

2
Rgab) + gab(∇cδΓ

c
ab −∇aδΓ

c
cb )

)

(8.16)

=

∫

d4x

(√−gδgab(Rab −
1

2
Rgab) + ∇a(

√−ggcbδΓ a
cb −√−gδΓ c

cb )

)

.

The last group of terms is the covariant divergence of a vector density, hence
an ordinary divergence, hence a surface term. We drop it, and conclude that

δS = 0 ⇒ Gab = Rab −
1

2
gabR = 0 . (8.17)

This is Einstein’s equations.
For the initial data formulation of Einstein’s equations we aim to express

the integrand of the action in terms of the first and second fundamental forms
of foliating hypersurface, with unit timelike normals na. To do this, we observe
that

R = 2(Gab − Rab)n
anb = R̄ + K2 − KabK

ab − 2Rabn
anb . (8.18)

1 It is fortunate that the right way is known. It appears that Hilbert himself found the calculation
somewhat baffling. See L. Corry, J. Renn, and J. Stachel, Belated decision in the Hilbert–Einstein
priority dispute, Science 278 (1997) 1270.
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Figure 8.1. There is typically no reason to choose the t-coordinate lines to
be orthogonal to the hypersurface, necessitating the introduction of lapse and
shift.

Here we found a use for the Theorema Egregium. To deal with the last term
we note that

[∇a,∇b]n
b = R b

ab cn
c = −R c

a nc ⇒ Rabn
anb = −na(∇a∇b−∇b∇a)n

b . (8.19)

Hence

Rabn
anb = −∇a(n

a∇bn
b) + ∇an

a∇bn
b + ∇b(n

a∇an
b) −∇bn

a∇an
b . (8.20)

We are beginning to collect some total derivative terms. The second term is
simply equal to K2. Concerning the last term it helps that we are in the codi-
mension one case. Thus na∇bn

a vanishes. But this means that the covariant
derivative acting on nb is projected tangentially, and from Eq. (7.56) we know
that the normal component of ∇Xnb vanishes. Thus we can write

Rabn
anb = ∇a(−na∇bn

b + nb∇bn
a) + K2 − KabK

ab . (8.21)

Putting everything together we obtain

R = R̄ + KabK
ab − K2 + 2∇a(n

a∇bn
b + nb∇bn

a) . (8.22)

This is precisely what we need for our purposes.
Now we introduce a time coordinate. We have assumed that the hypersur-

faces are given by holding a time function t constant. Now we choose t to be
a coordinate. The spacetime metric is decomposed as

gab = γab − nanb , (8.23)

where γab is the first fundamental form of a hypersurface. The vector pointing
along the t-coordinate lines is

∂a
t = Nna + Na , Nana = 0 . (8.24)

See Figure 8.1. The vector field Na is known as the shift vector. The lapse
function N was introduced in Eq. (8.1). Choosing N = 1 and Na = 0 leads
to Gaussian normal coordinates, but typically this is a problematic choice
because the congruence defined by the normal vectors may develop caustics as
we move away from a given hypersurface. So the freedom offered by the lapse
and shift is quite important.
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We introduce a coordinate basis ∂a
i also on the hypersurface, and then we

see what the metric looks like in the resulting coordinate system:

gtt = gab∂
a
t ∂b

t = −N 2 + NcN
c (8.25)

gti = gab∂
a
t ∂b

i = gabN
a∂b

i = N jgab∂
a
j ∂b

i = Ni . (8.26)

In effect then

gab =

(

−N 2 + NkNk Nj

Ni γij

)

, gab =

(

− 1
N2

Nj

N2

Ni

N2 γij − NiNj

N2

)

, (8.27)

where indices on the shift vector are raised and lowered with the first funda-
mental form γij. This is known as the ADM decomposition of the spacetime
metric.2

We found the inverse metric basically by inspection. Its determinant can be
found in the same way if you recall Cramer’s rule for how to invert a matrix,
which here implies that

− 1

N 2
=

det γ

det g
⇒ g = −N 2γ ⇒ √−g = N

√
γ . (8.28)

All the ingredients in the Einstein–Hilbert action have now been accounted
for.

We have arrived at the 3+1 decomposition

S =

∫

d4x
√−gR =

∫

d4xN
√

γ(R̄ + KabK
ab − K2) + surface term , (8.29)

where R̄ is the curvature scalar of the first fundamental form γab. We ignore
the surface term in this all too brief account. From Eq. (7.25) we know that
the second fundamental form can be expressed as a Lie derivative of the first.
Defining

γ̇ab ≡ ∂tγab = L~∂t
γab (8.30)

we obtain

2NKab = γ̇ab − L ~Nγab = γ̇ab − ∇̄aNb − ∇̄bNa . (8.31)

We can now proceed with the Legendre transform and derive the Hamiltonian
formulation of the field equations. They will turn out to be equivalent to the
constraint and evolution equations that we derived in Section 8.1.

However, here we just make three remarks. The first is that once the Leg-
endre transformation is completed you see that the time-time and time-space
components of the spacetime metric—the lapse and shift—enter the action
as Lagrange multipliers only. They are not dynamical fields. In a numerical
simulation one can choose lapses and shifts at will, so that the hypersurface

2 To see what the acronym stands for, consult R. Arnowitt, S. Deser, and C. W. Misner, The dy-
namics of general relativity, in L. Witten (ed.): Gravitation: An Introduction to Current Research,
Wiley 1962.
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evolves at different rates in different parts of the spacetime to be. The sec-
ond remark is that we will obtain the Gauss and the Codazzi equations, Eqs.
(7.59), when we vary with respect to the Lagrange multipliers. These equa-
tions therefore arise as constraints on the initial data set on the hypersurface.
They have to be solved before the evolution can start. The third remark is that
electrodynamics provides a simple analogy of what is going on here. The time
component of the vector potential enters the action as a Lagrange multiplier,
and Gauss’ law ∇aE

a = ρ is a constraint on the initial data. From this point
of view general relativity is at the pinnacle of all gauge theories, but has much
in common with what happens on the plains.

8.3 Geometrostatics

With the constraint equations in hand, we have to ask how to solve them. What
are they equations for? There is no unique answer to this question. Here we
will consider a simple special case, called geometrostatics, where a particular
strategy turns out to be quite superior.3 The same strategy is one of the leading
options in the general case too, but we pass lightly over that. Thus, suppose
that we look for initial data such that Kij = 0. In the completed spacetime
this results in a totally geodesic hypersurface, and the resulting spacetime
will have a reflection symmetry (in time) leaving this hypersurface invariant.
The moment of maximum expansion in a closed and recollapsing Friedman
cosmology can serve as an example of this. The solution is certainly not static,
but it is “momentarily” static.

If we look for vacuum solutions the constraint equations on a totally geodesic
hypersurface collapse to the single equation

R̄ = 0 . (8.32)

This is still a highly non-linear equation for the metric γij . To solve it—and,
in the first place, to find something “inside” γij to solve for—we will perform a
conformal rescaling. This means that we consider a different metric γ̂ij related
to the true metric by

γij = ω4γ̂ij . (8.33)

The exponent 4 on the conformal factor ω is chosen for later convenience. The
important thing is that ω is nowhere zero. Not surprisingly, if you work out
the Riemann tensors of two conformally related metrics, you will find that
they are closely related. In particular, for the curvature scalars one finds

R̄ =
1

ω4

(

R̂ − 8

ω
γ̂ij∇̂i∇̂jω

)

, (8.34)

where hatted quantities are calculated using γ̂ij , unhatted using γij.
4 We can

3 The case for studying geometrostatics was made by C. W. Misner, The method of images in
geometrostatics, Ann. Phys. (N. Y.) 24 (1963) 102.

4 The exact formula depends on dimension. For the details, see Wald’s appendices—and beware
that he uses the exponent 2 on the conformal factor, as usual in many contexts.
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always choose the conformal factor so that det γ̂ = 1. Then, when we impose
R̄ = 0, we obtain an elliptic equation for the conformal factor ω while the
hatted first fundamental form remains as free data to be specified. In other
words, now we have something definite to solve for.

Here we are not asking for the general solution of the constraint equation.
Any solution simple enough to play with is good enough. Therefore we choose
γ̂ij to be the flat metric, in which case R̂ = 0 and the equation reduces to

△ω = 0 , (8.35)

where △ denotes the flat space Laplacian. This we know how to solve. If we
impose the boundary condition that ω → 1 at infinity (in order to obtain an
asymptotically flat solution), we know that we have to accept some kind of
singular behaviour in the interior. The simplest possibility is

ω = 1 +
e

r
⇒ ds2 =

(

1 +
e

r

)4
(

dx2 + dy2 + dz2)
)

. (8.36)

What is this? We can see that, as r → ∞,

γij = δij +
4e

r
δij + O(1/r2) . (8.37)

We recognize this behaviour from the Schwarzschild solution, provided we set
m = 2e. We can also see that there are round spheres present, with areas

Vol(S2) = 4πr2
(

1 +
e

r

)4

. (8.38)

But this does not shrink to zero as r → 0. On the contrary, the area takes its
minimum value 4π · 16e2 = 4π · (2m)2 at r = e. It is clear that we are looking
at a slice through the Schwarzschild solution. If we evolve these initial data we
will find that the bifurcation surface in the event horizon sits at r = e = 2m.

To clinch the argument we observe that our spatial slice has a reflection
symmetry under

xi → xi′ = −e2xi

r2
⇒ r → r′ =

e2

r
. (8.39)

A quick calculation confirms that

ds2 =
(

1 +
e

r

)4
(

dr2 + r2dΩ2
)

=
(

1 +
e

r′

)4
(

dr′ 2 + r′ 2dΩ2
)

, (8.40)

and that the special sphere at r = e is left invariant by the isometry. So the
two ‘ends’ of the space, at r → 0 and at r → ∞, are truly identical.

Of course, observing that our solution is spherically symmetric and provides
legitimate initial data for the Einstein equations, we could have referred to
Jebsen’s theorem in order to say that the solution we found must be a slice
through the Schwarzschild solution. But in this initial data formulation we can
easily break out of the spherically symmetric straightjacket. Thus we can set

ω = 1 +
e1

|r− a1|
+

e2

|r− a2|
, (8.41)
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Figure 8.2. Initial data for two black holes. Which of the pictures that applies
depends on the distance between the throats. On the left, a is large, and the
individual black holes do not affect each other very much.

presumably corresponding to two black holes (and definitely to three asymp-
totic regions). If we want we can include an arbitrary number of black holes
at arbitrary “positions” in the flat “background” space, but two black holes
are enough in order to make some interesting observations about how they
are distorted by each other. It is clear that the mass of the two, when read
off at r → ∞, equals 2e1 + 2e2. To read off the mass in one of the other
asymptotic regions we translate the solution so that the black hole in question
‘sits’ at a1 = 0, and the other at a2 = (0, 0, a). Then we use the coordinates
x′

i = −e2
1xi/r

2 to describe the asymptotic region corresponding to r → 0. We
find (dropping the primes) that

ds2 =



1 +
r

e1

+
e2

√

e4
1x2

r4 +
e2
1y2

r4 + (− e2
1z

r4 − a)2





4

e4
1

r4
(dx2 + dy2 + dz2) =

(8.42)

=





e1

r
+ 1 +

1

r

e1e2
√

e4
1x2

r4 +
e2
1y2

r4 + (− e2
1z

r4 − a)2





4

(dx2 + dy2 + dx2) .

In the limit when r → ∞ this becomes

ds2 ≈
(

1 +
4

r

(

e1 +
e1e2

a

)

)

(dx2 + dy2 + dz2) . (8.43)

Thus the asymptotic behaviour is that of a Schwarzschild black hole with mass

M1 = 2e1

(

1 +
e2

a

)

. (8.44)

Let us set e1 = e2 for simplicity. Then the masses, as read off in the three
asymptotic regions, are

M0 = 4e , M1 = M2 = 2e
(

1 +
e

a

)

. (8.45)

We observe that M0 ≤ M1 + M2. Although we found the solution by super-
posing two solutions of a linear Laplace equation, the individual black hole
geometries are not just superposed on each other.5

5 For more on this, see D. R. Brill and R. W. Lindquist, Interaction energy in geometrostatics,
Phys. Rev. 131 (1963) 471.
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⋄ Problem 8.1 Perform the Legendre transformation of (8.29) to obtain a
Hamiltonian formulation of Einstein’s equations.



9 Trapped surfaces

I have already dropped a number of hints suggesting that trapped surfaces
are important in gravitational collapse. The concept arises only in Lorentzian
geometry, where there are different kinds of surfaces depending on whether the
mean curvature vector is spacelike, timelike, or null. We insist that the surface
is a spacelike surface of codimension 2, and also that it is a closed surface
(probably a sphere—other topologies are less important), because then the
distinction becomes physically important. Thus a closed surface is said to be
untrapped if ~H is everywhere spacelike, trapped if ~H is everywhere timelike,
and marginally trapped if ~H is everywhere either null or zero. In formulas, we
expand the Weingarten tensor using a pair of null vectors as a basis for T⊥,

K a
ij = −1

2
Kij(k+)ka

− − 1

2
Kij(k−)ka

+ . (9.1)

When contracting with the first fundamental form to obtain the mean curva-
ture vector we also define the two null expansions θ+ and θ− through

Ha = γijK a
ij = −1

2
θ+ka

− − 1

2
θ−ka

+ . (9.2)

The surface is trapped if the null expansions have the same sign. For definite-
ness we will always talk about the future-trapped case, when θ+ and θ− are
both negative, so that wavefronts leaving the surface shrink in both of the two
possible directions.

Important variations on the theme exist, especially if there is a natural
definition of ‘outwards’ defined. This would be the case if the surface sits
inside some spacelike hypersurface extending all the way to infinity. Let ~k+ be
outwards directed. Then we can define outer trapped surfaces by saying that
θ+ < 0, irrespective of the sign of θ−. Similarly, a marginally outer trapped

surface (a MOTS) is defined by the single condition θ+ = 0.
The importance of trapped surfaces stems from the fact that they are de-

fined by an inequality, and also from the fact that they can be detected without
knowing anything about the future evolution of spacetime. They can be de-
tected by studying initial data set on some spacelike hypersurface, and if these
initial data are perturbed a bit, the trapped surface may change its location
and its null expansions a little, but there will still be a trapped surface in the
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perturbed initial data. The overriding reason why they are important is that
their presence in the initial data signals (provided some further assumptions
hold) that the time evolved spacetime will be singular in the sense of being
geodesically incomplete. I have no intention to go into the singularity theorems
here, but let me quote one of them for concreteness:

Theorem: No space-time M can satisfy all of the following three requirements
together:

(1) M contains no closed timelike curves,
(2) every inextendible causal geodesic in M contains a pair of conjugate
points,
(3) there exists a future- (or past-) trapped set S ∈ M .

I bring this up only to show that trapped surfaces are important.1 A trapped
surface is one example of a trapped set. Another example is that of a point such
that its future lightcone eventually starts to reconverge along every direction.
Concerning the second clause in the theorem, a pair of conjugate points is
(roughly speaking) a pair of points where two neighbouring geodesics intersect
and (more precisely) a pair of points such that if you send out a congruence
of geodesics from one of them, the expansion diverges to −∞ at the other.
Hawking and Penrose supplemented the statement above with a proof that the
Raychaudhuri equation will force conjugate points to appear on every complete
causal geodesic if the strong energy condition and a certain (modest) genericity
condition hold. Then, if clause (1) and (2) hold, it follows that incomplete
causal geodesics must exist. In this sense the spacetime is singular.

Figure 9.1. P and Q are conjugate points. The congruence emerging from P
develops a line of cross-over and a caustic starting at Q.

Before we can claim that singularities is a generic feature of spacetimes it
must be shown that trapped sets arise in all circumstances where matter is
strongly concentrated, or when the gravitational field becomes in some sense
strong. We want to show that it can happen even if the initial data we start

1 This particular theorem is quoted from S. W. Hawking and R. Penrose, The singularities of
gravitational collapse and cosmology, Proc. Roy. Soc. Lond. A314 (1970) 529.
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out from are free of trapped sets. If the initial data are supposed to be rea-
sonably generic ones then this is a question about the long-time behaviour
of Einstein’s equations, and one would expect it to be simply too difficult to
handle. Actually it is not, but we will have to leave it to the experts.2

On the other hand it is known how to look for trapped surfaces on a given
spacelike hypersurface, notably one that has arisen from a numerical calcula-
tion. Moreover it is known that the boundary of the region in a given spacelike
hypersurface where trapped surfaces occur is itself a marginally outer trapped
surface, and efficient algorithms exist for how this MOTS is to be localized in
numerical similations. This bounding MOTS is known as the apparent horizon.
To locate it, no information about the future of the spacelike hypersurface is
needed. It is known that if cosmic censorship holds then the apparent hori-
zon lies inside the event horizon.3 This means that future-trapped surfaces
can never be observed by sensible observers, who avoid jumping into black
holes. They are, however, observed by numerical relativists, who use them to
establish that black holes are emerging from their calculations. Indeed this is
of practical importance, because once an apparent horizon has been detected
at some stage of the evolution, the numerical relativist can safely relax the
precision of his calculation inside it, since any error introduced thereby will be
subject to cosmic censorship and will leave the predictions concerning outgoing
gravitational waves unaffected.

When the data on the slice containing the apparent horizon are evolved, a
marginally trapped tube (MTT) foliated by marginally trapped surfaces will
arise in spacetime. It can be spacelike, timelike, or null. In the Vaidya solution
we found a spacelike MTT, which we called the apparent 3-horizon in Chapter
5. Spacelike MTTs are also known as dynamical horizons. If you did Problem
5.3 you found a timelike MTT in the Oppenheimer–Snyder solution. If you
did Problem 5.2 you found a null MTT lying in between the two dust shells.
The area of the marginally trapped surfaces foliating the latter are the same,
whatever cross-section we take of it, so this is an example of a non-expanding

horizon (NEH). With some further conditions added, to make it look more
like a piece of a Killing horizon, a NEH becomes an isolated horizon (IH), and
these extra conditions are fulfilled in the Vaidya example. As you can see, this
subject is full of acronyms.4

It is tempting to regard the MTT, rather than the teleologically determined
event horizon, as the true boundary of the black hole. The problem with this
is that the resulting boundary will depend strongly on how spacetime is sliced
into spatial hypersurfaces. Another choice of lapse and shift will result in dif-
ferent spatial slices, different apparent horizons, different marginally trapped
tubes, and different suggestions for what the spacetime boundary of the black
hole should be. Moreover, although the notions of trapped surfaces and MTTs
are quasi-local—unlike the event horizon their location is determined solely
by the spacetime geometry in the region that contains them—they are not

2 D. Christodoulou: The Formation of Black Holes in General Relativity, EMS 2009.
3 This is Proposition 9.2.8 in Hawking and Ellis.
4 For more, see S. Hayward (ed.): Black Holes: New Horizons, World Scientific 2013.
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local. If you have have an MTT inside a black hole, and if a piece of additional
matter falls in from one side, the MTT will jump outwards also on the other
side of the black hole because the changed geometry on one side will cause
some locally marginally trapped surface extending to the other side to change
from open to closed.5

To get some substance into this discussion we will study the non-uniqueness
of marginally trapped tubes by perturbing the marginally trapped surfaces
sitting in them. Then we have to understand not only the first variation of
their area (which is given by the expansion), but also their second variation.
Deriving the appropriate formula is a difficult matter, and the formula for δθ+

is a long one. In the special case of round marginally outer trapped surfaces
in spherically symmetric spacetimes the result is at least easy to state, so we
confine ourselves to this case. Thus we assume that the surface S obeys

θ+ = 0 , RS =
2

r2
, (9.3)

where r is the usual area radius coordinate. We are going to deform the surface
in a normal direction ~n. It is convenient to introduce a basis for T⊥ such that
~n is one the basis vectors, but we do not wish to restrict its causal character
(that is, we prefer to leave the sign of n2 open for the moment). So we set

na = −1

2
ka
− + n2ka

+ , ~n · ~k+ = 1 (9.4)

ua =
1

2
ka
− + n2ka

+ , ~u · ~n = 0 , u2 = −n2 . (9.5)

Every normal vector except ~k+ can be expressed in this way. We illustrate this
(and a little more) in Figure 9.2.

Figure 9.2. The vectors ~k+, ~k−, ~n, ~m that appear in the perturbation argument.
To the left ~m is spacelike, to the right ~m is timelike. Round trapped spheres
occur in the shaded region. Exactly where, along the dashed line, the vector ~n
is pointing is left open by Eq. (9.4).

5 For an exact solution in a simple toy model see E. Jakobsson, How trapped surfaces jump in 2+1
dimensions, Class. Quant. Grav. 30 (2013) 065022.
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Restricting the result of Andersson et al.6 to this case we learn—and I am
asking you to simply accept it—that the second variation is given by

δf~nθ+ = −△Sf +

(

RS

2
− Gabk

a
+ub

)

f , (9.6)

where the Laplacian on the sphere occurs in the first term on the right hand
side. The function f is at our disposal, so that the magnitude and the sign of
the deformation can vary freely over the sphere. It is convenient to rewrite the
formula as

δf~nθ+ =

(

1 + L2

r2
− 1

4
Gabk

a
+kb

− − n2

2
Gabk

a
+kb

+

)

f , (9.7)

where

L2 = −
(

∂2
θ + cot θ∂θ +

1

sin2 θ
∂2

φ

)

. (9.8)

This one of the rather few purely geometric formulas where the Einstein tensor
plays a role.

In the vacuum case we observe that

δf~nθ+ =
1 + L2

r2
f . (9.9)

To create a spherically symmetric MTT the variation must vanish for constant
perturbations f . At first sight this seems impossible; the resolution is that
such a perturbation is possible in the only direction that is not included here,
namely along the outward null normal direction ~k+. We conclude that the only
spherically symmetric MTT must be a null NEH in the vacuum case. It is also
immediate that

∫

S2

fδf~nθ+ =

∫

S2

(f 2 + Lf · Lf) ≥ 0 . (9.10)

If the variation has a definite sign, we can conclude that if the perturbation
is outwards (f > 0) the surface can only be untrapped, and it can only be
trapped if the perturbation is inwards (f < 0). If there is a cosmological
constant we find, for a constant perturbation, that

δf~nθ+ = 0 ⇔ 1

r2
= λ . (9.11)

This has a solution only if λ > 0, and then only for very special spheres—
namely those that sit on the cosmological horizon.

In the non-vacuum case we assume the dominant energy condition, which

6 You will find the details in L. Andersson, M. Mars, and W. Simon, Stability of marginally trapped
surfaces and existence of marginally outer trapped tubes, Adv. Theor. Math. Phys. 12 (2008) 853.
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implies that Gabk
a
+kb

+ > 0. If we again do a spherically symmetric perturbation
and make sure that the expansion remains zero to first order, we find an
equation that must be obeyed by the radial tangent vector of the resulting
MTT, namely

δf ~mθ+ = 0 ⇔ m2 =
2

G(k+, k+)

(

1

r2
− 1

2
Gabk

a
+kb

−

)

. (9.12)

Whether the tangent vector ~m is spacelike or timelike depends on the magni-
tude of Gabk

a
+kb

− ≥ 0. The difference we observed between the round MTTs in
the Vaidya and Oppenheimer-Snyder solutions hinge on that.

We concentrate on the spacelike case, which is likely to be the most inter-
esting one. (There are arguments why the MTT should become spacelike at
least where it joins the event horizon.) First we consider a deformation with
constant f in the direction of the so far unspecified vector ~n. The vector points
into the region where the round spheres are trapped if δθ+ < 0, which can now
be translated into n2 −m2 > 0. Allowing for arbitrary functions f we see that
if we wish to perturb into the future I+(DH) of a spacelike dynamical horizon
we must have either f > 0 and n2 > m2, or f < 0 and n2 < m2. For easy
control of these signs, we observe that

n2 − m2 =
2

r2G(k+, k+)

(

L2f − r2δf~nθ+

f

)

. (9.13)

If f is constant we see that the sign of δθ+ is determined by the sign of n2−m2:
if the marginally trapped round spheres are perturbed to other round spheres,
they will become trapped in one direction and untrapped in the other. Another
interesting conclusion presents itself if we observe that

G(k+, k+)

∫

S2

f(n2 − m2) = 2

∫

S2

(L2f − r2δf~nθ+) = −2r2

∫

S2

δf~nθ+ . (9.14)

I took G(k+, k+) out of the integral since it is a function of v and r only. It
follows that the deformed surface can be trapped—with a negative definite
sign of the variation—only if f(n2 −m2) is somewhere positive, and it can be
untrapped only if f(n2 −m2) is somewhere negative. Hence a trapped surface
must lie at least partly in the region where the round spheres are trapped.

But we are interested in whether one can deform the surface so that it
becomes a trapped surface ‘sticking out’ of the MTT into the region where
the round spheres are untrapped. We then choose a sign for n2−m2. A glance
at Figure 9.2 shows that the first thing to try is n2 − m2 < 0, because it is
only in this case that we can reach the past of the round trapped surface. The
deformation will take us out of the MTT if f > 0. We assume that δf~nθ+ < 0,
but the form of this positive function is at our disposal. Equation (9.13) now
implies that there exist positive functions (pos) and (pos’) such that

L2f + (pos’) = −(pos)f ⇔ △f = (pos’) + (pos)f . (9.15)
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This implies that the function is f is convex in the region where it is positive.
But this means that it cannot have a maximum there, so this case is ruled out.

We will have better luck if we choose n2−m2 > 0. Then the vector ~n points
into the region where the round spheres are trapped, which means that we
must have f < 0 in order to make the deformed surface stick out. This time
Eq. (9.13) implies that there exist positive functions (pos) and (pos’) such that

L2f − r2δf~nθ+ = L2f + (pos’) = (pos)f . (9.16)

Here we assumed that δθ+ < 0, but its form is arbitrary. Given such positive
functions the deformed surface does stick out at all points where f < 0. To
simplify Eq. (9.16), define

g = f − a0 ⇔ f = g + a0 , (9.17)

with a0 a positive constant. The form of the function (pos’), which determines
the trapping, is at our disposal. We choose

(pos’) = −r2δf~nθ+ = a0(pos) , (9.18)

and are left to find solutions to

L2g = (pos)g . (9.19)

We can for instance set g equal to an eigenfunction of the Laplacian. Thus we
conclude that

f(θ) = a0 + alPl(cos θ) (9.20)

leads to (pos) = l(l + 1), and

δf~nθ+ = −a0l(l + 1)

r2
. (9.21)

The deformed, and trapped, sphere sticks out of the MTT if f < 0 for some
θ. This can always be arranged by choosing a0 and al suitably. We can also
concoct functions g such that f is positive in an arbitrarily small region on
the undeformed sphere, and negative elsewhere. Then the deformed trapped
surface will lie almost entirely outside the MTT. The overall conclusion is that
trapped surfaces can stick out of the dynamical horizon, but that there are
some strong restriction on how they do it.

In none of the above did we pay any attention to the inner null expansion
θ−. Of course, if it is negative to start with, it will stay negative under a
small perturbation, but it is hard to control. In fact most of the available
theorems on the behaviour of marginally trapped tubes are concerned with
MOTTs—surfaces foliated by marginally outer trapped surfaces. Similarly,
the horizon finders used by numerical relativists to detect trapped surfaces
in their data are in fact designed to find MOTS—marginally outer trapped
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surfaces. Genuinely trapped surfaces do have some advantages though, because
they are not dependent on any notion of ‘inwards’ and ‘outwards’ inherited
from a spatial slice. You look at the surface, and in particular at the causal
character of its mean curvature vector, and this decides the matter.

To illustrate this, let us give a simple proof of the fact that trapped surfaces
cannot exist in a spacetime that admits a timelike Killing vector field, or in
a region of a spacetime where such a Killing field exists (such as the exterior

of the Schwarzschild solution).7 First of all, if ~ξ is an arbitrary vector field
with both tangential and a normal components we find when we project its
covariant derivative in the tangential directions that

ea
i e

b
j∇aξb = ea

i e
b
j∇a(ξ

T
b + ξ⊥

b ) = ∇̄iξ̄j + K a
ij ξa . (9.22)

A bar over an object means that it has been projected into the tangential
directions. In the last term only the normal component of ~ξ contributes. We
contract this equation with the first fundamental form, and observe that the
left hand side then vanishes because ~ξ is a Killing field. Thus

0 = ∇̄iξ
j + Haξa . (9.23)

But by assumption both ~ξ and ~H are timelike. If we integrate over the closed
surface, we obtain

0 =

∮

S

∇̄iξ
jdS = −

∮

S

Haξa 6= 0 . (9.24)

The point is that the scalar product of two timelike vectors cannot vanish, and
therefore the final integrand cannot change its sign anywhere on the surface.
We have obtained a contradiction, confirming that the mean curvature vector
has to be spacelike somewhere.

It is interesting to compare to the situation for minimal surfaces in Rie-
mannian geometry. It is well known that Euclidean space does not contain a
single closed minimal surface, while the 3-sphere does. The argument, in the
former case, is very simple. A surface S is minimal if it gives an extremum of
the action functional

A =

∫

S

dS =

∫

S

√
γd2u ⇒ δA =

∫

S

1

2

√
γγijδγij . (9.25)

If the ambient space is flat we have

γij = x,i · x,j . (9.26)

It easily follows that setting δA to zero for all possible variations implies that
the components of the vector x have to obey the intrinsic Laplace equation.
There are no non-zero solutions to this equation on a topological sphere. On

7 This argument is due to J. M. M. Senovilla.
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the 3-sphere the Laplace equation gets replaced by the Helmholtz equation,
and solutions can be found. A recent result says that generic compact Rieman-
nian manifolds contain infinitely many closed minimal hypersurfaces. Moreover
their union is dense.8

⋄ Problem 9.1 Show that there is a closed trapped surface passing through
every point in de Sitter space (whose definition you can find in many places). Guess
which clause in the Hawking–Penrose theorem is not fulfilled, in this obviously geodesi-
cally complete spacetime.

8 K. Irie, F. C. Marques, and A. Neves, Denseness of minimal hypersurfaces for generic metrics,
arXiv:1710.10752.



10 Isolated systems

Progress in science often depends on the idea that a part of the world can be
described as an isolated system, while the rest of the world can be ignored.
Whether a theory describing the world has to admit such a separation is
perhaps not so clear. In gravity theory one tries to perform the separation by
assuming that space-time has a simple structure “far away” from the region
of interest. Not too simple though—we insist that gravitational radiation can
be detected also from very large distances. Roughly speaking, a gravitational
wave detector detects displacements whose amplitude decrease like 1/r, where
r is—in some rough sense—the distance from the source. Hence our definition
of an isolated system must admit deviations from flat space with this kind of
fall-off behaviour.

In the mathematical idealization that we will use, “far away” will be inter-
preted as “at infinity”, and we begin by recalling how we look at “infinity”
in the complex plane. For this purpose it is helpful to introduce the complex
coordinate

z = x + iy = eiφ tan
θ

2
. (10.1)

We multiply the flat metric g with a factor that goes to zero as |z| → ∞, to
obtain the conformally related metric

dŝ2 = Ω2ds2 =
4

(1 + |z|2)2 dzdz̄ = dθ2 + sin2 dφ2 . (10.2)

The conformally related metric ĝ is the metric on the unit sphere, and we
see that infinity in the flat plane appears as a single point ∞, situated at the
south pole of the sphere (at θ = π). Of course the procedure is arbitrary to
some extent, since we can change the conformal factor Ω by multiplying it
with any function that is well behaved on the sphere. However, this would
not change the fact that the conformal boundary of the flat plane is a single
point. Indeed this is a dimension independent statement, and remains true of
any Euclidean space. For a space of constant negative curvature the procedure
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gives a different result. The nature of the conformal boundary of a space (if
any) does capture some of its geometry.1

Looking at “infinity” of Minkowski space leads to a more complex picture.
It is convenient to begin by writing the Minkowski metric in terms of null
coordinates u = t − r, v = t + r, as

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) = (10.3)

= −du2 − 2dudr + r2(dθ2 + sin2 θdφ2) = (10.4)

= −dudv +

(

v − u

2

)2

(dθ2 + sin2 θdφ2) . (10.5)

We now perform a conformal rescaling of the metric, beginning with the third
of these forms. The aim is to make the rescaled metric behave itself in the
limits u, v → ∞. To this end, define ΩE by

Ω2
E =

4

(1 + u2)(1 + v2)
. (10.6)

ΩE is a well defined function on all of Minkowski space, and it tends to zero
as u, v → ±∞. Consider the conformally related metric

dŝ2
E = Ω2

Eds2 = − 4dudv

(1 + u2)(1 + v2)
+

(v − u)2

(1 + u2)(1 + v2)
(dθ2+sin2 θdφ2) . (10.7)

To see what goes on at “infinity” we perform the coordinate change

tan p = u , tan q = v , −π/2 < p, q < π/2 . (10.8)

The metric then takes the form

dŝ2 = −4dpdq + sin2 (q − p)(dθ2 + sin2 θdφ2) = (10.9)

= −dt′ 2 + dr′2 + sin2 r′(dθ2 + sin2 θdφ2) . (10.10)

If the range of the coordinate t′ = p + q is extended to the range (−∞,∞)
this is precisely the static Einstein universe. In particular, the spatial sections
are unchanging three dimensional spheres.

The conformally rescaled Minkowski space sits inside the Einstein universe,
surrounded by the boundaries p = −π/2 and q = π/2. These are in fact
lightcones, with a past vertex i− at (p, q) = (−π/2,−π/2), one vertex i0 at
(p, q) = (−π/2, π/2), and a future vertex i+ at (p, q) = (π/2, π/2). The vertex

1 See Valentina di Carlo, Conformal compactification and anti-de Sitter space, MSc Thesis,
KTH/SU 2007, for more on this.
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Figure 10.1. Here we see 1+1 dimensional Minkowski space, embedded in the
Einstein universe, as a conformal diagram, and as a Carter-Penrose diagram.
The latter is valid in any dimension.

i0 sits at spacelike separation from any point inside the Minkowski region, and
represents the conformal boundary of any spacelike slice therein. So in fact
there are two disconnected null cones bounding Minkowski space, called I+

and I−. Here I is a script I, and pronounced scri.2

Again there is some arbitrariness in the picture. As long as we are only
interested in I+ we can standardize the picture by insisting that the lightcone
at infinity does not expand or contract. For this purpose we define a new
conformal factor

Ω = ωΩE =
ΩE

sin (q − p)
=

1

r
. (10.11)

Using Ω as a coordinate, and reverting to the original null coordinate u, we
find that

dŝ2 = ω2dŝ2
E = Ω2ds2 = −Ω2du2 + 2dudΩ + dθ2 + sin2 θdφ2 . (10.12)

I+ is the non-expanding null hypersurface sitting at Ω = 0. This could have
been obtained directly from the form (10.4). Doing so means that one misses i0

and i+, but these points will be rather singular whenever we try to conformally
compactify a curved spacetime, and would need separate attention anyway.
On the positive side, the coordinate r has a natural interpretation as an affine
parameter on the radially directed null geodesics obtained by holding u, θ, φ
constant.

The same procedure works also for the Schwarzschild, and indeed for the
Kerr spacetime. Write the metric for the latter in the original outgoing Kerr

2 Hans Rudberg studied the lightcone at infinity in his PhD thesis, Uppsala 1957. Then the idea
was taken up by Roger Penrose. See his Batelle Rencontres lectures. In Polish, “skraj” means a
boundary or edge (“skraj lasu” is the edge of a wood).
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coordinates, (6.34). Again r is an affine parameter along a family of outgoing
null geodesics, so it serves as a good (if rough) measure of the distance from
the black hole. As our conformal factor we again choose

Ω =
1

r
. (10.13)

Trading r for Ω as a coordinate, and performing a Taylor expansion in Ω, we
find that

dŝ2 = Ω2ds2 = 2dudΩ − 2a sin2 θdΩdφ + dθ2 + sin2 θdφ2 +

+Ω2(−du2 + a2 cos2 θdθ2 + a2 sin2 θdφ2) + (10.14)

+Ω3(2mdu2 − 4amdudφ) + . . . .

Setting Ω = 0 defines a null hypersurface whose intrinsic geometry is identical
to that of the Minkowski I+.

Now comes the brave step. We will say that a system is isolated only if its
space-time metric g admits a conformal rescaling to another Lorentzian metric
ĝ,

ĝab = Ω2gab , (10.15)

in such a way that the hypersurface defined by Ω = 0 becomes the boundary
of a region inside a larger unphysical space-time with metric ĝ. Of course
we do not want arbitrary hypersurfaces in the unphysical space-time to define
isolated systems, so we have to build some more physics into the definition. To
do this, we observe that both g and ĝ come with Riemann tensors of their own,
the latter one being hatted. We will insist that Rab = 0 in a neighbourhood of
the boundary. (This can be relaxed a little, if electromagnetic fields are present,
but we do not go into this here.) By the way we slip in the assumption that
the boundary has topology S2 × R.

To see that the boundary is already severely constrained by the assump-
tions, we must study how various geometrical objects behave under conformal
rescalings. We first define

ĝab = Ω2gab , ĝab =
1

Ω2
gab , (10.16)

na = n̂a = ∇aΩ = ∇̂aΩ = Ω,a , n̂a = ĝabnb =
1

Ω2
na . (10.17)

With two metrics in the game, we have to employ the convention about how
indices are raised and lowered with some discernment. For hatted quantities
the hatted metric performs this role.
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It is then a matter of straightforward calculation to show that

Γ̂ c
ab = Γ a

bc +
1

Ω
(δc

aΩ,b + δc
bΩ,a − gabg

cdΩ,d) , (10.18)

R cd
ab = Ω2R̂ cd

ab + 4

(

Ω∇̂[an̂
[c − 1

2
n̂2δ

[c

[a

)

δ
d]

b] . (10.19)

We introduce the decomposition of the Riemann tensor into the Weyl tensor
and the rest, and also define the Schouten tensor Pab, as follows:

Pab ≡
1

2
Rab −

1

12
gabR , (10.20)

R cd
ab = C cd

ab + 4P
[c

[a δ
d]

b] . (10.21)

Then we find

C cd
ab = Ω2Ĉ cd

ab , C d
abc = Ĉ d

abc , (10.22)

Pab = P̂ab +
1

Ω
∇̂a∇̂bΩ − 1

2Ω2
ĝabĝ

cd∇̂cΩ∇̂dΩ . (10.23)

The point about the Schouten tensor is that it behaves somewhat more ele-
gantly under conformal rescalings, compared to the Ricci tensor itself.

Einstein’s vacuum equations say that

Pab =
λ

6
gab , (10.24)

where, for once, we include a cosmological constant λ (to stress that a cos-
mological constant really makes a difference). By assumption these equations
hold on one side of I. For the conformally related geometry they imply, via
Eq. (10.23), that

P̂ab +
1

Ω
∇̂a∇̂bΩ − 1

2Ω2
ĝabĝ

cd∇̂cΩ∇̂dΩ =
λ

6
gab =

λ

6

1

Ω2
ĝab (10.25)

We multiply this equation with Ω2 and then go to the limit Ω = 0. The result
is

n̂an̂
a ≡ ĝcd∇̂cΩ∇̂dΩ =̂ − λ

3
. (10.26)

By convention a hatted equality is an equality that holds on I. Since n̂a is the
normal vector of the hypersurface defined by Ω = 0, the conclusion is that this
hypersurface must be null if λ = 0, spacelike if λ > 0, and timelike if λ < 0.
This is already something.
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From now on we set λ = 0. We go back to Eq. (10.25), multiply with a
single factor of Ω, and again set Ω = 0. Then

∇̂an̂b =̂ ĝab

ĝcdn̂cn̂d

2Ω2
. (10.27)

The traceless part of the right hand side vanishes. Recalling that n̂a are the
tangent vectors to the generators of the null surface I, we conclude that these
generators are rotation free (obviously, since they form a hypersurface), and
also shear free (a more dramatic statement). So we know quite a bit about I

already.
By means of a suitable function ω > 0, non-vanishing also on I, we can set

the expansion to zero. That is to say, we rescale

ĝab → ω2ĝab . (10.28)

We can then arrange that

∇̂an̂
a=̂0 . (10.29)

The point is that we can always arrange that.
The conclusion so far is that, for any spacetime obeying Einstein’s vacuum

equation outside a compact region, with λ = 0, the mere assumption that I

exists implies that it must be a shear free null hypersurface, whose expansion
can be chosen to vanish.

We now come to the question of the asymptotic symmetry group, that is to
say the group that leaves our requirements at I invariant. Because we admit
deviations from Minkowski space this group is larger than the Poincaré group,
that is than the symmetry group of Minkowski space itself. In fact it is much
larger. It is called the BMS group.3

To begin with, the group that preserves the conformal structure on I is an
infinite dimensional group known as the Newman-Unit group, consisting of
the transformations

z → z′ =
az + b

cz + d
, u → u′ = F (u, z, z̄) . (10.30)

Here F is an arbitrary function of three variables. We also admit Möbius
transformations acting on the generators; they form a group which is, by a
seeming accident, isomorphic to the Lorentz group. These are the most general
one-to-one conformal transformations of a sphere onto itself. The most general
conformal transformation of a sphere onto itself is given by

z → z′ = z′(z) ⇒ dzdz̄ → dz′dz̄′ =

∣

∣

∣

∣

dz′

dz

∣

∣

∣

∣

2

dzdz̄ . (10.31)

The result is a conformal transformation of the sphere, for all choices of the

3 For Bondi, Metzner, and Sachs.
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function z′(z). But we restrict ourselves to one-to-one Möbius transformations.
One finds that

z → z′ =
az + b

cz + d
⇒ dz′ = dz → dz

(cz + d)2
(10.32)

(where we made use of ad− bc = 1), and hence (after a small calculation) that
the intrinsic metric on I transforms according to

4dzdz̄

(1 + |z|)2 → 4dz′dz̄′

(1 + |z′|)2 = K2 4dzdz̄

(1 + |z|)2 , (10.33)

where the conformal factor K = K(z, z̄) is

K =
1 + |z|2

|az + b|2 + |cz + d|2 =
| − cz′ + a|2 + |dz′ − b|2

1 + |z′|2 . (10.34)

This group is considered too large to be interesting, however.
To restrict it one can insist on a special scaling of the parameter u along

the generators,

ĝab∇̂aΩ∇̂bu = n̂a∇̂au = 1 . (10.35)

Now we observe that, on I where Ω = 0, a conformal rescaling of the metric
results in a rescaling of the normal vector n̂a. Indeed

Ω → KΩ ⇒







ĝab → K2ĝab

n̂a = ĝab∇̂aΩ → 1
K

n̂a .
(10.36)

This means that the tensor n̂an̂bĝcd is invariant under conformal transforma-
tions. In effect any conformal transformation of the metric is counteracted by
a rescaling of the parameter u that is parametrizing the null generators.

To preserve the special Bondi scaling of u we must therefore restrict our
transformations to be

z → z′ =
az + b

cz + d
, u → u′ = K [u + a(z, z̄)] . (10.37)

These transformations realize the BMS group. It is an infinite dimensional
group due to the free function a = a(z, z̄), which gives rise to what one calls
supertranslations along the generators.

⋄ Problem 10.1 Use Eddington–Finkelstein coordinates to add I+ to the
Schwarzschild spacetime, as in (10.14). Extend the conformal structure analytically
to negative values of 1/r. Show that what you get on the other side is a conformal
copy of the negative mass Schwarzschild spacetime. (This exercise should give you a
healthy respect for the point i0.)



11 Special topic I: Riemann’s normal coordinates

My conventions for the Christoffel symbols and the Riemann tensor are

Γabc = gadΓ
d
bc =

1

2
(gab,c + gac,b − gbc,a) (11.1)

[∇a,∇b]Vc = R d
abc Vd ⇒ R d

abc = ∂bΓ
d
ac − ∂aΓ

d
bc + Γe

acΓ
d
be − Γe

bcΓ
d
ae .
(11.2)

Indices are placed on Γ in a way that is supposed to minimize confusion. These
particular combinations of the metric and its derivatives are of course there for
a reason. Riemann’s original problem was to see to what extent the coordinate
transformation

gab(x) → ga′b′(x
′) =

∂xa

∂xa′

∂xb

∂xb′
gab(x) (11.3)

can be used to bring the metric tensor into a standard form. Clearly we can
make it diagonal at any given point. What is the obstruction that prevents us
to do this in a region? The answer turns out to be that the first derivatives
of the metric can always be set to zero at the given point (equivalently, the
Christoffel symbols can be made to vanish there), but the second derivatives
cannot be set to zero unless the metric tensor is a very special one. The
obstruction is precisely the Riemann curvature tensor.

Riemann’s procedure is of great interest since it is based on the introduction
of a preferred coordinate system which is then used to Taylor expand various
quantities of physical interest. Converting the resulting expressions to tensor
form will be easy because all the Christoffel symbols vanish in this coordinate
system. These coordinates are called Riemann normal coordinates, and are
based on the idea of making the description of the geodesics from the chosen
point as simple as it can be. This does involve a considerable amount of work,
but we will at least make a start here. We begin with the transformation rule
for the connection,

Γa′

b′c′ =
∂xa′

∂xa

∂xb

∂xb′

∂xc

∂xc′
Γa

bc +
∂xa′

∂xe

∂2xe

∂xb′∂xc′
. (11.4)

Then we perform the coordinate change
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xa′

= Ca′

a (xa − xa
0) +

1

2
Ca′

a Γa
bc(x0)(x

b − xb
0)(x

c − xc
0) + . . . , (11.5)

where xa
0 are the original coordinates at the point P , Ca′

a is a constant matrix
that can be used to diagonalize the metric at P , and the higher order terms
in the transformation are left undetermined. It follows that

∂2xa′

∂xb∂xc
|P

= Ca′

a Γa
bc(x0) . (11.6)

On the other hand we see from the transformation rule (11.4) that

∂xb′

∂xb

∂xc′

∂xc
Γa′

b′c′ =
∂xa′

∂xa
Γa

bc +
∂xa′

∂xe

∂xc′

∂xc

∂

∂xb

∂xe

∂xc′
=

∂xa′

∂xa
Γa

bc −
∂2xa′

∂xb∂xc
. (11.7)

The condition (11.6) now ensures that Γa′

b′c′ = 0 at the chosen point. Since
the higher order terms in (11.5) were left open there is plenty of freedom left,
and indeed the argument can be extended to show that the first derivatives of
the metric can be made to vanish along any given curve.

Riemann normal coordinates are introduced by means of the exponential
map from the tangent space To at a point o into the manifold. We define
expp(V ) as the point p reached by an affinely parametrized geodesic starting
at the origin, at parameter value 0, with tangent vector V , and reaching p
at parameter value 1. The point p is then assigned the components of V as
coordinates. Usually it is understood that the standard Minkowski coordinates
are used in To. The exponential map is into the manifold if the latter is
geodesically complete, but may fail to be one-to-one. A normal neighbourhood
is a neighbourhood of the origin in which the exponential map is one-to-one.
In a normal neighbourhood every point is reached by a unique geodesic from
the origin. Such a neighbourhood always exists, and it may be convenient to
cut it down so that it is convex.

In a general coordinate system the equation for a geodesic is

ẍa + Γa
bcẋ

bẋc = 0 . (11.8)

Let us now consider a point P and a normal neighbourhood around it. In this
region the tangent vectors at P serve as coordinates, and the equation for a
geodesic takes the simple form

va(τ) = vaτ . (11.9)

The coordinates va are precisely the Riemann normal coordinates. In these
coordinates the Christoffel symbols vanish at the origin.


