
Abstract

Conformal compactification of some space-times is studied, with a particular
focus on the asymptotically anti-de Sitter space-times, such as Schwarzschild-AdS
and Reissner-Nordström-AdS. We will depict Penrose diagrams of such spaces
compactified in all of their coordinates, investigating the nature of the time-
like infinities i+ and i− that connect to the spatial conformal boundary I and
presenting the only non-vanishing Weyl spinor Ψ2. We delve into the Reissner-
Nordström-AdS case, and discuss some results in already published papers. We
believe there is a singularity at each end of the time-like infinity (and provide
arguments in favour of this conjecure), but unfortunately cannot give a formal
proof of our conjecture. The thesis work contains some of the formalism of the
conformal techniques, and elaborate analysis of the criterions leading to the choice
of the conformal factors Ω for some of the easier and more intuitive spaces i.e.
euclidean and hyperbolic planes.
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"I could be bounded in a nutshell,
and count myself king of infinite space."

Hamlet
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Preface

Very often when we look at some mathematical models of nature we expect
from them not an exact description of the phenomenon, but a prediction of its
asymptotic behavior. For example in order to analyze the electromagnetic radi-
ation generated by a charge moving in free space it is very useful to study the
asymptotic behavior of its radiation spectrum. In our case we are interested in
asymptotical properties of space-times. Let us consider the issue of the gravi-
tational radiation. Take two massive bodies such as planets. If they are close
to each other, then there will be a negative gravitational potential energy con-
tribution that makes the total energy smaller than it would be if they were far
apart. Although the actual energy-momentum tensor does not take into account
the gravitational binding energy, yet the total mass/energy will differ in the two
cases and the difference (negative contribution) will be attributed to the energy
in the gravitational field itself. If the bodies were in orbit about one another, as a
consequence of Einstein equations gravitational waves will emanate from the sys-
tem and carry some positive energy (gravitational radiation) away from it. Most
scientists describe gravitational waves as "ripples in spacetime". There are now
several projects for the direct detection of such waves but of course the crucial
point is to show that the ripples actually carry energy away. It is a very thorny
issue then to understand what is going on even "asymptotically" but fortunately
Penrose invented a technique called conformal compactification of space-times
which essentially defines an equivalence class of metrics, gab being equivalent to
ĝab = Ω2gab where Ω is a positive scalar function of the space-time that modifies
the distance scale making the asymptotics of the physical metric accessible to
study.

The conformal techniques, discussed in the first chapter of this thesis work,
were invented expressly to understand the aymptotic behavior in general relativ-
ity, including those issues like the one of the gravitational energy carried away
by gravitational waves. By conformally compactifying a space-time we can not
only understand its asymptotics (which we name by the script letter I , to be
pronounced "scri") but also study in detail the global structure of different mod-
els for simpler space-times. Often it is useful to employ the so called conformal
diagrams (Penrose diagrams), 2-dimensional representations of highly (spheri-
cally in our case) symmetric spaces drawn so that the null directions slope 45◦
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to the vertical, and where infinity is also represented as part of the boundary
of the diagram and identified with I . This implies that the metric has to be
conformally compactified in ALL of its coordinates. We show thus the confor-
mally compactified Minkowski and Schwarzschild space-times, and a partially
compactified anti-de Sitter space-time.

In the second chapter, we will depict a Penrose diagram of anti-de Sitter space
compactified in all of its coordinates, which seems to be somewhat an obscure
point in the literature. This is done by going through a comparison with the
more straightforward conformal compactification of the 3 + 1 de Sitter space-
time, where the cosmological constant takes the positive value of +3. There
we will show how its conformal boundary has the topology of a 3-sphere. In
this thesis we mostly treat space-times with a negative cosmological constant,
set to be −3 by convention. The value of Λ gives a pivotal contribution to the
geometry of the space-time and to the structure of its infinity. Einstein’s original
cosmological model was a static (at the time the universe was not known to
be expanding), homogeneous model with spherical geometry, with a non-zero
cosmological constant Λ to balance the gravitational effect of matter, solution of
the following:

Rab = −1

2
Rgab + Λgab = −8πGTab,

Such a model happened to be spatially closed in the cosmological scale. Nev-
ertheless from Hubble’s observations in 1929 it became clear that the universe
is expanding, and therefore not static. The idea of the cosmological constant
hasn’t been abandoned and very recent observations of distant supernovae led
theorists to reintroduce a positive Λ to make these observations consistent with
other requirements as a parameter describing the energy density of the vacuum,
a property of spacetime itself.

Third chapter finally is dedicated to the study of the black hole cases, where
the space-times of our interest are asymptotically anti-de Sitter, the rough idea
being that they should look like anti-de Sitter space-time "far away" from any
mass concentration or black hole. They all have constant negative curvature at
infinity and are maximally symmetric solutions of Einstein’s equations. The
examples we will discuss are asymptotically anti-de Sitter Schwarzschild and
Reissner-Nordström (with a particular focus on the extremal case). The main
and original aim of this thesis work is to present a detailed analysis of the confor-
mal boundary of the asymptotically anti-de Sitter Reissner-Nordström solution,
presenting the non-vanishing Weyl spinor Ψ2 and drawing an accurate Penrose
diagram of the space-time. A nice proof of the conservation of the parameter
M (based on the papers of Ashtekar and Das [1] on the conserved quantities in
asymptotically anti-de Sitter space-times) is shown to justify the noun "gravita-
tional mass" we use for it.

Even though they presumably cannot be employed as models for the real uni-
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verse, the interest in anti-de Sitter space-times increased lately since they are
ground states in some supergravity theories that were under consideration in
the eighties. During the last years higher dimensional anti-de Sitter space-times
have been revived because of a conjectured equivalence between a string theory
defined on a space which is assumed to be asymptotically product of anti de Sit-
ter space (AdS) with some closed manifold like a 5-sphere, and a quantum field
theory without gravity defined on the conformal boundary of this space, whose
dimension is lower by one (AdS/CFT, anti-de Sitter/conformal field theory cor-
respondence). Hence superstring theory on the whole space-time asymptotically
AdS5 × S5 is to be equivalent to a certain super-symmetric Yang-Mills theory
on I . Now, the metric gµν on the boundary is not uniquely specified by the
metric gµν inside, but there is an equivalence class of metrics defined from gµν

with different conformal factors Ω. The super Yang-Mills theory we apply on I
that gives the correspondence AdS/CFT is conformally invariant though.

This argument shows thus how important might be a complete understanding
of the conformally compactified anti-de Sitter space-time, since there are impor-
tant theories and corroborated conjectures that use such a space-time as their
starting point. It might turn out to be much more than a quibble...
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Chapter 1

Conformal compactification of
space-times

A d-dimensional space-time is a manifold equipped with a metric

ds2 = gαβdxαdxβ, (1.1)

which is Lorentzian in the sense that its signature is (p, 1) with p = d−1 number
of positive eigenvalues of the quadratic form gαβ. We will treat mostly manifolds
in (3 + 1)-dimensions. The idea of conformally compactifying a space-time is
intuitively to bring the infinite far-away of the physical metric to a finite distance,
analyzing thus a new metric dŝ2 that is related to ds2 through a conformal factor
Ω in the following way:

dŝ2 = Ω2ds. (1.2)

A conformal compactification is a map (that does not distort angles) of an
infinite manifold onto a finite one that may make the far away parts of the former
accessible to study. Let us consider an infinite plane (that is not a space-time,
since its metric doesn’t have the required (p, 1) signature), which fig. 1.1 shows
a portion of. We can draw a sphere and arrange it in such a way that they would
intersect along the equator of the sphere. Chosen a pole on the sphere, say the
south pole (point P in the figure), we can project any points on the plane (ex.
point B) onto points on the sphere (point b) by intersecting the sphere with the
straight line between B and P. The portion of plane outside the sphere is mapped
onto the southern hemisphere, while the northern one represents points inside the
equator (point A is mapped onto a). One may notice that this correspondence is
1−1 for all of the points, but the south pole itself. We think of P as representing
the infinitely far of the plane.

In the case discussed above, we see how infinity is a point for a 2-dimensional
flat plane. Of course one may wonder whether this projection is unique or not. It
can be proved that the requirements that make the compactification conformal
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Figure 1.1: Conformal compactification of a plane onto a sphere.

(cf. [9] and [13]) imply such a structure for the infinity. We will discuss this a
bit more in detail in the next sections.

1.1 The choice of the conformal factor
Suppose that we are interested in studying the structure of the infinity of a
spacetime S . By choosing appropriately the factor Ω, it is possible to adjoin
more points to the manifold S in such a way that the new metric is smooth at
those points. Through such a conformal map Ω (suitably smooth diffeomorphism
everywhere positive), we take all the points p ∈ S into points p′ that form a finite
portion of a second spacetime S ′. The boundary of the image of S through Ω
can be considered infinity of the space S (see fig. 1.2).

Suppose we want to study the nature of the infinity of some simple 2 dimen-
sional spaces, for example those for which there is a Killing symmetry along one
of the coordinates, say ϕ. The metric for such a space can be given in the form

ds2 = dr2 + f 2(r)dϕ2, (1.3)

where 0 < r < +∞, 0 < ϕ < 2π and f(r) is a function that doesn’t necessary
well-behave at the points at the boundary of its domain. What we aim at is to
get rid of such irregularities by multiplying the physical metric by a conformal
factor Ω and examine an unphysical metric which satisfies some requirements for
any 0 < r < +∞:

1. we want it to be regular on its domain of definition and especially at
those points that were ill-defined for the original metric. Thus the cur-
vature (which in 2 dimensions coincides with the scalar curvature R̂) of the
compactified metric dŝ2 must be finite;
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Figure 1.2: The mapping of the spacetime S into Ω(S). S on the left side of the
figure is drawn in dashed line to stress the fact that the boundary of the space is
not well-defined before the conformal compactification, whereas it is such after
the mapping in the subset Ω(S ) of the embedding space S ′.

2. the conformal infinity we add is at a finite distance
∫ ∞

dŝ =
∫ +∞

0
Ω(r)dr <

+∞;

3. we want to be sure that the conformal boundary we add to the space is a
compact set, therefore Ĉ =

∮
dŝ =

∫ 2π

0
Ω(r)f(r)dϕ < +∞.

Ĉ is the circumference of a circle around the origin as measured from the un-
physical metric. The conditions 2 and 3 ensure that the unphysical manifold is
smooth at the infinity of the physical one.

The conformal factor has to satify some regularity requirements itself, namely:

• Ω > 0 on the original coordinate domain;

• if it is possible to "add" points at infinity to the physical metric (which
is, the new manifold is smooth at ∞ and the hatted scalar curvature is
everywhere finite), then it must be Ω = 0 at infinity;

• Ω is differentiable as many time as it is needed.

Euclidean plane

An easy example of a space whose metric may be written in the form (1.3) is the
flat plane. To see this, we can start from the usual way of writing the metric on
a plane, which is ds2 = dx2 + dy2. Changing now coordinates into the two polar
r and ϕ such that x = r cos ϕ and y = r sin ϕ, we find:

ds2 = dr2 + r2dϕ2. (1.4)
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where 0 < r < +∞ and 0 < ϕ < 2π. The physical metric ds2 is ill-defined as
r → +∞. We want to choose a conformal factor that spawns a well-behaved
unphysical metric for all the r in the interval. By looking at (1.4) we understand
we’d need an Ω that goes to zero at infinity as 1/rα, with α > 1. Let us analyze
the metric we obtain by using such a Ω, recalling that we want to make sure
that the hatted metric describes a space-time which is smooth at all of its points,
especially those that were irregular for the physiscal metric. The conformal metric
would be

dŝ2 = Ω2ds2 =
1

r2α
(dr2 + r2dϕ2). (1.5)

We may change coordinates and write the metric above in a nicer form by defining
dz = dr/rα which means

dŝ2 = dz2 + (1− α)2z2dϕ2. (1.6)

This hatted metric looks somewhat similar to the euclidean metric again, but
contains an extra factor of (1− α)2. Define thus a new coordinate θ = |1− α|ϕ
and see how the metric reads

dŝ2 = dz2 + z2dθ2, (1.7)

which is different from the flat plane metric only for the fact that the θ coordinate
this time doesn’t have the same periodicity of the old ϕ, but runs between 0 and
|1− α|2π. This makes an important difference, because it gives rise to a conical
singularity : since we are not covering now the whole plane but identifying some
points in the plane due to the periodicity of θ (points along θ = 0 are equivalent
to points along θ = |1 − α|2π), there is some point (at the tip of the cone) in
which the structure of the manifold breaks down: the tangent space at that point
is ill-defined thus the manifold is not differentiable. Of course there are two
exceptions to the case, which occur at α = 0 or α = 2, where the period of θ
turns out to be |1 − α|2π = 2π as in the flat plane. Consider the requirements
on the conformal metric listed above:

1. the requirement on the curvature is satisfied since the scalar curvature is
identically zero, hence finite.

2.
∫ +∞

0
dz/zα = z1−α/(1− α)

+∞
0

.

3.
∫ |1−α|2π

0
dθ/zα−1 = |1− α|2π/zα−1.

Requirements 2 and 3 imply the following cases

• case α > 1: z = +∞ sits at a finite distance, but so does not point z = 0;
there is a conical singularity at ∞, except if α = 2.

4



• case α < 1: z = +∞ is infinitely far, but the point at z = 0 is at a finite
distance; there is a conical singularity at 0, except if α = 0.

• case α = 1: both z = +∞ and z = 0 are infinitely far away;

the strategy could now be of define a conformal factor on patches of the z do-
main in a smooth way so that α = 0 (the conformal factor is simply 1) in a
neighborhood of the origin and α = 2 at infinity. In this way, we ensure that the
hatted manifold is perfectly smooth in all of the points (it would in fact have the
topological stucture of a sphere).

A simpler way to avoid conical singularities could be the use of a more so-
phisticated conformal factor, to obtain by adding some constant k2 > 0 in the
denominator

Ω(r) =
1

k2 + rα
. (1.8)

Let us check that the hatted metric satisfies the regularity conditions:

1. R̂ for the hatted metric can be calculated (see [13], appendix D) as:

R̂ = Ω−2[R−2(n−1)gac∇a∇c ln Ω−(n−2)(n−1)gac(∇a ln Ω)∇c ln Ω (1.9)

where n is the dimension of the manifold, and R is the scalar curvature of
the unhatted metric. For the flat plane, we have of course that R = 0, and
n = 2. After some calculations (see Appendix A), equation (1.9) reads:

R̂ = 2k2α2rα−2. (1.10)

Given that both α and k are constants, for R̂ to be finite at r = +∞ we
require α ≤ 2, while we would require α ≥ 2 for R̂ to be finite at the origin.

2.
∫ ∞

dŝ =
∫ ∞

Ω(r)ds =
∫ ∞

0
1

k2+rα dr < +∞⇔ α > 1.

3. Ĉ =
∮

dŝ =
∫ 2π

0
Ω(r) r dϕ = 2π r

k2+rα < +∞∀r ⇔ α ≥ 1.

The first is a very strict condition: since we want the curvature to be finite for any
value of r, we are forced to choose α = 2. This is consistent with requirements
2 and 3. The fact that we must set α to 2 is an important feature, as it tells us
something about the structure of the hatted manifold and its asymptotics. See
in fact how the equation (1.10) for α = 2 reads R̂ = 8k2, which means that the
curvature of the conformally compactified manifold is a positive constant, i.e. the
hatted manifold has the geometry of a round sphere. Further, by setting α = 2
in the espression for the circle Ĉ we find

Ĉ = 2π
r

k2 + r2
(1.11)

which in the limit for r → +∞ is zero. This means that the conformal boundary
of the flat plane is necessarily a point.
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The hyperbolic plane

We may consider now the hyperbolic space, where the function f(r) in formula
(1.3) is sinh(r). This is a space of constant negative curvature, with metric

ds2 = dr2 + sinh2 r dϕ2. (1.12)

We notice that the metric is again ill-defined at r → ∞ where the term sinh2 r
diverges. A possible choice of conformal factor that would work well on the metric
(1.12) is for example e−r. The unphysical metric dŝ2 would in fact be perfectly
regular for 0 ≤ r ≤ +∞. The scalar curvature would be

R̂ = 2e2r
(
− 1 + coth(r)

)
(1.13)

that goes to a finite value (4) as r → +∞,
∫ ∞

0
e−r is by all means less than

infinity, and Ĉ = 2π is finite too. What we want to investigate now is whether
it is possible to choose a different conformal factor such that Ĉ = 0: this would
mean the conformal boundary of the hyperbolic plane is a point similarly to the
flat plane. Up to now, we only proved that for the specific choice of conformal
factor

Ω = e−r, (1.14)

the infinity of the physical metric is reduced to "something" rather than a point,
and that the circle around it measures 2π. Let us analyze better Ĉ: it is 2π
times the limit to infinity of the conformal factor multiplied by sinh r. To make
Ĉ go to zero, we could choose an Ω that for large values of r is asymptotical
to Ω(r) = 1

rα e−βr, where α and β are to be determined in such a way that the
requirements 1 and 2 are satisfied and such that

lim
sinh r

rα
e−βr = 0. (1.15)

1. We require the scalar curvature to be finite for any value of r, also for r →
+∞. By definition, the scalar curvature R̂ is equal to ĝab ĝcd R̂acbd with R̂abcd

Riemann tensor of the unphysical metric. Given the symmetries of such a
tensor, we get R̂ = 2ĝrrĝϕϕR̂rϕrϕ. Calculating now the Christoffel symbols,
we find that the only nonvanishing algebraically independent components
are

Γ̂ϕ
rϕ =

ΩΩ′ sinh2 r + Ω2 sinh r cosh r

Ω2 sinh2 r
,

Γ̂r
rr =

Ω′

Ω
,

Γ̂ϕϕr = Ω2 sinh2 r Γ̂ϕ
rϕ.
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Consequently the Riemann tensor has only one nonzero component 1

R̂rϕrϕ = [(Ω′)2 − ΩΩ′′ − Ω2] sinh2 r − ΩΩ′ sinh r cosh r. (1.16)

The scalar curvature thus is:

R̂ =
2

Ω4

[
(Ω′)2 − ΩΩ′ cosh r

sinh r
− ΩΩ′′ − Ω2

]
=

= 2r2αe2βr
[
(
α

r
+ β) coth r − 1− α

r2

]
, (1.17)

from which it follows that we must set α = 0 and β = 1 for R̂ to be finite.

2.
∫ ∞

dŝ =
∫ ∞

0
e−rdr = 1 < +∞.

3. Ĉ =
∫ 2π

0
re−rdϕ = 2πre−r that is finite not zero for r →∞.

Hence we cannot choose arbitrarily the exponents α and β. We proved that the
conditions on Ω (1 especially) force the conformal boundary to be else than a
point, namely the circle surrounding a disk (the Poincaré disk, [3] and [6]).

In general, we understand out of these two simple examples how the choice of
the conformal factor is not completely arbitrary, in the sense that the geometry
of the original space forces the conformal boundary to be a point in the flat plane,
and a circle in the hyperbolic plane.

1.2 Conformal compactification of some
important space-times

Minkowski space

Minkowski space has as metric

ds2 = −dt2 + dr2 + r2dσ2 (1.18)

with dσ2 = dθ2+sin2 θdϕ2 metric on the 2-sphere. This time we choose to change
coordinates and define a retarded time parameter u = t−r and an advanced time
parameter v = t + r. Metric (1.18) takes the form

ds2 = −du dv +
1

4
(v − u)2dσ2.

One possible choice of Ω is 1/
√

(1 + u2)(1 + v2) so that we define dŝ2 = Ω2ds2. In
order to assign finite coordinates to the points at infinity, we change coordinates

1R̂abcd = 1
2 (ĝbc,ad − ĝbd,ac + ĝad,bc − ĝac,bd) + Γ̂j

adΓ̂bjc − Γ̂j
acΓ̂bjd.
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again, by using u = tan p and v = tan q (where −π/2 ≤ p, q ≤ π/2) and define
finally T = 1

2
(p + q) and ρ = q − p:

dŝ2 = −dT 2 +
1

4
[dρ2 + sin2 ρ dσ2]︸ ︷︷ ︸

metric of a unit 3-sphere

,

where −π ≤ 2T, ρ ≤ +π. If we let the coordinates to vary in some appropriate
ranges, (0 < |T |, ρ < +∞), the resulting space has the structure of a product of a
space-like 3-sphere with an infinite time-like line. This means that we embedded
Minkowski space in a space that in 2 dimensions (suppressing the θ and ϕ coor-
dinates that only translate a rotational symmetry) looks like a timelike cylinder
(fig. 1.3). The points i0, i+ and i− represent respectively spatial, future temporal

Figure 1.3: Minkowski space wraps around the embedding space to meet back in
the point i0 (which is a single point, as we showed, and not a 2-sphere).

and past temporal infinity, while I + and I − are future and past null infinity.
The Penrose diagram of Minkowski space-time is shown in figure 1.4. We are
neglecting the spherical part of the metric, suppressing in this way 2 of the 4
dimensions. Thus every point in the Penrose diagram will represent a 2-sphere
(the conformal boundary I has the topology of a line cross a two sphere), except
for i0, i+, and i− that are single points, and the vertical line on the left in the
figure: each point on that line corresponds to the origin of Minkowski space, and
represents a single point.

Anti-de Sitter space-time

Anti-de Sitter space-time is the maximally symmetric solution to Einstein’s vac-
uum equations once we choose the cosmological constant Λ to be negative (by

8



Figure 1.4: Penrose diagram of Minkowski space.

convention −3), whereas it was set to be 0 in the Minkowski solution. The metric
for some choice of coordinates can be given in the static form

ds2 = −(1 + r2)dt2 +
1

1 + r2
dr2 + r2dσ2, (1.19)

where 0 ≤ r, |t| < +∞. Changing coordinates with w = 1
r

(0 < w < +∞), and
conformally compactifying in the space coordinate with Ω(w) = w we get:

dŝ2 = −(1 + w2)dt2 +
1

1 + w2
dw2 + dσ2, (1.20)

which is a well-defined metric also on the conformal boundary I at w = 0. The
diagram of anti-de Sitter space-time we can draw so far is an infinitely long strip
(fig. 1.5), where one can see that we haven’t considered the compactification
in the time direction yet, since as we said before the rules for drawing Penrose
diagrams are that infinity (past and future time-like infinity also!) has to be
represented as part of the boundary. We will come back to this important point
later on in the next chapter. The conformal boundary of anti-de Sitter space in
the picture 1.5 looks like an infinitely long time-like line. Because scri is such,
anti-de Sitter is said to be a not "globally hyperbolic" space-time, in the sense
that it does not admit a well posed initial data problem.

Schwarzschild space-time

The metric of Schwarzschild space-time is

ds2 = −
(
1− 2M

r

)
dt2 +

1

1− 2M
r

dr2 + r2dσ2, (1.21)
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Figure 1.5: Penrose diagram of anti-de Sitter space-time.

where M is the mass parameter. Here is −∞ < t < +∞ and 0 < r < +∞
regarded as empty space solution rather than solution outside some spherical
body. By using Kruskal coordinates for example [5], we may write the metric as

ds2 = 32
M3

r
e−

r
2M (−dT 2 + dX2) + r2dσ2 (1.22)

with X and T implicitely defined as{
X2−T 2=e

r
2M ( r

2M
−1)

2 tanh−1 T
X

= t
2M

We are interested in the infinite far-away, which occurs at r →∞. A conformal
compactification of the metric with the factor Ω(r) = 1

r
produces

dŝ2 = 32
M3

r3
e−

r
2M (−dT 2 + dX2) + dσ2, (1.23)

that is well-defined on the conformal boundary I at r = ∞, but is singular in
r = 0. The invariant RabcdRabcd is equal to 48M2

r6 , divergent at r = 0: there is a
true singularity. The Penrose diagram is drawn in figure 1.6.

1.3 Induced metric on I

Let us consider now a generic space-time whose metric is given in the form

ds2 = −V (r)dt2 +
1

V (r)
dr2 + r2dσ2. (1.24)

10



Figure 1.6: Penrose diagram of the Schwarzschild space-time. There is a singu-
larity at r = 0 and an event horizon at r = 2M . Note that the timelike Killing
field (dashed line) becomes spacelike inside the black hole.

We may change coordinates in such a way that

du2 = dt2 − f 2(r)dr2 − 2f(r) du dr, (1.25)

where f(r) will be chosen in an suitable way later on. Equation (1.24) becomes

ds2 = −V (r)du2 − V (r)f 2(r)dr2 +
1

V (r)
dr2 − 2V (r)f(r) du dr + r2dσ2. (1.26)

By using again w = 1
r
, and defining f(r) = 1

V (r)
, we get

ds2 = −V (
1

w
)du2 +

2

w2
du dw +

1

w2
dσ2. (1.27)

A conformal compactification with a factor Ω = w leads us to an unphysical
metric

dŝ2 = −w2V (
1

w
)du2 − 2 du dw + dσ2. (1.28)

Assuming that the function V (r) is a O(r), on I (w = 0) the induced metric is:

dŝ


w=0
= 0 · du2 + 0 · du + dσ2 (1.29)

This shows that the direction u is null and that I is a null surface. We can thus
find the equation of the outgoing geodesics:

0 = du = dt− 1

V (r)
dr ⇒

∫
dt =

∫
dr

V (r)
⇒ t−

∫
dr

V (r)
= const. (1.30)

The constant above distinguishes the different geodesics. It is important to see
how u is a natural coordinate for our space-time. Note that this arguments does
not apply to the aymptotically anti-de Sitter cases for example, since there the
V (r) is in the order of r2 which is not allowed by the assumptions we made.
Schwarzschild (metric in (1.21)) and Reissner-Nordström space-times are in the
form (1.24).
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Chapter 2

Conformal compactification of
anti-de Sitter space-time

2.1 The de-Sitter case
We will first analyze the conformal compactification of a space-time whose metric
looks somewhat similar to the anti-de Sitter case, but with a positive cosmological
constant Λ. It is believed nowadays that Λ > 0 in our universe. The line element
is

ds2 = (R2 − 1)dT 2 +
dR2

1−R2
+ R2dσ2. (2.1)

Notice an important feature of de-Sitter space: time and space coordinates switch
place at R ≥ 1. We say that at R = 1 there is a cosmological event horizon. Look
at the metric in (2.1); the R is meant to be "large": this makes the time coefficient
be positive -spacelike- and the spatial one be negative - timelike. Namely R can
be regarded as the time coordinate and T as the spatial one. Performing a change
of coordinates into the usual w = 1

R
, we get

ds2 = (
1

w2
− 1)dT 2 +

1

w2

dw2

w2 − 1
+

1

w2
dσ2 (2.2)

that is again ill-defined on I surface w = 0. The conformal compactification in
the space coordinate may be done by using for example the factor Ω(w) = w,
obtaining

dŝ2 = Ω2(w)ds2 = (1− w2)dT 2 +
dw2

w2 − 1
+ dσ2. (2.3)

We could "add" the points at w = 0 which become the conformal infinity of the
de-Sitter space-time. Notice how on I the metric is that of a spacelike cylinder.
By looking carefully at the metric, we may see how the T coordinate can still
run between −∞ and +∞, which makes our space-time not compact. What we
would like to do now is to "add" two points at the spatial ends of that cylinder.
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By changing coordinates again into ρ = eT and conformally compactifying with
the factor Ω(ρ) = 2ρ

1+ρ2 we can write

dˆ̂s2 =
4ρ2

(1 + ρ2)2
dŝ2 =

4(1− w2)

(1 + ρ2)2
dρ2 +

4ρ2

(1 + ρ2)2
(

dw2

w2 − 1
+ dσ2). (2.4)

Let us now investigate the topology allowed by the metric induced on w = 0. We
have

dˆ̂s2 =
4

(1 + ρ2)2
(dρ2 + ρ2dσ2). (2.5)

We claim that this is a sphere. Consider thus the equation that describes a
3-sphere, namely

X̂2 + Ŷ 2 + Ẑ2 + Û2 = 1 (2.6)

with line element ds2 = dX̂2 + dŶ 2 + dẐ2 + dÛ2. Define now

x =
X̂

1 + Û
, y =

Ŷ

1 + Û
, z =

Ẑ

1 + Û
, ρ2 =

1− Û

1 + Û
(2.7)

and write the metric as

ds2 =
4

(1 + ρ2)2
(dx2 + dy2 + dz2) (2.8)

which in polar coordinates is exactly the metric in (2.5). This means that by
looking at the boundary of the compactified de-Sitter space-time, on I we turned
the infinte long cylinder into a perfectly smooth surface, a sphere indeed (fig. 2.1).
Notice also how this argument is related to the stereographic projection described
in chapter 1 for the flat plane, only in one dimension higher (see fig. 1.1). In

Figure 2.1: Penrose diagram of de-Sitter space. On top of the diagram there’s
the surface we turned into a smooth 3-sphere.

the Penrose diagram of figure 2.1, every point is meant to represent a 2-sphere
whereas the points on the vertical lines represent single points.
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2.2 Anti-de Sitter space-time
Let us try to apply the same manoeuvre used in the de-Sitter case to the metric

ds2 = −(R2 + 1)dT 2 +
dR2

1 + R2
+ R2dσ2. (2.9)

Again now, if we change coordinates (w = 1
R

and ρ = eT ) and conformally
compactify in time and space (Ω = 2w

1+ρ2 ) as done before, we end up with the line
element

dˆ̂s2 = −4(1 + w2)

(1 + ρ2)2
dρ2 +

4ρ2

(1 + ρ2)2
(

dw2

w2 + 1
+ dσ2), (2.10)

and on I

dˆ̂s2 =
4

(1 + ρ2)2
(−dρ2 + ρ2dσ2) (2.11)

that looks very similar to (2.5), except for a "− sign in front of dρ2.
Let us focus on the study of the line element dl2 = (−dρ2 +ρ2dσ2). If we were

in (2 + 1) dimensions, we would write the metric on the conformal boundary as

dl2 = (−dρ2 + ρ2dϕ2) (2.12)

with 0 ≤ ϕ < 2π periodically, that has the topology of S1×R1 and is an example
that has been discussed by Misner (cf. [5] and his original paper [8]). This
metric has a singularity at ρ = 0, which is not a curvature singularity. It is the
mere structure of the manifold that collapses in those points. It is somewhat
similar to the conical singularity we described when analyzing the flat plane: if
the coordinate ϕ had an unrestricted domain (−∞ < ϕ < +∞), there wouldn’t
be any singluarity.

In (3 + 1) dimensions the situation is more complicated. A computation of
the scalar curvature shows that

ˆ̂
R =

w2

4(1 + w2)ρ2
(6− 8ρ2 + 6ρ4 + 7w2(2 + w2)(1 + ρ2)2),

which is divergent at ρ = 0. This might depend on the choice of conformal factor,
so we try now a different approach. Anti-de Sitter space is conformal to the part
of the Einstein universe whose metric is

ds′2 = −dt′2 + R2
0(dχ2 + sin2 χdσ2) (2.13)

where R0 is a constant, −∞ < t′ < +∞, 0 < χ < π, dσ2 being the metric on the
2-sphere. In order to draw the Penrose diagram of the Einstein universe, we need
to map it into a finite subset where R0 = 1, and given the manifest spherical
symmetry (dσ term) we shall only focus on the t and χ coordinates. From metric
(2.13), we see that on the (t′, χ) plane the line element will be

ds2 = −dt′2 + dχ2 (2.14)
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which means that the coordinates t′ and χ represent proper time and distance
respectively. If we wish to change the time coordinate into

t = arctan
2a

R0

t′, (2.15)

where a is a constant to be determined, the metric will be

ds2 = −dt2 + (2a)2 cos4(t)(dχ2 + sin2 χdσ2); (2.16)

with −π
2

< t < π
2
, which has spatial topology S3, but some odd behavior at

t = −π/2 and t = π/2 respectively where the cos4(t) is zero. The Penrose
diagram can be obtained by considering the proper time and distance. The
coordinate t is already proper time. The proper distance is∫

dr =

∫
2a cos2(t)dχ. (2.17)

Integrating in χ and recalling that cos2 t = (1 + cos(2t))/2, we get that

r = aχ(1 + cos(2t)). (2.18)

If, as suggested by Penrose, the fundamental observer is chosen to be the max-
imum area 2-sphere in a t =constant surface, their paths in the (t, r) plane are
given by

r = a(1 + cos(2t))(χ− π

2
). (2.19)

Now comes the restriction on a. We require the paths of the fundamental ob-
servers at χ =constant to be timelike. Thus |dr/dt| < 1 that implies a < 2/π.
This issue was argued by Tipler (cf. [12], see also the paper from García-Parrado
and Senovilla in [11]) who drew the Penrose diagram for the Einstein universe
like the one in fig. 2.2. Notice that by calculating the derivative of r with respect
to t, we get

∂r

∂t
= −2a(χ− π

2
) sin(2t), (2.20)

which goes to zero at t = ±π
2
. This allows light rays to travel back and forth

an infinite number of times at the points i+ and i−. In figure 2.2 every point
represents a 2-sphere, except for i+ and i− that are just points. Since any attempt
to extend the conformal metric to include those points led to a singularity (Misner
singularity in (2+1) dimensions and curvature singularity in (3+1) dimensions), it
seems to be impossible to attach smoothly these points to the conformal boundary
I .

Coming back now to our original purpouse of studying anti-de Sitter space,
we restrict the coordinate χ to vary between 0 and π/2 only. Thus the Penrose
diagram of anti-de Sitter space-time must look like in figure 2.3. Every point
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Figure 2.2: Penrose diagram of the Einstein universe. On the x-axis we repre-
sented r, while t is on the y-axis.
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Figure 2.3: Penrose diagram of the compactified anti-de Sitter spacetime.
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in the figure represent a 2-sphere, except for those with χ = 0 (that are just
points at the origin of coordinates of the three-sphere at t =constant), i+ and i−.
See how the conformal boundary consists of the points i+ and i−, and a smooth
time-like surface I that begins at i+ and ends at i−. What’s left is to discuss
the nature of those two tips of the Penrose diagram, namely i+ and i−. Are those
pathologies of the metric? Or is the divergence only due to a bad choice of the
conformal factor? We cannot find a proof to that. And it seems that a formal
discussion of this point does not exist in the literature. Nevertheless, by private
communication with Helmut Friedrich, we know there is some reasons (related to
the covering of anti-de Sitter space-time by a congruence of conformal geodesics)
why we couldn’t find such a change of coordinates that would allow us to write
anti-de Sitter space-time as embedded in a conformal expansion of it in which
i+ and i− are regular points that connect smoothly to the conformal boundary
I . On the other hand, we did find such a smooth embedding for Minkowski
space-time (Einstein universe indeed, as in fig. 1.3) and regarded the resulting
compactified space (with past and future infinity added) as a regular portion of
it.
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Chapter 3

The black hole cases

The Weyl tensor

As we said before, the conformal techniques invented by Penrose allow us to
define an equivalence class of metrics, gab being equivalent to ĝab = Ω2gab with Ω
conformal factor. In order to study the properties and the structure of a certain
space-time we cannot therefore consider the Riemann tensor Rabcd since it will
depend on the choice of Ω, in a very non-trivial way (similarly to the scalar
curvature, for which we gave an explicit formula in the appendix A). We need
to define a new tensor that has to be invariant under conformal changes to the
metric (a conformal tensor). The (1, 3) Weyl tensor is such. It is defined to
be the traceless component of the Riemann curvature tensor. It has the same
symmetries as the Riemann curvature tensor with the further condition that its
Ricci curvature tensor must vanish. Its components are given by

Cabcd = Rabcd −
(
ga[cRd]b − gb[cRd]a

)
+

1

3
R ga[cgd]b, (3.1)

and are in the number of 10 algebraically independent real components. These
may be seen also as 5 complex components Ψi. Further, stationary black holes
happen to belong to a special class of metrics ("Petrov type D") for which some
clever choices will ensure that there is only one non-zero complex component of
the Weyl tensor, namely Ψ2. The Weyl tensor is hence conformally invariant,
that is if ĝab = Ωgab for some positive scalar function Ω then the (1,3) valent
Weyl tensor satisfies

Ĉd
abc = Cd

abc. (3.2)

In (2 + 1) dimensions, the Weyl tensor is identically zero, but it is generally
not so in higher dimensions. As a matter of fact, it has the nice property of
characterizing conformally flat spaces. A space described by the metric ds2 is
said to be conformally flat if one can find a conformal factor Ω positive function
of the coordinates chosen in the space-time such that dŝ2 = Ω2ds2 is the flat
metric. Hence, the Weyl tensor Cabcd vanishes if and only if the metric describes
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a conformally flat space-time. It is so in the de-Sitter and anti-de Sitter space-
times.

Definition of asymptotically anti-de Sitter space-times

In this chapter we will treat some of the black hole examples whose metrics are
asymptotically anti-de Sitter, namely Schwarzschild-anti-de Sitter and Reissner-
Nordström-anti-de Sitter (in particular, we will analyze the extremal case). The
idea is that such a space-time should look like anti-de Sitter space-time "far
away" from any mass concentration or black hole that may be present. The
conformal compactification is very useful in order to give a precise definition of
asymptotically anti-de Sitter space-times (cf. [1] and [2]):

Definition: A d-dimensional space-time (M , gab) is said to be asymp-
totically anti-de Sitter if there exists a manifold M̂ with boundary I ,
equipped with a metric ĝab and a diffeomorphism from M onto M̂ −I of
M̂ (with which we identify M and M̂ − I ) and the interior of M̂ such
that:

• there exists a function Ω on M̂ for which ĝab = Ω2gab on M

• I has the topology of Sd−2, Ω vanishes on I but ∇aΩ normal vector
of I is nowhere vanishing on I

• on M , gab satisfies

Rab = −1

2
Rgab + Λgab = −8πG(d)Tab, (3.3)

with Λ constant smaller than zero, G(d) Newton constant in d dimen-
sions, Tab stress-matter tensor such that Ω2−dTab admits a smooth limit
to scri

• the Weyl tensor of ĝab is such that Ω4−dCabcd is smooth on M̂ and
vanishes at I .

The first condition ensures that the new metric ĝab is conformally related to the
physical metric gab; the second instead requires that the topology of the boundary
is the one suggested by the geometry of anti-de Sitter space-time, and that the
boundary itself is attached at infinity with respect to the physical metric. The
reqirement on the normal of scri implies that Ω is a good radial coordinate in a
neighborhood of scri in the hatted space-time. Third condition is a restriction to
the asymptotic behavior of matter fields which ensures that the fluxes of some
conserved quantities across I are well-defined. We also expect that the limit of
Ω4−dCabcd on the conformal boundary vanishes since as a property of the Weyl
tensor, Cabcd = 0 in anti-de Sitter space-times.

20



3.1 Schwarzschild-anti-de Sitter black hole
The Schwarzschild-anti-de Sitter solution is the one we obtain once the cosmo-
logical constant is set to be Λ = −3; therefore the metric in its static form is
given by

ds2 = −
(
1 + r2 − 2M

r

)
dt2 +

1

1 + r2 − 2M
r

dr2 + r2dσ2, (3.4)

where 0 < r, |t| < +∞, and dσ2 is the metric on the 2-sphere. Such a metric is
ill-defined as the r coordinate tends to +∞. We can conformally compactify it in
the space coordinate by multiplying by Ω2 = 1

r2 and in another set of coordinates
where r = 1

w
:

dŝ2 = −
(
1 + w2 − 2Mw3

)
dt2 +

1

1 + w2 − 2Mw3
dw2 + dσ2 (3.5)

with 0 < w < +∞. The new hatted metric is now perfectly regular on w = 0.
The Penrose diagram is depicted in figure 3.1. Notice how the diagram differs

Figure 3.1: The dashed lines are event horizons, the solid lines are the conformal
boundaries I and the double lines are the singularities at r = 0.

from the one given in the asymptotically flat case, in figure 1.6. The conformal
boundary I now looks like the I for an anti-de Sitter space-time (fig. 1.5)
rather than the Minkowski I (fig. 1.4).

We may want now to change coordinates again and use

t = ln ρ (3.6)

with 0 < ρ < +∞, so that the metric dŝ2 in (3.5) reads

dŝ2 = −1 + w2 − 2Mw3

ρ2
dρ2 +

1

1 + w2 − 2Mw3
dw2 + dσ2. (3.7)
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We see now clearly how this metric is ill-defined on the past time-like infinity
ρ = 0, so we conformally compactify it:

dˆ̂s2 =
( 2ρ

1 + ρ2

)2
dŝ2 =

=
4

(1 + ρ2)2

[
− (1− 2Mw3 + w2)dρ2 +

+ρ2(
1

w2(1− 2Mw3 + w2)
dw2 + dσ2)

]
. (3.8)

On the conformal boundary w = 0, the induced metric is

dˆ̂s2 =
4

(1 + ρ2)2

(
− dρ2 + ρ2dσ2

)
(3.9)

that is exactly the same we had in the anti-de Sitter case. It seems that the
boundary doesn’t feel the mass. Let us go deeper in this issue and analyze the
components of the conformally invariant Weyl tensor Cd

abc. They all are in the
form of some functions of the mass (that do not depend on w) multiplied by w.
This makes the tensor go to zero as w → 0, as required by the definition given
at the beginning of this chapter, but also gives a structure to I that the anti-
de Sitter space-time didn’t have (where the Weyl tensor was simply identically
zero). We can thus expand the components in a power series in w and analyze a
"rescaled" Weyl tensor

Kd
abc

def
=

1

w
Cd

abc. (3.10)

On the conformal boundary, some of its components are just numbers (or numbers
times well-behaved functions of θ) times mass, but some others contain factors
like

1

ρ2
(3.11)

and hence diverge at ρ = 0. The rescaled Weyl tensor seems to diverge for
any choice of coordinates on the time boundaries, which led us to suspect that
there’s something odd happening in the tips of the conformal boundary I , in
addition to what happens in the anti-de Sitter case discussed in the last chapter.
We will study this peculiarity more carefully in the aymptotically anti-de Sitter
Reissner-Nordström case.

3.2 Reissner-Nordström-anti-de Sitter black hole
The Reissner-Nordström solution represents the space-time outside a spherically
symmetric charged body or black hole carrying an electrical charge (with no spin
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or magnetic dipole). It is the spherically symmetric asymptotically anti-de Sitter
solution that has the form

ds2 = −
(
1 + r2 − 2M

r
+

Q2

r2

)
dt2 +

dr2

1 + r2 − 2M
r

+ Q2

r2

+ r2dσ2, (3.12)

where M represents the gravitational mass (later in this chapter we will prove
that this parameter is conserved, as expected) and Q the electric charge. It is
somewhat rather similar to the Schwarzschild metric locally. This solution would
normally only be considered outside the body, but it is anyway interesting to see
what happens if we look at it as a function for 0 < r < +∞.

We find more convenient to write the metric in different coordinates, namely

w =
1

r
and t = ln ρ (3.13)

where again 0 < w < +∞ and 0 < ρ < +∞. The metric becomes

ds2 = −1− 2Mw + w−2 + Q2w2

ρ2
dρ2 +

dw2

w4(1− 2Mw + w−2 + Q2w2)
+ w−2dσ2.

(3.14)
We choose the unphysical metric to be

dŝ =
(
w

2ρ

1 + ρ2

)2
ds2 (3.15)

and study the induced one on the conformal boundary I :

dˆ̂s2


w=0
=

4

(1 + ρ2)2
[−dρ2 + ρ2dσ2]. (3.16)

The line element in (3.16) presents the same "irregularity" that the anti-de Sitter
and schwarzschild-anti-de Sitter space-times had on w = 0. Let us analyze the
structure of our space-time with the rescaled Weyl tensor Kd

abc defined as above.
Similarly to the Schwarzschild-anti-de Sitter case, we find that all the components
depend on the mass M on the conformal boundary, but some of them diverge
with some power of ρ on the time-like infinity i−. A CLASSI computation of
the only non-vanishing Weyl spinor Ψ2 by Jan E. Åman (private communication)
gives for the unhatted metric in (3.14)

Ψ2 = w4(Q2 − M

w
) (3.17)

which leads to a Ψ̂2

Ψ̂2 =
1

Ω2
Ψ2 =

(1 + ρ2)2

4w2ρ2
Ψ2 = w

Q2w −M

4

(1 + ρ2)2

ρ2
. (3.18)

The spinor thus diverges on both time-like infinities. The structure of the space-
time must have something special in those points: it seems that the metric itself
singles them out.
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3.2.1 Asymptotically anti-de Sitter
extremal Reissner-Nordström black hole

Let us focus on a particular case of Reissner-Nordström-anti-de Sitter solution,
the one called extremal. The metric is again

ds2 = −
(
1 + r2 − 2M

r
+

Q2

r2

)
dt2 +

dr2

1 + r2 − 2M
r

+ Q2

r2

+ r2dσ2, (3.19)

but this time we want to find that particular value of M = M(Q) such that a
degenerate Killing horizon appears. The vector ξ = ∂/∂t is a Killing vector. We
calculate its norm

‖ξ‖2 = gabξ
aξb = gtt = −

(
r2 + 1− 2M

r
+

Q2

r2

)
. (3.20)

The vector is thus time-like when gtt < 0 and spacelike when gtt > 0. In order to
study the roots of this polynomial, let us define a function F (r) such that

F (r) = r2 + 1− 2M

r
+

Q2

r2
. (3.21)

The polynomial −r2F (r) is a fourth-order polynomial in r that has therefore
four complex roots. Physically we care only about real positive roots. We can
factorize the polynomial into

r2F (r) = (r − r1)(r − r2)(r − r3)(r − r4) (3.22)

where the ri-s are the roots. Our aim is to find that value of M = M(Q) such that
F (r) has two coincident roots: in that way the space-time will have a degenerate
Killing horizon (the Killing flows are timelike in both sides of the horizon). A
geometrical study of the equation −r2F (r) = r4 + r2 − 2Mr + Q2 shows that
the function must have at most two real roots, which we call r+ and r−. It is a
convex curve and hence has minimum (look at fig. 3.2). We require thus that
the minimum and the root occur at the same r = r∗. After some calculations we
find that

r∗ =
3

2
M +

√
9

4
M2 − 2Q2 (3.23)

and the critical value of the mass is

M∗ =
1

3

√
−1

6
+ 6Q2 +

1

6
(1 + 12Q2)3/2. (3.24)

The Penrose diagram of the extremal Reissner-Nordström-anti-de Sitter black
hole is shown in figure 3.3. The conformal boundary I is a chain of discon-
nected components, each one of them similar to the anti-de Sitter case where
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Figure 3.2: The function −r2F (r) has at most two real roots r+ and r−. What
we want is to find that value of M(Q) such that the curve looks like the one on
the right hand side, the one with one double root r∗ where the minimum is on
the horizontal axis.

smooth time-like surfaces I begin at i+ and end at i−. A Penrose diagram of
the conformal boundary is given in figure 3.4. The points at past and future time-
like infinity are NOT attached in a smooth way to the rest of the boundary. We
couldn’t in fact find any coordinate change that would allow us to attach them
smoothly (avoiding a curvature singularity), and have reasons to believe that this
is not possible as it was in the anti-de Sitter case discussed in the chapter 2. It
would take an observer infinite time to travel from any point to i+ or backwards
to i−, and at those points the only non-vanishing Weyl spinor Ψ2 is divergent: it
is the metric that singles out i+ and i− and makes them exceptional. Unlike in
the paper from Brill et al. (cf. [4] and [7]) where it is stated that "the infinity
consists of a single connected component" and its "past consists of all of the
space-time", we assert that the asymptotically anti-de Sitter Reissner-Nordström
space-time has indeed an interpretation as a black hole, and the Killing horizons
are in fact event horizons in the space-time since there are points on the confor-
mal boundary that are singled out. Every disconnected component of scri looks
as it is depicted in the diagram 3.5 besides the dimension, that is one less in the
figure.
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Figure 3.3: Penrose diagram of the extremal Reissner-Nordström-anti-de Sitter
black hole. The double line represents the singularity at r = 0, the dashed lines
are the flows of the Killing vectors on both sides of the Killing horizon (solid line).
The conformal boundary is the vertical solid line. The points in which the Weyl
spinor Ψ2 is divergent are those on the boundary where the arrows are pointing.
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Figure 3.4: Penrose diagram of the conformal boundary of a RN-AdS space-time.

Figure 3.5: Penrose diagram each component of the conformal boundary of the
Reissner-Nordström-anti-de Sitter black hole.
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Conserved quantities: gravitational mass M

For the sake of completeness, we will present in this section an interesting in-
terpretation of the parameter M , following the arguments in the paper from
Ashtekar and Das (cf. [1]) where they discuss how, from the analysis of the
asymptotic field equations, one may define conserved quantities as 2-sphere inte-
grals involving the electric part of the Weyl tensor and conformal Killing fields
on I . If the gradient of the conformal factor is

n̂a = ∇aΩ, (3.25)

the electric part of the rescaled Weyl tensor K̂abcd at I can be written as

ε̂ab = K̂ambnn̂
mn̂n. (3.26)

Given any asymptotic symmetry (i.e. a Killing field ξa on I ) and a 2-sphere
cross section C on the conformal boundary, we can define a conserved quantity

Qξ[C] = − 1

8π

∮
C

ε̂abξ
adSb (3.27)

that satisfies a balance equation in the sense that Qξ[C2] − Qξ[C1] = 0 for any
cross sections C1 and C2 of I , if the flux of the matter stress-energy tensor across
the portion ∆I of I whose boundaries are C1 and C2 vanishes.

Let us consider the case of extremal Reissner-Nordström-anti-de Sitter black
hole. There is no physical matter field anywhere, so all the Qξ are absolutely
conserved. In particular, if the conformal Killing field corresponds to the time
translation Killing field ∂/∂t on the original space-time (whose metric is given in
the static form) it is straightforward to calculate the conserved quantity Qt. The
only nonzero component of the tensor ε̂ab are

ε̂11 = −2M, ε̂33 = −M, ε̂44 = −M sin2 θ, (3.28)

thus sustituting back in equation (3.27) and integrating on the unit 2-sphere, we
find

Qt = − 1

8π

∮
−2MdS = − 1

8π
(−2M)4π = M. (3.29)

This simple calculation shows how M is a conserved quantity, as we would expect
from a parameter which should describe mass.

This proof leads also to consider another important issue, that we mentioned
already in the preface, namely what the correct defintion of "gravitational energy-
mass" would be. We showed how it can be written as integral on a 2-sphere cross
section on the conformal boundary involving the electric part of the rescaled (0, 4)
Weyl tensor and a Killing field ξa on I (which in our case was time translation).
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In an analogy with electromagnetism again, we recall that the total electric charge
(expressed as volume integral of a charge density ρ) can be written (by Gauss’
theorem) as an integral of the electric field on a surface enclosing the charges.
Gravity is slightly more insidious because the surface we wish to compute the
integral on, has to enclose all of the gravitational field, i.e. it has to be "at
infinity".
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Chapter 4

Conclusions

The aim of the whole thesis work was to understand the features of a particular
family of black holes, namely the asymptotically anti-de Sitter solutions, and draw
correct Penrose diagrams that could give a 2 dimensional representation of such
space-times. To do this, we had to get ahead through small steps and study the
theory of conformal compactification, fundamental in order to be able to analyze
the asymptotics of the metric associated to the space-time of interest. Most of
this work thus is a review of pre-existing material (especially chapter 1), logically
stucturated with the particular purpose of simplifying the main discussion. Some
of the issues examined though are quite difficult to find in the literature, such as
the detailed discussion regarding the appropriate conformal factor to be chosen
in the hyperbolic plane example.

The most important part of the work has been trying to conformally com-
pactify asymptotically anti-de Sitter space-times in all of the coordinates, since
it seems to be a not very well debated issue in the existing literature. The Pen-
rose diagram of anti-de Sitter space-time for example is usually depicted as an
infinitely long strip in the time-direction, which is obviously wrong since the space
is not compact in the first place. When trying to find a suitable conformal factor
that in some coordinate system compactifies correctly the AdS space, we ended
up every time in a singularity (Misner-type in (2 + 1) dimensions and curvature
singularity in (3 + 1) dimensions) and made the conjecture that it is impossible
to add smoothly two points i+ and i− at the conformal boundary I . A formal
proof of this conjecture couldn’t be found from us therefore it is not presented
here, but there are some arguments in favour of it such as the divergence of the
only non-vanishing Weyl spinor Ψ2 at i+ and i−. Later a sketch of a proof has
been provided by Helmuth Friedrich (private communication) who produced ar-
guments based on the impossibility of a covering of anti-de Sitter space-time by
a congruence of conformal geodesics. This is probably a not very primary issue
in the theory of compactification of space-times, but a deeper understanding of
it allowed us to characterize the structure of the asymptotically AdS-Reissner-
Nordström black hole and appropriately study its horizons.
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Appendix A

Covariant derivative

The covariant derivative is a differential operator that generalizes the notion of
directional derivative from vector calculus. It is a linear operator that is required
to transform, under a change of coordinates, in the same way as a vector does
according to a change of basis formula (i.e. covariant transformation). We will
compute covariant derivatives of symmetric (0, 2) tensors Tjk, for which the formal
definition reads

∇iTjk =
∂Tjk

∂xi
− 2Γl

ijTlk, (A.1)

where the Christoffel symbols Γl
ij are defined by applying the definition above on

the metric tensor, for which we know ∇igjk = 0. Hence

Γl
ij =

1

2
glm

(∂gmi

∂xj
+

∂gmj

∂xi
− ∂gij

∂xm

)
. (A.2)

The computation of covariant derivatives may be quite tedious since the Chris-
toffel symbols are in the number of n3 (i, j, l = 1, 2, . . . , n) where n2(n + 1)/2
are independent, but in some special cases it is possible to avoid it. An example
is given in chapter 1, when we calculated the hatted curvature tensor in the
Euclidean plane. What we had was

R̂ = Ω−2[R− 2(n− 1)gac∇a∇c ln Ω− (n− 2)(n− 1)gac(∇a ln Ω)∇c ln Ω, (A.3)

where Ω was the conformal factor and function of only one of the coordinates,
namely r. Let us define the term f(r, ϕ) = gac∇a∇c ln Ω(r) and analyze it sepa-
rately. We may take gac inside the derivative sign and write

f(r, ϕ) = ∇a(g
ac∇c ln Ω(r)). (A.4)

Defined g the determinant of the metric tensor gij, we may multiply and divide
the equation above by the scalar

√
−g and get

f(r, ϕ) =
1√
−g
∇a(

√
−g gac∇c ln Ω(r)) (A.5)
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The term
√
−g gac∇c ln f(r) is a vector density of weight one, which means that

it transforms as a vector except that it is additionally multiplied or "weighted" by
the Jacobian determinant. Vector densities have the property that the covariant
derivative ∇a coincides with the partial derivative ∂a, thus equation (A.5) reads

f(r, ϕ) =
1√
−g

∂a(
√
−ggar∂r ln Ω(r)). (A.6)

Finally we may simplify equation (A.3) into:

R̂ = Ω−2[R− 2(n− 1)
1√
−g

∂a(
√
−g gar∂r ln Ω(r)) +

−(n− 2)(n− 1)gac(∇a ln Ω)∇c ln Ω. (A.7)

32



Bibliography

[1] Abhay Ashtekar, Saurya Das. Asymptotically Anti-de Sitter Space-times:
Conserved Quantities. Class. Quantum Grav., Vol. 17, number 2, p. L17-
L30(1) (2000).

[2] Abhay Ashtekar, Anne Magnon. Asymptotically anti-de Sitter Spacetimes.
Class. Quantum Grav., Vol. 1, number 4, p. L39-L44 (1984)

[3] Ingemar Bengtsson. Anti-de Sitter Space. (1998) www.physto.se/∼ingemar.

[4] Dieter R. Brill, Jorma Louko, Peter Peldán. Thermodynamics of (3+1)-
dimensional Black Holes with Toroidal or Higher Genus Horizons. Phys. Rev.
D56, p. 3600-3610 (1997).

[5] Stephen W. Hawking, George F. R. Ellis. The Large Scale Structure of Space-
time. Cambridge Univ. Press (1973).

[6] Sören Holst. Horizons and Time Machines - Global Structures in Locally Triv-
ial Spacetimes. Doctoral thesis, Department of Physics, Stockholm University
(2000).

[7] Sören Holst and Peter Peldán. Black Holes and Causal Structure in anti-de
Sitter Isometric Spacetimes. Class. Quantum Grav., Vol. 14, number 12, p.
3433-3452(20) (1997).

[8] Charles W. Misner. Taub-NUT Space as a Counterexample to almost Anything
in Lectures in Applied Mathematics vol. 8, Relativity Theory and Astrophysics
1: Relativity and Cosmology. Jürgen Ehlers ed. (1967).

[9] Roger Penrose. Relativistic Symmetry Groups, in Group theory in non-linear
problems. A. O. Barut ed. D.Reidel Publishing Company (1974).

[10] Felix A. E. Pirani. Spinors in Lectures on General Relativity, Vol. 1. Prentice-
Hall, Inc. (1965).

[11] Alfonso García-Parrado and José M. M. Senovilla. Causal Structures and
Causal Boundaries. Class. Quantum Grav. 22, R1 - R84 (2005)

33



[12] Frank J. Tipler. Penrose Diagrams for the Einstein, Eddington-Lemaitre,
Eddington-Lamaitre-Bondi, and Anti-de Sitter Universes. Journal of Mathe-
matical Physics, Vol. 27, Issue 2, p.559-561 (1986).

[13] Robert M. Wald. General Relativity. University of Chicago Press (1984).

[14] Stefan Åminneborg, Ingemar Bengtsson, Sören Holst, Peter Peldán. Making
anti-de Sitter Black Holes. Class. Quantum Grav., Vol. 13, p.2707 - 2714
(1996).

34


