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Abstract

Measurements play a central role in quantum information. This thesis looks
at two types: contextual measurements and symmetric measurements. Con-
textuality originates from the Kochen-Specker theorem about hidden variable
models and has recently undergone a subtle shift in its manifestation. Sym-
metric measurements are characterised by the regular polytopes they form
in Bloch space (the vector space containing all density matrices) and are the
subject of several investigations into their existence in all dimensions.

We often describe measurements by the vectors in Hilbert space onto
which our operators project. In this sense, both contextual and symmetric
measurements are connected to special sets of vectors. These vectors are
often special for another reason: they form con�gurations in a given incidence
geometry.

In this thesis, we aim to show various connections between con�gurations
and measurements in quantum information. The con�gurations discussed
here would have been well-known to 19th and 20th century geometers and
we show they are relevant for advances in quantum theory today. Speci�cally,
the Hesse and Reye con�gurations provide proofs of measurement contextu-
ality, both in its original form and its newer guise. The Hesse con�guration
also ties together di�erent types of symmetric measurements in dimension
3�called SICs and MUBs�while giving insights into the group theoretical
properties of higher dimensional symmetric measurements.
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Chapter 1

Introduction

Quantum mechanics is inherently probabilistic. The outcomes of measure-
ments upon quantum states cannot be predicted with certainty and we are
left with a collection of probabilities for various events. While this feature
leads to many famous applications in quantum mechanics, such as schemes
for detecting faulty bombs1 or helping prisoners cooperate2, it also creates a
few di�culties in the theory's interpretation and implementation.

The �rst, and probably most famous, di�culty is the Einstein, Podolsky
and Rosen (EPR) paradox [3]. A measurement on one of a pair of su�ciently
spatially-separated entangled particles allows an observer to predict the out-
come of a measurement on the other particle through the instantaneous col-
lapse of their shared wavefunction. Consequently, the description of quan-
tum mechanics was called incomplete and hidden variables (or, originally,
�elements of reality") were ascribed to quantum states at their conception.
This ontic interpretation of the wavefunction allows a complete speci�cation
of the state using predetermined measurement outcomes, although Bell's
theorem [4] shows that the price for this realism is non-locality. Another,
less well-known theory concerning hidden variables is the Kochen-Specker
theorem [5]. This looks at non-contextual hidden variable models and shows
they are inconsistent with the predictions of quantum mechanics.

The second di�culty arising from the probabilistic nature of quantum
mechanics is the measurement problem. The outcomes of measurements,
whether preassigned by hidden variables or not, are always classical. The
quantum state evolves deterministically, following the Schrödinger equation,
and yet we cannot predict with certainty the outcome of a measurement

1The famous Elitzur�Vaidman bomb testing problem; see [1] for more details.
2A quantum version of the prisoner's dilemma game, introduced in [2].
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on the state. We are led to the conclusion that at some point during the
measurement process�known as the Heisenberg cut�the quantum state
becomes classical. This restriction means we cannot determine an unknown
quantum state from a single measurement and quantum state tomography
becomes a delicate choice of measurements. The best choice turns out to
be a symmetric measurement, where best here means the fewest number of
measurements and the minimum uncertainty in their statistics.

These symmetric measurements come in two varieties: mutually unbi-
ased bases (MUBs) and symmetric informationally-complete positive opera-
tor measures (SICs). In dimension N , SICs are collections of N2 projectors,
usually orbits under a �nite group, and have an equal pairwise overlap be-
tween every two projectors. They are also studied under the name equiangu-
lar lines, which highlights their symmetric structure. MUBs are collections
of N(N + 1) projectors with an equal overlap among the di�erent bases.
Of the two, SICs are considerably harder to construct theoretically as well
as being harder to implement experimentally, and while we might expect
SICs not to exist in all dimensions, numerical evidence so far suggests that
they can always be found (often using a rather heavy duty computer search).
Constructing MUBs, on the other hand, follows a fairly straightforward pre-
scription, but only in certain dimensions.

Both contextual and symmetric measurements are important in quan-
tum information theory. Hidden variable models form a large area in the
foundations of quantum mechanics and, of these, contextual measurements
in particular are gaining interest both theoretically [6�8] and experimen-
tally [2, 9�11]. There have been several discussions and suggestions for the
de�ning feature of quantum mechanics�what property sets it apart from
classical physics. The usual answer is often entanglement or non-locality
(closely followed by a discussion of the de�nition of non-locality), but some
argue that contextuality is both wider and more fundamental than either of
these properties. In particular, contextuality does not need bipartite or mul-
tipartite Hilbert spaces and is already in play for the case of qutrits. Paper
I and Paper II in this thesis contribute to the area of contextual measure-
ments by providing a new proof of contextuality and testable inequalities.
Symmetric measurements are used in quantum cryptography, but a consid-
erable amount of research is aimed towards proving their existence in all
dimensions. It is not clear (yet) why SICs can always be found but MUBs in
arbitrary dimensions cannot, though any answer in this direction may have
interesting implications for the dimensionality of Hilbert space. SICs are
also used in foundational aspects of quantum mechanics and play a central
role in the quantum Bayesian formulation of quantum mechanics [12]. Paper
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III relates to symmetric measurements by examining sets of MUBs in prime
dimensions.

So we have mentioned what we will look at in this thesis, but not how.
In some sense, the natural vantage point from which to look at quantum
information theory is complex projective space. We are in good company;
Dirac relied on projective geometry during his work on quantum mechanics
[13] and Hilbert co-authored a popular book on the subject [14]. We shall
focus on projective con�gurations, and examine where they emerge and how
they can be useful for contextual and symmetric measurements in quantum
information.

The thesis is basically divided into two sections, one for each of the two
classes of measurements. We begin with contextual measurements and move
onto symmetric ones because we believe this to be the order of complexity,
but we could have easily organised things the other way around. In Chap-
ter 2 we introduce contextuality and its impact on hidden variable theories,
looking in particular at an established theorem of Kochen and Specker and a
newer one by Cabello. We shall follow the shift from Kochen and Specker's
original logical statement to one concerning inequalities, before discussing
a very recent development in contextuality proofs from earlier this year.
Con�gurations are introduced roughly in the middle of the two sections, al-
though they will appear from the beginning and continue to in�uence things
right up until the very end. Chapter 3 covers the two types of symmetric
measurement�SICs and MUBs�and we shall brie�y go over their existence
and construction. An investigation into the structure of SICs and their rela-
tion to con�gurations in low dimensions is also given here. Chapter 4 holds
some concluding remarks.





Chapter 2

Contextual measurements

The Kochen-Specker (KS) theorem was �rst stated in 1967 as a restriction on
hidden variable models [5]. It rules out the possibility of describing nature
with a non-contextual hidden variable theory by �nding a set of Hermi-
tian observables whose outcomes cannot be embedded into the classical set
{0, 1} in a non-contextual way. The KS theorem was �rst proved using 117
observables for which every possible mapping from the operators to their
eigenvalues arrives at a logical contradiction. We shall brie�y go through
the argument here.

The Kochen-Specker theorem. In a Hilbert space with dimension N > 2,
truth values cannot be non-contextually assigned to a set of observables in a

way consistent with quantum mechanics.

Consider an operator A in a 3-dimensional Hilbert space. Let it have
three distinct eigenvalues a1, a2 and a3 with corresponding eigenvectors |a1⟩,
|a2⟩ and |a3⟩. We can arrange these vectors in an orthogonality graph,
where each vertex on the graph represents a vector and each line joins two
orthogonal vectors. Not every graph is an orthogonality graph; it must be
realisable in a given dimension, i.e. we must be able to �nd vectors for every
vertex that obey the orthogonality conditions imposed by the graph. An
example of a graph with and without an orthogonal representation in C3 is
shown in Figure (2.1), using the vectors given above.

We can form projection measurements onto our vectors via Pi = |ai⟩⟨ai|.
Projection measurements are essentially �true or false" questions; they tell
us whether a state has eigenvalue ai for measurement A or not. We can label
their outcomes, therefore, with the values 1 (true) or 0 (false). Often, this
assignment of 1s and 0s is accompanied by colouring the vectors: black if
the outcome of the projector is 1 and white if it is 0.
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Figure 2.1: Possible graphs in C3 for the three orthogonal vectors, |a1⟩, |a2⟩ and
|a3⟩. The left-hand graph can be realised in 3 dimensions and so constitutes an
orthogonality graph. The right-hand graph does not admit a representation in 3
dimensions (although it does in C4) and so is not an orthogonality graph in C3.

Orthogonal vectors correspond to compatible projection operators. We
make a convenient theoretical assumption that commuting observables can
be measured simultaneously as they have a joint eigenbasis. Thus we can
imagine the three projectors from Figure (2.1) measured simultaneously in
any combination and, according to hidden variable theories, all possessing a
pre-existing hidden variable. The hidden variables are assumed to obey the
following constraints, called the sum and product rule, respectively:

P1 + P2 = P3 ⇒ v(P1) + v(P2) = v(P3)

P1 · P2 = P3 ⇒ v(P1) · v(P2) = v(P3)
(2.1)

where P1, P2 and P3 are mutually compatible and v(P1), v(P2) and v(P3)
are their corresponding hidden variables.

If we ask what values our three hidden variables in the orthogonality
graph in Figure (2.1) can take, we �nd that they are subject to some con-
straints. The projectors are mutually exclusive and so measuring any two
projectors together can only result in one instance of the outcome 1. Ad-
ditionally, as the projectors sum to the identity, their eigenvalues must also
sum to 1 (from Equation (2.1)). Returning to the orthogonality graph, we
express these constraints as KS colouring rules:

• Two vectors on a line may not both be coloured black.

• Exactly one vector in a complete basis must be coloured black.

The three possible colourings, or mappings, of our orthogonality graph
are shown in Figure (2.2).

The assumption of non-contextuality appears when we assign the hidden
variables to each vector or projection measurement. The requirement is that
the value of a hidden variable does not depend on what other compatible
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Figure 2.2: Possible colourings for the orthogonality graph in Figure (2.1).

measurements are being simultaneously made. In other words, the hidden
variable assigned to the vector a3 in Figure (2.3) is the same whether we
measure P3 together with P1 or P4. Note that [P1, P4] ̸= 0 since they are not
connected by a line, so they are incompatible. The collection of projectors
measured at the same time is called the context. It is interesting to think
about the motivation for non-contextuality. In a way, it is similar to realism,
in that it also demonstrates a causal independence between the world and
our own actions within it.

Figure 2.3: A non-contextual assignment of hidden variables requires the value
at a3 be independent of the measurement context, i.e. it does not change when we
measure P3 with P1 or P4.

The KS theorem was originally proved using 117 projectors made up from
various bases until one projector was forced to take both the colour white
and black. From this contradiction, it is clear that non-contextual hidden
variables cannot be assigned to this set. In this way, any set of vectors that
is uncolourable provides a proof of the KS theorem. We will call such a set
interchangeably a KS set or KS proof and give an example of a KS set using
33 vectors in a later section.

There has been interest in trying to reduce the number of vectors required
for a KS set [16�20]. The current record for an uncolourable set stands at
31 vectors in 3 dimensions [19] and 18 in 4 dimensions [20]. There have also
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been several computer searches, including an exhaustive search of up to 30
vectors in R3 and up to 24 vectors in R4 [21]. The question of the smallest
set with complex vectors is unanswered. We shall look at a few examples of
KS sets in the coming sections.

2.1 Correlations

There are obvious parallels between the KS and Bell theorems. Both test,
and subsequently constrain, a type of hidden variable theory and it has been
shown that it is possible to transform a KS proof in HN into a Bell one in
HN ⊗HN when N > 2 [8,22,23]. It is not so very surprising, then, that the
next step for the KS theorem was to translate it into an inequality. We divide
the resulting inequalities into two categories: KS inequalities and correlation
inequalities, and outline the main points of each here.

A simple and illustrative example of building both types of inequality
comes from a set of only 5 measurements in 3 dimensions. The orthogonality
graph of the 5 projectors is colourable and so this set isn't usually classed as
a KS proof, although, as we shall see later, colourability does not necessarily
mean that the set isn't useful for contextuality reasons. We �rst discuss a
KS inequality, starting with the classical version of these 5 measurements
and then going on to show how a quantum mechanical treatment noticeably
di�ers.

Assigning variables to the pentagon was �rst studied by Wright [26], and
we shall consider an experiment based on this arrangement. Let each vertex
on the pentagon label a possible �yes or no" measurement, say opening a box
that may or may not contain a coin, as shown in Figure (2.4).

Figure 2.4: The pentagon orthogonality graph. In our experiment, each vertex
corresponds to a box that could contain a coin and the �ve possible measurements
of two adjacent boxes are shown by the straight lines. The only possible number of
coins, in keeping with the rules, is 2, 1 or 0.

We are allowed to open any two adjacent boxes in one �run" of the ex-
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periment, i.e. any boxes connected by a line in Figure (2.4). The coins and
boxes have been prepared in advance following one rule: opening two boxes
will never reveal two coins. Our model is a non-contextual hidden variable
one because we assume the contents of each box (i.e. coin or no coin) is
pre-determined and does not change when we open di�erent boxes. We can,
like in the KS theorem, assign truth values to the vertices (corresponding to
boxes) on the graph in Figure (2.4): a 1 for �nding a coin and a 0 for not
�nding a coin. Now we can perform our experiment to look for the possible
assignments of coins. It is clear that the only possibilities for the distribution
of the coins are (i) two coins inside non-adjacent boxes, (ii) one coin inside
one box, or (iii) no coins in any box. Here, we have employed a statistical
assumption�analogous to the fair sampling assumption in Bell's theorem�
about the independence of the outcomes from the preparation; speci�cally,
the experiment never possessed an assignment of coins that broke the rule
for adjacent boxes in a way that we never saw it.

After repeating the experiment many times, with di�erent preparations
of coins and boxes, we can calculate the sum of the average number of coins.
We end up with an upper bound for the KS inequality

Σc =

4∑
i=0

⟨Ti⟩ ≤ 2, (2.2)

where Ti are the truth values (i.e. the number of coins) from each measure-
ment.

What about the quantum mechanical case? First we need to �nd 5
vectors that obey the orthogonality conditions

⟨ai|ai+2⟩ = 0 i ∈ 1, 2, 3, 4, 5, (2.3)

with arithmetic modulo 5 understood. Following Klyachko and co-workers,
we obtain these vectors from the pentagram in Figure (2.5). Initially the
pentagram is lying �at on a plane and each vector begins at the origin in
the centre of the pentagram and ends at one of the �ve vertices. To obtain
vectors with the correct orthogonality relations, we raise the vertices up from
the plane by shrinking the opening angle of the cone θ (see right-hand side
image). To re�ect this, we can draw the pentagram orthogonality graph
shown on the left-hand side of Figure (2.5). It is just a re-labelling of Figure
(2.4) and represents the same orthogonality graph containing 5 vertices and
5 lines.

Explicitly, we use the following �ve vectors after normalisation

(1, 0, x)ᵀ (c, s, x)ᵀ (c′,−s′, x)ᵀ (c′, s′, x)ᵀ (c,−s, x)ᵀ
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Figure 2.5: The pentagram orthogonality graph (left hand-side) and obtaining
the vectors with the correct orthogonalities (right hand-side).

where x =
√
cos(π5 ), c = cos(4π5 ), s = sin(4π5 ), c′ = cos(2π5 ) and s′ = sin(4π5 ).

Our measurements in the quantum mechanical case correspond to acting
with projectors onto these vectors and the KS inequality becomes

Σq =
4∑

i=0

tr (ρPi) , (2.4)

for some state ρ. In order to obtain a discrepancy between the classical result
and the quantum mechanical one, we want to maximise Σq. This is achieved
by taking the largest eigenvalue of the operator Σ =

∑4
i=0 Pi, obtainable by

using the qutrit state ⟨ψ| = (0, 0, 1). We �nd

Σq =

4∑
i=0

tr (|ψ⟩⟨ψ|Pi) =
√
5 ≈ 2.24. (2.5)

Note that this is a state-dependent inequality, meaning that we only obtain
a violation of the predictions of non-contextual hidden variable theories for
subset of all possible states.

A violation of a KS inequality shows that certain non-contextual hidden
variable models cannot accurately reproduce the outcomes of quantum me-
chanics. However, the hidden variable scheme we used above was in�uenced
by quantum mechanics. When we forced the coin to only be present under at
most one adjacent box, we were simulating the KS colouring rules, which are
a direct consequence of the quantum mechanical formalism. This reliance
on quantum mechanics can be removed by looking instead at correlation
inequalities. Such inequalities, as their name suggests, involve averaging
over measurements of two (or more) operators. The KS colouring rules are
abandoned completely and the hidden variables are constrained only by the
assumption of non-contextuality.



2.2 Colourability 11

The 5 vectors from the KS inequality can also be used to construct a
correlation inequality [27]. It is convenient to de�ne the operators

Ai = 2Pi − 1 (2.6)

with spectra {−1,−1, 1}. Now, instead of assigning either of the truth values
0 or 1 to the vectors, we assign the variables ai = ±1. In the hidden variable
model, there are no restrictions on the assignments and we can perform
all possible 25 of them to obtain a bound. Note that each vector in the
pentagram appears in two di�erent contexts. The correlation inequality is
then formed from looking at joint measurements of the Ai operators in every
context. For a non-contextual hidden variable model we �nd

κc =
4∑

i=0

⟨AiAi+1⟩ ≥ −3, (2.7)

where, as before, addition is modulo 5. The lower bound is saturated when
there are two −1 assignments given to vertices not linked by a line in Figure
(2.5). Although we relaxed the KS colouring rules, the switch from single to
joint measurements penalises any hidden variable assignments that violate
the principle of exclusiveness among operators. Again, we need to make the
assumption that taking an average over many di�erent ensembles is a fair
re�ection of all the assignments, and does not hide some deeper assignment
properties. The quantum mechanical average, calculated using the same
qutrit state as before, is

κq =

4∑
i=0

tr (|ψ⟩⟨ψ|AiAi+1) = 5− 4
√
5 ≈ −3.94, (2.8)

which violates the correlation inequality for a non-contextual hidden variable
model.

Any set of vectors providing a KS proof produces a correlation inequal-
ity [28]. Translating the KS theorem in this way has allowed several experi-
mental veri�cations of inequalities, both of the KS [9,24,25] and correlation
variety [9].

2.2 Colourability

In the spirit of an evolving KS theorem, let us mention a very recent devel-
opment. Traditionally, KS proofs were comprised of sets of vectors that are
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uncolourable following the KS rules. In 2012, Yu and Oh found a colourable
set of vectors in R3 that forms a correlation inequality and also a KS in-
equality using a subset of four vectors [6]. We will denote such sets, whose
vectors are colourable but give rise to inequalities, contextuality sets. The
explicit vectors in the Yu and Oh contextuality set are shown in Table (2.1).

(1, 1,−1)ᵀ (1, 1, 0)ᵀ (1,−1, 0)ᵀ (1, 0, 0)ᵀ

(1,−1, 1)ᵀ (1, 0, 1)ᵀ (1, 0,−1)ᵀ (0, 1, 0)ᵀ

(−1, 1, 1)ᵀ (0, 1, 1)ᵀ (0, 1,−1)ᵀ (0, 0, 1)ᵀ

(1, 1, 1)ᵀ

.

Table 2.1: The 13 real vectors in the Yu and Oh set.

The thirteen vectors can be visualised as directions passing through the
origin of a cube, as shown in Figure (2.6). The �rst column in Table (2.1)
contains the four directions going through the vertices of the cube. The
second and third columns are directions between the midpoints along two
opposite edges, while the last column contains the three directions passing
through the middle of the cube's faces.

Figure 2.6: The directions of the 13 vectors in the Yu and Oh set. The �rst cube
corresponds to vectors in the �rst column of Table (2.1), the second cube to the
second and third columns, and the third cube to the fourth column.

The orthogonality graph for the Yu and Oh set is given in Figure (2.7).
The standard basis vectors lie at the corners of the large triangle, while
the vectors in the second and third columns in Table (2.1) form the smaller
triangles connected to these. The remaining 4 vectors, from the �rst column
in Table (2.1), are closest to the centre of the orthogonality graph.

Contrary to the examples in the previous section, both inequalities are
state-independent, so a violation occurs for every qutrit state. We observe
that for the inequalities to be state-independent, the sum of the projectors
must be proportional to the identity. We can see this by looking at the
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Figure 2.7: The orthogonality graph for the 13-vector set found by Yu and Oh.

quantum mechanical result of the KS inequality, which takes the form

Σq =
3∑

i=0

tr (ρPi) , (2.9)

where the four projectors are formed from the vectors in the �rst column of
Table (2.1). Calculating their sum gives

3∑
i=0

Pi =
4

3
1, (2.10)

and so the KS inequality becomes

Σq =
3∑

i=0

tr (ρPi) = tr

(
ρ

3∑
i=0

Pi

)
=

4

3
tr (ρ) =

4

3
. (2.11)

Thus the state ρ can be any density matrix. A similar argument applies to
the correlation inequality, given by

κq =
12∑
i=0

tr (ρAi)−
1

2

12∑
i,j

Γijtr (ρAiAj) , (2.12)

where Γij is the adjacency matrix, which takes the value 1 if vectors i and j
are orthogonal and 0 otherwise. The relevant sums are

12∑
i=0

Ai =
13

3
1 and

12∑
i,j

ΓijAiAj = −121. (2.13)
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Substituting these into the correlation inequality gives

κq =

12∑
i=0

tr (ρAi)−
1

2

12∑
i,j

Γijtr (ρAiAj)

= tr

(
ρ

12∑
i=0

Ai

)
− 1

2
tr

ρ 12∑
i,j

ΓijAiAj


=

25

3
tr (ρ) =

25

3
. (2.14)

This condition of projectors summing to the identity forms a central idea
in quantum mechanics. Such sets are called positive operator valued mea-
sures (POVMs) and we will discuss them further in the next chapter. The
POVMs used here are actually quite special in themselves, but again, this
is a consideration for later. In addition to the contextuality set discussed
above, Paper I contains a set of 21 vectors, which we will call the BBC set,
that forms both a state-independent KS and state-independent correlation
inequality in C3. In some ways, the BBC set is a natural extension of the

Yu and Oh one. Its explicit vectors, with q = e
2πi
3 , are given in Table 2.2.

(0, 1,−1)ᵀ (0, 1,−q)ᵀ (0, 1,−q2)ᵀ
(−1, 0, 1)ᵀ (−q, 0, 1)ᵀ (−q2, 0, 1)ᵀ
(1,−1, 0)ᵀ (1,−q, 0)ᵀ (1,−q2, 0)ᵀ

(1, 0, 0)ᵀ (0, 1, 0)ᵀ (0, 0, 1)ᵀ

(1, 1, 1)ᵀ (1, q, q2)ᵀ (1, q2, q)ᵀ

(1, q2, q2)ᵀ (q2, 1, q2)ᵀ (q2, q2, 1)ᵀ

(1, q, q)ᵀ (q, 1, q, )ᵀ (q, q, 1)ᵀ

Table 2.2: The 21 complex vectors in the BBC set.

We shall quickly go through the inequalities for the BBC set. The KS
inequality is obtained by summing the truth values, Ti, of the projectors
onto the nine upper-most vectors in Table (2.2). We �nd an upper limit for
the prediction of any non-contextual hidden variable theory of

Σc =

8∑
i=0

⟨Ti⟩ ≤ 2. (2.15)
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The quantum mechanical average, if the state of the system is ρ, is

Σq =

8∑
i=0

tr (ρPi) = 3. (2.16)

This is a relatively large violation of the KS inequality, namely 1 compared
to 1

3 for the Yu and Oh set (though, of course, more projectors are required).
The correlation inequality is of the Yu and Oh form in Equation (2.14).
To calculate the classical result, we form the 21 operators Ai from the 21
vectors. Again, we introduce the dichotomic hidden variables ai that take
the values ±1. The correlation inequality is then

κc =

20∑
i=0

⟨Ai⟩ −
1

5

21∑
i,j

Γij⟨AiAj⟩ ≤
63

5
. (2.17)

As before, Γij , with 1 ≤ i, j ≤ 21, is the adjacency matrix, which is equal
to 1 for commuting and distinct Ai and Aj , and 0 otherwise. The quantum
mechanical expectation value is given by

κq =

20∑
i=0

tr (ρAi)−
1

5

21∑
i,j

Γijtr (ρAiAj) =
67

5
. (2.18)

This is a clear violation of the prediction from non-contextual hidden variable
models.

On the subject of extending sets, Yu and Oh's contextuality set is a subset
of a previous KS set found by Peres [16]. The 33 vectors in Peres' proof are all
real and, in fact, have been shown to be a special choice of a more general one-
parameter family of uncolourable vectors [29]. Another choice of parameters
recovers a unitarily inequivalent set found by Penrose [17] involving complex
vectors. This is the only known KS proof to include parameters in its vectors,
or, in other words, the only known KS set where the orthogonality relations
are not enough to uniquely determine the vectors [30].

The full Peres set can be seen as directions in three interlocking cubes,
shown in Figure (2.8). In a correctly chosen basis, they coincide exactly with
the 3 cubes in Escher's famous waterfall print.

The 13 vectors from the Yu and Oh contextuality set all lie within one
cube and the remaining vectors in the Peres set are obtained by rotating
the initial cube. There is some degeneracy among the vectors because the
standard basis appears in each of the three cubes, so we �nd a total number
of 13× 3− 3− 3 = 33 vectors from the interlocking cubes. This can be seen



16 Contextual measurements

Figure 2.8: Three interlocking cubes that contain the 33 vectors in Peres' KS
proof, one of which contains the 13 vectors in Yu and Oh's contextuality proof.

by comparing with the vectors in Figure (2.6), where the third cube appears
in each individual cube in Figure (2.8). The vectors in the Yu and Oh set
are completely determined by their orthogonalities, so the free parameter in
the Peres set appears when we complexify the rotation matrix used to rotate
the 13 vectors into the second and third cubes. On the orthogonality graph,
this results in a few extra orthogonalities between the cubes, as shown in
Figure (2.9).

Figure 2.9: The orthogonality graph for the 33-vector set found by Peres. The
dashed lines represent orthogonalities between the three cubes.
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Developing KS and correlation inequalities from colourable sets of vectors
shifts the role of the orthogonality graph. Traditionally in the KS theorem,
the orthogonality graph was used to detect uncolourable sets of vectors,
however, it can now be used for �nding sets of vectors that violate inequalities
of the type in Equation (2.17) [7]. Here, we call such sets a contextuality set
or contextuality proof.

The Contextuality theorem. For a set of vectors to produce a state inde-

pendent contextuality proof, it must have an orthogonality graph with chro-

matic number χ(G) greater than the dimension N .

The chromatic number of a graph is the fewest number of colours required
to colour the graph such that all adjacent vertices have di�erent colours.
In the previous sections, the chromatic number for orthogonality graphs
corresponding to KS proofs was always greater than 2.

Very recently, there have been two reported experimental implementa-
tions of the Yu and Oh contextuality inequality using trapped ions and a
nitrogen-vacancy centre in diamond [10, 11]. In Paper II, we have given an
explicit proposal both for an optimised inequality and a qutrit photon setup
based on the Yu and Oh set. Furthermore, we have shown a direct rela-
tionship between the correlation inequality and a Bell inequality, which is
relevant for criticisms of previous experimental procedures.

2.3 Con�gurations

Con�gurations are �nite sets of points and lines with special intersection
properties. They were studied extensively in the nineteenth century and
formed a major area of geometry [14]. Before we discuss speci�c examples of
con�gurations, we must decide where to house them; we shall consider both
projective and a�ne spaces.

A�ne space is a generalisation of Euclidean space; it is a set of points on
which we can perform translations. If we equip a�ne space with an origin,
we recover a vector space. Any a�ne plane obeys the following three axioms:

1. If pα and pβ are distinct points, then there exists a line lµ such that
pα, pβ ∈ lµ. Any two distinct points lie on a unique line.

2. If pα /∈ lµ, there is a unique line lν such that pα ∈ lν and lµ ∩ lν = ∅.
Given a point and a line not containing the point, there is at most one

parallel line which contains the point.
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3. There exist at least three non-collinear points. Trivial cases are ex-

cluded.

A �nite a�ne plane of orderN is formed from a set ofN2 points andN(N+1)
lines. The lines can be collected into N + 1 sets of N parallel lines, where
parallel lines never meet and two non-parallel lines meet in exactly one point.
It is known that �nite a�ne planes exist when N is a prime or prime power,
where we can assign coordinates to the points in the plane by using pairs
of elements in the �nite �eld FN . For some dimensions, such as N = 6, it
is known that �nite a�ne planes do not exist [31], while for others, such as
N = 12, the question of existence is still open.

We are particularly interested in the �nite a�ne plane of order 3, known
as the Hesse con�guration. It contains nine points and twelve lines, which
can be grouped into four sets of three parallel lines. Each set is called a
striation of the plane and they are given in Figure (2.10). We denote the
con�guration (94, 123) to show there are in total nine points, each lying
in four distinct lines, and twelve lines, each passing through three distinct
points. Note that this is actually

(
N2

N+1, N(N + 1)N
)
for N = 3.

Figure 2.10: The four striations for the Hesse con�guration in the �nite a�ne
plane. Each striation contains three parallel lines and each line contains three
points.

Con�gurations in a�ne space are typically an abstract concept; there
is no requirement of realisation. The Sylvester-Gallai theorem states that
a �nite collection of points in a projective plane are either all on a line,
or else there is some line that contains exactly two of the points. As the
Hesse con�guration does not possess either of these properties, it cannot be
reproduced using vectors in the Euclidean plane. However, it can be realised
in the complex projective plane. The nine points are the in�ection points of
an elliptic curve�found by taking the Hessian of the cubic polynomial that
de�nes the curve�and the lines are those that pass through these in�ection
points [32].

In some sense, the home of quantum information is complex projective
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space. Pure quantum states are technically rays in Hilbert space because
we cannot physically distinguish between |ψ⟩ and eiθ|ψ⟩, θ ∈ R. We also
tend to normalise our vectors to have unit length and so remove another
degree of freedom. All in all, when we talk about the state |ψ⟩, we are really
considering the equivalence relation of states

|ψ⟩ ∼ λ|ψ⟩ , λ ∈ C. (2.19)

We de�ne complex projective space, CPN−1, as the set of all 1-dimensional
subspaces in CN . A projective point is then given by the homogeneous
coordinates

(z0, z1, . . . , zN−1) ∼ λ(z0, z1, . . . , zN−1), λ ̸= 0. (2.20)

The language of projective space, like Euclidean space, is points, lines and
planes. In the same way that a projective point is a 1-dimensional subspace
of CN , a projective line is de�ned as a 2-dimensional subspace of CN , and
so on. We will be largely concerned with 2-dimensional projective geometry,
which, like incidence geometry, deals with the intersection of points, lines
and planes. Any projective plane obeys the following three axioms:

1. If pα and pβ are distinct points, then there exists a line lµ such that
pα, pβ ∈ lµ. Any two distinct points lie on a unique line.

2. The intersection of any two distinct lines contains exactly one point.

3. There exist at least three non-collinear points. Trivial cases are ex-

cluded.

A �nite projective plane of order N contains a set of N2 +N +1 points and
N2+N+1 lines. Although the axioms are seemingly similar to those obeyed
by the a�ne plane, there is a crucial di�erence in their treatment of parallel
lines. In the a�ne case, parallel lines do not meet, but in the projective case
every pair of lines intersects at one point and parallel lines meet at the �line
at in�nity." In fact, an a�ne plane can be obtained from a projective one by
removing exactly one line (and the points on it).

We are more concerned with in�nite projective spaces and, as an example,
we can look at the real projective plane, RP 2. It has the topology of the
2-sphere with antipodal points identi�ed. A 1-dimensional subspace passing
through the origin in R3 intersects the sphere at two antipodal points, both
of which then correspond to one projective point. A 2-dimensional subspace
passing through the origin in R3 intersects the sphere in a great circle, giving
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a projective line. We can see from inspection, shown in Figure (2.11), that
two great circles meet at antipodal points on the sphere and, conversely, that
two antipodal points lie on a great circle.

Figure 2.11: Projective points and lines in RP 2. A line through the origin in R3

is a pair of antipodal points on the 2-sphere and a plane through the origin in R3

is a great circle.

This can be expanded to any dimension and we see that real projective
space is equivalent to the quotient space

RPn = Sn/Z2, (2.21)

where n = N − 1. A similar relation holds for complex projective space,
namely

CPn = S2n+1/S1, (2.22)

where S2n+1 is the set of all unit vectors in CN and S1 corresponds to the
phase degree of freedom. Con�gurations in higher dimensions become sets
of points, lines and planes.

If we look back at the axioms for the projective plane, we can see that
interchanging the words �points" and �lines" leaves the axioms unchanged.
This introduces the principle of duality in projective space, which states that
every con�guration in the projective plane has a dual in which the roles of
points and lines are reversed. This also holds in higher dimensions, where
points and (N−1)-dimensional subspaces are interchanged between two dual
con�gurations.

Another famous con�guration was introduced by Reye in the late nine-
teenth century. It consists of 12 points and 16 lines with the notation
(124, 163), meaning it has 12 lines each containing 4 points and 16 points
each lying on 3 lines. It can be realised as the directions of a cube in RP 3;
an illustration of the con�guration and its dual is given in Figure (2.12).
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Figure 2.12: The Reye con�guration (left) and its dual (right) in RP 3. The
points in one con�guration are taken to be planes in the other. Image taken from
Geometry and the Imagination by Hilbert and Cohn-Vossen [14].

The link to quantum theory is thus: the 24 points in the two Reye
con�gurations in Figure (2.12) coincide with 24 vectors in a KS proof found
by Peres [16]. The connection between the KS set and the con�guration was
shown by Aravind, who used it to explain many of the symmetries shown
by the set and to construct a detailed argument for minimal uncolourable
sets [34]. The explicit vectors in Peres' KS set are given in Table (2.3).

(2, 0, 0, 0)ᵀ (0, 2, 0, 0)ᵀ (0, 0, 2, 0)ᵀ (0, 0, 0, 2)ᵀ

(1, 1, 1, 1)ᵀ (1,−1, 1,−1)ᵀ (−1,−1, 1, 1)ᵀ (1,−1,−1, 1)ᵀ

(−1,−1,−1, 1)ᵀ (−1, 1, 1, 1)ᵀ (1,−1, 1, 1)ᵀ (1, 1,−1, 1)ᵀ

(1, 0, 1, 0)ᵀ (0, 1, 0, 1)ᵀ (1, 0,−1, 0)ᵀ (0, 1, 0,−1)ᵀ

(1, 1, 0, 0)ᵀ (1,−1, 0, 0)ᵀ (0, 0, 1, 1)ᵀ (0, 0, 1,−1)ᵀ

(1, 0, 0, 1)ᵀ (0, 1, 1, 0)ᵀ (1, 0, 0,−1)ᵀ (0, 1,−1, 0)ᵀ

Table 2.3: The 33 vectors in the Peres KS set.

The connection to projective con�gurations also applies to contextuality
proofs. The BBC set of 21 colourable vectors can be extracted from the Hesse
con�guration in CP 2. The nine points correspond to the upper-most nine
vectors in Table (2.2) while the lines correspond to the remaining 12 vectors;
more speci�cally, the lines each produce a dual point and these points are
the 12 vectors in Table (2.2). The whole Hesse con�guration is shown in
Figure (2.13), where it should be stressed that this is a picture of points and
lines in the �nite a�ne plane, not an orthogonality graph. We can see that
it is just the four striations from Figure (2.10). We shall also use the Hesse
con�guration in the following section on symmetric measurements.
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Figure 2.13: The Hesse con�guration in CP 2, where the curved and straight lines
both indicate projective lines.



Chapter 3

Symmetric measurements

A generalised measurement in quantum theory is described using a positive
operator valued measure (POVM). A POVM is a set of positive semi-de�nite
operators, Ei, and we have already stated that they sum to the identity.
Given these two conditions, a POVM, together with a density matrix, de�nes
a probability distribution through the relation

pi = Tr(Eiρ). (3.1)

In general, this will be a restricted set of all possible probabilities on the
outcome space, except in the case of idealised von Neumann measurements,
where EiEj = δijEi. Von Neumann measurements therefore correspond to
vectors from an orthonormal basis and there can be at most N operators,
while POVMs do not have an upper limit. The individual POVM elements
are sub-normalised projectors, i.e. Ei =

1
NΠi for projector Πi = |ψi⟩⟨ψi|.

A powerful result concerning POVMs is Naimark's dilation theorem,
which states that every POVM can be thought of as a projective mea-
surement on some larger, joint Hilbert space. There is a nice geometrical
representation of this, formulated in the mid-twentieth century, known as
Hadwiger's principal theorem. Let a star be a collection of k rays (or 2k
vectors) passing through the origin in Hilbert space. It is called eutactic if
it can be described as an orthogonal projection of a cross-polytope in Rk.
Hadwiger's theorem states that in order to obtain a eutactic star, the vectors
must form a resolution of the identity in RN , i.e.

k∑
i=0

|ϕi⟩⟨ϕi| = 1. (3.2)
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This is precisely the condition for a POVM. A particular class of POVMs that
we are interested in are called symmetric informationally-complete POVMs
(SICs) [35]. To be informationally-complete, a POVM must have exactly
N2 elements�enough to completely determine the N2 − 1 parameters in
a general, unknown density matrix. The name symmetric comes from the
restriction that the pairwise trace of the operators is always equal to a con-
stant. We will work with rank 1 projectors satisfying the condition

N2−1∑
i=0

Πi = 1 (3.3)

and

Tr(ΠiΠj) =
1

N + 1
i ̸= j. (3.4)

SICs are tomographically optimal in state reconstruction schemes [36] and
are also used in quantum cryptography schemes [37]. Experimentally, they
have been implemented in various tests in low dimensions [38,39].

Once again, it is simpler to consider our projectors as vectors, in which
case the SIC conditions become

N2−1∑
i=0

|ψi⟩⟨ψi| = 1N (3.5)

and

|⟨ψi|ψj⟩|2 =
1

N + 1
i ̸= j. (3.6)

It is worth mentioning a related concept here; mutually unbiased bases
(MUBs) are also sets of vectors�this time collected into bases�with a con-
stant squared inner product that obey the condition

|⟨ψi|ϕj⟩|2 =
1

N
, (3.7)

for the two orthonormal bases {|ψ0⟩, . . . , |ψN−1⟩} and {|ϕ0⟩, . . . , |ϕN−1⟩}
[45]. The bases are said to be mutually unbiased because measuring with
projectors from one basis tells you nothing about a system that has been
prepared in the other basis. In other words, all outcomes occur with equal
probability. This is the idea behind the famous Heisenberg uncertainty re-
lation: if you know exactly where a particle is, you know nothing about its
momentum. In this case, position and momentum are mutually unbiased.1

1The Heisenberg case uses an in�nite-dimensional Hilbert space, whereas we restrict
ourselves to a �nite one here.
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The maximum number of bases that can be mutually unbiased to a par-
ticular one is N [46], meaning the total number of independent outcomes
from a complete set of MUBs is N2 − 1. Notice that this is the same as
for SICs, and so MUBs also o�er an alternative tomographically e�cient
reconstruction scheme [48].

Armed with the de�nitions of SICs and MUBs, we can take another look
at the con�gurations in the previous section. The explicit vectors in each
of the two Reye con�gurations, given in Table (2.3), are the un-normalised
vectors from a triplet of real MUBs. Each row is a basis and is unbiased with
respect to the other two bases in the con�guration. In 4 real dimensions,
this is the maximum number of MUBs that can be found. Similarly, the 21
vectors in the Hesse con�guration, given in Table (2.2), are a SIC (the upper-
most 9 vectors) and a complete set of four MUBs (lower-most 12 vectors) in
a three complex dimensional Hilbert space.

We claimed earlier that BBC vectors from the Hesse con�guration were
somehow an extension of the vectors in the Yu and Oh contextuality set.
This is because the Yu and Oh vectors, Table (2.1), are an incomplete set
of MUBs and SICs in a real 3-dimensional Hilbert space. The vectors in the
�rst column in Table (2.1) are each unbiased to the computational basis in
the fourth column. The middle two columns contain vectors that obey the
SIC condition in Equations (3.5) and (3.6) and so each form one third of a
full SIC.

3.1 Simplices

The set of all density matrices is a convex body in the (N2− 1)-dimensional
real space of all unit trace Hermitian matrices. We can write an arbitrary
density matrix as

ρ =
1

N
(1+B), (3.8)

where B is a Hermitian matrix of trace 0. We can then regard the set of
traceless Hermitian matrices as a real vector space of dimension N2 − 1,
where the vector b corresponds to the matrix B. We denote this space as
D and the convex set of all vectors corresponding to density matrices as the
Bloch body, B; in 2 dimensions B is the familiar Bloch ball.

To make any de�nite statements about the set of vectors in this space,
we need a notion of distance. We use the re-scaled Hilbert-Schmidt inner
product

⟨B1, B2⟩ =
1

N(N − 1)
Tr(B1B2). (3.9)
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The factor in front of the trace ensures the length of the vectors correspond-
ing to density matrices equals 1, i.e. ||b|| = 1, where the norm of a vector is
de�ned as

||B|| =
√

⟨B,B⟩. (3.10)

To get an idea of what the SICs and MUBs look like in Bloch space, D, we
de�ne two balls in this space with di�ering radii. The �rst is the largest ball
centred on the origin that �ts inside B, given by

Bo = {b ∈ D : ||b|| ≤ 1}. (3.11)

The boundary of Bo is then the sphere

So = {b ∈ D : ||b|| = 1}. (3.12)

All vectors corresponding to density matrices are contained within So, al-
though the converse is not true; not every vector in So corresponds to a
density matrix and, in fact, only the points of this sphere that intersect with
the Bloch body actually correspond to density matrices. Those that do are
the pure states and they lie on a 2(N − 1)-dimensional sub-manifold of the
Bloch body. Similarly, we de�ne the smallest ball that encompasses B as

Bi = {b ∈ D : ||b|| ≤ 1

N − 1
}, (3.13)

with the corresponding bounding sphere

Si = {b ∈ D : ||b|| = 1

N − 1
}. (3.14)

Si is in some ways the reverse of So. Every vector in Si corresponds to a
density matrix, but not every density matrix is contained within Si.

A simplex in N dimensions is the convex hull (smallest convex set)
spanned by N + 1 extremal vectors. In the simplest case, N = 1, it is a
line, for N = 2, a triangle, for N = 3, a tetrahedron, and so on. A SIC
has N2 projectors, or pure states, that are arranged equidistant from one
another and so forms a regular simplex in N2 − 1 dimensions. In Bloch
space, the SIC problem becomes: can we �t a simplex in the Bloch body
whose vertices lie on the manifold of pure states? It is easy to construct an
(N2 − 1)-dimensional simplex whose vertices lie on So (dimension N2 − 2),
but it is di�cult to then rotate it so that the vectors lie on the manifold
B ∩ So (dimension 2N − 2).



3.2 Searches 27

All this becomes hard to visualise once N > 2, but we can look at the
case for N = 2. The Bloch body is a 3-dimensional sphere and�uniquely�
the balls Bo and Bi coincide. This means everything inside So corresponds to
a possible density matrix and the Bloch body itself is a ball. Furthermore,
the pure states cover the entire surface of So and we recover the familiar
Bloch sphere. The SIC simplex, then, has its vectors lying on any point on
the Bloch ball, as shown in Figure (3.1).

Figure 3.1: A SIC in 2 dimensions forms a regular tetrahedron with its four
vertices lying on the Bloch sphere.

A similar argument applies to MUBs. An orthonormal basis corresponds
to an (N − 1)-dimensional regular simplex in D. As with the SIC, it must
be fully contained within the Bloch body, with all of its vertices lying on So.
A set of MUBs, then, is a collection of N + 1 such simplices arranged as a
regular polytope. We end up in a similar situation for the MUB problem: can
we �t such a polytope in the Bloch body whose vertices lie on the manifold
of pure states?

Turning again toN = 2, we can see from Figure (3.2) that the co-ordinate
axes of the Bloch ball give three mutually unbiased bases. The MUB vectors
form a polytope where each vector, like the SIC vectors, must lie on the
Bloch sphere.

3.2 Searches

Given that the original de�nitions for SICs and MUBs were very easy to state,
we might expect a similarly easy approach to �nding them. However, they
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Figure 3.2: A MUB in 2 dimensions forms a regular polytope with its six vertices
lying on the Bloch sphere.

are notoriously elusive�being either tricky to construct in some dimensions
(SICs) or apparently lacking altogether in others (MUBs)�and a signi�cant
amount of research is focused on their existence. Published results have
calculated SICs numerically in dimensions N ≤ 67 [40]. MUBs are known to
exist in prime and prime power dimensions [46] and a considerable amount
of research suggests that a complete set of 7 MUBs cannot be found in
N = 6 (the smallest composite dimension) [51]. Here we shall look at the
constructions of both SICs and MUBs.

First, let us take a quick group theory tour. The Heisenberg-Weyl (HW)
group is integral to both the SIC and the MUB problem and has a represen-
tation as upper-triangular matrices 1 a b

0 1 c
0 0 1

 . (3.15)

We are interested in the case when the matrix elements a, b and c are integers
modulo N . The generators of the group are Z and X, which obey

ZX = ωXZ and XN = ZN = 1 (3.16)

where ω = e
2πi
N . We choose the representation

Z |r⟩ = ωr |r⟩ , X |r⟩ = |r + 1⟩ (3.17)
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where all addition is modulo N . It is unique up to unitary equivalence. In
N = 2, the operators X and Z are just the familiar Pauli spin matrices. It
turns out to be convenient to de�ne the phase factor

τ = −e
iπ
N , τ2 = ω , (3.18)

and introduce a vector p with integer entries. Then a general HW group
element can be written as τκDp, where

Dp = τ ijXiZj , p =

(
i
j

)
∈ Z2 . (3.19)

With this notation, we can see that the following relations hold

DpDp′ = τ ij
′−ji′Dp+p′ , D†

p = D−p . (3.20)

Note that τ is an Nth root of unity only in odd dimensions N ; there are
some unavoidable complications in even dimensions. The HW group modulo
its centre is equal to the abelian group ZN ×ZN , which we can label with a
square array of integers modulo N , and is called the HW collineation group.
From now on we will always use this group, though we will often drop the
term 'collineation' for brevity. An element of this group is speci�ed by the
vector p, whose entries can be taken to be integers modulo N .

The construction of a complete set of MUBs in prime dimensions is
straightforward [48]. The HW group contains N+1 non-overlapping abelian
cyclic subgroups of order N , i.e. they all contain the identity element, but
have no other element in common. We can check that this gives the correct
number of operators in the group: (N +1)(N −1)+1 = N2. The eigenbases
of each subgroup are then mutually unbiased with respect to each other. In
this way, we �nd N + 1 MUBs. We can look at the simple example when
N = 2. The HW group consists of the operators 1, σx, σz and σxσz. They
form three trivial subgroups and we can construct three MUBs from their
eigenbases:

{1, σz} → {|0⟩, |1⟩} (3.21)

{1, σx} → {|0⟩+ |1⟩√
2

,
|0⟩ − |1⟩√

2
} ≡ {|+⟩, |−⟩}

{1, σxσz} → {|0⟩+ i|1⟩√
2

,
|0⟩ − i|1⟩√

2
} ≡ {|L⟩, |R⟩}.

Referring back to Figure (3.2), we can see that the bases are precisely these
axes in the Bloch sphere. It is clear that each basis has the same overlap
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with the other two and thus are mutually unbiased. This construction fails
for composite dimensions because we cannot divide the HW group into such
non-overlapping cyclic subgroups. In these dimensions, we can construct at
least 3 MUBs this way.

For prime power dimensions, a similar procedure can be employed to
generate N + 1 MUBs [46]. However, instead of using the operators X and
Z as de�ned in Equation (3.17), we modify them using elements in the Galois
�eld�speci�cally, we let the elements a, b and c from Equation (3.15) belong
to a Galois �eld. There are then N + 1 sets of commuting operators, which
each provide a basis that is mutually unbiased to the others. Again, we �nd
N + 1 MUBs.

In prime and prime power dimensions, there are additional ways to create
MUBs from the orbits of the HW group, as discussed in Paper III.

The construction of SICs is somewhat more involved. It relies on two
conjectures made by Zauner in his PhD thesis: (i) that SICs are group
covariant, and (ii) that a �ducial vector in the SIC is invariant under an
order 3 unitary matrix in the Cli�ord group [41]. Group covariance means
that the SIC is an orbit under the action of a group and can therefore be
generated by acting with every group element on one �ducial SIC vector.
The group must have N2 elements, which the HW collineation group has,
and if the dimension is a prime it has been shown that the HW group is
the only possible choice [43]. The vast majority of SICs are covariant with
respect to the HW group, with only one known exception [44]. For the second
conjecture, often referred to as Zauner invariance, we need to introduce the
Cli�ord group.

The Cli�ord group is the normaliser of the HW group within the unitary
group U(N), and so it contains all unitary matrices U such that

UDpU
† = τkDp′ . (3.22)

Its action on the HW collineation group includes that of the symplectic group
SL(2,ZN ), consisting of matrices

G =

(
α β
γ δ

)
, αδ − βγ = 1 mod N , (3.23)

where the entries are integers modulo N . We can convert between the two
representations using

UG =
eiθ√
N

N−1∑
k,l=0

|k⟩τβ−1(δk2−2kl+αl2)⟨l| , (3.24)
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where θ is not determined by Equation (3.22). An additional step is needed
if β does not have an inverse using arithmetic modulo N in odd dimensions
and 2N in even dimensions [42]. Of course the Cli�ord group also includes
the HW group itself as a subgroup. In odd dimensions, the Cli�ord group
modulo its centre is isomorphic to a semi-direct product of SL(2,ZN ) with
the HW collineation group. In even dimensions, the description is slightly
more complicated [42]. However, although we will be concerned with even
dimensions later, we will not expand on this here.

To use the Zauner invariance of SICs, we need to know the form of the
order 3 unitary that the SIC is supposed to be invariant under. There are
multiple order 3 unitary matrices in U(N), and it is not di�cult to check
that these correspond to the matrices in SL(2,ZN ) if and only if they have
trace −1, mod N . We will stick to the canonical choice

Z =

(
0 −1
1 −1

)
, (3.25)

unless otherwise stated [42]. We shall refer to the unitary matrix, UZ , corre-
sponding to the symplectic matrix in Equation (3.25) as the Zauner unitary,
and the other order 3 choices as Zauner unitaries. The phase θ in Equation
(3.24) can then be found from the order three condition, U3

Z = 1. This
calculation requires a trigonometric sum that can be derived from a theta
function identity [41]. The action of the Zauner unitary on the collineation
group is

UZDpU
†
Z = DZp . (3.26)

The canonical choice of the symplectic matrix Z gives a unitary repre-
sentation of UZ with spectrum {1, q, q2}. We denote the three corresponding
eigenspaces as H1, Hq and Hq2 , and give their dimensions in Table (3.1) [41].
There is still some freedom here as we can multiply by overall factors of q,
but we shall keep to the subspaces shown here. Zauner's conjecture means
that we expect to �nd a SIC �ducial vector in H1.

N = 3k N = 3k + 1 N = 3k + 2

1 k + 1 k + 1 k + 1
q k k k + 1
q2 k − 1 k k

Table 3.1: Multiplicities of the eigenvalues of UZ for di�erent dimensions.

As well as the Zauner matrix, the symplectic group contains HW trans-
lates of the Zauner matrix, which have the form DpUZD

†
p.
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Let's look again at our example of a SIC in N = 2. Returning to Figure
(3.1), we can now see that the four SIC vectors are the orbit under the action
of the HW group on some �ducial vector (it doesn't matter which vector we
choose to be our �ducial): acting withX, Z orXZ permutes the SIC vectors.
The Cli�ord group in 2 dimensions has order 24 and is isomorphic to the
symmetry group of the cube. The order of the stability group of the �ducial
vector�the group containing elements that leave the �ducial invariant�in
the Cli�ord group is 3. This means there are eight distinct elements in a
Cli�ord group orbit, corresponding to eight SIC vectors. We know a SIC in
dimension 2 has four vectors, so we are left with two SICs. This is shown
in Figure (3.3), where the two SICs are the two tetrahedra. The Cli�ord
group permutes the �ducial vector, labelled |ψ0⟩, to the other vertices of the
cube. The HW group permutes the vectors within the same SIC and the
Zauner unitary rotates the vector along the axis of the �ducial vector, so
the three other SIC vectors are permuted among themselves but |ψ0⟩ is left
unchanged.

Figure 3.3: The action of the Cli�ord group on a SIC for N = 2. The SIC �ducial
is invariant under the Zauner unitary, while other Cli�ord elements permute the
SIC vectors between two distinct SICs.

In dimension 2 then, there are two SICs lying on a single Cli�ord group
orbit. We can ask how the SICs are arranged with respect to the extended
Cli�ord group�the group containing all unitary and anti-unitary transfor-
mations. It turns out that there are again two SICs on a single extended
Cli�ord orbit, but this is unusual. In higher dimensions, the number of SICs
on these orbits di�ers and we use the extended Cli�ord group to characterise
SICs into orbits [42].
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3.3 Subspaces

Let us return to the Hesse con�guration. We know that the nine points
correspond to SIC vectors and the 12 lines to a complete set of four MUBs.
The lines correspond to 2-dimensional subspaces in CP 2, where each sub-
space contains three SIC vectors. In other words, the SIC can be collected
into linearly dependent sets of three vectors. The twelve lines in the Hesse
con�guration (see Figure (2.13)) give twelve such linearly dependent sets.

We can collect the 12 sets of dependent SIC vectors into orbits under the
HW group. Naively, we might expect the sets to form a single orbit, but in
fact they form four orbits, each containing only three sets.

In dimension 3, there is a continuous family of SICs parametrised by the
real number t,

1√
2

 0
1

−ei2t

 . (3.27)

This is the only known dimension in which this happens. The SIC in our KS
set from the previous section has t = 0, but the values t = 2πs

9 for integer
s also produce same the pattern of linear dependencies. Every other SIC
in dimension 3 exhibits only three sets of three linearly dependent vectors.
Paper III shows that these special nine SICs correspond to nine MUBs. We
thus �nd 9 copies of the Hesse con�guration in dimension 3.

A picture of the Hesse con�guration in terms of the SIC and MUB vectors
is given in Figure (3.4). Every vector in CP 2 can be expressed as

ψ =

 √
p0√

p1e
iν1

√
p2e

iν2

 , p0 + p1 + p2 = 1, (3.28)

where the position in the simplex is determined by the parameters p0, p1 and
p2. Each point in the simplex has the topology of a torus, parametrised by
the real numbers ν1 and ν2. This reduces to a circle with only one parameter
along each edge. The MUB coming from the computational basis is given by
the vertices of the simplex. The remaining MUBs lie on the torus at the very
centre of the simplex, shown on the right-hand side of Figure (3.4). Each
symbol on the torus corresponds to a vector from a particular MUB. The
edges of the simplex are actually Bloch spheres and three SIC vectors lie in
each Bloch sphere. They are linearly dependent and so lie on a great circle.
This gives the usual set of three linear dependencies in every SIC; the nine
additional dependencies are between one SIC vector from each sphere.
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Figure 3.4: The SIC and MUB vectors in the Hesse con�guration in the simplex.

A natural question is what happens in higher dimensions and the remain-
der of this section is dedicated to answering this [52]. For N = 4 and 5, there
are no linear dependencies among SIC vectors, but for N = 6, they again
appear. We will go on to show that the SIC linear dependency relations gen-
eralise in dimensions divisible by 3, and the SICs form just a small portion
of the full linear dependency structure coming from the HW and Cli�ord
groups. However, for now let us look at the dimension 6 case in more detail.

There is e�ectively only one SIC in dimension 6, insofar as all other SICs
can be obtained from it by acting with the extended Cli�ord group, and it is
given fully in [40]. A computer search for sets of 6 linearly dependent vectors
reveals 984 such sets, where each of the 36 SIC vectors lies in 164 di�erent
sets. In a direct analogy to the Hesse con�guration for dimension 3, we �nd
the balanced con�guration (36164, 9846) in CP

5.

The 984 sets divide up into orbits under the HW group. We �nd 27
orbits of length 36 and one orbit of length 12. The shorter orbit arises
because it contains only linearly dependent sets invariant under the subgroup
{1, X2Z4, X4Z2}. This subgroup commutes with the Zauner unitary de�ned
in Equations (3.25) and (3.24), which leaves the �ducial SIC vector invariant.
Additionally, the sets in 22 of the HW orbits are invariant under the Zauner
unitary or a HW translate of the Zauner unitary, i.e. the action of DpUZD

†
p

on a set simply permutes its 6 vectors and leaves the overall set unchanged.
However, there are 6 HW orbits whose sets are not invariant under UZ , but
rather an order 6 unitary matrix.

Inspired by the dimension 3 case, we can calculate the unique vector that
lies perpendicularly to each of the 984 5-dimensional subspaces formed from
the linearly dependent sets. This gives us 984 �normal vectors". Perform-
ing an exhaustive search among these vectors does not reveal a basis�and
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certainly not seven mutually unbiased ones�but there are smaller groups of
mutually orthogonal vectors. Speci�cally, we �nd that one of the orbits un-
der the HW group splits into 9 sets of 4 mutually orthogonal vectors, which
is as close to a basis as things come when N = 6.

There is further structure to be found among the 984 normal vectors.
Instead of searching for inner products that vanish, we can look for inner
products that square to 1/3. There are 30 groups of 4 normal vectors whose
mutual inner products that satisfy this condition and each group lies in 2-
dimensional subspaces of the 6-dimensional Hilbert space. In other words,
we have found 2-dimensional SICs within the linear dependency structure of
a 6-dimensional SIC. The vectors all come from only 4 HW orbits, including
the shorter one of length 12. More detail, including a recipe for �nding these
smaller dimensional SICs in dimension 6, will be found in [52].

Though this structure tells us about the interplay between the HW group
and the subspaces of the Zauner unitary matrix, it is less informative on the
subject of SICs. The structure we have detailed above is not dependent
on SICs; if we look for linear dependencies among any orbit under the HW
group when the �ducial vector belongs to H1, we recover the same 984 set
linear dependency pattern. Had the linear dependencies only arisen for SICs,
it could have opened new avenues into the SIC existence problem and may
have helped to �nd them without the need for large, complex computer
programs.

However, though the pattern of linear dependencies is identical for orbits
with a �ducial vector in the Zauner subspace, regardless of whether the
�ducial vector is in a SIC or not, there are some properties that are in fact
SIC-speci�c. The 9 sets of 4 mutually orthogonal vectors only appear when
we use a SIC vector to generate the linear dependencies. Over 200 additional
orthogonalities between normal vectors also require a SIC �ducial. Thus the
polytope formed from all the normal vectors is squashed when we replace
the SIC �ducial with a random vector from H1.

A quick pictorial summary of these results in given in Figure (3.5). It is
supposed to show the following steps: a vector was selected from the Zauner
subspace H1, which was sometimes a SIC �ducial and sometimes not. Acting
with the HW group produces an orbit of 36 vectors, in which we searched
for linear dependencies. The resulting 984 dependencies collected into 28
HW orbits and consequently determined 984 normal vectors. The distances
between these normal vectors were investigated: some normal vectors were
orthogonal only for SIC linear dependencies and some normal vectors formed
2-dimensional SICs regardless of whether the original HW orbit formed a
SIC.
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Figure 3.5: A summary of the linear dependencies among HW orbits, leading to
SIC-speci�c orthogonality relations and 2-dimensional SICs.

Similar calculations have been made in dimensions 8 and 9 [52], where
more dependencies were found. In dimension 9, there is a very large number
of linear dependencies among the 81 SIC vectors, or, alternatively, among
the 81 vectors in a HW orbit of a �ducial in the Zauner subspace. The
con�guration this produces is balanced and can be denoted (818,863, 79, 7679)
in CP 8. Again, 3-dimensional SICs were found among the normal vectors.

The link between projective geometry and SICs in dimension 3 gave rise
to the famous Hesse con�guration and something similar can be generalised
to higher dimensions. However, it turns out that it is not a special prop-
erty of SICs�the Hesse con�guration is a unique case�but rather a more
general property of the interplay between certain elements of the Cli�ord
and HW groups. Explicitly, linear dependencies arise between vectors in a
HW orbit when the �ducial vector is invariant under an order m unitary and
the dimension is divisible by m, for m = 2, 3. In dimensions where m = 3,
this coincides with �nding linear dependencies among SIC vectors as the SIC
�ducial is invariant under the order 3 Zauner unitary. We shall outline the
argument here, starting with dimensions divisible by 3 and then expanding
to dimensions divisible by 2.

The Linear Dependency theorem (dimensions divisible by 3). In

dimension N = 3k, any subset of N vectors in a HW orbit whose �ducial

vector lies in the Zauner subspace H1 is linearly dependent if it is invariant

under the action of UZ or a HW translate of UZ .

Proof. Let N = 3k. We require a �ducial vector invariant under the order
three unitary UZ , i.e. satisfying UZ |ψ0⟩ = |ψ0⟩, or under one of its Heisen-
berg translates, from which we construct three new linear combinations of
vectors. Note that |ψ0⟩ need not be a SIC vector.

Our vectors are

|r⟩ = Dp |ψ0⟩+ UZDp |ψ0⟩+ U2
ZDp |ψ0⟩
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|s⟩ = Dp |ψ0⟩+ q2UZDp |ψ0⟩+ qU2
ZDp |ψ0⟩

|t⟩ = Dp |ψ0⟩+ qUZDp |ψ0⟩+ q2U2
ZDp |ψ0⟩ (3.29)

which, it is straightforward to check, are evenly distributed between the
eigenspaces H1, Hq and Hq2 , shown in Table (3.1). Each new vector is a
sum of three vectors from a single HW orbit, as

UZDp |ψ0⟩ = UZDpU
†
ZUZ |ψ0⟩ = DZp |ψ0⟩ , (3.30)

where DZp and Dp lie on the same orbit by construction. The same ar-
gument works for the terms involving the square of the Zauner unitary. It
is clear that the linear span of the vectors {|r⟩ , |s⟩ , |t⟩} equals that of the
vectors

{
Dp |ψ0⟩ , DZp |ψ0⟩ , DZ2p |ψ0⟩

}
.

We can label a vector in a HW orbit, up to a phase, by a 2-component
vector p in Z2

N . In this representation, we are interested in the orbit of p
under the action of Z. We note that if and only if the dimension is divisible
by 3 there will be non-trivial �xed points under this action, namely

Zp = p ⇔ p ∈
{(

0
0

)
,

(
k
2k

)
,

(
2k
k

)}
, (3.31)

If p is one of the �xed points of Z, given by Equation (3.31), it will form a
singlet, otherwise it forms a triplet. In order to �nd a set of N vectors that
is invariant under UZ , we take k triplets or a combination of the 3 singlets
and k − 1 triplets and substitute them into Equation (3.29). This gives k-
many of each r-, s- and t-type vector. From Table (3.1) we know that the
r-type vectors lie in an eigenspace of dimension k + 1, the s-type vectors
in an eigenspace of dimension k, and the t-type vectors in an eigenspace of
dimension k− 1. It is clear then that the k r-type vectors cannot fully span
their subspace while the k t-type vectors are over-complete and therefore
linearly dependent. There are 3 vectors from a HW orbit in each t-type
vector and we have used k of them, so we �nd a total of 3k = N vectors
from a HW orbit that are linearly dependent.

The assumption of Zauner-invariance of the set of N vectors in the above
proof means that not all linearly dependent sets are found this way. In
dimension 6, we previously noted there were 984 sets of 6 linearly dependent
vectors in HW orbits, however the method outlined above �nds only 768 of
them. In other words, the 6 orbits that are not invariant under the Zauner
unitary or one of its HW translates (each containing 36 sets) are not included
in this theorem.
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We now branch away from SICs to show that linear dependencies occur
between vectors in a HW orbit when the �ducial vector is invariant under
an order 2 unitary and the dimension is divisible by 2.

First, we need some preliminary information. The symplectic group
SL(2,ZN ) has a unique element of order 2 that is invariant under conju-
gation by every other element on the group. It is given by

A =

(
−1 0
0 −1

)
. (3.32)

This transformation of the collineation group is e�ected by the unitary ma-
trix

UA =
∑
k,l

|k⟩δ0,k+l⟨l| , U2
A = 1 , (3.33)

UADpU
†
A = DAp . (3.34)

(In odd prime dimensions A is known as a phase-point operator, introduced
by Wootters in connection with MUBs [53].) This action has four non-trivial
�xed points if the dimension is divisible by 2, given by

Ap = p ⇔ p ∈
{(

0
0

)
,

(
k/2
0

)
,

(
0
k/2

)
,

(
k/2
k/2

)}
. (3.35)

The eigenvalues of A are {+1,−1} and we denote the two corresponding
eigenspaces as H+ and H−, giving their dimensions in Table 3.

N = 2k N = 2k + 1

1 k + 1 k + 1
−1 k − 1 k

Table 3.2: Multiplicities of the eigenvalues of UA for di�erent dimensions.

The Linear Dependency theorem (dimensions divisible by 2). In

dimension N = 2k, subsets of N vectors in a HW orbit whose �ducial vector

lies in the Zauner subspace H+ are linearly dependent if they are invariant

under the action of UA and if fewer than k of the vectors are individually

invariant under UA.

Proof. Let N = 2k. We require a �ducial vector invariant under the order
two unitary UA, i.e. satisfying UA |ψ0⟩ = |ψ0⟩, and prove that any subset
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of N vectors (within a HW orbit) that transforms into itself under UA is
linearly dependent.

We begin by constructing two new linear combinations of vectors

|u⟩ = Dp |ψ0⟩+ UADp |ψ0⟩

|v⟩ = Dp |ψ0⟩ − UADp |ψ0⟩ (3.36)

which lie in the subspaces H+ and H−, respectively, shown in Table (3.2).
Again, each new vector is a sum of two vectors from a single HW orbit
and the linear span of the vectors {|u⟩ , |v⟩} equals that of the vectors
{Dp |ψ0⟩ , DAp |ψ0⟩}.

We turn again to the orbits of p under the action of A. If p is one
of the �xed points of A, given by Equation (3.35), it will form a singlet,
otherwise it forms a doublet. Taking k such doubles and substituting them
into the vectors in Equation (3.36) produces k new u- and v-type vectors.
These lie in subspaces of dimension k + 1 and k − 1 respectively, and thus
the k v-type vectors must be linearly dependent. This in turn forces the
2k = N vectors in the HW orbit that make up each v-type vector to be
linearly dependent. At this point, there is a minor di�erence to the previous
theorem for dimensions divisible by 3. Taking the two p singlets and k − 1
doublets and substituting them into Equation (3.36) does not provide N
linearly dependent vectors.

We expect a construction similar to the ones given here to hold for other
dimensions.2 We are currently restricted to dimensions where we know the
subspaces of the order N unitaries for dimensions divisible by N . For ex-
ample, if we knew the spectra of the order 5 element of the Cli�ord group
in dimensions N = 5, 25, 35, 55, etc. then we could evaluate whether a
modi�ed version of the above theorems would result in linear dependencies
in HW orbits of a �ducial vector left invariant under the order 5 unitary.

2In fact, a result in this direction, though not given here, is expected to be published
soon [52].





Chapter 4

Conclusion

The recent development in the Kochen-Specker theorem has renewed interest
in contextuality, both as a fundamental principle of quantum theory and as
an experimental test of quantum mechanics. We showed how it relates to
the debate about hidden variables and e�ectively rules out a certain class of
these, namely non-contextual hidden variable models. We also discussed the
role of con�gurations in contextuality proofs and in Paper I we show how
the BBC set (found from the points and lines in the Hesse con�guration) can
be used to construct state-independent KS and contextuality inequalities. A
more experimentally-friendly version of such inequalities is given in Paper II
using the Yu and Oh set of vectors.

Both of these sets contain special vectors: SICs and MUBs. While the Yu
and Oh set includes incomplete MUBs and SIC vectors in 3 real dimensions,
the BBC set utilises a complete SIC and four MUBs in 3 complex dimensions.
The relation between the SIC and MUBs is captured by the Hesse con�g-
uration in the complex projective plane, where linear dependencies among
the 9 SIC vectors generate the 12 MUB vectors. Paper III explores this idea
further and expands the Hesse con�guration to other SICs and MUBs.

Motivated by this pattern, we searched for linear dependencies in higher
dimensional SICs. We did not �nd any analogous relationships between
SICs and MUBs, but we did prove that in dimensions divisible by three,
SIC vectors will always contain sets of N linearly dependent vectors. The
calculations in dimension 6 and 9 show one large di�erence to the dimension
3 case: there are no special SICs with a higher number of linear dependen-
cies than other SICs. In some sense, this makes the Hesse con�guration in
dimension 3 more remarkable.
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