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Abstract

Pure coherent states are known as the most classical states in quantum
mechanics. Similarly, pure spin coherent states based on the rotation group
also exist in finite dimensions. We call these states pure classical states, and
the mixed classical states are the statistical mixtures of these states. The
set of all classical states is a subset of the set of all pure & mixed states.
We present an essentially complete description of the geometry of this set
for 3-dimensional Hilbert space. While studying its geometry we find a
remarkable similarity between the geometry of this set and the geometry of
the set of all classical probability distributions. This study also improves a
recent work on this set done by Giraud at el [4] and relates it to an earlier
work by Wootters [14].
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Chapter 1
Introduction

The world at very small scale is quite non-intuitive. Quantum Mechanics
provides the best known description for this world and hence it is based
on a set of principles which are fundamentally different than our daily life
experienced classical laws. Many things which are assumed to be impossible
classically, becomes possible in the quantum domain. We are now, due to
the advancement of the technology, capable of building systems, which can
explore quantum oddities and hence able to perform classically impossible
tasks, this is actually what we aim at Quantum information science.

In Quantum information, we usually require correlations stronger than
classical and therefore, we are almost always looking for non-classical states;
thus it becomes very important that we can distinguish between classical
and non-classical states. This is why these are the currently hot topics
of research. In this thesis we will concentrate on classical states and will
study some geometrical aspects of the set of classical states for spin systems.
Studying classical states becomes far more important in respect that the
world we live in is undoubtedly classical at the large scale and it is still a
mystery that how it emerges from the quantum origin. First of all, we will
see in this chapter what these classical states are.

As you might know, one of the most distinguishing features of the quan-
tum theory is the strange uncertainty principle. Which says, the uncertainty
in position q and momentum p can be written as1

∆q.∆p ≥ 1
2

(1.1)

therefore, this principle clearly predicts that one can never make exact si-
multaneous measurements of non-commutating observables, no matter how
perfect instruments one would have. The answer of the question, “Why this
is so?” becomes a matter of on which interpretation one believes, hence it is

1in a system of units where ~ = 1

1



2 Chapter 1. Introduction

still controversial1. Besides this contentious fact, one thing is quite clear; if
this principle will ever be proved wrong the whole empire of quantum theory
will collapse.

Nevertheless, the world we live in seems to obey classical laws, the laws of
Newtonian or Hamiltonian mechanics; this is true, because one can deduce
classical results from the quantum theory as a limiting case. Technically
this implies there are states, whose dynamics very much resembles to the
dynamics of classical systems. It does not mean that for these states un-
certainty is zero, rather it implies that these are the states with minimum
uncertainty.

In fact, there exists a whole class of states for which equality holds in
Eq. (1.1) and therefore these states can righteously be called Minimum
Uncertainty States. The technical name for this class is Squeezed States.
However the states, whose dynamics closely resembles to the dynamics of
classical systems are those which not only minimize the uncertainty relation,
but also for them the uncertainty of position and momentum becomes equal
according to Eq. (1.1), i.e. 1√

2
for each[1]. This means uncertainty in

position and momentum form a circle in the phase space and hence this
uncertainty is symmetric around the point represented by the center of this
circle. Thus every classical phase space point corresponds to a state of this
type and hence there is a one-to-one mapping of classical phase space points
onto the space of these states. Therefore these states are, in fact, quantum
analogues of points in classical phase space [3].

The fancy name for these special kind of states is Coherent States, which
was given by Roy J. Glauber, who got the Nobel prize for his work on these
states and hence sometimes these are also called Glauber States. His reason
of calling these states coherent might be that in his work [5], these are
referred to the most classical sort of states of light field corresponding to a
single resonator mode. It is also true that the term coherent states means
different things for different people but all are agree about the fact that
these states are as classical as they can be.

In this thesis I shall talk about Spin Coherent States. These are also
coherent states, but are referred to the spin systems. In fact, these are the
coherent states of rotation group SU(2). The nice thing about the spin sys-
tems is that their states can be represented by vectors in a finite dimensional
Hilbert space. In this thesis, I study spin−1 systems, which mean eventually
in this work we will restrict ourselves to the 3−dimensional Hilbert space.

For the spin systems, not only spin coherent states but all other states
which can be represented as a weighted sum of spin coherent states with
positive weights, provided that these weights sum to one, considered as The

1All one can say according to standard Copenhagen interpretation is that this cannot
be done, simplify because there does not exist such things like exact position together
with momentum etc.
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Most Classical States or Classical States. This means that any mixture of
spin coherent states is classical; hence, these classical states form a convex
set in the space of density matrices. Furthermore, as all pure points of this
set are pure spin coherent states, therefore the set of all classical states is
the convex hull of spin coherent states, the main object of the study in this
work. We will study some geometrical aspects of this convex hull.

We will begin our study by defining pure and mixed states, density
matrices, convex set, convex hull and etc in chapter 2, then in chapter 3
we will define spin coherent states and introduce the convex hull of these
states. Chapter 4 will be devoted to a very useful basis —called magical
basis— and we will discover that for this study, magical basis might be the
best choice.

In chapter 5, we will look at some of the work [4] which has already been
done by Giraud et al on this set, and translate this into magical basis, and
then finally in chapter 6 we will start exploring some geometry of the convex
hull of spin coherent states. Chapter 7, describe the minimal faces of this
set and can be read independent of chapter 6. Chapter 8 will cover some
more results and conclusions I made and in the last chapter 9, I will make
some concluding remarks.





Chapter 2
Mixed States and Convex Bodies

In the previous chapter, we have seen what coherent states are. Like any
other state of a system these states can be represented by vectors in Hilbert
space. However, in general this is not necessarily true for a statistical system
or ensemble. In such situations one has to use the density matrix or density
operator formulation. Actually density matrices contain all the information
of a system that one can reach and hence can be used to describe any
quantum mechanical state of a system that may or may not be represented
by a vector in Hilbert space. In this sense studying density matrices becomes
more important.

In this chapter our main concern will be to develop necessary background
for subsequent chapters. Therefore, in Sec.2.1, we shall start by explaining
what we mean by pure and mixed states then I shall describe what density
matrices are, in Sec.2.2. In Sec.2.3, we shall look at some important concepts
and terms of the geometry of the convex bodies and in the light of these in
Sec. 2.4 we see what geometry the set of classical probability distributions
has. Finally, we will look at the geometry of the set of all density matrices
in Sec.2.5.

2.1 Pure and Mixed States

Before looking at pure and mixed states, the reader should make it absolutely
clear that quantum theory is a probabilistic theory and this probabilistic
nature enters into the theory not because of our lack of knowledge, rather
it is because of the lack of exact predictability inherent in the theory due
to the uncertainty principle as discussed in chapter 1 and hence we cannot
predict the exact outcome of any future measurement on any system, even
when we have the maximal knowledge about its current state. Therefore, in
quantum mechanics, whatever we can predict is always in probabilities.

However, most of the time, practically the situation is even worse; be-

5



6 Chapter 2. Mixed States and Convex Bodies

cause we do not have as much knowledge about the system as we are allowed
i.e. in case of statistical systems or ensemble. Hence another probability
enters into our description of the system. We call these second probabilities
as classical probabilities.

It will not be out of the context to mention here that, although we
are distinguishing between classical and quantum probabilities but there
are situations when these so called classical and quantum probabilities are
mixed up together in a way that there remains no distinction e.g. in case of
a system which has uncertain preparation history. Since, no measurement
or observation can distinguish between these probabilities, thus, in such
cases; one can regard both kinds of probabilities to have the same origin.
Because of this fact, there are many people, who do not distinguish between
these quantum and classical probabilities and treat them under the same
roof provided by the density matrices. Maintaining such an attitude might
be good because in a physical theory one should never try to compel a
concept/thing which, in principle, cannot be verified directly or indirectly.

Now suppose, we have maximal knowledge about the state of a system
i.e. there are no classical probabilities involved. This is usually true just
after a suitable measurement, say, if we measure the position of a particle
then just after the measurement, in principle, we can have exact knowledge
of its position and we can represent it by a vector in Hilbert space. Such
states are called Pure States.

On the other hand, in almost all practical situations, we usually have
statistical systems or ensemble and we know the probabilities with which a
given system or member could be find in a number of states. Such statistical
states are called Mixed States. These states cannot be represented by vectors
in Hilbert space. These are, in fact situations, where the density matrix
formulation really shines.

Regarding mixed states, the reader should notice that these states do
not represent quantum superposition, since superposition of any number of
states can be represented by a vector in Hilbert space. Furthermore if we
do not want to distinguish between classical and quantum probabilities, as
I mentioned earlier, then the best definitions of the pure and mixed states
are provided by density matrices, which is our next topic.

2.2 The Density Matrix

Imagine an ensemble in which the probability that a member can be found
in a state |ψi〉 is pi, then we can write the Density Matrix ρ for the ensemble
as

ρ =
k∑

i=1

pi|ψi〉〈ψi| (2.1)
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Here, the reader should note a number of things. First of all, |ψi〉 represent
pure states and hence are vectors in Hilbert space. Secondly, as pi represent
probability, therefore we must have

∑

i

pi = 1 and pi ≥ 0 (2.2)

Moreover, the decomposition shown in Eq. (2.1) is not unique and hence,
we can mix different pure states to get the same density matrix. We will
come to this point later in Sec. 2.5. For now, I just like to mention that
when we decompose a given density matrix into the pure states, as done in
Eq. (2.1), then it can turn out that these pure states, represented by |ψi〉
here, may or may not be orthonormal and hence the number of terms in
the decomposition, i.e. k, need not be equal to the dimensionality, say N, of
the Hilbert space. It can certainly exceed N, in such cases the pure states
represented by |ψi〉 will obviously not be orthogonal [11].

In case of a pure state i.e. when we have maximal knowledge about
the system, all pi = 0, except one and hence there will be no classical
probabilities involved and Eq. (2.1) becomes

ρ = |ψ〉〈ψ| (2.3)

This is also know as Projection Operator, as it can give the projection of
any vector onto a 1−dimensional subspace |ψ〉.

Density matrices also provide us a way to distinguish between mixed and
pure states. For pure states Tr ρ2 = 1 and for mixed states Tr ρ2 < 1. Also
for mixed states there is no decomposition of a density matrix which leads
to an equation similar to Eq. (2.3).

We can summarize this section by saying that; mathematically a density
matrix is a Hermitian matrix with unit trace and positive eigenvalues. These
positive eigenvalues represent probabilities of corresponding pure states and
unit trace guarantees that these probabilities will sum up to 1.

2.3 Convex Set and Convex Bodies

In this section, we will equip with some geometrical terms like rank, convex
sets, convex hull etc. which will be needed to discuss the set of density
matrices, in Sec. 2.5, and also for the set of all classical states, the central
object of study in this thesis, in the following chapters. To understand
the meaning of these terms we will also look at the geometry of the set of
classical probability distributions in the next section.

To define a convex set, first I have to tell you what we mean by mixtures
in convex geometry. The Mixture of two points is a point which we obtain
by weighted sum of these points provided that the weights are positive and
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r1

r2

r = p r1 + (1-p) r2 

Figure 2.1: Mixtures of two points. Any point ρ, on the line segment shown, can be
regarded as a mixture of two points ρ1 and ρ2 for a particular value of p. The line segment
itself is a convex set.

add up to one [3]. Mathematically if ρ1 and ρ2 represent two points in a flat
space and p and 1− p are the weights then

ρ = pρ1 + (1− p)ρ2 with 0 ≤ p ≤ 1 (2.4)

Here ρ is the resultant point and is called mixture of ρ1 and ρ2, figure (2.1)
shows a line segment which is the set of all possible mixtures of the two
points ρ1 and ρ2. In the same way we can form the mixture of any number
of points.

Now, in a flat space, a Convex Set is a set of points such that if we mix
any pair of these points the resultant mixture, a point, also belongs to this
set. Hence in this sense, the line segment shown in the figure (2.1) is a convex
set. Figure (2.2) shows some more examples of convex sets. Intuitively one
can imagine a convex set as a collection of points such that while sitting on
anyone of these points, one can watch all other points in the set.

In this thesis we will mainly be concerned with Convex Bodies; these are
convex sets which are closed and bounded and have an interior [3]. Figure
(2.2) also shows some convex bodies.

In convex sets, all points can be obtained by mixing some special points.
These special points are special in the sense that anyone of these points
cannot be represented as a mixture of other points in the convex body.
These points are called Pure Points. Another important term in this regard
is the rank. In convex geometry the minimum number of pure points that
are needed to mix up to get a given point, as a mixture, is called the Rank
of that point. Therefore, the rank of a pure point is one, as it is a mixture
only of itself.

We can also define the Convex Hull or Convex Cover of a convex set.
This is the minimal or smallest convex set that contains a given convex
set. In 2-dimensional case, we can imagine a convex hull as a convex set,
which is formed by a rubber band and its interior, while enclosing a set.
This intuitive picture can be extended to higher dimension by imagining a
perfect rubber sheet or balloon, but only if it does not have any dent across
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(A) (B) (C) (D)

A

B

C

X

Y

Face Minimal faces

FacetMixedPure

Figure 2.2: Convex sets and convex bodies. (A) A convex set, the whole boundary is
consist of pure points. Points mark as A and B are pure with rank one, whereas point C
is a mixture with rank two as it can be obtain by mixing two points A and B. (B) it is not
a convex set, as many points which are mixtures of X and Y, and lie on the line segment
XY , are not belongs to the set. (C) A convex body, a Face is also shown. (D) A cube is
a convex body with corners as pure points and all other points are mixtures of these pure
points. Sides of a cube are Facets and edges represent minimal faces formed by special
pure points.

its whole surface, in which case, it is not even a convex set.
The next important term that we need is the face. The Face of a convex

body is a subset which is stable under mixture and purification. A set is
stable under mixture, if the mixture of any pair of points in the set is also
belongs to this set, which means a set has to be a convex set in order to be
stable under mixture. Therefore, as a first requirement, a subset of a convex
body must be a convex set itself in order to be a face. Furthermore a subset
of a convex set is called stable under purification if no point in this subset
can be a mixture of points that do not belong to it. Therefore, as a second
requirement, a face must also include some pure point of the body such that
other points in the face are mixtures of these pure points. Thus, one can
also say that a Face is a convex hull of pure points, which form a subset
of pure points of the body, such that no point in this convex hull can be
represented by mixture of other point in the body [3]. Figure (2.3) explain
the concept of a face clearly.

Furthermore, a face of (d− 1) dimension, where d is the dimensionality
of the convex body, is called a Facet. In contrast to this, we can also define
Minimal Faces of a convex set; these are the smallest convex subsets, formed
by a given pair of pure points such that they are stable under mixture and
purification. An example of convex body is a cube. Its extreme points or
corner are pure points, we can also call these pure point as 0−faces. Minimal
faces, in this case, do not have a clear answer for the whole body, rather it
depends on the choice of the pair of pure points which are chosen to get a
minimal face. For some special selection of points we get 1−faces or edges
of the cube as minimal faces. Sides of the cube are 2−faces and we can also
call them facet as the cube is 3−dimensional body. This is shown in figure
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A

B

C

D

Figure 2.3: A face is stable under mixture and purification. A circle shown in the
figure is stable under mixture, as it is a convex set itself, but all points, in this case, are
mixtures of four point marked as A,B,C and D, therefore it is not stable under purification.
Conversely we can consider the set consist of point A, B, C and D as a candidate for a face.
While it is stable under purification, it is not stable under mixture and therefore is not a
face. However each side is stable under mixture and purification and hence represents a
face of the cube.

(2.2-D).

2.4 The Set of Classical Probability Distributions

Having defined these geometrical terms of convex sets, we are now ready to
analyze the shape of the set of classical probability distributions. We will
look at the discrete probability distributions in which the possible outcomes
will be represented by N .

First, consider a case in which we have only two possible outcomes i.e.
N = 2 e.g. tossing a coin. If we assume that the probability of one outcome
is p then the probability of the other outcome will be 1−p. We can represent
these probabilities by an ordered pair (p, 1−p), which can also be considered
as the coordinate of a point on a plane. Hence, all values of p will give us
a line segment represented by P1P2 in the figure (2.4-A). Clearly this line
segment is a convex hull of two pure points P1 and P2, and all other points
on it will have the rank two. Also note that in this case minimal face, which
is the whole segment itself, is an edge.

Now suppose N = 3 i.e. when there are three possible outcomes. In
this case we can represent all allowed probabilities by a tuple with three
numbers and hence this can also be represented by the coordinate of a
point in 3−dimenssional flat space. In this case, all possible combinations of
different probabilities define an equilateral triangle shown in figure (2.4-B).
This is the convex hull of three pure points P1, P2 and P3, and all other
points have the rank three except those which lies on the edges where rank
is two. The minimal face in this case is also 1−face which is an edge.

Now If we consider four possible outcomes i.e. N = 4, then any possible
values of the probabilities of all four outcomes can be represented by a
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Y

X

X

Y

Z

P1(1,0,0)
O

P2(0,1,0)

P3(0,0,1)

P1(1,0)

P2(0,1)

(A) (B)

O

P1(1,0,0,0)

P2(0,1,0,0)

P3(0,0,1,0)

P4(0,0,0,1)

(C)

Figure 2.4: Geometry of classical probability distributions. when (A) outcomes = N =
2, a line or 1−simplex. (B) N = 3, a triangle or 2−simplex. (C) N = 4, a 3−simplex or
tetrahedron.

4−tuple. We can also imagine this 4−tuple as coordinate of a point on
a tetrahedron in 4−dimensional space. The whole probability distribution
in this case, is a convex hull of four pure points, which are represented by
P1, P2, P3 and P4 in figure (2.4-C). Again, here, minimal faces are 1−faces
which are edges of the tetrahedron.

If we analyze these three cases, we can easily conclude that in all these
case the shape of the set of classical probability distributions is a simplex
or d−simplex, because a line, triangle and tetrahedron are all d−simplexes
with d = 1, 2, 3.

A simplex or d-simplex is a d−dimensional analogue of a triangle, which
is itself a 2−simplex. More precisely, in a d−dimensional flat space, a
d−simplex is a convex hull of (d + 1) points such that no m−plane, in
this convex hull (where m ≤ d), contains more than (m + 1) pure points.
Also note that the minimal face of a simplex is always a 1−face or an edge.

Therefore, one can generalize this result to the case of N outcomes and
can say that the set of classical probability distributions are convex sets
with the shape of d−simplexes, which are d−dimensional convex bodies,
where d = N − 1. The minimal faces of this body are always edges. Also
note that every point at or inside these simplexes can be represented by a
(d+ 1)−tuple, which is unique to this point and hence can also be regarded
as the coordinates of this point, only if we consider the d−simplex in a
(d+ 1)−dimensional space.

2.5 The set of Density Matrices

In this section we will discus the set of all density matrices which is the
quantum analogue of the classical probability distributions. Therefore we
also compare the geometry of this set to the geometry of the set of classical
probability distributions that we just have discussed in the last section.
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Each member of the set of all N×N Hermitian matrices can be regarded
as a vector, since this set fulfill all the axioms of a vector space. However
here, we are only interested in density matrices, which are Hermitian matri-
ces with unit trace and positive eigenvalues; therefore, we will be confined
to a sub-space of this vector space, which will not be a linear sub-space
(or vector space) as the origin i.e. zero matrix will not be included. We
call this sub-space V, it is a space of N × N Hermitian matrices with unit
trace. As there are (N2− 1) independent parameters in a N ×N Hermitian
matrix with unit trace, therefore we can regard V as a space with (N2 − 1)
real dimensions. Each point in V corresponds to a Hermitian matrix of unit
trace.

We can also define distances in this space. The distance D(ρ1, ρ2) be-
tween two matrices ρ1 and ρ2 is given by

D2(ρ1, ρ2) =
1
2
Tr (ρ1 − ρ2)2 (2.5)

Hence V is a flat space [3].
The set of density matrices, which are Hermitian matrices with unit

trace and positive eigenvalues, is a sub-set of V, we call it D here. D,
actually is the set of all density matrices which can describe states of a
N−dimensional quantum system, this include pure as well as mixed states.
Here, by dimension of a quantum system I mean, whenever possible the
state of the system can be represented by vectors in Hilbert space, span by
at most N orthonormal vectors.

As you might know, the mixture of any two density matrices is also a
density matrix i.e. density matrices also obey an equation exactly as Eq.
(2.4) —where ρ now represent a density matrix— therefore the set of density
matrices is a convex set. Hence the set D is a convex body in V. Note that
the set D is an (N2 − 1) dimensional convex body.

Now, As D is an (N2 − 1) dimensional body therefore, imagining any
case when N > 2 is quite hard. Here, to understand the geometry of the set
D, we will consider the case when N = 2 i.e. we will consider the case of
2×2 density matrices, which can describe a 2−dimensional quantum system
completely.

We can write a general 2× 2 Hermitian matrix with unit trace as

ρ =
(

1
2 + z x− iy
x+ iy 1

2 − z

)
(2.6)

where x, y and z are real numbers. Now, in order that the above matrix rep-
resents a density matrix, we further demand that it has positive eigenvalues.
This leads to the condition

x2 + y2 + z2 ≤
(

1
2

)2

(2.7)
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This implies that D, in 2−dimensional case, is a ball with diameter equal
to 1 unit. This ball is called Bloch Ball. This is a convex body and it is a
convex hull of all pure points which make the surface of this ball. These pure
points are, in fact, represent pure quantum states. All other points inside
this ball have the rank two, as they can be obtained by mixing two pure
points lies on the surface. This is shown in figure (2.5). Hence all points
inside the ball represent mixed states. The minimal face, in this case, is a
2−face, which is entire ball itself.

At the center of this Bloch ball x, y and z are all zero, and this point
represents a density matrix ρ0 given as

ρ0 =
(

1
2 0
0 1

2

)
(2.8)

This is the Totally Mixed Density Matrix. Physically, this represents a sit-
uation when any outcome of every measurement is equally likely. As it is a
multiple of unit matrix, therefore, it remains diagonal in every basis and can
be obtained by mixing any two pure points on the surface of this ball, which
are opposite to each other. Such opposite pure points represent orthogonal
pure states.

After taking this example we can, now, conclude that the set of all density
matrices is quite different from the set of classical probability distributions.
Here, one can observe two big differences between these two sets.

1. When there are N outcomes the convex set, in case of the set of classi-
cal probability distributions, forms a (N−1) dimensional convex body,
whereas in case of D, it is a (N2 + 1) = (N + 1)(N − 1) dimensional
convex body.

2. For the set of classical probability distributions, the minimal faces are
edges of the simplexes, as we have seen in the last section whereas for
the set D, minimal faces are 2-faces, which are Bloch balls.

Regarding second difference, we just have observed this for 2 × 2 density
matrices and this is also true in general. This can easily be seen if we
note that any two given states in a N−dimensional Hilbert space, belong
to a 2−dimensional subspace of this space, and in this subspace we can
always found a pair of orthogonal states which span this 2−dimensional
sub-space, therefore all states in this sub-space can be described by 2 × 2
density matrices and we have already seen that the set of such matrices
always forms a Bloch ball. Thus in the set D any two orthogonal states
corresponds to a minimal face which is a Bloch ball.

I want the reader to notice one more thing, there is a theorem on convex
sets, named as Caratheodory’s theorem, which says, any point, which belongs
to a d−dimensional convex set, can be represented by a mixture of d + 1
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Figure 2.5: The Bloch Ball. Pure states marked as a, b and c, d are two different
decomposition of the same density matrix ρ0. Similarly, pure states marked as e, f and g,
h are two different decomposition of a mixed density matrix ρ1.

pure points [10]. This can be seen very easily in case of the set of classical
probability distributions i.e. in simplexes. Thus using this theorem, we can
also conclude that any N ×N density matrix can, in general, be decompose
into at most N2 pure states or in other words the maximum rank of a point
in the set D can be N2. What is special about the set D is that we never
need N2 states, rather we can always decompose a density matrix in only N
pure states, which will be the eigenstates of this density matrix and hence
will diagonalize it.

Before ending this chapter, I also like to mention a consequence of the
first difference between the two sets. Actually, this difference implies that
there can be many different decompositions of a density matrix while this
is not true for the set of classical probability distributions. For example
as we have seen, for the set of classical probability distributions (which are
simplexes), when outcomes N = 2 we get a line segment as a convex body
and any possible values of the probabilities of the two outcomes can be
denoted by a unique coordinate of a point on this segment, this is shown
in fig (2.4-A). Similarly this is true for any d−simplex by regarding it in
N = (d + 1) dimensions. Whereas, for the same value of N = 2, every
member of the set D is 2×2 density matrix and the whole set is a ball which
is a 3-dimensional object. Therefore it turns out that there is no unique
decomposition of the density matrix except when it is also a projection
operator. We can get the same density matrix by mixing different pure
states. This is shown in figure (2.5). The situation is even worse for higher
values of N , because then D will be (N2 − 1) dimensional convex body,
thus any N × N density can be decompose in many different ways. This
important fact was first noted by Schrödinger and he coded it in a theorem
called Schrödinger mixture theorem [3].
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Schroödinger’s Mixture Theorem

According to this theorem any density matrix which has the diagonal form

ρ =
N∑

i=1

λi|ei〉〈ei| (2.9)

where |ei〉 are orthonormal vectors and λi are eigenvalues, can also be written
as

ρ =
m∑

i=1

pi|ψi〉〈ψi| ,
∑

i

pi = 1 , pi ≥ 0 (2.10)

if and only if there exist a unitary m×m matrix U such that

|ψi〉 =
1√
pi

N∑

j=1

Uij
√
λj |ej〉 , i = 1, ....m , m ≥ N (2.11)

Here note that U is not an operator in Hilbert space, rather it is a matrix
whose first row, when multiplied by the list of vectors |ei〉 gives a vector |ψ1〉
and similarly by the multiplication of other row we can get other vectors
|ψi〉. This theorem clearly says, density matrices do not have unique de-
composition, except when they are also projectors, But there is a preferred
decomposition which diagonalize a given density matrix, such a decomposi-
tion is given in Eq. (2.9).





Chapter 3
Spin Coherent States

In the previous chapter, we have seen that the set of density matrices (D)
is quite different from the set of classical probability distributions, conse-
quently, despite the fact that quantum theory is a probabilistic theory, it is
fundamentally different from the classical probability theory. In chapter 1,
we have also seen that the pure coherent states are the most classical states
in quantum mechanics; however the mixtures of these coherent sates can also
be treated as classical. Therefore these mixed states together with pure co-
herent states form the set of classical states and we expect that this set may
have some resemblance with the set of classical probability distributions;
actually this investigation is the main theme of this thesis.

Having said this, now our goal in this thesis is quite clear. After acquiring
necessary background in the last chapter we will now introduce the set of
classical states in this chapter. However, as we know from the last chapter
that the set D is an (N2 − 1) dimensional convex body in the space (V) of
N×N Hermitian matrices with unit trace —where N denotes the number of
possible outcomes— therefore considering the geometry of the set of classical
states, which is a subset of D, for all general values of N is quite difficult.
Hence, in this chapter we will eventually restrict ourselves to the case when
N = 3. The most common examples of such discrete or finite dimensional
quantum systems are spin−1 systems, therefore, from now on we shall talk
in the language of these spin systems only.

Coherent states for these spin systems are know as spin coherent states,
hence, first of all I will tell you what spin coherent states are in Sec. 3.1
and then we will look at the set of these coherent states in Sec. 3.2. At the
end of this chapter in Sec. 3.3, I will introduce the set of classical states,
the central object of study in this thesis.

17
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3.1 Spin Coherent States

Spin Coherent States are simply the coherent states of spin systems. In
the first chapter I mentioned that the coherent states are those states which
minimize the uncertainty relation of position and momentum. However they
do so in a certain way1 that there is one-to-one mapping of classical phase
space onto the space of these states. In a similar manner, spin coherent
states are those states which minimize an uncertainty relation and form a
set that can also be mapped onto the classical phase space, but this time
the uncertainty relation is rather special and such that it is only minimized
by these spin coherent states [3]. If we define ∆ as

∆2 ≡ (∆Jx)2 + (∆Jy)2 + (∆Jz)2 = 〈Ĵ2〉 −
3∑

i=1

〈Ĵi〉2 (3.1)

where Ĵx, Ĵy and Ĵz are the components of angular momentum operator
with eigenvalues j, then this ∆2 obeys the inequality

j ≤ ∆2 ≤ j(j + 1) (3.2)

To arrive at this result note that the 〈Ĵ2〉 = j(j + 1) and as Eq. (3.1)
is invariant under rotation group SU(2) therefore we can always bring the
vector 〈Ĵi〉 to the form

〈Ĵi〉 = 〈Ĵz〉δi3 (3.3)

Now any state |ψ〉 can be expanded as

|ψ〉 =
j∑

m=−j
cm|m〉 ⇒ 〈Ĵz〉 =

j∑

m=−j
m|cm|2 (3.4)

therefore we lead to the inequality

0 ≤ 〈Ĵz〉 ≤ j (3.5)

Now this inequality together with Eq. (3.1) leads to Eq. (3.2) and completes
the proof.

Now, we can define spin coherent states as precisely those states for
which relation given in Eq. (3.2) saturates, i.e. for only spin coherent states
∆2 = j.
Also note that there are other uncertainty relations for spin systems like

∆Jx∆Jy ≥
|〈Ĵz〉|

2
(3.6)

1see chapter 1, for details
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Figure 3.1: An arbitrary unit vector in spherical coordinates.

but this is not the one which is only minimized by spin coherent states e.g.
in spin−1 systems, spin−0 states also minimize the above inequality, but
these are not coherent states. Another reason of why this is not a relevant
uncertainty relation, in our case, is the fact that the right hand side of this
relation is frame dependent— as it contains |〈Ĵz〉| —whereas Eq. (3.1) is
frame invariant. This is important, because, as we will see later in this
chapter, the spin coherent states are invariant under SU(2) rotations, which
suggest that a relevant uncertainty relation must also be invariant [2].

As we have noted that Eq. (3.1) is invariant under rotation group SU(2)
and hence under SO(3) also, therefore we can also regard spin coherent
states as the coherent states of the rotation group SO(3). This provides
us another simple definition for these states. We can define spin coherent
states as the eigenstates of an operator

ẑ.Ĵ =
3∑

i=1

ziĴi (3.7)

with eigenvalues j, where ẑ is an arbitrary unit vector represented in spher-
ical coordinates and Ĵ is the angular momentum operator as before, with
components Ĵi = Ĵx, Ĵy and Ĵz. With polar angle θ and azimuth φ, as shown
in figure (3.1), ẑ can be written as

ẑ =




sin θ cosφ
sin θ sinφ

cos θ


 (3.8)

We can summarize the above definition by saying that a state |ψ〉 will be a
spin coherent state if

(ẑ.Ĵ)|ψ〉 = |ψ〉 (3.9)

This means, physically for some unit vector ẑ a spin coherent state, (called
only “coherent state” in the following for short) represents a spin up state
in some direction.
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Now, if we consider the example of spin−1
2 systems, then according to Eq.

(3.9), a state |ψ〉 will be a coherent state if it is an eigenstate of an operator
(ẑ.σ̂) where σ̂ is the angular momentum operator, whose components in
this case are also known as Pauli Matrices [11] and are written as

σ̂x =
(

0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
(3.10)

However for every pure state, in this case, there exist a unit vector ẑ such
that it is a an eigenstate of (ẑ.σ) and represents a spin up state in ẑ direction.
Therefore, for spin−1

2 systems all pure states are coherent states.
Similarly, for spin−1 systems, any state |ψ〉 will be a spin coherent state

if it is an eigenstates of (ẑ.Ĵ), and in this case a possible representation for
the component of angular momentum operator Ĵ is

Ĵx =
~√
2




0 1 0
1 0 1
0 1 0


 Ĵy =

~√
2




0 −i 0
i 0 −i
0 i 0




Ĵz = ~




1 0 0
0 0 0
0 0 −1




(3.11)

Now for this case, all pure states are not coherent, because there are pure
spin−0 states which do not satisfy Eq. (3.9). In fact the situation is even
worse because in this case, there also exist pure states which are neither
spin−1 nor spin−0 states —namely those states that can be regarded as the
superposition of these spin−1 and spin−0 states— these states will also not
be coherent. Notice that any superposition of spin up and down state is
also a spin up state in a different direction and thus will be a coherent state.
This is also true in spin−1

2 systems. In this thesis we will not go beyond
spin−1 systems.

Before ending this section, I like to tell you that the most intuitive picture
of the spin coherent states can be provided by the Majorana Description of
the spin states [9]. In this description any spin of 1

2n~, where n is a positive
integer, can be represented by a set of n unordered points on the surface of
a sphere. Each such point provides an amount 1

2~ of spin. This is shown in
figure (3.2).

Now in this description, coherent states are those states which corre-
spond to minimum spread and maximum coherence of these points. There-
fore for these states all points coincide at one position. The question, why
such states are regarded as the most classical states, can be answered if
we try to think about quantum mechanical spin as the same phenomenon
as the familiar concept of the spin in classical mechanics, and consider the
points in Majorana description as arrows or axis around which the particle
can rotate. This means that a quantum particle can able to rotate about
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(A) (B)

Figure 3.2: Majorana description for spin states. (A) A spin−3 particle, can be repre-
sented by six independent points on a sphere. (B) Similarly a spin−1 particle is represented
by two independent points and for a spin coherent states both points coincide.

various axes at once. Clearly the most classical situation is the one when all
such axes coincide; this is exactly what happens in the case of spin coherent
states.

3.2 The Set of Spin Coherent States

Before discussing this set, I would like to define what we call an orbit in
group theory. Using the language of vectors we can define an Orbit as a set
of all vectors that can be obtained by the action of a group on a Reference
Vector. Therefore, if we choose our reference vector as a unit vector in the z-
direction and our relevant group is SO(3), then the orbit in this case will be
S2 or the surface of the sphere. We need this concept because spin coherent
states form an SO(3) orbit. Let’s see how.

In the last section we have seen that a spin coherent state is a spin
up state in some direction. Since every point on the surface of a sphere
represents a unique direction, therefore each such point corresponds to a
pure coherent state and thus the set of all pure coherent states forms the
surface of a sphere and we say that the set of these coherent states is an
SO(3) orbit. The reader should note that this sphere or orbit resides in the
state space i.e. in the space of density matrices. Any temptation to think of
this sphere as embedded in a 3−dimensional ordinary space must be resisted.
This become obvious if one notice that a point can represent a State only if
it is in the state space which, in this case, is the space of density matrices.
Actually any spin up state |ψ〉, in the direction of ẑ, is a vector in Hilbert
space and although its associated unit vector ẑ is a vector in 3−dimensional
ordinary space, however its state is represented by its projection operator
which is a density matrix in the space V. As every ẑ vector corresponds
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to a state, therefore, this also implies that the set of spin coherent states is
always a sphere or SO(3) orbit whatever be the value of j.

Now, before ending this chapter I will introduce the set of classical states
in the last section, which is the convex hull of spin coherent states in the
space of density matrices.

3.3 The Set of Classical States

We know that the coherent states are the most classical states in quantum
mechanics. However, for spin systems, as I have already mentioned in the
first chapter, not only coherent states but all other states, which can be
represented as a mixture of these coherent states, are considered as classical,
therefore the set of these classical states form a convex set [4]. Here, we will
call this set %cl.

The set %cl resides in the space of N×N Hermitian matrices (V), which is
an (N2−1) dimensional space. As this set is bounded and has some interior
also, therefore it is a convex body and contained in a much bigger convex
body of density matrices D in the space V. Note that this body contains
all the mixtures of spin coherent states, which means, all pure points in this
body are spin coherent states and thus one can regard %cl as the convex hull
of these coherent states.

This is also true that the dimension of the convex body formed by all
classical states (%cl) is (N2−1). However this is not obvious, because, if one
keep in mind the fact that coherent states form an SO(3) orbit and %cl being
a convex hull of coherent states contained in the body D —which is itself
(N2−1) dimensional—, then one can only expect that the dimensionality of
this body can take any value between 3 and (N2 − 1). In the next chapter,
we will see how one can arrive at this result.

As the set %cl is an (N2−1) dimensional convex body therefore imagining
its shape, in general, is quite hard. The N = 2 case or spin−1

2 systems,
provides the simplest example. In this case %cl is a (22− 1) = 3 dimensional
convex body. Since all pure states of a spin−1

2 system are coherent states,
therefore the convex hull of these coherent states is the convex hull of pure
states. However we have seen in Sec. 2.5 that when N = 2 the convex hull
of pure states is the entire Bloch ball, therefore the whole ball represents
classical states or in other words every state in spin−1

2 systems is a classical
state. Hence for N = 2,

%cl = D
When N = 3, i.e. for spin−1 systems, %cl is a convex body in an

8−dimensional space of 3× 3 density matrices. In contrast to spin−1
2 case,

here all pure states are not coherent states. This is because there are pure
states with spin−0, which are neither coherent nor their convex sum, there-
fore these states are not considered as classical. Furthermore any pure state
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which involve superposition of these spin−0 states are not classical as well.
Hence convex hull of coherent states (%cl) is the subset of D i.e.

%cl ⊂ D

In this thesis, we will study the convex geometry of this set. This means,
in the following chapters we will be restricted to 3×3 density matrices, which
can describe all pure and mixed states of a spin−1 system or a qutrit. This
also implies that from now on our Hilbert space will be 3−dimensional,
which we represented as H3.





Chapter 4
Magical Basis

In quantum mechanics, we represent states of a system by vectors in Hilbert
space. However not every vector in Hilbert space represents a unique state,
instead all vectors that are complex multiple of a given vector represent
the same physical state. This fact provides us more freedom than only
normalizing states vectors. Using it we can also write our state vectors in a
way that its real and imaginary parts become orthogonal. Soon we will see
that this representation is useful in our case. The second very useful fact
that we need in this chapter is about spin coherent states, namely that they
are the coherent states of the rotation group SU(2). Using these facts and
taking the advantage of our restriction in this thesis to the 3−dimensional
Hilbert space (H3), in this chapter I shall introduce a representation or basis,
known as Magical Basis, which considerably simplifies our formulae as well
as calculations in the later chapters.

In the light of the first fact, described above, the idea behind the magical
basis can be expressed nicely, as the spin coherent states are the coherent
states of the rotation group SU(2), and fortunately —due to the fact that
SU(2) ∼ SO(3) which I explain later— there exist a real 3−dimensional rep-
resentation for this group, therefore we can use this real representation for
the description of our spin coherent states. The advantage of using this rep-
resentation is that it will preserve the split between real and imaginary parts
of the state vectors which in turn simplifies the representation of the spin
coherent states and hence can also simplify our calculation and formulae.

This chapter is divided into three sections. In Sec. 4.1, I shall explain,
how one can split state vectors into real and imaginary parts that represent
two orthogonal vectors. Then in Sec. 4.2 we will see what will be the com-
ponents of angular momentum operator— the generators of the rotations—
which preserve this split. Then in the Sec. 4.3, we will see how coherent
states look like in this basis. In the end, in Sec. 4.5, we will briefly reconsider
the set of all classical states in the light of this new basis.

25
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4.1 State Vectors in Magical Basis

In quantum mechanics the states of a system are represented by vectors in
Hilbert space. This is a complex vector space, which means every vector in
it has some real and imaginary parts. However not every vector in Hilbert
space corresponds to a unique quantum state, rather we can say that each
direction or a ray in this space represents only one quantum state. Math-
ematically this means, a vector |ψ〉 and its complex multiple c|ψ〉 where
c ∈ C, represents the same physical state. Note also that we can always
split the complex multiple c into two parts i.e.

|ψ〉 ∼ c|ψ〉 = Aeiφ|ψ〉 (4.1)

where A is a real number and eiφ is a complex phase factor. We usually
choose the real number A such that it normalizes our state vector. Then
the only freedom left is due to the phase factor. Now, we will use this
freedom to write our state vectors in such a way that its real and imaginary
parts become multiple of two orthonormal vectors [8].

Suppose |ψ〉 represents a normalized vector in Hilbert space then we can
write it in real and imaginary parts as

|ψ〉 = a + ib (4.2)

Since |ψ〉 is normalized therefore we can write a = cosσ x̂, and b = sinσ ŷ
where x̂ and ŷ are unit vectors in the direction of a and b, then Eq. (4.2)
becomes

|ψ〉 = cosσ x̂ + i sinσ ŷ (4.3)

Now normalization of |ψ〉 means

〈ψ|ψ〉 = |a|2 + |b|2 = cos2 σ + sin2 σ = 1 (4.4)

Here we have used the fact that x̂ and ŷ are unit vectors.
In general x̂ and ŷ need not be orthogonal. If they are orthogonal then

our task to split |ψ〉 into desired form has been accomplished. Otherwise,
we can always make them orthogonal by multiplying |ψ〉 by a phase factor.
To see this, consider x̂ and ŷ are not orthogonal then using phase freedom
we can write Eq. (4.3) as

|ψ〉 ∼ eiφ|ψ〉 = (cosφ+ i sinφ)(cosσ x̂ + i sinσ ŷ)

⇒ |ψ〉 = (cosφ cosσ x̂− sinφ sinσ ŷ) + i(sinφ cosσ x̂ + cosφ sinσ ŷ)
(4.5)

if we suppose

X = (cosφ cosσ x̂− sinφ sinσ ŷ) (4.6a)
Y = (sinφ cosσ x̂ + cosφ sinσ ŷ) (4.6b)
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and demand that X.Y = 0 then it will lead to the condition

tanφ− 1
tanφ

=
cos2 σ − sin2 σ

sinσ cosσ(x̂.ŷ)
(4.7)

This equation can be solved to get a value of φ which make X and Y
orthogonal. Now using unit vectors in the direction of X and Y we can
write |ψ〉 as in Eq. (4.3) such that real vectors x̂ and ŷ will now be the unit
vectors of X and Y and orthonormal. Hence using this procedure we can
always write a state vector |ψ〉 in a way that its real and imaginary parts
are orthogonal.

In this representation we can also restrict σ as, 0 ≤ σ ≤ π
4 . With this

restriction our state vectors will be such that that their real parts will always
be greater than their imaginary parts. Note that if one restrict σ as said
then he will never come across to purely imaginary state vectors, however
purely real vectors are allowed. Having done this the phase factor is thereby
fixed up to a sign, except when σ = π

4 in which case the phase ambiguity
still remains.

4.2 Angular Momentum Operator in Magical Basis

First of all note that we can define spin coherent states of spin−1 systems,
as the eigenstates of an operator (ẑ.Ĵ) with eigenvalues j = 1, therefore it is
quite clear that if we want some nice properties in our representation of spin
coherent states then we not only choose a better representation for our state
vectors, but we will do this for the operator Ĵ also. In the previous section
we learnt how to split a state vector into real and imaginary parts that
are multiple of orthonormal vectors, now in this section we will introduce a
representation of the operator Ĵ which will preserve this split.

In general unitary transformations in H3 mixed up real and imaginary
parts of the state vectors, however as the spin coherent states are the coher-
ent states of the rotation group SU(2), therefore we are interested in only
SU(2) rotations and thus by using real representation of this group we can
restrict ourselves to only those unitary transformations which do not mix
up real and imaginary parts of the state vectors. This all could be quite
confusing for some readers. Does this mean that we are going to perform
some unitary transformations? —to understand things better and answer
such questions we have to go in some details and try to understand how the
operator Ĵ is associated with unitary transformations.

We know that the state vector of a system carries all the information
about its state; therefore we expect that if we rotate an entire system in our
reference frame then its state vector should also undergo a change. However
the state vector does not reside in the ordinary 3−dimensional space, rather
it is a vector in Hilbert space; therefore the state vector for rotated system
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cannot be obtained by just replacing old unrotated position vectors with the
new rotated position vectors. It turns out that the state vector of the rotated
system can be obtained by a unitary transformation of the old unrotated
state vector.

Mathematically, if |ψ〉 represent the state vector of unrotated system
and |ψ〉R of the rotated system, while rotation take place around n̂ with an
angle of φ then

|ψ〉R = R̂(n̂, φ)|ψ〉 (4.8)

where

R̂(n̂, φ) = exp

(
−iφ(Ĵ.n̂)

~

)
(4.9)

where Ĵ is as usual angular momentum operator. Now if Ĵ is Hermitian—
which is always be the case, because it represents the operator of angular
momentum and in quantum mechanics all observables are represented by
Hermitian operators —then R̂ will be unitary. Hence we can conclude that
if we rotate a system in ordinary 3−dimensional space then its state vector
undergoes a unitary transformation in the Hilbert space, which is given in
Eq. (4.8) [11].

The reader should also notice that, for N dimensional quantum system,
Ĵ and R̂ are actually N × N matrices, which act on the Hilbert space of
the system. The components of Ĵ are also called generator of rotations, as
using them we can obtain the state vector of a system which undergoes any
general rotation in ordinary 3−dimensional space. Therefore, they obey the
commutation relation of SO(3) group i.e.

[Ĵi, Ĵj ] = i~εijkĴk (4.10)

and can be described using the same Lie algebra as of SO(3). In our case
i.e. for spin−1 systems Ĵ and R̂ are 3× 3 matrices.

Some reader might still be confused and could ask why we are interested
in rotations here at all. The reason for this, is that we are interested in spin
coherent states, which form an SU(2) orbit in Hilbert space. This means
if we start with a Reference State — which can be a spin up state in z-
direction — then all other spin coherent states can be obtained by this state
through SU(2) rotations. In other words spin coherent states are in fact has
SU(2) rotational symmetry and our representation of Ĵ will be interesting
or advantageous only if the action of an operator (ẑ.Ĵ) on all spin coherent
states will be similar i.e. if it preserves the split between real and imaginary
part for one coherent state, for a particular vector ẑ, then it should also
preserves this split for all other coherent states for some other vectors ẑ.

Now, as we are interested in spin−1 systems, where the components of
angular momentum are 3× 3 matrices, therefore we can take the advantage
of the fact that there exist a real representation of the group SU(2) in terms
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of 3× 3 matrices, and hence we can use this representation to reach all spin
coherent states from our reference state. The benefit of using real represen-
tation is quite clear, in this representation all elements of the group SU(2)
are real unitary matrices —which are then called orthogonal matrices— and
thus all unitary transformation using such matrices preserve our split in real
and imaginary parts, which is a nice achievement.

The reason why we are able to find a real representation here is the
fact that the group we are interested in i.e. SU(2) is homomorphic1to the
group SO(3) i.e. SU(2) ∼ SO(3). Note that all SO(N) groups have real
representations. Hence we can always find such a real representation when
our group of interest is equivalent to any SO(N) group. This idea was first
introduced by William K Wootters [14], who is actually interested in the
entanglement of two qubits, i.e. he is interested in the group SU(2)× SU(2)
which is equivalent to the group SO(4) i.e. SU(2) × SU(2) ∼ SO(4) and
hence magical basis is advantageous for him.

Now we can come to the main objective of this section that is, to suggest
a representation of the angular momentum components. A possible repre-
sentation is given in Eq. (3.11) which clearly not leads to the real unitary
matrices through Eq. (4.9). If we carefully observe Eq. (4.9) then we can
easily conclude that our components of angular momentum should be purely
imaginary, in order that they lead to real unitary matrices R̂. Obviously,
first of all they should be Hermitian, as they are the operator of quantum
observables. Another property that they should posses is that they must
obey the commutation relation given in Eq. (4.10).

In the light of the above discussion and keeping in mind the fact that
SU(2) ∼ SO(3), it is quite clear that we are now seeking for a real representa-
tion of the group SU(2) in terms of the group elements of SO(3). Therefore,
it is advantageous to look at the generator of the group SO(3). The gener-
ators of the group SO(3) are in fact matrices which generates infinitesimal
rotations in ordinary 3−dimesnional space and hence, can be obtained by
differentiation of the rotation matrices [13]. These rotation matrices, which
represent rotation around x, y and z-axis are written as

Rx =




1 0 0
0 cos γ − sin γ
0 sin γ cos γ


 Ry =




cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ




Rz =




cosα − sinα 0
sinα cosα 0

0 0 1




(4.11)

1Means it has many-to-one correspondence with the other group. In this case the
correspondence is 2-to-1.
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A generator Gx corresponding to Rx can be obtained by

Gx =
dRx
dγ

∣∣∣∣
γ=0

(4.12)

In the same way one can also write formulae for the generator of Ry and
Rz. The reader can check that these generators are turn out to be

Gx =




0 0 0
0 0 −1
0 1 0


 Gy =




0 0 1
0 0 0
−1 0 0




Gz =




0 −1 0
1 0 0
0 0 0




(4.13)

However, these are neither Hermitian nor purely imaginary, although
one can check that they obey the commutation relation given in Eq. (4.10),
therefore we cannot use them as it is. Now we suggest that the three matrices
which are purely imaginary, Hermitian and obey the commutation relation
of Eq. (4.10), could be

L̂x = i




0 0 0
0 0 −1
0 1 0


 L̂y = i




0 0 1
0 0 0
−1 0 0




L̂z = i




0 −1 0
1 0 0
0 0 0




(4.14)

The careful reader might have noticed that I just have placed an i in front of
previous generators. We can write these three matrices in a compact form,
using Einstein summation convention as

(L̂i)ab = iεaib (4.15)

It is easy to check that these are purely imaginary, Hermitian and obey the
commutation relation

[L̂i, L̂j ] = iεijkL̂k (4.16)

that is we have accomplished our task in this section. Now in the last section
we will see how our magical representation simplifies the representation of
spin coherent states.

4.3 Spin Coherent States in Magical Basis

First of all note that when we write our state vector in the form

|ψ〉 = cosσ x̂ + i sinσ ŷ
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then it is clear that we are writing x̂ and ŷ using following basis vectors,

êx =




1
0
0


 , êy =




0
1
0


 , êz =




0
0
1


 (4.17)

Another important thing is that in magical basis σ is invariant. We can see
this if we calculate 〈ψ∗|ψ〉 —where ψ∗ is the complex conjugate of ψ— as
follows

〈ψ∗|ψ〉 = (cosσ x̂ + i sinσ ŷ)(cosσ x̂ + i sinσ ŷ)

= cos2 σ x̂.x̂ + i sin2 σ ŷ.ŷ + 2(x̂.ŷ) cosσ sinσ

Now if we use the fact that x̂ and ŷ are orthonormal vectors then

〈ψ∗|ψ〉 = cos2 σ − sin2 σ

= cos 2σ
(4.18)

As all unitary transformations preserved inner product therefore this prod-
uct will also be preserved which implies that σ will be invariant.

In this representation we have restricted σ as, 0 ≤ σ ≤ π
4 , therefore

our state vectors will either always be real or— whenever complex —have
non-zero real and imaginary parts that are orthogonal.

Now take a purely real state vector, say |ψ〉 = x̂ and form the operator
x̂.L̂ and calculate (x̂.L̂)x̂. In the index notation we can write it as

(xiL̂i)abxb = ixiεaibxb

= iεaibxixb

= 0

(4.19)

here, in the last line we used the fact that the cross product of a vector with
itself is zero. This is actually eigenvalue equation with eigenvalue zero, and
hence we can conclude that all pure spin−0 states are, in fact, represented
as real vectors in this representation.

Now, for spin coherent state, the reader can check that

(ẑ.L̂)
(

1√
2

(x̂ + iŷ)
)

=
1√
2

(x̂ + iŷ) (4.20)

Where x̂, ŷ and ẑ are three orthonormal vectors which form a right handed
system. This means, in this representation spin coherent states always have
σ = π

4 and represent spin up state in a direction which is perpendicular to
both the vectors x̂ and ŷ.

In the light of this simplified representation of our state vectors, we can
now take a brief review of the set of all classical states %cl.
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4.4 The Set of Classical States : A Review

As we have already seen, in the space of Hermitian matrices V, the set of
all density matrices formed a convex body D. All pure points of this body
are actually pure density matrices or projectors which represent pure states.
Spin coherent states form a subset of these pure states. We have also defined
classical states as those states that can be represented as a convex sum of
these coherent states, therefore convex hull of these spin coherent states
formed another convex body %cl, which is contained in D. To study the
geometry of this body for N = 3 is our task in this thesis.

All pure points of %cl represent pure coherent states and using magical
basis we can represent such pure states by their corresponding ẑ vectors.
This ẑ vector —which is perpendicular to both x̂ and ŷ that constitute the
state vector, as shown in Eq. (4.3), where σ = π

4 for pure coherent states—
together with x̂ and ŷ form an orthonormal triad.

For spin−1 systems, %cl is an 8−dimensional body. In the 3rd chapter
I promised you to show that how one can see this. Using magical basis
this is trivial. First, lets take an example of spin−0 states, we can ask
what will be the dimension of the convex body formed by the convex hull
of spin−0 states. To answer this question, notice that in magical basis we
represent spin−0 states by real vectors. This means their corresponding
density matrices will be real symmetric 3× 3 matrices with unit trace. All
such matrices can be written by using five independent variables and hence
we can conclude that all spin−0 states form a 5−dimesional convex body
in D. We can use same procedure for spin coherent states, however notice
that in magical basis these states are represented by complex vectors and
in general there is no way of writing them as real vectors, therefore their
corresponding density matrix will be complex Hermitian matrices with unit
trace. Such 3× 3 matrices can be written by using 8 real variables, thus the
set %cl is an 8−dimensional convex body.



Chapter 5
Classicality of Spin States

Our main task in this thesis is to study the geometry of the set of all classical
states for spin−1 systems. For this study we have developed the necessary
background in the first four chapters and now, in the rest of the chapters
we will explore this geometry.

We know from Sec. 3.4, that a state is called classical state if it is in the
convex hull of the spin coherent states. Moreover, as any state of a quantum
system can be described by a density matrix, therefore, we defined the set of
all classical states as a set of all density matrices (%cl) which represent these
states. As the set %cl is a convex body contained in a much bigger convex
body of the set of density matrices (D) —whose each point represents a
density matrix— therefore to study its geometry it becomes necessary that
we can recognize when a density matrix represents a classical state. To
do this, we will follow the line of Giraud at el [4] and will introduce the
Glauber-Sudarshan P-representation [6, 12] for the spin coherent states in
this chapter. Using the fact that the projectors of coherent states form an
informationally complete basis, in this representation we actually expand a
density matrix as a sum of these projectors and when in this expansion all
coefficients are positive, we say that the decomposed density matrix rep-
resents a classical state. We will also discuss a more direct criterion due
to Giraud at el, to find out whether a given density matrix represents a
classical state or not.

First of all we will define the Glauber-Sudarshan P-representation in
Sec. 5.1, then we will see how one can decompose a density matrix into
projectors of coherent states in Sec. 5.2, this decomposition will show us
how a density matrix of a classical state will look like. Then in Sec. 5.3 we
derive the Giraud’s Z-criterion for P-representability of a density matrix [4].
In the last Sec. 5.4 we will discuss the rank of a density matrix as a point
in the convex set %cl, for spin−1 system. In this chapter our discussion is
similar to Giraud et al [4], however it is much simpler because of the use of
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magical basis.

5.1 The P-Representation

Like coherent states of other systems, spin coherent states also form an
over-complete basis in the Hilbert space. This means, we can write any
Hilbert space vector in terms of these coherent states. However this all
does not mean that we can also write a density matrix in terms of these
states, because a density matrix resides in a different space, which in general
has much higher dimensionality than the corresponding Hilbert space. For
example in our case, when N = 3, our Hilbert space has 3 complex or 6
real dimensions whereas the set all density matrices D is an 8−dimensional
body. Fortunately the set of spin coherent states is also informationally
complete, which means these states can also provide us sufficient numbers
of projectors, that can be used to expand any density matrix. Therefore any
density matrix, when expanded in terms of these projectors, can be written
as

ρ =
∫
dαP (α)|α〉〈α| (5.1)

Where |α〉 represent coherent states and P-function P (α) is real and nor-
malized as

Tr ρ =
∫
dαP (α) = 1 (5.2)

For spin−1 system, as discuss in chapter 2, we need at most N2 = (3)2 = 9
coherent states. Therefore we can write Eq. (5.1) for spin−1 systems as

ρ =
9∑

i=1

pi|α〉〈α| where
9∑

i=1

pi = 1 (5.3)

This decomposition of a density matrix in terms of projectors of coherent
states is called Glauber -Sudarshan P-Representation.

Now, using this P-representation we can define when a given density
matrix represents a classical state. As we have seen in chapter 2 that de-
composition of a density matrix is not unique, therefore we can say that
if there exist a decomposition of a density matrix in terms of the coherent
states1 —as given in Eq. (5.3)— for which all pi are non negative then we
can regard ρ as a convex sum of pure coherent states. In this case the point
represented by this density matrix in the body D will be in the convex hull
of spin coherent states and hence represents a classical state. Here, we fol-
low Giraud, and call such a density matrix as P-Representable or P-Rep for

1Here, we need not to say “in terms of the projectors of coherent states”, as it is clear
form the context. Whenever, it is clear from the context, I will choose this way.
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short. In the next section we will see how such a decomposition looks like
for spin−1 systems.

5.2 The Decomposition of a Density Matrix into The Co-
herent States

In this section first of all we will write the density matrix in a form which we
will found useful later. Then, using magical basis we will expand a density
matrix in terms of pure coherent states.

As we have seen in chapter 2, a density matrix is a Hermitian matrix
with unit trace and positive eigenvalues, therefore we can also write it as

ρ = ρRe + iρIm (5.4)

where ρRe and ρIm are respectively real and imaginary parts of the density
matrix. ρRe is a symmetric matrix with unit trace and ρIm is an anti-
symmetric, traceless matrix. ρIm can always be expressed using an arbitrary
vector u and our components of angular momentum operator L̂ as

ρIm = − i
2

(
u.L̂

)
(5.5)

We can also write the real part ρRe as

ρRe =
1
2

(I−W) (5.6)

where, I is 3× 3 unit matrix and W is a 3× 3, symmetric matrix with unit
trace. The reason why we introduce W here, will be clear later. Now using
Eq. (5.5) and Eq. (5.6) we can write Eq. (5.4) as

ρ =
1
2

(
I−W + u.L̂

)
(5.7)

or in index notation,

ρab =
1
2

(
δab −Wab + (u.L̂)ab

)
(5.8)

Now consider a pure density matrix

ρ = |ψ〉〈ψ| (5.9)

In magical basis |ψ〉 can be written as

|ψ〉 = cosσ x̂ + i sinσ ŷ (5.10)

Where x̂ and ŷ are orthonormal vectors in R3. Now, using Eq. (5.10), we
can write Eq. (5.9) as

ρab = cos2 σ xaxb + sin2 σ yayb − i sinσ cosσ(xayb − yaxb)
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If we consider a vector ẑ perpendicular to both x̂ and ŷ then xayb − yaxb =∑
c εabczc and using Eq. (4.15) we get

ρab = cos2 σ xaxb + sin2 σ yayb + sinσ cosσ (ẑ.L̂)ab (5.11)

Now, as we have restricted σ as, 0 ≤ σ ≤ π
4 , therefore we can consider two

special cases here, when σ = 0, Eq. (5.11) becomes

ρab = xaxb (5.12)

As we know that σ = 0, correspond to spin−0 states therefore we can
say that the density matrices which represent spin−0 states will all be real
matrices. Now, for a coherent states we know that σ = π

4 , in this case Eq.
(5.11) becomes

ρab =
1
2

(
xaxb + yayb + (ẑ.L̂)ab

)
(5.13)

Using completeness relation in R3 i.e. δab = xaxb + yayb + zazb this can be
written as

ρab =
1
2

(
δab − zazb + (ẑ.L̂)ab

)
(5.14)

This is a density matrix for a pure coherent state. Now we can compare it
with Eq. (5.8), and for a pure coherent state we get

W = zazb and u = ẑ (5.15)

This justifies why we have written a density matrix as in Eq. (5.7) and
introduced W.

This all is about a pure density matrix. However, as we know that any
mixture of density matrices is also a density matrix therefore, we can form
a general density matrix in the convex hull of coherent states as

ρ =
n∑

k=1

pk |α〉〈α| (5.16)

where all |α〉 represent coherent states, pk are positive numbers which sum
up to 1 and n is the number of density matrices we mixed up. Using Eq.
(5.14) this can be written as

ρab =
1
2

(
δab −

n∑

k=1

pk z
(k)
a z

(k)
b +

(
n∑

k=1

pk ẑ(k).L̂

)

ab

)
(5.17)

Comparing it with Eq. (5.8) we get

Wab =
n∑

k=1

pk z
(k)
a z

(k)
b and u =

n∑

k=1

pk ẑ(k) (5.18)

Therefore any density matrix which represents a classical state can be
written as given in Eq. (5.17). Note that the point represented by this
density matrix (Eq. 5.17) in the body D has the rank n.
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5.3 The Z-Criterion For Classicality

In this section we will derive a more direct way of finding when a given
density matrix represents a classical state or is P-rep. This criterion is
proposed by Giraud et al [4].

Using W and u as describe in the last section, we can form a matrix Z
given as

Zab = Wab − uaub (5.19)

Suppose Eq. (5.18) do have a solution then Eq. (5.19) becomes

Zab =
∑

ij

pi z
(i)
a z

(j)
b δij −

∑

ij

pipj z
(i)
a z

(j)
b (5.20)

For an arbitrary vector y ∈ R3 we get

ytZy =
∑

i

pi

(
y.ẑ(i)

)2
−
(∑

i

pi y.ẑ(i)

)2

(5.21)

Now if we consider (y.ẑ(i)) = λ(i) then this can be written as

ytZy =
∑

i

pi

(
λ(i)
)2
−
(∑

i

pi λ
(i)

)2

(5.22)

As pi are positive numbers which sum up to 1 therefore we can write it as

ytZy = 〈λ2〉 − 〈λ〉2 = 〈(λ− 〈λ〉)2〉 ≥ 0 (5.23)

Therefore we can conclude that a density matrix is P-rep if and only if Z is
non-negative.

5.4 The Rank of a Density Matrix in %cl

Here, we need to distinguish between the two different concepts referred by
the same term the rank. In matrix theory, the rank is the number of linearly
independent eigenvectors a matrix has. Whereas in convex geometry it is the
minimum number of pure points that must be mixed to get a given point as
a mixture. Although sometimes both concepts referred to the same number
—namely when discussing the body D, the set of all density matrices— but
one should keep in mind that in this work the relevant concept is the later
one i.e. the one which we use in convex geometry.

Here we are interested in the rank of a density matrix i.e. how many
coherent states do we need, to form any general density matrix in the convex
hull of spin coherent states. This number is referred by n in Eq. (5.17).
According to Caratheodory’s theorem —which has been discuss in Sec. 2.5—
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for any general density matrix — i.e. any point in the body D— we only
need 9 pure states. However, for the set %cl which is much smaller then D,
according to Giraud at el [4] the answer is “at most 8” i.e. we need at most
8 pure coherent states to form any density matrix in this convex hull (%cl).
However, we expect that the rank of any density matrix in the convex hull
of spin coherent states may have a value much less than this. Hence in the
later chapter we will try to improve this answer.



Chapter 6
The Geometry of %cl

In this thesis we are representing the space of all N ×N Hermitian matrices
by V. In this space the set of all density matrices forms a convex body D
and the set of all classical states (%cl) is a subset of this body. This subset is
itself a convex body and our aim here is to explore the geometry of this body
for spin−1 systems. Every point of the body D represents a density matrix
and from the knowledge of the chapter 5, we are now able to recognize when
a given density matrix belongs to the set %cl. Therefore, from this chapter,
we can start exploring the geometry of this set.

A possible and simple way to explore this set would be to take a density
matrix from the set D and ask whether it belongs to the set %cl or not.
To answer this question, we can use the Z-criterion introduced in the last
chapter. We will in fact employ this strategy here, however as the set D is an
8−dimensional body, therefore considering the points or matrices from the
whole set D at once will be a difficult task. Instead we will keep the things
simpler in this chapter and only consider 2−dimensional cross-sections of
D, that can be represented by much simpler density matrices. Actually, we
will consider only two simple cases here.

As our first case, in Sec. 6.1 we will consider a general diagonal density
matrix and see for what choice of the diagonal elements, all point represented
by this matrix will belong to the set %cl. After this in Sec. 6.2, we will
apply this same procedure to a set of points in D that can be represented
by another simple but not diagonal density matrix. In the end we will also
see that there is a set of points which is common in both cross-sections, this
means that they intersect each other.

39
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6.1 The Simplest Case:
Diagonal Matrices in %cl

In this section we will consider a general diagonal density matrix and see
what restrictions on its elements we should impose, such that all points
represented by this matrix in the body D belong to the set %cl.

Some reader here may think that this is the only case I need to consider,
because density matrices are Hermitian matrices and like all other Hermitian
matrices we can always diagonalize our 3× 3 density matrices using SU(3)
rotations. However, as explained in the 4th chapter, we are interested here
in spin coherent states which are the coherent states of the rotation group
SU(2), therefore we will restrict ourselves to only those transformation which
transform spin coherent states among themselves. These transformation
will precisely be the SU(2) transformations and thus, we cannot diagonalize
every density matrix. Therefore, while considering diagonal matrices we are
looking only on a subset of D.

To build such a diagonal density matrix, we will use three orthogonal
states which actually represent spin−0 states as shown below

|ψ1〉 =




1
0
0


 |ψ2〉 =




0
1
0


 |ψ2〉 =




0
0
1


 (6.1)

A general density matrix, formed by the convex sum of three states can be
written as

ρ =
3∑

i=1

pi |ψi〉〈ψi| where
3∑

i=1

pi = 1 (6.2)

Now, using the projectors of the above states this equation will lead to the
matrix

ρ =




p1 0 0
0 p2 0
0 0 p3


 (6.3)

If we compare it with Eq. (5.7) we get

W =




1− 2p1 0 0
0 1− 2p2 0
0 0 1− 2p3


 and u = 0 (6.4)

As u = 0 here, therefore, for a diagonal density matrix the condition for
P-rep i.e. Z ≥ 0 reduces to W ≥ 0. In the space of Hermitian matrices, the
set of all density matrices that can be represented by the matrix given in
Eq. (6.3) for all possible values of p1, p2 and p3, is a triangle as shown in fig.
(6.1). The condition W ≥ 0 will tell us that only the portion represented
by inner triangle in this figure is included in the set %cl.
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ρ1 =




1 0 0
0 0 0
0 0 0


 ρ2 =




0 0 0
0 1 0
0 0 0




ρ3 =




0 0 0
0 0 0
0 0 1




ρ =




1
2 0 0
0 0 0
0 0 1

2


 ρ =




0 0 0
0 1

2 0
0 0 1

2




ρ =




1
2 0 0
0 1

2 0
0 0 0




%cl

V
D

Figure 6.1: 2−dimensional cross-section of D showing diagonal density matrices in %cl.
The outer triangle shows the set of all diagonal density matrices formed by convex sum of
the states given in Eq. (6.1) and inner triangle represents that portion of this set which
belongs to set %cl.

6.2 The Second Simplest Case:
More Matrices in %cl

In this case, we will again form a density matrix by using three orthogonal
states, however this time we will take two coherent or spin−1 states and one
spin−0 state. The reason why we are taking only three states at once is that
only three orthogonal states can be shown on a 2−dimensional plot. This
will be much clearer if you imagine a triangle formed by these orthogonal
states as a 2−simplex which resides in a 3−dimensioanl space, as explained
in chapter 2.

Now, if we choose our coherent states as spin up and spin down states in
z-direction, then the reader can check that their state vectors in the magical
basis can be written as

|ψ1〉 =
1√
2




1
i
0


 , |ψ2〉 =

1√
2




0
−i
0


 (6.5)

because, both the real vectors x̂ and ŷ of these states vectors — when written
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ρ1 = 1
2




1 −i 0
i 1 0
0 0 0


 ρ2 = 1

2




1 i 0
−i 1 0
0 0 0




ρ3 =




0 0 0
0 0 0
0 0 1




%cl

V
D

Figure 6.2: Another 2−dimensional cross-section of D showing more matrices in %cl.
The whole triangle represents the set of all points in the set D that can be represented by
the density matrices given in Eq. (6.7) and the shaded region of this figure is that portion
of this set which belongs to set %cl.

as in Eq. (4.20)— will be perpendicular to a vector

ẑ =




0
0
1


 . (6.6)

This ẑ vector is actually the vector which use to refer a coherent state in
the formulas like Eq. (5.17). As ẑ is also perpendicular to both |ψ1〉 and
|ψ2〉 and real, therefore, our third state, a spin−0 state, can be |ψ3〉 = ẑ.

Now, a general density matrix which represents the convex sum of the
projectors of these three states, can be written by using Eq. (6.2) again and
leads to a ρ given as

ρ =
1
2




p1 + p2 −i(p1 − p2) 0
i(p1 − p2) p1 + p2 0

0 0 2p3


 (6.7)

Comparing it with Eq. (5.7) gives

W =




1− (p1 + p2) 0 0
0 1− (p1 + p2) 0
0 0 1− 2p3


 (6.8)
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Figure 6.3: The overlap between the two cross-sections.

and

u.L̂ =




0 −i(p1 − p2) 0
i(p1 − p2) 0 0

0 0 0


 (6.9)

which implies

u =




0
0

p1 − p2


 (6.10)

Therefore, Z will be

Z =




1− (p1 + p2) 0 0
0 1− (p1 + p2) 0
0 0 1− 2p3 − (p1 − p2)2


 (6.11)

Now, again we can depict the set of all points which are represented by
the matrix ρ —given in Eq. (6.7)— in the space of Hermitian matrices as a
2−dimensional plot. This is shown in fig. (6.2). In this figure, we have also
shade off the region of this triangle which is according to Z-criterion belongs
to the set %cl. This figure shows that the set %cl touches the boundaries of
the set D in case of pure coherent states.

Now, as we have taken a non-coherent state common in both the cross-
sections therefore it leads to a set of common points or an overlap in both of
these cross-sections. This overlap can be seen in fig. (6.3). The circle in the
bottom of this figure is that portion of the space V which belongs to the set
D. The portion of this circle which belongs to the set %cl is just the straight
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line which join the two pure coherent states. In the next chapter we will see
that this circle is the projection of a Bloch ball which extend in a different
dimension (4th dimension, note that the set %cl is an 8th dimensional body.)
and the straight line which join the two pure coherent states on this ball is
the minimal face of %cl.



Chapter 7
The Minimal Faces of %cl

After sketching the plots of the set of all classical states for the two simplest
cases in the last chapter, we will now consider the minimal faces of this set
in this chapter instead of considering some more involved cases first.

From chapter 2, we know that a face is a subset of a convex body which
is stable under mixture and purification and the minimal face generated by
a pair of given pure points is the smallest face which contain these points.
We have also seen that the minimal faces of the set of all classical probability
distributions, which are simplexes, actually form edges. This fact motivated
us to investigate the minimal faces of %cl, which is the set of all classical
states. Note that if we keep in mind that the minimal faces of the set of
all density matrices D are actually Bloch Balls then, it is not obvious at all
whether the minimal faces of %cl, which is a subset of D will form edges or
not. This is true or not, actually this investigation is the main theme of this
chapter.

In the light of the fact that %cl is a subset of D, the definition of the
minimal face suggest that all points of a minimal face of %cl must be a subset
of a minimal face of D therefore, we can simply start this investigation by
asking what portion of the minimal face of the set D, which is a Bloch Ball,
belongs to the set %cl. We will consider this question in Sec. 7.1. Then
in Sec. 7.2 we will present a general proof which indeed shows that the
minimal faces of %cl are in fact edges, which in a sense provides additional
motivations for calling %cl the set of all classical states.

7.1 Portion of the Minimal Faces of D in %cl

In this section, we will see what portion of the minimal faces of the set D
belongs to the set %cl for spin−1 systems. In chapter 2, for N = 2 we showed
that the minimal face of D is a Bloch Ball. To see that this is also true for
N = 3, one can form minimal faces of D by taking two arbitrary states
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from this set. These states will always belong to a 2−dimensional subspace
of H3. In this subspace one can find two orthonormal states that can be
used as basis and, hence all other states in this subspace can be written
using them. Now the projector of a general state in this subspace will give a
density matrix and the condition of the positivity of its eigenvalues always
give a sphere, a Bloch ball. Applying the Z-criterion on this density matrix
will give the portion of the Bloch ball, which belongs to the set %cl.

By applying the above procedure we can generate all possible minimal
faces in D. However, instead of considering two arbitrary pure states from
D we will keep the things simple in this section and consider two orthogonal
states. Let them be the pure coherent states in z-direction. States vectors
of these states are shown in Eq. (6.5). Now a general state in the subspace
span by these states will be

|ψ〉 = α|ψ1〉+ β|ψ2〉 (7.1)

The projector of this state will lead to the following density matrix.

ρ =
1
2




1 + (αβ∗ + α∗β) (αβ∗ − α∗β)i− (α2 − β2)i 0
(αβ∗ − α∗β)i+ (α2 − β2)i 1− (αβ∗ + α∗β) 0

0 0 0




This can also be parameterized as

ρ =
1
2




1 + z x− iy 0
x+ iy 1− z 0

0 0 0


 (7.2)

where x, y and z are real parameters. Now, the condition for positive eigen-
values will lead to the same equation as Eq. (2.7) with only difference that
the diameter of the Bloch ball is 2 units now and therefore we conclude that
the minimal faces of the set D for N = 3 are Bloch balls as well. In fact this
is true for any N . To see what portion of this minimal face belongs to the
set %cl we have to calculate Z. To do this, we need W and u which can be
obtained by comparing Eq. (7.2) to Eq. (5.7). The reader can check that
this comparison gives

W =



−z −x 0
−x z 0
0 0 1


 , u =




0
0
y


 (7.3)

Therefore, using Eq. (5.19) Z becomes

Z =



−z −x 0
−x z 0
0 0 1− y2


 (7.4)
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Now calculating the eigenvalues of this matrix, and applying the Z-criterion
i.e. Z ≥ 0 gives

1− y2 ≥ 0 and z = x = 0 (7.5)

To arrive at this result one should also keep in mind that values of x, y and z
are restricted already by Eq. (2.7) with the only difference that the diameter
of the Bloch ball is 2 units now. Now we can ask what portion of the Bloch
ball is represented by the condition of Eq. (7.5). Yes! This represents the
diameter of the Bloch Ball on y-axis, which connects the projectors of our
pure coherent states1 |ψ1〉 and |ψ2〉. You can also recognize this line as the
base of the triangle shown in fig. (6.2) which connect projectors of our states
|ψ1〉 and |ψ2〉. As this is the only portion of the Bloch ball which belongs
to the set %cl, therefore we can conclude that in this case the minimal face
of %cl is actually an edge. In the next section we will prove this assertion in
general.

7.2 Minimal Faces of %cl:
A General Proof

Concluding from the discussion of the last section we can say that some of
the pure points of the body D are pure coherent states, these states lie on
the boundaries of this body and belong to its minimal faces which, as we
have seen, are actually Bloch balls. From the last section we also know that
if the coherent states on a Bloch ball are orthogonal then the portion of this
Bloch ball, that belongs to the set %cl, form an edge which joins these two
pure coherent states. Therefore, as it is also seen in fig. (6.2), in this case
the set %cl touches the boundaries of D, however, this is true in general for
all pure coherent states, because these states are just a subset of the pure
points of D which all lie on the boundaries.

Now, to see that the minimal faces of the set %cl for every pair of pure
points are edges we can look at the different Bloch balls and try to find a
ball which contains more then two coherent states, because if a Bloch ball
only contain two coherent states —orthogonal or not— then the convex hull
of these coherent states will always be a straight line segment which join
these two states and hence will always be an edge. Whereas, if we can find
a third coherent state on a Bloch ball which already contain two coherent
states, then the convex hull of all of these coherent states will not be an
edge and the statement that “The minimal faces of the set %cl are in general
edges.” will not be true.

1you might think that this should be the z-axis not the y-axis in order that it connects
the projectors of the pure coherent states in z-direction. This ambiguity is produced
because the way we parametrized Eq. (7.2) and if we exchange y and z in this equation
we will get 1− z2 ≥ 0 as the relevant condition.
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Now, to prove that “The minimal faces of the set %cl are in general
edges.” we only need to show that there is no Bloch ball in the set D or
no 2−dimensional sub-space (H2) of the space H3 which contains three
coherent states. If we can prove this, then it will mean that any Bloch ball
will contain at most two coherent states and these can always be joined to
get an edge as minimal face.

To start this proof we need three pure coherent states and we can always
make them lie on a latitude circle. Then the three ẑ vectors corresponding
to these states will be

ẑ(1) =




sin θ
0

cos θ


 , ẑ(2) =




sin θ cosφ1

sin θ sinφ1

cos θ


 , ẑ(3) =




sin θ cosφ2

sin θ sinφ2

cos θ




(7.6)
and the states vectors associated with these ẑ vectors will be

|ψ1〉 =



− cos θ
−i

sin θ


 |ψ2〉 =



− cos θ cosφ1 − i sinφ1

cos θ sinφ1 − i cosφ1

sin θ




|ψ3〉 =



− cos θ cosφ2 − i sinφ2

cos θ sinφ2 − i cosφ2

sin θ




(7.7)

To prove that these vectors are linearly independent and hence does not
lie on a sub-space (H2) of H3, we can evaluate the determinant, formed by
these vector, given as

∣∣∣∣∣∣

− cos θ cosφ2 − i sinφ2 − cos θ cosφ1 − i sinφ1 − cos θ
cos θ sinφ2 − i cosφ2 cos θ sinφ1 − i cosφ1 −i

sin θ sin θ sin θ

∣∣∣∣∣∣
(7.8)

Evaluating this and equating it to zero gives

(sinφ1 − sinφ2 − sin(φ1 − φ2))
(
cos2 θ − 1

)
= 0 (7.9)

This equation has only trivial solutions like θ = 0 or φ1 = φ2 etc. which
shows that these three vectors are in fact linearly independent and hence
does not lie on any sub-space (H2) of H3. Therefore minimal faces of %cl
are, in general, actually edges.

In short, %cl being a convex hull of coherent states —which are supposed
to be the most classical states— we expect that this set may have some
resemblance with the set of all classical probability distributions, which are
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simplexes and have edges as their minimal faces. In this chapter, we have
seen that these resemblances are actually present and both sets have edges
as their minimal faces, this is a remarkable fact.





Chapter 8
Rank of States in %cl

In the 5th chapter, we have seen how one can decompose any density matrix
in the convex hull of spin coherent states into a convex sum of n projectors of
the coherent states. Such a decomposition is shown in Eq. (5.17), here, n is
called the rank1 of this density matrix ρ. In this chapter, we will investigate
what the maximum rank is for all of the states in the convex body %cl.

As we have seen in chapter 5, Giraud at el [4] have also considered this
question and actually proved that the answer is at most 8 in this case,
however, using Wootters’ work [14]—which is, in fact, about entanglement
of qubits— we will conclude that the maximum rank of any state in %cl is
actually 4 i.e. any density matrix in the set %cl can be written as a convex
sum of the projectors of only 4 coherent states.

Before discussing this, here, we will first give some supportive proofs for
this claim. We will give two proofs before discussing Wootters’ work. In
Sec. 8.1, we will prove that all states of rank three or less will lie on the
boundaries of the set %cl. Then in Sec. 8.2, we will show that all states
which have rank 4, are actually lie inside the body %cl. In the last Sec. 8.3,
using Wootters work [14] we will conclude that the maximum rank will be
4 for any state which belongs to %cl and we also discuss the method which
lead us to such a set of four states.

8.1 States of Rank Three or Less

Here, our claim is,“All states which have rank three or less lie on the bound-
aries of the set %cl”. To prove this, we will take three coherent states, which
will be represented by their corresponding ẑ vectors, then we will calculate
u and W using Eq. (5.18). Then we can use Z-criterion to see whether
these states lie on the boundaries or inside the body %cl.

1in the convex geometrical sense.

51



52 Chapter 8. Rank of States in %cl

First of all, we need three coherent states. If we note the fact that we
can always make them lie on the same latitude circle on a sphere as we
did in chapter 7, then again the ẑ vectors corresponding to these states will
be same as given in Eq. (7.6), with states vectors shown in Eq. (7.7). A
general density matrix that can be decomposed into these three states can
be written by mixing the projectors of these states using weights p1, p2 and
p3. Note that here,

p1 + p2 + p3 = 1 (8.1)

As, we are interested to calculate Z only, therefore, instead of calculating
density matrix, we can directly calculate u using Eq. (5.18), this will be

u =




sin θ (p1 + p2 cosφ1 + p3 cosφ2)
sin θ (p2 sinφ1 + p3 sinφ2)

cos θ


 (8.2)

and one can also calculate W using formula given in Eq. (5.18), this will be

W =




S2
θ (p1 + p2C2

φ1
+ p3C2

φ2
) S2

θ (p2Cφ1Sφ1 + p3Cφ2Sφ2 ) SθCθ(p1 + p2Cφ1 + p3Cφ2 )

S2
θ

(
p2Cφ1Sφ1 + p3Cφ2Sφ2

)
S2
θ

(
p2S2

φ1
+ p3S2

φ2

)
SθCθ

(
p2Sφ1 + p3Sφ2

)

SθCθ
(
p1 + p2Cφ1 + p3Cφ2

)
SθCθ

(
p2Sφ1 + p3Sφ2

)
C2
θ




(8.3)

here, we represent sin and cos by S and C and subscripts denote the argu-
ments of these fuctions. Now, Z is given by

Zij = Wij − uiuj (8.4)

Using u and W one can easily calculate the matrix Z. The reader can check
that the determinant of this Z will be

|Z| = p1p2p3 sin4 θ cos2 θ (cosφ1 − 1) (cosφ2 − 1)
(cosφ1 cosφ2 + sinφ1 sinφ2 − 1) (1− p1 − p2 − p3) (8.5)

This is identically zero, because p1 + p2 + p3 = 1 for any values of p1, p2

and p3. Now according to Z-criterion, any density matrix that belongs to
%cl must have Z ≥ 0, i.e. we are inside the body of %cl if Z > 0 and Z = 0
represent the boundaries of the set %cl. As in this case Z = 0, therefore we
can conclude that all states with rank three lies on the boundaries.

8.2 States of Rank Four

Here, our claim is “All states which have rank 4 will lie inside the boundaries
of %cl.” In the light of the discussion of the last section, to prove this we
only need to show that in this case Z 6= 0, and equality holds for only trivial
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cases, meaning only when some of these four states overlap or have zero
weight in the convex sum.

To prove this, we need to consider four coherent states. Again as before,
we can make three of these four states to lie on a latitude circle then the ẑ
vectors of these states can be written as

ẑ(1) =




sin θ1
0

cos θ1


 , ẑ(2) =




sin θ1 cosφ1

sin θ1 sinφ1

cos θ1




ẑ(3) =




sin θ1 cosφ2

sin θ1 sinφ2

cos θ1


 , ẑ(4) =




sin θ2 cosφ3

sin θ2 sinφ3

cos θ2




(8.6)

Now, we can mix these states using weights p1, p2, p3 and p4 such that

p1 + p2 + p3 + p4 = 1 (8.7)

then using Eq. (5.18), we can write u as

u =




sin θ1 (p1 + p2 cosφ1 + p3 cosφ2) + p4 sin θ2 cosφ3

sin θ1 (p2 sinφ1 + p3 sinφ2) + p4 sin θ2 sinφ3

cos θ1(p1 + p2 + p3) + p4 cos θ2


 (8.8)

One can also calculate W using Eq. (5.18) and then the matrix Z can also
be calculated using Eq. (8.4). All of these calculations can be performed
easily on Maple. The reader can check that the determinant of this matrix
will Z be

|Z| = 2 p1 p2 p3 p4 sin4 θ1 (cosφ1 − 1) (cosφ2 − 1)

(cos θ1 − cos θ2)2 (1− cos(φ1 − φ2)) (8.9)

This does not identically vanish, meaning that there are some states in the
interior of %cl which have rank 4. Now, if we analyze the determinant of
Z then it reveals that all the factors here indicate that they are zero only
when either the weight for a particular state is zero or if two or more states
overlap, which in any case leads to trivial solutions. Thus we can conclude
that all states with rank 4 must lie inside the body of %cl.

8.3 Finding the Four States

Giraud at el [4] prove that any state belonging to %cl can have a maximum
rank of 8. However, in the last two section we see that no states with
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rank 4 lie at the boundaries of the set %cl, this fact together with an easily
established fact that the totally mixed density matrix has rank four give us
slight indication that the maximum rank of a state inside %cl would be 4.
This is in fact true and there exists a proof due to Wootters [14]. In his
work, one can also find a criterion for P-rep. Wootters’ criterion is more
difficult and tedious to deal with than Giraud’s Z-Criterion [4], but it is
more powerful in the sense that it deals with other things as well. Actually
Wootters deals with a different problem, he is interested in the entanglement
of two qubits and dealing with the group SO(4) ∼ SU(2) × SU(2) and it
turns out that the problem we are interested in, is a special case of his
problem.

As Wootters’ criterion for P-rep is more difficult to use in our case,
therefore, here we will only show that the maximum rank of any state in %cl
is indeed 4 and how one can find these states. Let’s see how one can find
these four coherent states for a given density matrix ρ.

To do this, first of all find out all eigenvectors |ei〉 of ρ with non-zero
eigenvalues, then

ρ =
N∑

i=1

ζi|ei〉〈ei| (8.10)

where ζi are the eigenvalues of ρ and N = 3, in our case. Now sub-normalize
these eigenvectors such that

|vi〉 =
√
ζi|ei〉 ⇒ 〈vi|ṽi〉 = ζi (8.11)

where ṽ represent complex conjugation of a state vector in magical basis.
Then ρ becomes

ρ =
N∑

i=1

|vi〉〈vi| (8.12)

Now according to Schrödinger mixture theorem, described in the chapter 2,
any legitimate decomposition of ρ can be written as

ρ =
m∑

i=1

|wi〉〈wi| (8.13)

such that

|wi〉 =
N∑

j=1

U∗ij |vj〉 (8.14)

Here, m can be greater than N and * represent complex conjugation which
is introduced for later convenience. Note also that, as described in the 2nd
chapter, U is not a Hilbert space operator.
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Now, define a new basis |xi〉 via unitary matrix U such that

|xi〉 =
N∑

j=1

U∗ij |vj〉 (8.15)

then

〈xi| =
N∑

l=1

Uil〈vl| (8.16)

and

|x̃j〉 =
N∑

k=1

Ujk|ṽk〉 (8.17)

Hence

〈xi|x̃j〉 =
N∑

l,k=1

Uil〈vl|ṽk〉Ujk (8.18)

where 〈vl|ṽk〉 is a symmetric but not necessarily Hermitian matrix. If we
define

〈vi|ṽj〉 = τij (8.19)

then
〈xi|x̃j〉 = (UτUT )ij (8.20)

and we want it to be
〈xi|x̃j〉 = λiδij (8.21)

where, λi are square root of the eigenvalues of the non-Hermitian matrix ρρ̃.
This can be achieved, if (UτUT )ij is diagonal. The reader must note that
it is a well known fact that for a Hermitian matrix τij we can always find
a unitary U which diagonalize τij as (UτU †)ij , but here our requirement is
different. Our τij is need not be a Hermitian matrix, moreover we want it
be diagonalized by a unitary U as (UτUT )ij . However, it is true that for a
symmetric matrix τij one can always choose a unitary matrix U such that
(UτUT )ij is diagonal [7]. Moreover, the diagonal elements of (UτUT )ij can
be made real and non-negative, in which case they are the square root of
the eigenvalue of ττ∗. Now, if we note that 〈vi|ṽj〉 = τij then it is clear that
the eigenvalues of ττ∗ are same as the eigenvalues of ρρ̃, therefore we can
achieve desired relation as in Eq. (8.21).

Now the desired four states |zi〉 can be calculated using vectors |xi〉 as

|z1〉 =
1
2

(
eiθ1 |x1〉+ eiθ2 |x2〉+ eiθ3 |x3〉

)

|z2〉 =
1
2

(
eiθ1 |x1〉+ eiθ2 |x2〉 − eiθ3 |x3〉

)

|z3〉 =
1
2

(
eiθ1 |x1〉 − eiθ2 |x2〉+ eiθ3 |x3〉

)

|z4〉 =
1
2

(
eiθ1 |x1〉 − eiθ2 |x2〉 − eiθ3 |x3〉

)

(8.22)
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where phase factor should be chosen so that

3∑

k=1

e2iθkλk = 0 (8.23)

Such phase factors can always be found when λ1 ≤ λ2 + λ3, where λ1 is
the greatest eigenvalue among these three. This condition can be fulfilled
easily if one tries to think each term in the above sum as a line segments in
a complex plane and whenever one can make a triangle with these segments
by choosing appropriate angles θi then this condition can be fulfilled.

With this method, one not only see that there really exist four states
which can be used to write any density matrix in %cl in P-rep form but can
also find these four states.



Chapter 9
The End

Before ending this thesis, I would like to summarize the main facts and
results which we have presented in this work and using these we will see,
what conclusions one can draw.

In general, quantum states reveal non-intuitive phenomena and therefore
the geometry of these states, which is the geometry of the set of density
matrices, is far more complicated than its classical counter part. However,
there exists a set of states called classical states, whose description is much
closer to the classical description of the systems. The idea of this thesis is
to explore the geometry of this set.

In the first chapter, it is said that the most classical states are know as
the coherent states and such states corresponding to spin systems are called
spin coherent states. These spin coherent states are the coherent states of
the rotation group SU(2) and hence they form a 2−sphere (S2). Each such
state, is a spin up state in a certain direction in the ordinary 3−dimensional
space, therefore we can also represent these states by corresponding vectors
in that direction.

The convex hull of spin coherent states is the set of all classical states.
Although, each spin coherent state correspond to a unique vector in a real
3−dimensional ordinary space but the convex hull of these states is not a
ball. This is because, each point in this ball though represent a unique u
—according to Eq. (5.7)— but not a unique W. However, each u and W
correspond to a density matrix which is represented by a unique point in
the convex body D of the set of all density matrices.

For spin−1 systems, the set of all classical states i.e. the convex hull
of spin coherent states, form an 8−dimensional convex body %cl, which is
contained in a much bigger convex body of density matrices D. All point
in the body %cl, represent density matrices that are P-rep. One can use the
Z-criterion proposed by Giraud at el [4], to see when a given density matrix
belongs to the body %cl. We also presented two 2−dimensional cross-sections

57



58 Chapter 9. The End

of this set in two simpler cases. We have also discovered the remarkable
fact that the minimal faces of %cl are also edges, like the set of classical
probability distributions, and this in a sense provides additional motivations
for calling %cl the set of all classical states.

We also present the proofs that all states of rank three or less which
belongs to %cl, are lie on the boundaries, moreover all states with rank four
lie inside this body. In the end, using Wootters work [14], we concluded
that the maximum rank of a state in %cl is actually four, and presented the
method to find such states.
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