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Abstract

The notion of quasi-local mass is examined, speci�cally the de�nitions sug-
gested by Hawking and Geroch. While these are not fully satisfactory as
de�nitions of quasi-local mass, they have nevertheless proven to be useful
tools, for example in proving the positivity of the ADM mass and a version of
the Penrose inequality. The mass de�nitions are evaluated in various special
cases, demonstrating explicitly that they can become negative for some very
simple surfaces. For a few special spacetimes, a class of surfaces is identi-
�ed for which the Hawking mass makes sense. Corrections are made to both
de�nitions in the presence of a non-zero cosmological constant. Furthermore,
the monotonicity of the Geroch mass under the inverse mean curvature �ow
(IMCF) is studied in detail, including a numerical evaluation of the evolution
of a spheroid.
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1 Introduction

In 1915, Albert Einstein published his theory of general relativity, which describes how matter
and energy causes spacetime to curve and give rise to gravity. The Einstein �eld equations,

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (1)

connects the metric tensor gµν , which represents the geometry of spacetime, with the stress-
energy tensor Tµν , which represents the matter and energy content of spacetime. These equations
may look simple, but this is only because their complicated nature is hidden behind the Ricci
tensor Rµν , and the scalar curvature R. These quantities are complicated non-linear functions
of the metric tensor and its derivatives, which makes the equations very hard to solve.

Prior to this, Newtonian mechanics was the theory that best explained gravitation, by the famous
force law

F = G
m1m2

r2
(2)

Where F is the attractive force that objects of mass m1 and m2 experience at a distance r from
each other, and G is Newton's gravitational constant. In this description, gravity was essentially
identical to the electromagnetic force, described by Coulomb's law,

F =
1

4πε0

q1q2

r2
(3)

where q1 and q2 are the electric charges of two objects separated by a distance r, and ε0 is the
vacuum permittivity. Notable di�erences between the two forces is the fact that the electromag-
netic force is much stronger, and can be either attractive or repulsive depending on the signs of
the charges, while the gravitational force is exclusively attractive.

The theory of electrodynamics, which describes the electromagnetic force completely, was already
well established by the time Einstein published his equations. Of central importance is Gauss'
law,

Q =

∫
V

ρqdV = ε0

∮
S

~E · d~S (4)

which states that the total amount of charge Q, which is the integral of the charge density ρq,
inside the closed surface S is given by an integral of the electric �ux over the entire surface.
The importance of this law rests with the fact that it de�nes charge completely in terms of
the electric �eld: it implies that one can uniquely determine the distribution of charge by only
regarding the electric �eld.

The similarities between gravity and electromagnetism made it natural to believe that there
should exist a similar expression for gravity, which would give the total amount of mass contained
within a closed surface:

M =

∫
V

ρmdV =

∮
S

F(gµν , ∂gµν)dS (5)

for some function F of the metric and its derivatives. This would work as a 'quasi-local' de�nition
of mass (in the sense that it is only de�ned for a closed surface) in terms of the geometry of
spacetime. However, such an expression has not been found as of yet. As we shall see, the
problem seems to rest with the mass density.

Mass has a very special status in all of physics, being present in almost any calculation in one
form or another, so it comes as somewhat of a surprise that mass still does not have a satisfactory
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de�nition in the scope of general relativity. To understand why its de�nition is so elusive, we
need another pillar of relativity theory: Einstein's mass-energy equivalence principle

E = mc2 (6)

which is perhaps the most famous equation of all time. This equation states the fascinating
fact that energy and mass are one and the same. This means that mass is a much more
complicated subject than the electric charge of electromagnetism. Everything has energy, even
the gravitational �eld itself! Thus, to de�ne a gravitational equivalence of Gauss' law, one has
to take into account that the �eld itself has mass.

From a more mathematical perspective, this fact is re�ected in the non-linearity of Einstein's
�eld equations. A �eld that obeys non-linear equations exhibits self-interaction, which makes its
behaviour very complicated to describe. On the other hand, �elds described by linear equations,
such as the electromagnetic �eld, obey the superposition principle. This means that the �eld
produced by two sources is the sum of the �elds that would have been produced by the sources
if they were alone. Thus, if one understands how to relate the charge of a simple source like
a point charge to its electric �eld, then the charge of any �eld con�guration can be calculated,
in principle. But this does not apply for gravity, since it does not obey the superposition
principle.

But the story does not end there. There is another equivalence principle1, which states that
gravitational forces are equivalent to those acting in an accelerating frame of reference. In other
words, it is impossible to tell (by local measurements) whether one is standing on the surface of
a gravitating body or if the surface is simply accelerating upwards. This, in turn, implies that
one can �nd a reference frame where the gravitational force (in a single point) goes away: the
free falling reference frame.2

This makes it impossible to connect the gravitational �eld to a mass density in the traditional
sense, since doing so requires attributing a mass to each individidual point in spacetime. If there
is a well-de�ned mass in a single point, then it should cause curvature; but this can always be
transformed away.

Taking gravitational radiation into account, another problem appears. Gravitational radiation
carries mass with it, but by the above argument it is not possible to determine whether there is
gravitational radiation in a single point. Thus, mass may leave a surface through gravitational
radiation, but a local measurement on the surface will not detect this. In other words, there
cannot be a mass �ux density on the surface, even though mass may �ow out.

Understanding the interplay between the geometry of spacetime and the mass contained within
it is evidently very hard. However, it is worth noting that mass actually has a sensible de�ni-
tion in a special case, namely when the spacetime is spherically symmetric. Such a spacetime
cannot produce gravitational radiation, so its dynamics are trivial. This makes it possible to
de�ne the mass contained inside a round sphere, and this is known as the Misner-Sharp mass[1].
Any more general de�nition of quasi-local mass should reduce to this (for spherical surfaces) if
spacetime is spherically symmetric. In addition to this, there are a few properties which are
usually demanded of such a de�nition, such as [2]

1Usually just called 'the equivalence princple', but it comes in many forms, such as the weak and the strong
equivalence principles.

2But if there really is a gravitational �eld, then it is impossible to �nd a frame of reference in which the force
goes away in all points.
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� The mass should be zero in the limit of very small spheres.

� The mass should always be positive.

� For asymptotically �at spacetimes, it should reproduce the total energy content of the
entire spacetime, which is well de�ned in terms of the ADM and Bondi masses.

� If region A contains region B, then the mass of region A should be larger than or equal to
the mass of region B. This is usually referred to as monotonicity.

The ADM [3] [4] and Bondi [5] [4] masses will not be treated in any greater detail in this thesis,
but we shall mention them brie�y here. These are global de�nitions of mass, which can only
be de�ned for spacetime as a whole. This only works if spacetime is asymptotically �at, which
essentially means that the curvature of spacetime goes to zero at in�nity. The entire spacetime
can then be regarded as an isolated system, which makes it possible to de�ne conserved quantities
(in the sense of Noether's theorem) for the entire spacetime, one of which is the total energy.
This approach cannot be applied to de�ne a quasi-local mass, since a �nite region of spacetime
is not an isolated system.3

At this point, the reason for the name of this thesis should be evident: a local de�nition of
mass, which ascribes mass to points in spacetime, is problematic. A global de�nition (ADM),
is already known. A quasi-local de�nition, which only ascribes mass to extended regions, is
necessary.

Over the years, a few notable attemps have been made to write down a de�nition of quasi-local
mass. Two well-known examples are the Hawking [4] and Geroch [6] masses, which are the basis
of study for this thesis. Neither of these ful�ll all the above mentioned properties, but they are
interesting nevertheless: The Geroch mass, which is a slightly modi�ed version of the Hawking
mass, was used to prove the positivity of the ADM mass4 [6][7] and the Riemannian Penrose
inequality [7] [8]. This makes the Hawking mass all the more interesting, since the Geroch mass
is not Lorentz invariant (it requires that one chooses how to divide spacetime into space and
time), while the Hawking mass is. Other notable examples are the masses suggested by for
example Penrose [11] or Wang and Yau [12], but these will not be treated here.

Hopes are that improved understanding of current de�nitions may give the insight required to
�nd the right de�nition: understanding the shortcomings of the current framework is a key
step towards the development of a more rigid theory. This thesis aims to aid in this matter by
evaluating the Hawking and Geroch masses explicitly in some di�erent situations, and drawing a
few conclusions about their behaviour. Along the way, the monotonicty property of the Geroch
mass is studied in detail, and a few new properties of the Hawking mass are highlighted.

Since mass is such a central concept in all of physics, it is of great importance to understand
its role in general relativity. This is crucial if general relativity is to be united with the rest
of physics; for example, the law of conservation of energy is taken for granted in almost all
areas of physics, but it is not even clear if it applies at all in general relativity. As another
example, one of the biggest open problems in physics today is the unison of general relativity
with quantum theory. This problem is intricately tied to the non-local nature of mass, and
having a working de�nition of quasi-local mass would probably help towards the development
of a uni�ed theory.

3Gravity self-interacts, so �nite closed surfaces divide spacetime into two regions which interact gravitationally.
4The original proof by Geroch [6] was incomplete, though, until Huisken and Ilmanen put the �nal bits in

place [7]. However, this was after Schoen and Yau [9], and Witten [10], had proven the positive energy theorem
using other methods.
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2 Background

2.1 Prerequisites and notation

In what follows, it is assumed that the reader has an introductory-level understanding of the
theory of general relativity, and a �rm grasp of tensor analysis and index notation, which will be
used extensively throughout. Things like manifolds, metrics, covariant derivatives and Christo�el
symbols are assumed to be familiar to the reader. Basic solutions of Einstein's �eld equations
like the Minkowski and Schwarzschild metrics are also assumed to be familiar.

Index naming will follow the convention that Greek indices, like µ and ν, are used to index tensors
on four-dimensional spacetime, such as the metric gµν . These indices takes values between 0
and 3, where the zeroeth component is the time component. Sometimes, the corresponding
coordinate label will be used when referencing a speci�c component: grr means g11 if x1 =
r.

It is common to use the Latin letters i, j, k to denote spatial indices, but we shall use them
instead to index tensors on two-dimensional submanifolds. For example, the coordinates on a
two-dimensional surface are labeled ui = (u1, u2) ≡ (u, v).

In places where there is also a three-dimensional hypersurface, tensors on the hypersurface will
be labeled by indices a, b, c. Coordinates on a hypersurface are labeled by ya = (y1, y2, y3).

The Einstein summation convention is in place, which means that repeated indices are summed
over:

xµx
µ =

3∑
µ=0

xµx
µ (7)

Vectors and covectors are usually treated with no distinction, since these are dual. In places
where indices are unwanted, vectors are denoted with an arrow overhead, such as ~n.

2.2 Preliminaries

Before we proceed, it will be necessary to cover some general theory on the geometry of surfaces,
since many of the following calculations rely heavily on this. Some theorems from di�erential
geometry are also covered in appendix B, since these will be required for a proof later on.

2.2.1 Two-surfaces in spacetime

A two-dimensional surface, or simply two-surface, is not a particularily complicated thing to
understand if you live in a three-dimensional world. Unfortunately for us, we shall be considering
two-surfaces in spacetime, which is four-dimensional - and one of those dimensions is timelike,
which makes things even more confusing. Working with these surfaces takes some getting used
to, which is why we will cover their basics �rst.

There are essentially two ways to de�ne a surface; either on parametric form

xµ = xµ(ui), for example


t = 0
r = 1
θ = u1

ϕ = u2

(8)

7



where the parameters ui = (u1, u2), which functions as coordinates on the surface, are mapped
to points xµ = (x0, x1, x2, x3) in spacetime. The second way is to de�ne it implicitly, via a pair
of equations

F1(xµ) = 0 and F2(xµ) = 0, for example x2 + y2 + z2 − 1 = 0 and t = 0 (9)

which are satis�ed by any point that lies on the surface. Notice how two equations are required
to specify a surface in spacetime; each equation removes one degree of freedom. Without the
second equation, the above example would de�ne a three-dimensional hypersurface.

Two-surfaces in spacetime are perhaps harder to understand than three-dimensional hypersur-
faces, because they have co-dimension two; which means that they have two independent normal
directions. In this thesis we shall mostly be concerned with spacelike two-surfaces, which means
that they closely resemble our intuitive notion of a two-dimensional surface, but not quite: the
way in which they are embedded in spacetime requires some re�ection.

A surface of co-dimension two will have two linearly independent normal vectors. For a spacelike
surface, which has two spacelike tangent vectors, these may be spacelike, timelike, or null, but
not both spacelike or both timelike.

This also means that the normal vectors are not quite as unique as they would have been if
the co-dimension was one, since any linear combination of the normal vectors is also a normal
vector. In other words, they span a two-dimensional subspace.

If the surface is given on parametric form, the easiest way to �nd a pair of surface normals is to
�rst �nd the tangent vectors. These are given by

eµi =
∂xµ

∂ui
(10)

It is then relatively straight-forward to solve for the normal vectors by setting up the linear
system of equations

eµ1nµ = 0
eµ2nµ = 0

(11)

and solving for nµ. This system will have two linearly independent solutions, which span the
normal space. However, this method often takes a lot of time. If the surface is instead given
implicitly, then one may �nd a pair of normal vectors directly using the gradient operation:

nµ = ∇µF1, tµ = ∇µF2 (12)

Figure 1: Example: A circle in 2+1
has a timelike normal plane, spanned
by the vectors ~n (spacelike) and ~t
(timelike), or equivalently, the null
vectors ~k+ and ~k−.

One then only has to normalize these to unit length. For
spacelike surfaces, it is always possible to �nd a pair of
null vectors, commonly called ~k+ and ~k−, that span the
normal space.

k+µk
µ
+ = 0 and k−µk

µ
− = 0 (13)

All null vectors are orthogonal to themselves, in the sense
that their inner product with themselves are zero. Thus,
to guarantee that two null vectors are linearly indepen-
dent, one must choose their product to be non-zero. It is
customary to 'normalize' null vectors in such a way that
their product with each other is −2:

kµ+k−µ = −2 (14)
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This is a convention in the same spirit as the convention to normalize basis vectors to unit
length: all formulas used assume this convention.

Note that there is a degree of freedom in the choice of these null normals in the form of a common
boost (if the normal space was spacelike, it would be a common rotation). However, this free
parameter can be selected freely for our purposes, as it will not a�ect any of the calculations we
will make. A simple choice is to write the null normals as the sum and di�erence of a timelike
and spacelike vector of unit lengths:

k±µ = tµ ± nµ where tµt
µ = −1 and nµn

µ = 1 (15)

as illustrated in �gure 1.

2.2.2 The �rst and second fundamental forms

A surface S de�ned on a manifoldM is a submanifold ofM. This means that S inherits a metric
γij from M, the form of which will depend on the metric of M, gµν , and how S is embedded
in M. This metric is usually called the induced metric or simply surface metric, but is more
formally known as the �rst fundamental form of the surface. As should probably be familiar to
the reader, the metric contains information about the intrinsic curvature of the manifold.

To �nd the induced metric, it is easiest to �rst express the surface on parametric form. One may
then either project the manifold metric gµν into the tangent space of the surface by contracting
it with the tangent vectors of the surface:

γij = gµνe
µ
i e
ν
j where eµi =

∂xµ

∂ui
(16)

which is equivalent to taking the product of the tangent vectors:

γij = ~ei · ~ej (17)

or, one may start from the line element ds2:

ds2 = gµνdx
µdxν (18)

and simply substitute the parameterization: xµ = xµ(u) and dxµ = ∂xµ

∂ui
dui. The di�erence

between the two methods is only pragmatic; the latter way is usually easier in practice. For
example, one can quite quickly identify the induced metric on the unit sphere starting from the
�at 3-space metric

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 (19)

by simply setting r = 1 and dr = 0.

In contrast to the �rst fundamental form, the second fundamental form contains information
about the extrinsic curvature of a surface. A very common example used to illustrate curvature
is a �at piece of paper rolled into a cylinder. The distance between any two points on the paper
(along the paper) does not change when it is rolled, which means that it is intrinsically �at; but
something has changed, and this is the extrinsic curvature described by the second fundamental
form. In this sense, the second fundamental form tells us how a manifold has been embedded
into another manifold, which is why it is sometimes called the shape tensor.
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The second fundamental form5 is usually de�ned via the Gauss-Weingarten equation, which is
easiest stated using a notation without indices: let X and Y be vector �elds that are tangent to
the surface, but otherwise arbitrary. Then

∇XY = (∇XY )> + (∇XY )⊥ where − (∇XY )⊥ ≡ K(X,Y ) (20)

where ∇XY is the covariant directional derivative of Y along X. This equation makes a very
simple statement: the directional derivative of Y along X can be divided into a component that
is tangential to the surface, and a component that is orthogonal to it.

The orthogonal component is called the Weingarten tensor K(X,Y ), and is closely related to the
second fundamental form. It is a linear function of X and Y , which follows from the linearity of
the directional derivative - and this is also what makes it a tensor. It is a rank 3 tensor, because
given two vectors X and Y , it gives back a vector that is orthogonal to the surface.

The second fundamental form is then de�ned as the product of the Weingarten tensor with the
normal vector:

K(X,Y ;n) = 〈K(X,Y ), n〉 = −〈∇XY, n〉, (21)

As a function of X and Y , this is a rank 2 tensor. Given any two vectors X and Y , it will return
a scalar which essentially tells us how much the vector �eld Y must change to stay tangential
to the surface as one moves in the direction of X: this is what makes it a measure of extrinsic
curvature.

For surfaces of higher co-dimension than one, the normal vector �eld n is not unique, so the
second fundamental form depends on the choice of normal vector. This re�ects the fact that
such a surface can curve in more than one dimension, which may be illustrated with a simple
one-dimensional object like a circle drawn on a piece of paper. The paper is �at, so the circle
only curves in a single plane. But if one were to roll the paper, the circle will curve in more than
one plane. To answer the question 'what is the curvature of the circle?', one would also need to
specify which curvature to measure. This is done mathematically by specifying a normal vector
with respect to which the second fundamental form can be calculated.

The expression for the second fundamental form may be brought to a more explicit form by
introducing a coordinate basis on the surface and letting the vector �elds X and Y be the basis
vectors eµi = ∂xµ

∂ui
. One then �nds that

K(~ei, ~ej ;~n) ≡ Kij(~n) = −~n · ∇~ei~ej = −nµeαi ∇αe
µ
j = −nµeαi

(
∂eµj
∂xα

+ Γµαβe
β
j

)

= −nµ

(
∂eµj
∂xα

∂xα

∂ui
+ Γµαβ

∂xα

∂ui
∂xβ

∂uj

)
= −nµ

(
∂2xµ

∂ui∂uj
+ Γµαβ

∂xα

∂ui
∂xβ

∂uj

)
(22)

Given a parameterization of the surface, this expression may be used to calculate the second
fundamental form directly.

5with respect to a speci�c choice of normal (if co-dimension is higher than 1).
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2.2.3 Foliating spacetime

Given a four-dimensional spacetime, one may single out a spatial hypersurface by �xing the time
coordinate. For example, letM be the Minkowski spacetime

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2 (23)

Setting t = 0 gives us the �at 3-space described by the metric

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 (24)

This corresponds to the rest space of an inertial observer. This space has a positive de�nite
metric and constitutes a spatial hypersurface, embedded in spacetime. The union of all such
hypersurfaces at constant t makes up all of spacetime. More formally, we can de�ne the hyper-
surfaces Στ as surfaces of constant time, t = τ . Then ∪τ Στ = M. Notice how the concept of
spacetime now has been separated into space, Στ , and time, τ .

This foliation of spacetime can be done in many other ways. For example, one could choose

t2 − r2 = τ2 (25)

giving a series of spatial hypersurfaces Στ (which does not correspond to what an inertial ob-
server sees at any instant) that covers spacetime6, and for any speci�c τ they de�ne an idea of
'space'.

Figure 2: An illustration of the hypersurfaces t2 − r2 = τ2 in the r-t plane. The hypersurface
τ = 0 coincides with the light cone.

A foliation of spacetime can be useful for example when formulating Einstein's �eld equations
as an initial value problem: if the metric is speci�ed at some initial hypersurface determined by
the parameter τ , then the solution is uniquely determined for all τ .7 For our purposes, foliations
will be required when de�ning the Geroch mass later on.

6Not all of spacetime, though. The case τ = 0 is problematic, because then the hypersurface goes from being
spatial to null.

7Provided that the hypersurface is a Cauchy hypersurface, which means that all timelike curves in spacetime
intersect it once.
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2.2.4 Mean extrinsic curvature and the null expansions

We showed above that the second fundamental form may be written as

Kij(~n) = −nµeαi ∇αe
µ
j (26)

where eαi are tangent vectors of the surface S and nµ is a normal vector. It is possible to rewrite
this as

Kij(~n) = −eαi
(
∇α(nµe

µ
j )︸ ︷︷ ︸

=0

−eµj∇αnµ
)

= eαi e
µ
j∇αnµ ≡ ∇inj (27)

where ∇inj is to be interpreted as the projection of ∇µnj into the tangent space of S. Now,
consider the trace of the second fundamental form with respect to the surface metric γij :

K = γijKij(~n) = γij∇inj =
1

2
γij∇(inj) (28)

since the metric is symmetric. We recognize the symmetric derivative as the Lie derivative of
the metric with respect to a vector:

K =
1

2
γijL~nγij =

1
√
γ
L~n
√
γ where γ ≡ det(γij) (29)

where the last equality follows from the well known formula for the derivative of the metric deter-
minant, ∂µγ = γγαβ∂µγαβ . The square root of the metric determinant is the area element dS of
the surface, which means that the trace of the second fundamental form can be interpreted as the
change of the area along the normal direction of the surface. In other words, if one was to displace
the surface outwards, in such a way that the displacement in each point is along the direction of
the normal vector in that point, then the change of the area in that point is proportional to K.8

Figure 3: A heavily curved sur-
face (in cross section) unfolding
under transport in the normal di-
rection, thus increasing its area.

In this sense, K is a measure of the extrinsic curvature of
the surface. A �at surface will not change at all under a dis-
placement in the normal direction, whereas a heavily curved
surface will tend to unfold, as illustrated in the �gure on the
right.

For a two-surface in four-dimensional spacetime,K will depend
on the choice of normals. However, given a foliation of space-
time, there is a natural division of spacetime into space and
time components, such that the spacelike normal ~n of a two-
surface is unique within the hypersurfaces. It is then common
to de�ne the mean extrinsic curvature p of S as

p = γijKij(~n) (30)

which is then a measure of spatial curvature in the sense de-
scribed above. Another common de�nition is the null expan-
sions θ±, which can be de�ned given a pair of null normals
~k±:

θ± = γijKij(~k±) (31)

8There is a technicality in the above argument that is worth mentioning. The normal vector �eld ~n only exists
on the surface, which makes both the regular covariant derivative ∇~n and the Lie derivative L~n problematic,
since these require the comparison of nearby points not necessarily on the surface. However, it is always possible
to continue the normal vectors outward by taking them to be tangent vectors of geodesics that cross the surface
perpendicularly, which allows the derivatives to be de�ned.
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Extending the above argument, we see that these describe the change of the area if one were
to displace the surface along the null vectors ~k±. As such, they describe the expansion and
contraction of wavefronts of light emitted from the surface. However, notice that there is an
ambiguity in their de�nition: the null normals ~k± are not unique, since Lorentz boosting the
normal space yields a new pair of normals that are also null. The act of such a Lorentz boost
on the null expansions is to make one larger at the cost of the other:

θ+ → eαθ+ and θ− → e−αθ− (32)

This re�ects the fact that the amount of expansion and contraction is not an invariant quantity,
but depends on the relative motion of the observer. The signs on these quantities are not
ambiguous, however, which makes the null expansions useful for example in the analysis of black
holes. They can be used to study something called trapped surfaces, which is a surface upon
which both null expansions are negative, meaning that all light fronts emitted from the surface
are contracting. The existence of such a surface implies, under some assumptions regarding the
matter contents, that spacetime will be singular. In other words, they indicate the presence of
a black hole.

Finally, we note that the product of the null expansions is an invariant quantity, one that all
observers may agree upon, since the ambiguous factor above cancels out.
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3 The Hawking Mass

The Hawking mass was introduced by Stephen Hawking in [13]. One of many suggested de�ni-
tions of quasi-local mass, it is perhaps the most widely known even though it is not completely
satisfactory as a de�nition of mass, as will be shown shortly. It makes sense in some special
cases, but not in general. We shall begin by simply stating its de�nition: Given a closed spacelike
two-surface S, the Hawking mass MH is de�ned as

MH =

√
A

16π

(
1 +

1

16π

∮
S

θ+θ−dS

)
(33)

where θ± are the null expansions of the surface and A = Area(S). The �rst observation that
one makes is that it has the proper dimensionality to be a mass - length, in natural units. It is
also an explicit expression which is very straight-forward to calculate. Another observation that
may be made right o� the bat is that if one of the null expansions is zero over the whole surface,
the whole expression reduces down to MH =

√
A/16π. This is exactly what happens on the

event horizon of a stationary black hole. The area of a Schwarzschild black hole is 16πM2, so
the Hawking mass reduces to MH = M on the horizon. As we shall see shortly, the mass of
any spherical surface in the Schwarzschild spacetime will yield the mass MH = M , which is no
accident.

The de�nition of the Hawking mass has its roots in spherically symmetric spacetimes. In such
a case, it is possible to de�ne a mass function M through

M(r) =
r

2
(1− gµν∇µr∇νr) (34)

this is known as the Misner-Sharp mass [1], and it represents the mass contained within spheres
of area radius r. Notice speci�cally how this implies that

grr = 1− 2M(r)

r
(35)

if r is used as a coordinate.

It is possible to de�ne the Misner-Sharp mass only in spherically symmetric spacetimes for a
few reasons. Firstly, there is a well-de�ned radius function r, which may be de�ned in terms of
the area of the special round spheres singled out by the rotation group, along which the mass of
the spacetime must be distributed. Secondly, there is no gravitational radiation in a spherically
symmetric spacetime, so the dynamics of spacetime itself are trivial, eliminating the problem of
mass leaving the surface.

In gravitational models of stars, the Misner-Sharp mass turns out to be the integral of the mass
density of the star [14]

MMS =

∫
4πρ(r)r2dr (36)

as it would have been if space was �at. It would be more natural to expect that the mass should
be

Mexpected =

∫
ρdV =

∫
4πρ(r)r2dr√

1− 2M(r)
r

(37)

where the curvature of space is taken into account in the volume element. The latter mass is
larger, and the discrepancy may in fact be accredited to the gravitational binding energy (which
is negative) being included in the Misner-Sharp mass.
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The Hawking mass of a sphere in a spherically symmetric spacetime evaluates precisely to the
Misner-Sharp mass, so one could say that the Hawking mass is a generalized version of the
Misner-Sharp mass. The Misner-Sharp mass cannot be de�ned when spherical symmetry is
absent, but the Hawking mass may be calculated for any closed surface, in any spacetime. This
was the general idea idea behind its de�nition; to extend the Misner-Sharp mass.

The main feature of the Hawking mass is the null expansions. The idea is that the invariant
product θ+θ− contains information about the surface that re�ects its mass content: the presence
of mass inside the surface a�ects the behaviour of null geodesics that cross the surface. Assuming
this, and demanding that the right answers are produced in the basic cases of Minkowski and
Schwarzschild, one arrives at the Hawking mass. Unfortunately, it does not work for general
surfaces in general spacetimes. What is clear, however, is that it is a measure which is a�ected
by the presence of mass inside the surface, but in a way that is not completely understood. For
this reason, the Hawking mass is still of interest to study.

The Hawking mass ful�lls some of the properties that are wanted of a mass de�nition, but not
all. For example, the Hawking mass of spheres go to zero as their geodetic radius goes to zero
[29], re�ecting the fact that a point should have no mass. If the surface is taken to be a large
asymptotic sphere, the Hawking mass equates to the ADM mass. However, it is not always
positive, which will be shown explicitly in the following calculations.

3.1 Sphere in Minkowski

To begin with, we shall calculate the Hawking mass of a sphere in the �at Minkowski spacetime.
We know a priori that the result is zero, because the Hawking mass was constructed to ful�ll this
criteria; that spheres in empty space has no mass (but not more general surfaces). Nevertheless,
this is a good starting point to illustrate how the Hawking mass is evaluated.

Let M the the Minkowski spacetime, described in spherical polar coordinates by the line ele-
ment

ds2 = gµνdx
µdxν = −dt2 + dr2 + r2(dθ2 + sin2 θdϕ2) (38)

Next, let S be the two-sphere de�ned by constant radius r = R and constant time t = τ .9 A
natural parameterization of this surface is

t = τ
r = R
θ = u = u1

ϕ = v = u2

(39)

where ui = (u, v) are coordinates on S. The �rst step in the calculation is to �nd the null
normals of the surface. We will do this by �nding a timelike and a spacelike normal vector,
which we can then combine to null normals. The simplest way to do this is to express the
surface as the level set of two scalar functions

φ = τ − t and ψ = r −R (40)

9We have to specify the time to de�ne a two dimensional surface; otherwise we would be dealing with a
three-dimensional hypersurface. This particular choice, t = constant, corresponds to the rest space of an inertial
observer.
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So that the gradients of these functions give us the normal (co-)vector �elds tµ and nµ:
10

tµ =
∇µφ√
|∇µφ∇µφ|

and nµ =
∇µψ√
|∇µψ∇µψ|

(41)

which have been normalized to unit length. We �nd that

∇µφ =
∂φ

∂xµ
= −δtµ =⇒ tµ = −δtµ and ∇µψ =

∂ψ

∂xµ
= δrµ =⇒ nµ = δrµ (42)

A remark on the notation: the index t on δtµ refers to the component of the tensor δνµ associated
with the time-coordinate t. Whenever a coordinate label occurs as an index, it should be taken
to mean the component associated with that coordinate. In this case, the gradients came out
with unit length, ∇µφ∇µφ = −1 and ∇µψ∇µψ = 1, which made the normalization trivial.

We may now construct a pair of future directed null normals that span the normal space of
S,

k±µ = tµ ± nµ = −δtµ ± δrµ =⇒ k±µk
µ
± = 0 and k+µk

µ
− = −2 (43)

We now have everything we need to calculate the second fundamental form, which will give us
the null expansions. It is given by

Kij(k±) = −k±µ

(
∂2xµ

∂ui∂uj︸ ︷︷ ︸
=0

+Γµαβ
∂xα

∂ui
∂xβ

∂uj

)
= −k±µΓµαβδ

α
i δ

β
j = −kµ±Γµij = Γtij︸︷︷︸

=0

∓Γrij (44)

since ∂xµ

∂ui
= δµi . One only needs to insert the Christo�el symbols, which can be found in any

standard reference, such as [15]. This yields

Kij(k±) = ±
(
R 0
0 R sin2 θ

)
(45)

We now need the metric on S, so that we may take the trace of Kij(k±). It is found by setting
r = R and dt = dr = 0 in the manifold metric:

ds2 = R2(du2 + sin2 udv2) =⇒ γij =

(
R2 0
0 R2 sin2 θ

)
(46)

allowing us to calculate the null expansions:

θ± = γijKij(k±) = ± R

R2
± R sin2 θ

R2 sin2 θ
= ± 2

R
(47)

which �nally yields the Hawking mass:

MH =

√
A

16π

(
1 +

1

16π

∮
S

θ+θ−dS

)
=

√
4πR2

16π

(
1− 1

4πR2

∮
S

dS

︸ ︷︷ ︸
4πR2

)
= 0 (48)

10Notice that the signs of the functions φ and ψ have been chosen so that the resulting normal vectors will
come out with the right sign: a future-pointing timelike vector and an outward pointing spacelike vector.
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3.2 Sphere in Schwarzschild

As stated above, one of the criteria for the de�nition of the Hawking mass was that it would
yield no mass for spheres in an empty spacetime. Another criterion was that in a Schwarzschild
spacetime of massM , a sphere centered around the black hole would yield the massM . We will
now demonstrate this.

Let M be the Schwarzschild spacetime, described in spherical polar coordinates by the line
element

ds2 = −fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) where f =

(
1− 2M

r

)
(49)

Let S again be the two-sphere de�ned by r = R and t = τ , which has the same parameterization
in terms of ui = (u, v) as in Minkowski. The Hawking mass of S may then be calculated in
much the same fashion as in Minkowski, with some minor modi�cations.

We may use the same functions φ and ψ to �nd timelike and spacelike normals to the surface.
Their gradients come out the same, but their lengths are a�ected by the non-�at metric. We
�nd that

tµ =
∇µφ√
|∇µφ∇µφ|

= −δtµf1/2 and nµ =
∇µψ√
|∇µψ∇µψ|

= δrµf
−1/2 (50)

where the factor f from the metric comes in through the normalization. Thus

k±µ = tµ ± nµ =
(
−f1/2, ±f−1/2, 0, 0

)
(51)

The second derivatives ∂2xµ

∂ui∂uj
vanishes like in Minkowski, so the second fundamental forms may

be calculated as

Kij(k±) = −k±µΓµαβδ
α
i δ

β
j = −kµ±Γµij = f1/2 Γtij︸︷︷︸

=0

∓f−1/2Γrij (52)

Inserting the relevant Christo�el symbols then gives us the second fundamental forms:

Kij(k±) = ±
√
f

(
R 0
0 R sin2 θ

)
(53)

The metric on the surface is the same as in Minkowski, which is easily seen by setting dt = dr = 0
in the line element. Using this, one �nds the null expansions:

θ± = γijKij(k±) = ±
√
fR

R2
±
√
fR sin2 θ

R2 sin2 θ
= ±2

√
f

R
(54)

The Hawking mass may now be evaluated:

MH =

√
A

16π

(
1 +

1

16π

∮
S

θ+θ−dS

)
=

√
4πR2

16π

(
1− f

4πR2

∮
S

dS

︸ ︷︷ ︸
4πR2

)
=
R

2
(1− f) (55)

Notice that f could be moved out of the integral since it only depends on r, which is constant
on the surface. Inserting the expression for f gives

MH =
R

2

(
1−

(
1− 2M

R

))
= M (56)

As was expected.
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Figure 4: A cross-sectional view of the pill-shaped surface.

3.3 Pill-shaped surface in Minkowski

The Hawking mass was designed to work for the previous two examples. For more general
surfaces, things don't work out quite as well. In this section and the next, we shall calculate
the Hawking mass of some simple non-spherical surfaces in the Minkowski spacetime to show
this. As a �rst example, we shall consider the pill-shaped surface that one gets by joining a
cylinder with two hemispheres, as depicted in �gure 4 above. Let SC be the open cylinder of
length L and radius R, given in cylindrical coordinates xµ = (t, r, θ, z) as level surfaces to the
functions

φ = τ − t and ψ = r −R (57)

for −L/2 ≤ z ≤ L/2. This surface may be parameterized as

t = τ
r = R
θ = u = u1

z = v = u2, −L/2 ≤ v ≤ L/2

(58)

Furthermore, let S1 and S2 be the two hemispheres of radius R that close the cylinder into a
pill S = S1 ∪ SC ∪ S2.

The very �rst step is to recognize the fact that we may treat the cylinder and the hemispheres
separately, and that we already have the null expansions of a sphere. We shall therefore only
need to calculate the null expansions of the cylindrical part. In cylindrical coordinates, the
Minkowski line element is

ds2 = −dt2 + dr2 + r2dθ2 + dz2 (59)

We begin by solving for the timelike and spacelike normal �elds:

tµ =
∇µφ√
|∇µφ∇µφ|

= −δtµ and nµ =
∇µψ√
|∇µψ∇µψ|

= δrµ (60)

and the null normals follows as
k±µ = tµ ± nµ (61)

The second fundamental forms of the cylinder are then given by11

Kij(k±) = −k±µΓµαβδ
α
i δ

β
j = −kµ±Γµij = Γtij︸︷︷︸

=0

∓Γrij (62)

The only relevant non-zero Christo�el symbol is Γrθθ = −r. Thus, one �nds that

Kij(k±) = ±
(
R 0
0 0

)
(63)

11Recall that this formula depends on the fact that ∂xµ

∂ui
= δµi , which applies here aswell, but not in general.
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Setting r = R, t = τ and dr = dt = 0 in the line element yields the surface metric:

ds2 = R2dθ2 + dz2 =⇒ γij =

(
R2 0
0 1

)
(64)

Thus, the null expansions are

θ± = γijKij(k±) = ± 1

R
(65)

Now, for the hemispheres, we already know that the null expansions are constant and given by
θ± = ± 2

R .
12 We thereby have

MH =

√
A

16π

(
1− 1

16π

(∮
S1

4

R2
dS1 +

∮
S2

4

R2
dS2 +

∮
SC

1

R2
dSC

))

=

√
A

16π

[
1− 1

16πR2

(
4
(∮
S1

dS1 +

∮
S2

dS2

)
︸ ︷︷ ︸

16πR2

+

∮
SC

dSC

︸ ︷︷ ︸
2πRL

)]

= −
√

A

16π

L

8R

(66)

The total area of the surface is

A = 4πR2 + 2πRL = 2πR(2R+ L) (67)

So that

MH = − L

8R

√
R(2R+ L)

8
= − L

16

√
1 +

L

2R
(68)

Which is strictly negative, and limits to zero in the case L→ 0, when the pill becomes a sphere.
This demonstrates the fact that there exists very simple surfaces for which the Hawking mass
does not give a satisfactory result. However, as will be shown later on, not all non-spherical
surfaces has a negative Hawking mass.

3.4 Spheroid in Minkowski

We will now consider a slightly less trivial example of a surface for which the Hawking mass is
negative, namely the axisymmetric ellipsoid, or spheroid. These are divided into two classes:
oblate spheroids, which are �attened spheres, and prolate spheroids, which are stretched spheres.
The oblate case was presented by D. Hansevi in [16], and we will here extend his calculation to
also deal with the prolate case.

The Hawking mass for both classes of spheroids is negative, and goes to zero in the limit when
the spheroid approaches a sphere. This will be the �rst example of a surface which has non-
trivial geometry, in the sense that the calculation will be a bit more involved. We shall omit
some parts of the calculation that are very similar to the simpler cases treated above.

12Notice the fact that the null expansions are discontinuous: they make a sharp jump from ±1/r to ±2/r at
the stichings of the cylinder and the hemispheres. This makes sense, since a sphere has more curvature than a
cylinder.
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Let S be the spheroid with lateral axis a and vertical axis c, as de�ned implicitly by the equa-
tions

x2

a2
+
y2

a2
+
z2

c2
− 1 = 0 and τ − t = 0 (69)

The lengths of the axes a and c determines whether the spheroid is oblate or prolate: if a is larger
than c, then it is oblate, and vice versa. A natural parameterization of this surface is

t = τ
x = a cos v sinu
y = a sin v sinu
z = c cosu

where
0 ≤ u ≤ π
0 ≤ v ≤ 2π

(70)

We �nd the timelike and spacelike normal vector �elds

tµ = −δtµ and nµ = N
(

0, x
a2
, y

a2
, z

c2

)
where N =

(
x2

a4
+
y2

a4
+
z2

c4

)−1/2

(71)

Using these, we construct the future directed null normals

k±µ = tµ ± nµ =
(
−1, ±Nx

a2
, ±Ny

a2
, ±Nz

c2

)
(72)

Next, we shall calculate the second fundamental forms:

Kij(k±) = −k±µ
(

∂2xµ

∂ui∂uj
+ Γµαβ

∂xα

∂ui
∂xβ

∂uj

)
(73)

For the sphere, we were able to parameterize the surface rather trivially by using spherical
coordinates for spacetime. This meant that the second derivatives, ∂2xµ

∂ui∂uj
, were all zero, which

made the second fundamental forms simple to evaluate. The spheroid, however, does not look
particularily simple in neither spherical coordinates nor cartesian coordinates, but cartesian
coordinates has the bene�t that the Christo�el symbols are all zero. Then one only has to
evaluate the second derivatives:

Kij(k±) = −k±µ
∂2xµ

∂ui∂uj
(74)

Doing so gives

Kuu = ±N
(
x2

a2
+ y2

a2
+ z2

c2

)
= ±N, Kuv = 0

Kvv = ±N
(
x2

a2
+ y2

a2

)
= ±N sin2 u, Kvu = 0

=⇒ Kij(k±) = ±N
(

1 0
0 sin2 u

)
(75)

The induced metric on S is

γij = gµν
∂xµ

∂ui
∂xν

∂uj
=

(
a2 cos2 u+ c2 sin2 u 0

0 a2 sin2 u

)
(76)

So that the null expansions become

θ± = γijKij(k±) = ±N
(

1

a2 cos2 u+ c2 sin2 u
+

1

a2

)
(77)

At this point, we note that

N2 =

(
x2

a4
+
y2

a4
+
z2

c4

)−1

=

(
sin2 u

a2
+

cos2 u

c2

)−1

=
a2c2

a2 cos2 u+ c2 sin2 u
(78)
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To simplify things, we set a2 cos2 u+ c2 sin2 u = R2. Then

N2 =
a2c2

R2
and θ± = ±ac

(
1

R3
+

1

a2R

)
(79)

Now, the Hawking mass may be calculated:

MH =

√
A

16π

1− a2c2

16π

∮
S

(
1

R6
+

1

a4R2
+

2

a2R4

)
dS

 (80)

Solving the above integral, and also �nding the area of the spheroid, is a straight forward but
long calculation which we shall not present here.13 The area of the spheroid is

A = 2πa2

(
1 +

F(χ)

χ
√
|χ2 − 1|

)
where F(χ) ≡

{
arccosh(χ) for χ ≥ 1
arccos(χ) for χ < 1

(81)

and where we have introduced the dimensionless parameter χ = a/c, which tells us how oblate
or prolate the spheroid is. Evaluating the remaining integrals, one �nds that

MH = −a
√

2

16

√
1 +

F(χ)

χ
√
|χ2 − 1|

(
2χ2 − 5

3
+

F(χ)

χ
√
|1− χ2|

)
(82)

If we choose to express the Hawking mass in terms of the area, then the expression becomes a
lot simpler:

MH = −
√

A

16π

(
2χ2 − 8

3
+

A

2πa2

)
≤ 0 (83)

For example, one can see directly that the Hawking mass goes to zero in the limit when the
spheroid becomes a sphere, since then Area(S) = 4πa2 and χ = 1. The Hawking mass as a
function of the parameter χ is plotted in �gure 5, illustrating how it is exclusively negative for
both oblate and prolate spheroids.

Figure 5: Plot of the Hawking mass of a spheroid. The mass is given in units of length (natural
units) in terms of multiples of the lateral axis a. The parameter χ is dimensionless and speci�es
the oblaticity of the spheroid. χ > 1 corresponds to an oblate spheroid, and χ < 1 corresponds
to a prolate spheroid.

13A short comment on how this is done: the area element is dS =
√

det(γ)d2u = Ra sinu du dv. Therefore, all
integrals one has to solve involve odd powers of R, which are irrational functions. These are easiest solved by
substituting cosu = x, which puts the integral on a standard form that can be solved or looked up in a book on
integrals. One then only has to massage the resulting expressions until they look nice.
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4 The Geroch Mass

The Geroch mass is a modi�ed version of the Hawking mass, and was originally introduced by
Geroch to prove the positive energy theorem [6], which states that the globally de�ned ADM
mass is positive. We shall begin by stating the de�nition of the Geroch mass: given a closed
spacelike two-surface S, the Geroch mass MG is de�ned as

MG =

√
A

16π

(
1− 1

16π

∮
S

p2dS

)
(84)

where p = γijKij(~n) is the mean extrinsic curvature and A = Area(S). This requires the choice
of a foliation of spacetime, since p is only uniquely de�ned within a spacelike hypersurface, where
S has a unique spacelike normal vector ~n.

Geroch's proof of the positive energy theorem utilizes the fact that this mass de�nition is mono-
tonely increasing14 if the surfaces are evolved outwards in a very speci�c way, namely the 'inverse
mean curvature �ow'. Under this �ow, each point of the surface is transported outwards along
the normal direction in that point, with a speed that is determined by the inverse mean curva-
ture (1/p) in that point. It is possible to prove that the surface always ends up as an asymptotic
sphere, for which the Geroch mass becomes the ADM mass (provided that the spatial metric is
asymptotically �at) [6]. If the starting surface had a Geroch mass which was greater than or
equal to zero, then the ADM mass must be positive; and this fact is what is called the positive
energy theorem.15 [9] [10] [7]

The fact that the Geroch mass requires a choice of foliation of spacetime means that it is not
intrinsic to the surface of which it is evaluated (in a given spacetime). As such, the Geroch
mass is not very well motivated as a de�nition of quasi-local mass; nor was it intended to be.
It was introduced for another purpose, for which it was very useful, but otherwise su�ers from
the same insu�ciencies as the Hawking mass. Nevertheless, it is of interest to study the Geroch
mass, since it has proven to be such a useful tool in related problems.

4.1 Sphere in Minkowski - Hyperbolic slicing

We shall now give some explicit examples of the Geroch mass of spheres in di�erent folitations
of the Minkowski spacetime. If the foliation is chosen to be the hypersurfaces of constant t = τ
in regular coordinates, then the Geroch mass coincides with the Hawking mass, which is zero.
We shall therefore look at some more interesting foliations, for which the two masses do not
coincide. The calculations will be very similar to the above calculations of the Hawking mass,
so we will leave out steps that are similar.

LetM be the Minkowski spacetime, described in spherical polar coordinates by the metric

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdϕ2) (85)

To begin with, we shall de�ne a foliation of spacetime. Let Στ be the hyperbolic level hypersur-
faces of the function

φ(x) = t2 − r2 (86)

14Under some conditions, detailed in the next section.
15It is worth nothing that Geroch's proof was not complete. In some situations, the mean curvature can go

to zero. The surface will then make a sudden 'jump' outwards, and it was not clear at the time whether the
monotonicity applied in those cases. Huisken and Ilmanen later on proved that the Geroch mass was indeed
monotone under these circumstances, as part of their proof of the Riemannian Penrose inequality.
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Such that the hypersurfaces Στ are surfaces of constant φ = τ2. These surfaces may be param-
eterized as

t = τ coshσ and r = τ sinhσ (87)

so that they are coordinatized by ya = (σ, θ, ϕ) at any constant value of τ (notice the use of the
index a to signify that this is not a vector on spacetime). These hypersurfaces are now our idea
of space, as in all points of constant time τ . We may now, if we like, completely forget about
spacetime and do all our work within Στ , treating τ more like a time parameter in the sense of
Newtonian mechanics.

Using the parameterization, one �nds that the induced metric on this hypersurface is

γab = τ2

 1 0 0
0 sinh2 σ 0
0 0 sinh2 σ sin2 θ

 (88)

Next, we would like to embed a sphere into these hypersurfaces. A sphere Sτ is given by constant
coordinate r = R, which means we must have τ sinhσ = R, for constant τ . We can write this
as a level surface to the function

ψ = τ sinhσ (89)

and we may parameterize the surface in terms of coordinates on Στ as

σ = arcsinh
R

τ
, θ = u, ϕ = v (90)

The next step is to �nd the spacelike normal vector �eld of Sτ . This vector must be tangential
to the hypersurface Στ , since the surface is contained within it. Therefore, it is bene�cial to
solve for the normal vector while working in coordinates ya = (σ, θ, ϕ) on the hypersurface. We
get

na = N∂aF2 =
(

1
τ , 0, 0

)
(91)

which has been normalized with respect to the hypersurface metric (γΣ)ab. Now, while we may
in principle continue working entirely within the hypersurface, it is in fact quicker to go back to
spacetime (this saves us from having to calculate the Christo�el symbols on Στ ). To do this, we
must calculate the 'push-forward' of na:

nµ = na
∂xµ

∂ya
=

1

τ

(
∂t
∂σ ,

∂r
∂σ ,

∂θ
∂σ ,

∂ϕ
∂σ

)
=
(

sinhσ, coshσ, 0, 0
)

=
1

τ

(
r, t, 0, 0

)
(92)

The push-forward may look like a reversed projection, but it is essentially only a re-expression
of the same vector in di�erent coordinates.16 Thus, by construction, this vector is tangential to
Στ .

We may now calculate the second fundamental form of Sτ with respect to nµ in ordinary fashion.
Using the natural parameterization θ = u and ϕ = v to coordinatize the surface, one �nds
that

Kij(~n) = −nµ
∂2xµ

∂ui∂uj︸ ︷︷ ︸
=0

−nµΓµαβ
∂xα

∂ui
∂xβ

∂uj
= − t

τ
Γrαβ

∂xα

∂ui
∂xβ

∂uj
(93)

16So that if one projects an arbitrary spacetime vector onto the surface, and then calculates its push-forward,
one does not, in general, recover the original vector.
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(since Γtαβ = 0 in Minkowski). Inserting the remaining Christo�el symbols leads to

Kij(~n) = τ sinhσ coshσ

(
1 0
0 sin2 u

)
(94)

The metric on Sτ is given by setting dσ = 0 in the metric on Στ .

γij = τ2

(
sinh2 σ 0

0 sinh2 σ sin2 u

)
= R2

(
1 0
0 sin2 u

)
(95)

Yielding the mean curvature:

p = γijKij(~n) =
2

τ tanhσ
(96)

Using the area element dS =
√
γd2u = τ2 sinh2 σ sinududv, we may now calculate the Geroch

mass:

MG =

√
A

16π

(
1− 1

16π

∮
S

p2dS

)
=

√
A

16π

(
1− 1

4π

2π∫
0

π∫
0

τ2 sinh2 σ sinududv

τ2 tanh2 σ

)

=

√
A

16π

(
1− cosh2 σ

)
︸ ︷︷ ︸

− sinh2 σ

= −

√
4πτ2 sinh2 σ

16π
sinh2 σ = −τ sinh3 σ

2
= − R

3

2τ2

(97)

Since the area of a sphere is A = 4πR2 = 4πτ2 sinh2 σ.

We see that the Geroch mass is strictly negative. It is worth noting that it decreases monotoni-
cally with the radius of the sphere, which is due to the nature of the hypersurface that we have
selected. As will be demonstrated in section 5, the Geroch mass is only monotonically increasing
with a maximal hypersurface, which means that their mean extrinsic curvature is zero; and that
is not the case here. As remarked upon earlier, the hypersurface becomes a light cone at τ = 0;
in this case the Geroch mass diverges to negative in�nity. The same thing happens when the
radius goes to very large values, where the hypersurface becomes more and more like a light cone
(τ becomes small in comparison to r). At very large τ and very small radii R, the hypersurface
is approximately �at, and here the Geroch mass is almost zero.

4.2 Sphere in Schwarzschild - Trumpet slicing

We will now consider an example of the Geroch mass in the Schwarzschild spacetime, using a
coordinate description known as the trumpet coordinates [17].

In numerical simulations, it is troublesome to deal with singularities. If one is given the spacetime
metric on an initial Cauchy hypersurface and wants to numerically evolve this solution forward
in time, singularities will make life hard, since various quantities become in�nite. A way around
this problem is to work with a foliation of spacetime in which the singularity is avoided. This is
the idea behind the trumpet coordinates of Schwarzschild; they de�ne hypersurfaces of constant
time that are singularity-free.17

These coordinates can be considered to be a generalization of the Painlevé-Gullstrand (PG)
coordinates [18]. The PG coordinates are de�ned from the point of view of an observer falling

17However, it is noteworthy that this speci�c foliation turns out to not be very useful for computer simulations
in practice, but it demonstrates the basic idea of avoiding the singularity.
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into a Schwarzschild black hole, so that the hypersurfaces of constant time constitute the rest
space of this observer. The PG coordinates are often used to demonstrate that there is nothing
funny going on at the event horizion of a black hole, and that an observer may pass it without
noticing anything special. However, the singularity at r = 0 is problematic, both for the infalling
observer and the computer simulation.

In regular Schwarzschild coordinates, the radial coordinate r is not actually de�ned as the
distance from the center, since the spacetime does not have a point which can be regarded as its
center. Instead, it is indirectly de�ned via the area of spheres: if a sphere has area 4πr2, then its
radius is r. The idea of the trumpet coordinates is to exclude a bit of the interior of the black
hole, and let a sphere with some non-zero area 4πR2

0 de�ne the points r = 0, so that surfaces
of constant r have area 4π(r +R0)2. In the limit R0 → 0, one recovers the Painlevé-Gullstrand
coordinates, which include the singularity.

The name "trumpet coordinates" refers to the fact that the spheres of constant r gets smaller
and smaller as r → 0, but eventually reach a minimum size. In that sense, the geometry of the
spatial slices of constant time is somewhat similar to a trumpet.

In the trumpet coordinates, the Schwarzschild spacetime is given by the line element

ds2 = −fdt2 +
2f1

r
dtdr + f2

2 (dr2 + r2dθ2 + r2 sin2 θdϕ2) (98)

where

f =

(
1− 2M

r +R0

)
, f1 =

√
2r(M −R0) +R0(2M −R0), f2 = 1 +

R0

r
, (0 < R0 ≤M)

(99)
and R0 is a parameter de�ning the area of the innermost sphere, which must be chosen. As
mentioned, the PG coordinates are recovered in the case when R0 → 0. The case R0 = M has a
special status: it gives a metric which approaches Minkowski as 1/r when r is very large; that is
to say, the deviation from Minkowski falls o� as 1/r. This classi�es it as an asymptotically �at
metric. This, in turn, means that the hypersurfaces of constant time have an asymptotically �at
metric, and it is in this case that the Geroch mass approaches the ADM mass of the spacetime
for asymptotically large spheres [6].

Figure 6: Penrose diagram illustrating hypersurfaces of constant t = τ in the trumpet co-
ordinates, plotted here for R0 = 0.995M ,19 and τ = −10,−7.5,−5,−2.5, 0. Notice how the
hypersurfaces avoids the singularity (which is the dashed line at the top of the diagram) by
asymptoting to the curved surface below it, corresponding to the inner sphere at R0.
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These coordinates are constructed in such a way that the spatial metric at any constant time is
conformally �at, which makes the hypersurfaces of constant time easy to deal with. We are going
to use these hypersurfaces to foliate spacetime and then calculate the Geroch mass of embedded
spheres. In other words, let the hypersurfaces Στ be surfaces of constant t = τ , illustrated in
the Penrose diagram in �gure 6.

These hypersurfaces are then coordinatized by ya = (r, θ, ϕ). It is easy to see they have a
conformally �at metric, as per construction:

(γΣ)ab = f2
2

 1 0 0
0 r2 0
0 0 r2 sin2 θ

 (100)

Next, we de�ne the sphere Sτ as the sphere of constant r = R, embedded within Στ . This has
the spacelike normal

na =
(
f2, 0, 0

)
and na =

(
1
f2
, 0, 0

)
(101)

and its push-forward toM is

nµ = na
∂xµ

∂ya
=

1

f2

(
∂t
∂r ,

∂r
∂r ,

∂θ
∂r ,

∂ϕ
∂r

)
=
(

0, 1
f2
, 0, 0

)
(102)

with covariant counterpart

nµ = nνgνµ =
(

f1
rf2
, f2, 0, 0

)
(103)

Now, we choose the natural parameterization θ = u and ϕ = v, which yields the induced
metric

γij = f2
2R

2

(
1 0
0 sin2 u

)
(104)

The second fundamental form is then

Kij(~n) = −nµ
∂2xµ

∂ui∂uj︸ ︷︷ ︸
=0

−nµΓµαβ
∂xα

∂ui
∂xβ

∂uj
= −

( f1

Rf2
Γtαβ + f2Γrαβ

)∂xα
∂ui

∂xβ

∂uj
= R

(
1 0
0 sin2 θ

)
(105)

which requires the Christo�el symbols of the Schwarzschild spacetime in trumpet coordinates;
these are given explicitly in appendix A since these coordinates are not in common usage. This
gives the mean curvature

p = γijKij(~n) =
1

f2
2R

2
·R+

1

f2
2R

2 sin2 θ
·R sin2 θ =

2

Rf2
2

=
2

R

(
1 +

R0

R

)−2

=
2R

(R+R0)2
(106)

So that the Geroch mass is

MG =

√
A

16π

(
1− 1

16π

∮
S

p2dS

)
=

√
A

16π

(
1− R2

(R+R0)4

1

4π

∮
S

dS

︸ ︷︷ ︸
4π(R+R0)2

)

=
R+R0

2

(
1− R2

(R+R0)2

)
= R0 −

R2
0

2(R0 +R)

(107)

19The case R0 = M is perhaps most interesting, but it is numerically problematic to plot. Also, the inner
surface r = 0 becomes hard to see if R0 is not close to M , which is why this value for R0 was chosen.
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It is easy to see that this expression is positive for any choice of R and R0, and that it increases
monotonely from MG = R0/2 at R = 0 to MG = R0 as R→∞. The Geroch mass can thus not
exceed the mass of the spacetime, since R0 ≤M . Setting R0 = 0 gives the Painlevé-Gullstrand
coordinates, and we note that the Geroch mass is identically zero in this case. Setting R0 = M
gives the asymptotically �at metric, and we note that in this case the Geroch mass goes to
MG = M as R → ∞, which is the ADM mass of the spacetime. The two masses agree only in
this case, which is because any other choice of R0 yields a metric which falls o� to Minkowski
too slow to classify as asymptotically �at; so that the Geroch mass does not approach the ADM
mass (while the ADM mass is de�ned for any choice of R0, since it is intrinsic to the spacetime
itself).
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5 Inverse mean curvature �ow

While the Geroch mass is problematic as a de�nition of mass, Geroch showed that his de�nition
of mass is monotonely increasing under the inverse mean curvature �ow (IMCF), which is a
kind of geometric �ow. In this section, we shall perform a thorough analysis of the inverse mean
curvature �ow and the monotonicity of the Geroch mass under this �ow.

The idea behind a geometric �ow is to let a surface evolve continuously outwards (or inwards),
so that one generates a family of non-intersecting surfaces that contain eachother. A geometric
�ow may be de�ned by the equation

∂xa

∂σ
= v(x)na(x) (108)

where xa is the parameterization of the surface, na is the normal vector �eld of the surface and
σ is a parameter that drives the evolution. The local speed of the �ow (the speed at which the
surface moves outward at a point on the surface) is determined by v(x). By letting v(x) be a
function of the local curvature, p(x), one gets a curvature-dependent �ow, which has a lot of
applications [19]. A simple physical example that can be modeled as a curvature-dependent �ow
is an in�ating balloon. If the balloon is not round, but has pointy protrusions (where curvature
is large), these will tend to stretch and �atten out as the balloon expands. One can account for
this by choosing v(x) such that the �ow speed is low where curvature is high.

Other applications of geometric �ow equations range from modeling the spread of forest �res or
the growth of ice crystals in an undercooled liquid, to teaching computers to recognize hand-
written text [19]. Most of these applications regard the evolution of some sort of physical
boundary surface, unlike the more abstract surfaces that we treat here.

The inverse mean curvature �ow is of course given by choosing v(x) to be the inverse of the
curvature. The equation then takes the form

∂xa

∂σ
=

1

p
na (109)

where it's to be understood that both p and n are functions of position on the surface. This
equation may be better understood if we �rst introduce coordinates on the surface such that
xa = xa(u, v). Then, the equation demands that these functions xa(u, v) also depends on a
parameter σ; which we may then think of as a third coordinate. The functions xa = xa(u, v;σ)
then describe one two-dimensional surface with internal coordinates u and v for each σ (so
(u, v, σ) is a coordinatization of three-dimensional space).

This equation is notoriously di�cult to solve. The main reason for this is the very complicated
form of the right-hand side; p and na are in fact non-linear functions of derivatives of the
functions xµ(u, v). To solve the equation, one has to insert the general expressions for both
these quantities, which yields a complicated non-linear partial di�erential equation. One then
solves the equation and supplies the surface that one wants to evolve as initial condition, in
principle.

There are a few highly symmetric cases that can be solved analytically, such as the evolution of
a sphere. The mean curvature of a sphere is constant, and, choosing polar coordinates, so is the
normal vector. The symmetry of the situation means that the sphere must stay spherical during
the �ow, so one does not have to solve the equation in general but may instead solve

∂r

∂σ
=
r

2
(110)
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since the curvature is p = 2/r and the normal vector is entirely in the radial direction. This
equation has the solution

r(σ) = r0e
σ/2 (111)

where r0 is the radius of the initial surface. Note that the equation could be written on this
form because the shape of the surface does not change, so that the functional form of the mean
curvature and normal vector remains the same. A more general surface will change its shape as
it evolves, which means that both p and na changes. If one were to calculate the mean curvature
of a spheroid, say, and insert it as p in the equation above, one would quickly run into problems
as the spheroid evolves into something which is no longer a spheroid, which means that the
expression for p is invalid and the equation breaks down.

The sphere serves as a good guide to how the inverse mean curvature �ow works. One can loosely
think of a more general closed surface as a sphere with funny surface features. Any feature which
protrudes from the surface will have higher mean curvature than the more spherical parts, which
means that it will move outwards slower. The rest of the surface, moving faster, then 'catches up'
with the protrusion, so that it �attens out. The converse happens for �atter parts; they will shoot
out at higher speed than the rest of the surface, so that they become less �at. Thus, deviations
from sphericity become gradually smaller until the surface eventually becomes a sphere.20

5.1 Monotonicity of the Geroch mass

As mentioned previously, Geroch showed that the Geroch mass is monotonely increasing under
the mean curvature �ow [6]. This �ow de�nes a one-parametric family of surfaces, each larger
than and containing the previous one, and the statement is that the Geroch mass contained in
each surface grows as one moves outward.

Geroch originally introduced the Geroch mass for the sole purpose of proving the positive-energy
theorem. It states that the total energy of an asymptotically �at spacetime is positive, provided
that the dominant energy condition holds21 The idea of the proof is rather elegant: for a large,
asymptotically spherical surface, the Geroch mass approaches the ADM mass, which is the
usual de�nition of total mass for a spacetime. An arbitrary surface evolving under inverse mean
curvature �ow will asymptote to a sphere, and the Geroch mass increases as it does so. This
means that as long as one can �nd any surface with MG ≥ 0, the ADM mass will be positive.
This is always possible, since MG → 0+ for small spheres about a point. The monotonicity only
holds in a maximal hypersurface, but these can always be found.

There are some complications that can arise, however. For example, if one starts with a torus,
the torus will grow 'fatter' with the �ow, until, at some point, the 'hole' in the middle will
vanish. When this happens, the surface goes from being toroidal into something that resembles
a spheroid. The topology of the surface makes a very sudden change, which interferes with the
smooth �ow: the surface makes a 'jump'. In addition, a surface can have �at regions, where
the curvature is zero, which also causes jumps in the �ow. It is not at all obvious that the
Geroch mass is monotone if these things are allowed to happen, and Geroch did not adress
this. Therefore, his proof of the positive energy theorem was not complete. However, Huisken
and Ilmanen, in their proof of the Riemannian Penrose inequality [7], put the �nal pieces into

20There are some visual examples of this in the below section on a numerical solution of the inverse mean
curvature �ow.

21There are a few di�erent energy conditions that may be assumed in general relativity, and they essentially
place restrictions on the matter contents of spacetime, for example by excluding negative matter densities. See
for example (ref).
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place and proved that the Geroch mass is monotone even during these jumps. Their set-up even
required starting the �ow with a minimal surface; one which has p = 0 everywhere. In what
follows, we will not go into any greater detail on these issues, but we shall state the proof of
monotonicity as Geroch originally stated it.

Let S be a two-surface with parameterization xµ = xµ(u, v) in terms of the surface coordinates
ui = (u, v). Let the surface be embedded within a spatial hypersurface such that its normal
vector �eld nµ is uniquely de�ned. Let this surface be the initial condition to the equation

∂xµ

∂σ
= φnµ (112)

where σ is a parameter that drives the evolution. This de�nes a family of surfaces Sσ. Given
that φ > 0 and nµ is the outwards facing normal, Sσ2 contains all of Sσ1 if σ2 ≥ σ1. If φ is
chosen to be speci�cally

φ =
1

p
(113)

where p is the mean extrinsic curvature of the surface Sσ, then the Geroch mass

MG =

√
A

16π

1− 1

16π

∮
S

p2dS

 (114)

is monotonely increasing along the �ow. In other words, its Lie derivative22 with respect to the
�ow is positive:

Lφ~nMG ≥ 0 (115)

We will now present the proof of the monotonicity of the Geroch mass as it was originally pre-
sented by Geroch in (ref), but in more detail. For this purpose, some theorems from di�erential
geometry will be required, which are derived in appendix B.

Using the identity
∮
RSdS = 16π, which is true for any closed surface, the Geroch mass may be

written

MG =

√
A

16π

1

16π

∮
S

(
2RS − p2

)
dS

︸ ︷︷ ︸
=W

(116)

To prove that the Geroch mass is monotone under the inverse mean curvature �ow, one must
show that

L 1
p
~nMG ≥ 0 (117)

To make things easier to read, we shall use the overdot notation (ṀG) to denote the Lie derivative
with respect to this �ow. We see that

ṀG =
1√
16π

1

16π

(
Ȧ

2
√
A
W +

√
AẆ

)
(118)

Now, recall from section 2.2.4 the formula

p =
1

2
γijL~nγij =

1
√
γ
L~n
√
γ (119)

22For a scalar, the Lie derivative is the usual directional derivative: Lφ~n = φnµ∇µ.
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The square root of the determinant of the metric is the area element on the surface, so we can
conclude that

1

p
L~ndS ≡ L 1

p
~ndS = dS (120)

Since the total area is the integral of the area element, we �nd (using linearity of the integral)
that Ȧ = A. Note how this fact relies on choosing the speed of to �ow to be speci�cally 1/p.
Using this gives

ṀG =

√
A

16π

1

16π

(
W

2
+ Ẇ

)
(121)

Moving on,

Ẇ = −
∮

2pṗdS −
∮
p2 ˙dS = −

∮
(2pṗ+ p2)dS (122)

We now require the identity describing the second variation of the area. This identity is famously
di�cult to derive, but we have supplied a condensed version of the derivation in appendix B.
Adapted to the case at hand, it states

ṗ = −DiDi
1

p
− 1

2p

(
p2 +KijK

ij −RΣ −RS
)

(123)

where Di is the covariant derivative on S. This gives

Ẇ =

∮ (
RΣ +KijKij + 2pDaD

a 1

p
−RS

)
dS

=

∮ (
RΣ +KijKij −

1

2
p2 + 2pDaD

a 1

p

)
dS −

∮ (
RS −

1

2
p2
)
dS︸ ︷︷ ︸

= 1
2
W

=

∮ (
RΣ + (Kij − 1

2
γijp)(Kij −

1

2
γijp) + 2p2Da

1

p
Da 1

p︸ ︷︷ ︸
≡U2

)
dS − 1

2
W

(124)

Where we've factorized some of the terms into squares so that their positivity is evident. Now,
Gauss' Theorema Egregium, also found in appendix B, together with Einstein's �eld equations,
allows us to relate the intrinsic and extrinsic curvatures of the hypersurface Σ:

RΣ = 2µ+ κijκ
ij − κ2 (125)

Where κij is the second fundamental form of the hypersurface Σ, and κ is the mean extrinsic
curvature of Σ (not to be confused with p, which is the mean extrinsic curvature of S). Under
the assumption that Σ is a maximal hypersurface, which means that κ2 = 0, we �nd that

ṀG =

√
A

16π

1

16π

∮
(2µ+ κabκ

ab + U2)dS (126)

Both κabκ
ab and U2 are squared quantities, so this integral is strictly positive as long as the

energy density µ is not negative, which is a fair assumption23. One can thereby conclude
that

L 1
p
~nMG ≥ 0 (127)

as long as the foliation is chosen so that the spatial hypersurfaces are maximal and the dominant
energy condition holds.

23This is usually called the dominant energy condition (DEC), and essentially means that we've assumed that
there is no matter with negative mass. [20]
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5.2 A numerical solution of IMCF

Finding solutions to geometric �ow equations and understanding them is an important task, not
just in the scope of general relativity, but in many other �elds as well; as we've seen, these types
of equations can be used to model a wide range of problems involving the evolution of boundary
surfaces. In many, if not most, cases, it is not possible to solve these equations analytically, so
that numerical solutions must be pursued instead. It is therefore important to understand how
these kinds of equations may be solved numerically. Part of this thesis was focused on studying
the inverse mean curvature �ow in a special case and producing a numerical solution, to gain
understanding of the problems that needs to be overcome to achieve this.

The inverse mean curvature �ow has a simple solution if the surface starts out as a sphere, as
has been shown above. Anything more complicated than a sphere lacks such a simple solution,
and must be solved numerically in most cases. It was therefore chosen to regard the evolution
of nearly spherical surfaces, namely the spheroids that have been studied earlier in this thesis,
so that the solution could easily be compared to what was expected for a sphere. It is natural
to expect that these surfaces should quickly turn into a sphere under the �ow.

Restricting attention speci�cally to spheroids meant that the algorithm only had to be designed
to deal with these, allowing some simpli�cations to be made. For example, one does not have
to take into account non-convex surfaces, which has curvature of both signs - meaning that the
inverse curvature diverges where the curvature switches sign. Additionally, since the spheroid
is rotationally symmetric, the problem reduces to solving for the evolution of a curve in two
dimensions, so that the minimum amount of data points required to represent the solution is
small.

The mathematical details of the algorithm will be presented below, while an implementation
of the algorihm in MATLAB is presented in appendix C. Figure 7 shows example outputs of
the program for an oblate and prolate spheroid, in cross section. As can be seen, the surfaces
quickly become spherical, at which point the evolution continues outwards exponentially. While
perhaps not so easy to see in the �gure, the surfaces tend to 'unfold' to a sphere �rst, in the sense
that the surface retains the same overall scale, before it starts growing outwards (exponentially).
This can be seen more clearly if the plots are turned into an animated movie, which is included
as a function in the MATLAB program.

32



Figure 7: The result of running the algorithm to evolve an oblate spheroid (left), starting out
with axes a = 4 and c = 1, and prolate spheroid (right), with starting axes a = 1 and c = 4.
The oblate spheroid is plotted in 8 steps from σ = 0 to σ = 1.6 using N = 200 data points,
starting from the inner ellipse and evolving outwards in successive steps. The prolate spheroid
takes longer to 'unfold' into a sphere, due to the fact that it has much larger curvature overall.
It is plotted from σ = 0 to σ = 3.2 in 16 steps, also using N = 200 data points.

5.2.1 Stating the equations

Previous work on similar equations have shown that solutions based on the parametric formula-
tion, in which the IMCF equation is stated, face signi�cant di�culties [21] [22]. To clarify, the
equation reads

∂xa

∂σ
=

1

p
na, (128)

where xa = xa(u1, u2, σ) is a parameterization of the surface in terms of the coordinates ui =
(u1, u2) on the surface and the evolution parameter σ. To discretize the equation, one would
have to express both p and na in terms of the parameterization, which is possible but very
complicated. Instead, as described by J.A. Sethian in [21], [22] and [19], it is much more
e�cient to reformulate the equation using level set methods24.

The idea behind level set methods is to de�ne the surface as a level set of a scalar function, which
shall be named ψ, and regard ψ as the quantity that evolves. This yields an equation for the
evolution of ψ which is equivalent to the parametric form described above, in that it reproduces
the same surface for ψ = constant. We shall now show how this is done in detail.

Let there be a scalar function ψ(xa) so that

ψ(xa(ui;σ))− q = 0 (129)

for some constant q. Thus, the surfaces xa(ui;σ) (at any constant value of σ) are level sets of
ψ. The normal vector �eld of the surface is then given by the normalized gradient of ψ:

na =
∂aψ√
∂bψ∂bψ

(130)

24Level set methods are also used by Huisken and Ilmanen in their proof of the Riemannian Penrose inequality
[7].
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Furthermore, it is evident that

∂ψ

∂σ
=

∂ψ

∂xa
∂xa

∂σ
= ∂aψ

∂xa

∂σ
(131)

Now, taking the IMCF equation and contracting it with ∂aψ gives

∂aψ
∂xa

∂σ
=

1

p
∂aψn

a ⇐⇒ ∂ψ

∂σ
=

1

p

∂aψ∂
aψ√

∂bψ∂bψ
=

1

p
|∂ψ| (132)

according to the above identities. Thus, ψ must obey the equation

∂ψ

∂σ
=

1

p
|∂ψ| (133)

which is an easier equation to handle than what we started with, since ψ is the only un-
known.

Now, since we are restricting ourselves to convex rotationally symmetric surfaces, the problem
simpli�es further: we only have to deal with the evolution of a cross section of the surface, which
is a curve in two dimensions. In standard polar coordinates, this curve can be parameterized as
r = ρ(θ, σ). One can then make the ansatz

ψ = r − ρ(θ, σ) so that ψ = 0 =⇒ r = ρ(θ, σ) (134)

Inserting this into equation 133 yields

− ∂ρ

∂σ
=

1

p
|∂(r − ρ)| = 1

p

∣∣( 1, −ρθ, 0
)∣∣ =

1

p

√
1 +

ρ2
θ

ρ2
(135)

where we've used the notation ∂ρ
∂θ ≡ ρθ for compactness. The equation that needs be solved is

then

∂ρ

∂σ
+

1

p

√
1 +

ρ2
θ

ρ2
= 0 (136)

where p is a (complicated) function of ρ and its derivatives, which we will now solve for.

5.2.2 Mean curvature of a rotationally symmetric closed surface

The assumption so far is that the surface is rotationally symmetric and convex. It is therefore
su�cient to solve for the mean curvature of an arbitrary convex rotationally symmetric surface
(as opposed to using a more general expression that would work for any surface).

As stated above, an arbitrary convex rotationally symmetric surface can be speci�ed by giving
its radius as a function of the polar angle: r = ρ(θ). The metric on the surface is then given
by substituting dr = ∂ρ

∂θdθ ≡ ρθdθ into the Euclidean metric ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2,
giving

ds2 = (ρ2 + ρ2
θ)dθ

2 + ρ2 sin2 θdϕ2 =⇒ γij =

(
ρ2 + ρ2

θ 0
0 ρ2 sin2 θ

)
(137)

The surface is a level surface of the function ψ = r − ρ, which gives the normal vector

na = N∂aψ = N
(

1, −ρθ, 0
)
, nan

a = 1 =⇒ N =

(
1 +

ρ2
θ

ρ2

)−1/2

(138)
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The second fundamental form is given by

Kij(~n) = −na
∂xa

∂ui∂uj
− naΓabc

∂xa

∂ui
∂xb

∂uj
(139)

Thus

Kθθ(~n) = −na
∂2xa

∂θ2
− naΓabc

∂xa

∂θ

∂xb

∂θ
= −Nρθθ − na

(
Γaθθ + Γarrρ

2
θ + 2Γarθρθ

)
(140)

= −Nρθθ −NΓrθθ + 2Nρ2
θΓ

θ
rθ = N

(
ρ− ρθθ + 2

ρ2
θ

ρ

)
(141)

Kϕϕ(~n) = −na
∂2xa

∂ϕ2
− naΓabc

∂xa

∂ϕ

∂xb

∂ϕ
= −naΓaϕϕ = −N(Γrϕϕ − ρθΓθϕϕ) (142)

= N(ρ sin2 θ − ρθ sin θ cos θ) (143)

We do not need to calculate the o�-diagonal elements since the next step is to take the trace
with respect to a diagonal metric. We get the mean curvature:

p = γijKij(~n) =
1

ρ2 + ρ2
θ

N

(
ρ− ρθθ + 2

ρ2
θ

ρ

)
+

1

ρ2 sin2 θ
N(ρ sin2 θ − ρθ sin θ cos θ) (144)

=
1

ρ

(
1 +

ρ2
θ

ρ2

)−1/2(
ρ2 − ρρθθ + 2ρ2

θ

ρ2 + ρ2
θ

+ 1− ρθ
ρ

cot θ

)
(145)

By simply disregarding the ϕ-direction (leaving only the θθ-component of the metric and second
fundamental form), one sees that the contour r = ρ(θ) has the curvature

pcurve =
1

ρ

(
1 +

ρ2
θ

ρ2

)−1/2(
ρ2 − ρρθθ + 2ρ2

θ

ρ2 + ρ2
θ

)
(146)

which is contained in the mean curvature of the surface of revolution. The curvature added by
revolving the curve is thus

pϕ =
1

ρ

(
1 +

ρ2
θ

ρ2

)−1/2(
1− ρθ

ρ
cot θ

)
(147)

The cotangent in this term is obviously problematic for numerical evaluations, since it diverges
at θ = 0 and θ = π. However, this is merely an artifact of the coordinate system: the product
ρθ cot θ will always be �nite so long as the surface is continuously di�erentiable (as this requires
ρθ to go to zero at the poles faster than cot θ diverges), and we shall only be concerned with
such surfaces. But a computer cannot evaluate ρθ cot θ directly if θ is within working precision
of the poles, so one needs to approximate the limits at the poles numerically. This can be done
rather easily by simply using the value of pϕ at the closest neighbouring point. The error in this
approximation will be of order of the spatial resolution (the distance between each point used
to represent the solution) or smaller, which can be seen by Taylor expanding ρθ cot θ around the
poles.
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5.2.3 Discretizing

The di�erential equation may be discretized using a FTCS (Forward-Time Central-Space) scheme25,
which means that the 'time'26 derivative ∂ρ

∂σ is discretized as a 'forward di�erence' and the spatial

derivative ∂ρ
∂θ as a 'central di�erence', de�ned as follows

∂ρ(θ, σ)

∂σ
= lim

δσ→0

ρ(θ, σ + δσ)− ρ(θ, σ)

δσ
Discretized as

→

(
∂ρ

∂σ

)i
n

=
ρi+1
n − ρin

∆σ
(148)

∂ρ(θ, σ)

∂θ
= lim

δθ→0

ρ(θ + δθ, σ)− ρ(θ, σ)

δθ
Discretized as

→

(
∂ρ

∂θ

)i
n

=
ρin+1 − ρin−1

2∆θ
(149)

where ρin is the discrete approximation of ρ(θ, σ):

ρin = ρ(θn, σi) and θn = n ·∆θ, σi = i ·∆σ (150)

where ∆θ is determined by the spatial resolution, i.e. the number of data points used to specify
the initial surface: ∆θ = π/N , where N is the number of points. The 'time' step ∆σ is
determined by a stability condition, which will be detailed in the next subsection. Di�erentiating
again, the second spatial derivative becomes

(
∂2ρ

∂θ2

)i
n

=

(
∂ρ
∂θ

)i
n+1
−
(
∂ρ
∂θ

)i
n−1

2∆θ
=
ρin+2 − 2ρin + ρin−2

4∆θ2
(151)

In terms of the discretized time-derivative, the di�erential equation reads

ρi+1
n − ρin

∆σ
= −1

p

√
1 +

ρ2
θ

ρ2
≡ −F (ρ, ρθ, ρθθ) (152)

therefore, given the solution at some time i, one may propagate it forward in time using

ρi+1
n = ρin − F (ρ, ρθ, ρθθ) ·∆σ (153)

where the spatial derivatives of the right hand side are taken to be the discretized derivatives
detailed above.

25Good references for numerical algorithms are for example [23] and [24].
26We shall continue referring to σ as a time-parameter, since it is easiest to think of it in this way. However,

recall that it was introduced simply as a parameter for a family of surfaces.
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5.2.4 Stability

All computer algorithms su�er from numerical errors, mainly due to the fact that a computer
cannot work with in�nite precision, which means that it rounds all numbers up to a signi�cant
digit determined by the working precision. There are other sources of errors too, such as approx-
imations that have been built into the algorithm. These errors will propagate forward through
each iteration, and may grow larger each time; in addition to the fact that new round-o� errors
are added in each individual numerical evaluation.

These errors may in fact grow so fast that they overtake the solution in a very short time, render-
ing the computation useless. How fast the errors grow will depend a lot on the form of the di�er-
ential equation, and the one we're concerned with is especially sensitive. From a qualitative per-
spective, the reason for this can be seen quite easily: small random errors causes a surface that is

Figure 8: Large spikes in curvature
propagate outward slower, which can
cause growing errors.

supposed to be completely smooth to have irregularities,
which means added curvature. From a distance, the surface
will appear to be smooth, but if one looks very closely, it
is irregular.

The errors are random, and thus causes local spikes in the
curvature. Since the speed of the evolution is determined
by the inverse of the curvature, the surface moves much
slower than it's supposed to at these spikes - meaning that
new curvature is created as the rest of the surface over-
shoots the irregularity. The remedy for this problem is to
evolve the surface in su�ciently small steps for this 'overshooting' not to happen. We will now
detail how this is done.

Given the solution at some time step i, it is propagated forward in time by

ρi+1
n = ρin − F (ρ, ρθ, ρθθ) ·∆σ (154)

however, because of the aforementioned errors, ρin is not the true solution. We can write

ρin = ρ̂in + εin (155)

where ρ̂in is the true solution and ε
i
n is the error. We shall now show how the error grows with each

iteration. This is given by taking the di�erence between the propagation of the error-containing
ρin and the true solution ρ̂in:

εi+1
n = (ρ̂+ ε)i+1

n − ρ̂i+1
n (156)

Furthermore, the errors will have a random spatial distribution, and will be of a characteristic
size. We can write this as

εin = f inε
i (157)

where εi is the characteristic size of the errors at time i, and f in is of order unity and describes
the random spatial �uctuations of the error. We then have

εi+1
n = (ρ̂+ ε)i+1

n − ρ̂in = εin −
(
F (ρ̂+ ε)− F (ρ̂)

)
·∆σ (158)

The di�erence F (ρ̂+ ε)−F (ρ̂) may be evaluated analytically using calculus of variations:

F (ρ̂+ ε)− F (ρ̂) =

(
∂F

∂ρ
ε+

∂F

∂ρθ
εθ +

∂F

∂ρθθ
εθθ

)
(159)
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We may discretize this expression as

F (ρ̂+ ε)−F (ρ̂)→ ∂F

∂ρ

∣∣∣∣
ρin,(ρθ)in,(ρθθ)in

f inε
i +

∂F

∂ρθ

∣∣∣∣
ρin,(ρθ)in,(ρθθ)in

(fθ)
i
nε
i +

∂F

∂ρθθ

∣∣∣∣
ρin,(ρθ)in,(ρθθ)in

(fθθ)
i
nε
i

(160)
where we have inserted the discrete versions of ρ and its derivatives into the analytical derivatives
of F , and taken the spatial derivatives of the random error distribution f in. Now, we make the
observation that if

∣∣f in∣∣ ≤ 1, then

(fθ)
i
n ≤

2

∆θ
(161)

Because the di�erence between two neighbouring points is at most 2, and they are separated by
a distance ∆θ. Equivalently,

(fθθ)
i
n ≤

4

∆θ2
(162)

Thus, in the absolute worst case scenario, the last term of equation 160 is much larger than the
rest27, so that the main contribution to the growth of the error comes from this term. We now
make the observation that the growth of the error is also proportional to the size of the time
step, ∆σ:

εi+1
n = εin −

(
F (ρ̂+ ε)− F (ρ̂)

)
·∆σ (163)

So that by choosing the time step, we can make the growth of the error (per iteration) as small
as we want. To get a small error growth, the time step has to be small enough to suppress all
three terms in equation 160, and since the third term is the dominant one, we may choose the
time-step such that

max
n

∣∣∣∣∣ ∂F∂ρθθ
∣∣∣∣
ρin,(ρθ)in,(ρθθ)in

∣∣∣∣∣ · (fθθ)in ·∆σi ≤ 1 (164)

where we have now introduced a time index i on the time-step, since this choice has to be made
each iteration. We've also taken the maximum value over the whole surface, to make sure that
the time step is small enough to work for the entire surface. Using the worst case approximation
for (fθθ), we get

∆σi ≤ ∆θ2

4

(
max
n

∣∣∣∣∣ ∂F∂ρθθ
∣∣∣∣
ρin,(ρθ)in,(ρθθ)in

∣∣∣∣∣
)−1

(165)

With this choice, we see that28 ∣∣εi+1
n − εin

∣∣ ≤ εi (166)

Recall that εi was the characteristic size of the errors at time i. This means that the added error
in each step is bounded by the size of the error in the previous step, so that it cannot suddenly
diverge and destabilize the algorithm. These errors can in fact grow extremely large in a single
or a few iterations if one chooses too large a time step.

An important fact that should be noted is that this does not show that the errors will not
continue growing. They may, in fact, grow very fast according to the above analysis. What
should be emphasized, however, is that it guarantees that the errors will not suddenly 'blow
up' and render the solution useless in a single or a few iterations. In practice, the algorithm
runs very well with this choice of time-step, and appears to converge as the spatial resolution

27Provided that the derivatives in the other terms are bounded, but this can be veri�ed manually.
28Strictly speaking, this is under the assumption that the �rst two terms of equation 160 are negligible, but

this can always be made true by making ∆θ su�ciently small.
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is increased; so random errors does not seem to a�ect the result much. This can probably be
attributed to the fact that di�erential equation itself has the property that it tends to smooth
out irregularities in the surface. However, this cannot happen if the time-step is too large to
resolve the irregularities.

We note that the chosen time-step is proportional to the square of the spatial resolution, which
means that a high-�delity calculation may take a very long time to compute. The program
includes an option designed to speed up the calculation signi�cantly, at the loss of accuracy,
which is accomplished by smoothing out the �rst derivative of ρ. This means that the random
distribution of errors in the second derivative will not be proportional to ∆θ2, but closer to
∆θ, so that the time step can be chosen proportional to ∆θ. This can be utilized to make
'fast and loose' simulations, for example if one wishes to experiment with the parameters of the
program.

Finally, we remark that, as may be inferred from the proof of the monotonicity of the Geroch
mass (section 5.1), the total curvature of the surface as measured by the integral

∫
p2dS should

decrease under the �ow. Included in the program is the option to plot the change of this
measure during the evolution, which may be used as an extra check to see that nothing has gone
wrong.
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6 Non-zero cosmological constant

6.1 Hawking and Geroch mass in spacetimes with non-zero Λ

So far, all the spacetimes that have been considered have been without a cosmological constant,
Λ. The cosmological constant was originally introduced by Einstein so that his �eld equations
would have a static solution, one which does not expand or contract, because it was thought at
the time that this must be true for the universe. When Hubble showed that the universe does
in fact appear to be expanding, Einstein called the cosmological constant his 'biggest blunder',
and it was subsequently assumed that it must be zero.

Current observations [25] indicate that the cosmological constant is non-zero and positive, albeit
very small, which makes spacetimes with non-zero Λ interesting to study.29 Representing a con-
stant energy density, also called dark energy, which contributes a negative pressure throughout
the entire universe, the cosmological constant is believed to be responsible for the accelerating
expansion of the universe. This may sound counterintuitive: a negative pressure sounds like it
would 'suck things in'. The explanation is that regular pressure causes ordinary gravitational
attraction, owing to the fact that the matter is more energetic. A negative pressure, on the
other hand, does the opposite: it pushes the universe apart.

It is necessary to decide whether or not this dark energy should be thought of as a mass and
whether or not it should be included when considering quasi-local mass. There is no direct
answer to this question yet. If the cosmological constant really is constant over the entire
universe, and if there is no interaction or interchange between dark energy and regular energy,
then one can safely disregard its contribution to quasi-local mass. If one does choose to include
the dark energy, then the problem that asymptotically large spheres does not have a �nite mass
arises.

It is worth noting that the current understanding of the nature of the cosmological constant is
very limited. Predictions from quantum �eld theory based on the energy of vacuum disagree with
the measured value by so many orders of magnitude that it has been called the "worst theoretical
prediction in the history of physics" [26]. This is commonly known as the cosmological constant
problem.

In this section, we will show how the Hawking and Geroch masses are a�ected by the addition
of a non-zero cosmological constant, and how these can be modi�ed to exclude contributions
from it, in some simple cases. These corrections have been suggested previously by [27], but we
will also show how they a�ect the monotonicty of the Geroch mass.

6.2 Hawking mass in anti-de Sitter

We will begin by calculating the Hawking mass of a sphere in the anti-de Sitter (AdS) spacetime,
which is a vacuum solution of the Einstein �eld equations that exhibits a negative cosmological
constant. As it stands, the curvature caused by the non-zero cosmological constant should
contribute to the Hawking mass. Knowing this contribution will allow us to modify the Hawking
mass so that the resulting mass is zero, which would be expected of a sphere in vacuum.

29Including spacetimes with negative Λ, as these have applications in mathematical physics, such as in string
theory.
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The anti-de Sitter metric may be written in spherical polar coordinates as

ds2 = −fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) where f =

(
1− Λr2

3

)
and Λ < 0 (167)

This metric actually also gives the de Sitter spacetime if the cosmological constant is taken to
be positive, but these coordinates does not cover the entire spacetime in that case. In ordinary
fashion, we let S be the spheres of constant radius r = R and constant time t = τ , and �nd the
normal vectors

tµ = −
√
fδtµ and nµ =

1√
f
δrµ =⇒ k±µ = tµ ± nµ = −

√
fδtµ +

1√
f
δrµ (168)

This allows us to calculate the second fundamental forms of the surface:

Kij(k±) = −kµ±

(
∂2xµ

∂ui∂uj
+ Γµαβ

∂xα

∂ui
∂xβ

∂uj

)
(169)

The derivatives are trivial since the surface is de�ned by constant coordinates r and t. One only
needs to insert the Christo�el symbols, which gives

Kθθ(k±) = −kµ±Γµθθ = ±R
√

1− ΛR2

3
and Kϕϕ(k±) = −kµ±Γµϕϕ = Kθθ(k±) sin2 θ (170)

The null expansions are thus

θ± = Kij(k±)γij = Kθθ(k±)

(
1

R2
+

sin2 θ

R2 sin2 θ

)
= ± 2

R

√
1− ΛR2

3
(171)

So that the Hawking mass of the sphere becomes

MH =

√
A

16π

(
1− 1

16π

∮
4

R2

(
1− ΛR2

3

)
dS
)

=

√
A

16π

(
1− 1

4π

∮
1

R2
dS︸ ︷︷ ︸

=0

+
1

4π

∮
Λ

3
dS

)

=

√
A

16π

1

16π

∮
4Λ

3
dS

(172)

Which is directly proportional to the cosmological constant. Thus, the Hawking mass is strictly
negative in anti-de Sitter, and positive in regular de Sitter (for surfaces in the covered patch).
In anti-de Sitter, the Hawking mass of large asymptotic spheres evidently diverges, since the it
is also proportional to the area of the surface, which has no upper bound. On the other hand,
the regular de Sitter spacetime is closed, which means that surfaces cannot be arbitrarily large,
so the Hawking mass is bounded in that case.

It seems more sensible to have a de�nition of quasi-local mass that is �nite if the amount of
'regular' mass in the spacetime is �nite, even if the cosmological constant is non-zero. This is
only possible (with a negative cosmological constant) if the contribution from the dark energy
is excluded. This motivates the correction

MH =

√
A

16π

(
1 +

1

16π

∮ (
θ+θ− −

4Λ

3

)
dS

)
(173)

the result of which is that the Hawking mass is identically zero for spheres in both Minkowski
and anti-de Sitter (de Sitter). In a sense, this choice has to do with whether or not the dark
energy that the cosmological constant represents should be interpreted as a mass or something
else entirely.
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6.3 Modi�ed Hawking mass of spheres in AdS�Schwarzschild

Now that the Hawking mass has been modi�ed to yield zero mass for spheres in a vacuum
spacetime with cosmological constant, it would also be desirable if it produced the correct mass
for spheres in a spacetime with both mass and a non-zero cosmological constant. A simple
example of such a spacetime is the AdS-Schwarzschild spacetime, which, as its name suggests,
is the AdS spacetime with a black hole in it. The metric of this spacetime is

ds2 = −fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) where f =

(
1− Λr2

3
− 2M

r

)
(174)

The calculation in this spacetime will be nearly identical to the one in regular AdS, so not much
additional work is required. The only di�erence which needs to be taken into account is the
Christo�el symbols, but in terms of f these are actually the same. Therefore, we shall skip
ahead and state directly the null expansions:

θ± = ± 2

R

√
1 +

R2

a2
− 2M

R
(175)

This gives us the Hawking mass of a sphere as:

MH =

√
A

16π

(
1− 1

16π

∮ (
4

R2

(
1 +

R2

a2
− 2M

R

)
− Λ

3

)
dS

)

=

√
A

16π

(
1

4π

∮ (
− 1

a2
− Λ

3︸ ︷︷ ︸
=0

+
2M

R3

)
dS

)
=

√
A

16π

1

4πR2

2M

R
4πR2 = M

(176)

This means that the contribution from the cosmological constant is the same in both cases.
Considering the fact that the �eld equations are non-linear, we �nd it somewhat surprising that
this happens; but in any case, it is a fortunate result, since now the Hawking mass works precisely
the same in spacetimes with non-zero cosmological constant as in those without one.

6.4 Monotonicity of the Geroch mass

Since the Geroch mass coincides with the Hawking mass if the foliation is chosen suitably,
applying the same modi�cation to the Geroch mass should make it well-behaved in spacetimes
with non-zero cosmological constant as well; at the very least in the cases when they coincide.
It is worth verifying that such a modi�cation preserves the monotonicity property of the Geroch
mass. Modi�ed for Λ, the Geroch mass would read

MG =

√
A

16π

(
1− 1

16π

∮ (
p2 +

4Λ

3

)
dS

)
(177)

Showing that this is monotone requires modifying the proof in section 5.1 to include the last
term. Since the steps will be nearly identical, we shall only state the highlights. We begin by
writing

MG =

√
A

16π

1

16π

∮ (
2RS − p2 − 4Λ

3

)
dS︸ ︷︷ ︸

=W+Q

(178)
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Where W is the same as in the original proof. Then, we �nd that

Q̇ = −
∮

4Λ

3
˙dS = −

∮
4Λ

3
dS = Q and ṀG =

√
A

16π

(
W

2
+ Ẇ +

Q

2
+ Q̇

)
(179)

Recall the derivative of W :

Ẇ =

∮ (
RΣ + U2

)
dS − 1

2
W (180)

In the case of a non-zero cosmological constant, Gauss' Theorema Egregium includes a contri-
bution from Λ,

RΣ = 2µ+ 2Λ + κabκ
ab − κ2 (181)

so that, for a maximal hypersurface where κ = 0,

Ẇ =

∮ (
2µ+ κabκ

ab + U2
)
dS − 1

2
W +

∮
2ΛdS (182)

The result is

ṀG =

√
A

16π

(∮ (
2µ+ κabκ

ab + U2
)
dS︸ ︷︷ ︸

≥0

+
3

2
Q+

∮
2ΛdS︸ ︷︷ ︸

=0

)
(183)

We see that it was precisely this modi�cation that was necessary in order to preserve the mono-
tonicity property of the Geroch mass for non-zero Λ30. This further shows that subtracting the
cosmological constant is a reasonable thing to do for these mass de�nitions.

6.5 Hawking mass in FLRW spacetimes

The Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime is the standard model of modern
cosmology, describing an isotropic and homogeneous expanding (or contracting) universe. It has
a cosmological constant that may be either positive or negative, and as previously stated, current
observations suggest that it should be positive. This makes it a good candidate to study the
Hawking mass in.

The FLRW metric is given by

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
(184)

where a(t) is the scale factor, which governs the expansion of the universe, and k is a parameter
that determines the constant curvature, which may be anything between −1 and 1. A negative
value of k corresponds to an open universe, in which two initially parallel geodesics will diverge
from each other. Likewise, a positive value gives a closed universe, such that initially parallel
geodesics tend to converge. The case k = 0 corresponds to a completely �at universe, which is
what our universe is believed to be.

We will yet again regard the mass of a sphere of constant r = R. The calculation is very similar
to earlier sections, the only di�erences being the normals, which are now

tµ = δµt and nµ = δµr
a(t)√

1− kr2
and kµ± = tµ ± nµ (185)

30If Λ is positive, then the Geroch mass will be monotone regardless, but removing the contribution from Λ
makes the de�nition good in all cases.
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and the Christo�el symbols, which may be found in any standard reference, such as [15]. Putting
everything together, we �nd that

Kθθ(k±) = −kµ±Γµθθ = ar(ȧr ±
√

1− kr2) and Kϕϕ(k±) = −kµ±Γµϕϕ = Kθθ(k±) sin2 θ
(186)

Thus

θ± =
2a

r
(ȧr ±

√
1− kr2) =⇒ θ+θ− = 4a2

(
ȧ2 + k − 1

r2

)
(187)

The Hawking mass is then

MH =

√
A

16π

(
1 +

1

16π

∮
4a2

(
ȧ2 + k − 1

R2

)
dS

)
=

√
A

16π

(
1

4π

∮
a2
(
ȧ2 + k

)
dS

)
=
R3

2
a2(ȧ2 + k)

(188)

Which has the proper dimensionality since ȧ2 and k have units of inverse length squared. This
is evidently positive if ȧ2 + k ≥ 0, but could in principle be negative. This statement can be
made more precise if one invokes the Friedmann equation31

ȧ2 = a2

(
8πρ+ Λ

3

)
− k (189)

Where ρ is the mass density of matter in the universe. From this, one can immediately tell
that

8πρ+ Λ ≥ 0 =⇒ ȧ2 + k ≥ 0 =⇒ MH ≥ 0 (190)

This result makes sense: as long as the regular matter dominates over Λ, the Hawking mass of
spheres will not be negative.

31Which is derived by inserting the FLRW metric into Einstein's �eld equations.
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7 Light cone cuts

It is clear that the Hawking mass is a suitable de�nition of mass in some special cases, such
as when considering the mass contained in spheres in a spherically symmetric spacetime, but
not for the more general case of an abitrary surface, even in spherically symmetric spacetimes.
The main problem is that the Hawking mass becomes negative for most non-spherical surfaces,
which is bad news for a mass; but if one knew the exact circumstances under which this happens
(or rather, doesn't happen), one might be able to make a modi�cation to the Hawking mass
so that it is positive for all surfaces. Alternatively, one could place a restriction on the type of

Figure 9: The surface Σ intersects the
light cone, yielding a curve S which is
the analogue of a light cone cut in 2+1
dimensions.

surfaces that are allowed.

As it turns out, there is a quite large class of surfaces
for which the Hawking mass works well, at the very least
in vacuum spacetimes. We have managed to identify a
large class of surfaces for which the Hawking mass is pos-
itive, and which has a very simple description. These sur-
faces are the intersections of the light cone of an intertial
observer with arbitrary spatial hypersurfaces, also called
light cone cuts.

What makes such a surface special is that, in principle,
the entire surface can be seen simultaneously from a single

point. Parts of the surface that are farther away in space
are closer in time, so that if it were to emit light, all of it
would arrive at the observer simultaneously. Hence, these
surfaces are what we see when we look around us.

7.1 Light cone cuts in Minkowski

We shall now demonstrate that the surface of intersection between the light cone and an arbitrary
spatial hypersurface has a Hawking mass that is identically zero in the Minkowski spacetime.
The line element is

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdϕ2) (191)

The light cone with respect to the origin consists of all points whose separation from the origin
is null. In these coordinates, this means that r = t. Setting dr = dt yields the line element on
the light cone:

ds2 = r2(dθ2 + sin2 θdϕ2) (192)

Keep in mind that the light cone is a three-dimensional null hypersurface, and not a two-surface.
Specifying a spacelike hypersurface amounts to assigning a time to each point in space: t = t(x).
The cut surface S is then given by restricting r = t(x), so that, in terms of the remaining free
coordinates, one can write

t = Ω(θ, ϕ)
r = Ω(θ, ϕ)

(193)

the result of which is that we have selected a radius and time for each direction on the sky. In
regular fashion, we shall use ui = (u, v) as coordinates on S , and the simplest possible choice
is to set u = θ and v = ϕ. Thus, the inner metric on the cut surface can be written

ds2 = Ω2(du2 + sin2 udv2) (194)
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which makes it evident that any such surface is conformal to a sphere. To calculate the Hawking
mass of this surface, we must �nd the null expansions. This will be slightly more complicated
in this case, since we do not know the exact speci�cation of the surface. Therefore, we will use
a more general procedure to solve for the null normals of the surface.

It is easy to �nd one null normal of S, namely the normal of the light cone32. Since S is contained
entirely within the light cone, it must share this normal vector:

kµ+ = δµt + δµr =
(

1, 1, 0, 0
)

(195)

Finding a second null normal will not be quite as easy, but we can do it by �rst solving for the
tangent vectors of the surface. We have

eµu =
∂xµ

∂u
=
(

Ωu, Ωu, 1, 0
)
≡ mµ (196)

eµv =
∂xµ

∂v
=
(

Ωv, Ωv, 0, 1
)
≡ nµ (197)

where we have used the short-hand notation Ωu and Ωv to denote the partial derivatives of Ω
with respect to u and v. Now, we may solve for the second null normal by setting up a system of
equations: the second normal must be orthogonal to the tangent vectors, and its product with
the other normal must be −2.

mµk−µ = 0
nµk−µ = 0
kµ+k−µ = −2

=⇒
Ωu(k−0 + k−1) + k−2 = 0
Ωv(k−0 + k−1) + k−3 = 0
k−0 + k−1 = −2

(198)

Which has the solution

k−µ =
(
k−0, −2− k−0, 2Ωu, 2Ωv

)
(199)

Finally, we impose that this vector should be null:

k−µk−νg
µν = 0 =⇒ −k2

−0 + (2 + k−0)2 +
1

r2
4Ω2

u +
1

r2 sin2 θ
4Ω2

v = 0 (200)

which gives

k−0 = −
(

1 +
1

r2
Ω2
u +

1

r2 sin2 θ
Ω2
v

)
= −

(
1 +

1

Ω2
Ω2
u +

1

Ω2 sin2 u
Ω2
v

)
(201)

on the surface, which is where this vector is de�ned. A trained eye recognizes that the above
expression can be written in terms of the covariant derivative on the unit sphere:

k−0 = −
(

1 +
1

Ω2
(∇Ω)2

)
= −

(
1 +

1

Ω2
γij∇iΩ∇jΩ

)
(202)

where γ is the metric on the unit sphere, and ∇ is the covariant derivative with respect to this
metric. For clarity,

γij =

(
1 0
0 sin2 u

)
(203)

De�ning α = (∇Ω)2

Ω2 , we have

k−µ =
(
−1− α, −1 + α, 2Ωu, 2Ωv

)
(204)

32Which is also tangential to the light cone, which is a somewhat counterintuitive feature of null surfaces.
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Now we may calculate the second fundamental forms and the null expansions. One the null ex-
pansions is very simple to calculate (it goes much like the earlier calculations of null expansions),
due to the trivial form of ~k+. We shall thereby only state the result:

θ+ =
2

Ω
(205)

The other null expansion becomes more involved. We begin by making the observation that the
metric on the surface is diagonal, which means that only the diagonal elements of Kij(~k−) are
required to �nd the null expansion. Setting i = j in the formula (22) for the second fundamental
form, and inserting ~k−, gives

Kii(~k−) = 2
∂2Ω

∂ui2
−
(

(α− 1)Γrαβ + 2ΩuΓθαβ + 2ΩvΓ
ϕ
αβ

)∂xα
∂ui

∂xβ

∂ui
(206)

Removing all Christo�el symbols that are zero, and taking into account the derivatives that
vanish, the remainder is

Kii(~k−) = 2
∂2Ω

∂ui2
−

[
(α− 1)

(
Γrθθ

(
∂θ

∂ui

)2

+ Γrϕϕ

(
∂ϕ

∂ui

)2
)

+2Ωu

(
2Γθrθ

∂r

∂ui
∂θ

∂ui
+ Γθϕϕ

(
∂ϕ

∂ui

)2
)

+2Ωv

(
2Γϕrϕ

∂r

∂ui
∂ϕ

∂ui

)]
(207)

Now one only needs to insert the Christo�el symbols and the derivatives:

Kuu(~k−) = 2
∂2Ω

∂u2
+

[
Ω(α− 1)− 4Ω2

u

1

Ω

]
(208)

Kvv(~k−) = 2
∂2Ω

∂v2
+

[
Ω sin2 u(α− 1) + 2Ωu sinu cosu− 4Ω2

v

1

Ω

]
(209)

The remaining null expansion can then be assembled:

θ− =
1

Ω2

(
2
∂2Ω

∂u2
+

2

sin2 u

∂2Ω

∂v2
+ 2Ωu cotu︸ ︷︷ ︸

=2∇2Ω

+

[
Ω(α− 1)− 4Ω2

u

1

Ω

]
+

[
Ω(α− 1)− 4Ω2

v

1

Ω sin2 u

])

=
1

Ω2

(
2∇2Ω + 2Ω(α− 1)− 4

Ω

[
Ω2
u +

1

sin2 θ
Ω2
v

]
︸ ︷︷ ︸

(∇Ω)2

)
=

2

Ω2

(
Ω(α− 1) +∇2Ω− 2(∇Ω)2

Ω

)

(210)

Where we, again, recognized the covariant derivative on the unit sphere, both as the squared
gradient and the Laplacian. Since (∇Ω)2/Ω = Ωα, we can write

θ− = − 2

Ω

(
1 + α− ∇

2Ω

Ω

)
(211)

We may �nally calculate the Hawking mass of the surface:

MH =

√
A

16π

(
1 +

1

16π

∮
θ+θ−Ω2dS2

)
(212)
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Since the surface element is Ω2dS2, where dS2 is the area element of the unit 2-sphere. Thus

MH =

√
A

16π

(
1− 1

4π

∮ (
1 + α− ∇

2Ω

Ω

)
dS2

)
=

√
A

16π

(
1

4π

∮ (
α− ∇

2Ω

Ω

)
dS2

)
(213)

Now note that

∇2Ω

Ω
=
∇(∇Ω)

Ω
= ∇

(
∇Ω

Ω

)
−∇Ω∇ 1

Ω
= ∇

(
∇Ω

Ω

)
+∇Ω

1

Ω2
∇Ω︸ ︷︷ ︸

α

(214)

The result is

MH = −
√

A

16π

1

4π

∮
∇
(
∇Ω

Ω

)
dS2 = 0 (215)

Since we are integrating a total derivative over a closed surface. We can conclude that any
surface de�ned in this way has identically zero Hawking mass in the Minkowski spacetime. If
one could quantify the di�erence between these surfaces and the more general surfaces for which
the Hawking mass is negative, it could be possible to identify a modi�cation of the Hawking mass
that makes it work well for any surface in Minkowski. Alternatively, it might just be sensible to
restrict the surfaces one allows when regarding the Hawking mass (but for what reason is not
clear).

7.2 Light cone cuts in Einstein's static universe

The natural next step is to investigate how general the above result is. Does it hold in any
spacetime, even those with matter content? For spacetimes with non-zero or non-constant
curvature, it becomes signi�cantly harder to characterize the light cone and its intersections with
hypersurfaces. The light cone tends to get very contrived in the presence of curvature. Take for
example the Schwarzschild spacetime. It is a well known fact that black holes curve spacetime
to such an extent that they act as a 'gravitational lens' for light. Light can, for example, be bent
around the black hole in such a way that multiple images of the same object may be seen. It
is thus clear that light cones in such a spacetime can exhibit some very complicated behaviour,
such as self-intersections.

In the case of a spacetime with a non-zero constant curvature, things are not quite as complicated,
however. Light cones in some of these spacetimes are quite well-behaved and easy to characterize.
Depending on one's point of view, such a spacetime may also be considered to contain a constant
mass density (the cosmological constant, as discussed earlier), which can contribute to the
Hawking mass, unless mitigated by modi�cations.

With this in mind, we shall investigate how the Hawking mass works out for light cone cuts in a
slightly less trivial spacetime than Minkowski, namely the static Einstein universe. This is the
solution that Einstein originally produced by inserting the cosmological constant, with the goal
of producing a spacetime that does not expand or contract. This spacetime is a special case
of the FLRW spacetime that we have discussed earlier, with a constant matter energy density
acting as the cosmological constant.

The line element in Einstein's static universe is

ds2 = −dt2 + dr2 + sin2 r(dθ2 + sin2 θdϕ2) (216)

As the form of the metric suggests, the radial coordinate r is a periodic coordinate. The Einstein
universe can be understood as the surface of a three-dimensional sphere, plus time, so that
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motion in any direction will eventually lead back to the same point. In this sense, this is a
closed universe. The light cone is given by r = t in this spacetime as well, since it is spherically
symmetric. For this reason, most of the calculations from Minkowski will carry over directly, so
we will not state them all in full. The line element on the light cone is here

ds2 = sin2 r(dθ2 + sin2 θdϕ2) (217)

Notice especially the fact that the light cone metric is singular at r = nπ. This singularity is
due to the choice of coordinates, just like the singular behaviour of the two-sphere metric at
the poles. An arbitrary light cone cut S may again be speci�ed by selecting r = t = Ω(θ, ϕ).
By the same procedure as above, we �nd null normals of this surface on the same form as in
Minkowski:

k+µ =
(

1, 1, 0, 0
)
, k−µ =

(
−1− α, α− 1, 2Ωu, 2Ωv

)
(218)

The only di�erence being that α = (∇Ω)2/ sin2 Ω this time (with ∇ still being the covariant
derivative on the unit sphere). The outward null expansion is, again, simple to calculate.

θ+ =
2 sin Ω cos Ω

sin2 Ω
= 2 cot Ω (219)

We see that it has a similar form to the same null expansion in Minkowski. For the other null
expansion, we follow the same procedure as in Minkowski and �nd that

Kuu(~k−) = 2
∂2Ω

∂u2
+

[
(α− 1) sin Ω cos Ω− 4Ω2

u cot Ω

]
(220)

Kvv(~k−) = 2
∂2Ω

∂v2
+

[
(α− 1) sin Ω cos Ω sin2 u+ 2Ωu sinu cosu− 4Ω2

v cot Ω

]
(221)

So that, after some simpli�cation

θ− =
2

sin2 Ω

[
∇2Ω− (1 + α) sin Ω cos Ω

]
(222)

We can now calculate the Hawking mass:

MH =

√
A

16π

(
1 +

1

4π

∮
cot Ω

[
∇2Ω− (1 + α) sin Ω cos Ω

]
dS2

)
(223)

Where we used the fact that the surface element is sin2 ΩdS2, where dS2 is the surface element
on the unit two-sphere. Now, simplifying this expression requires some derivative gymnastics.
Observe:

∇(ln(sin2 Ω)) =
1

sin2 Ω
∇ sin2 Ω =

1

sin2 Ω
2 sin Ω cos Ω∇Ω = 2 cot Ω∇Ω (224)

From this we can conclude that

1

2
∇2(ln(sin2 Ω)) = ∇(cot Ω∇Ω) = −(∇Ω)2

sin2 Ω
+ cot Ω∇2Ω (225)

Which gives us

− cot Ω

(
∇2Ω− (∇Ω)2

sin2 Ω cot Ω

)
=

1

2
∇2(ln(sin2 Ω)) (226)
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Our integrand contains the terms cot Ω
[
∇2Ω − α sin Ω cos Ω

]
, which we can rewrite using the

above result:

cot Ω
[
∇2Ω− α sin Ω cos Ω

]
= cot Ω

[
∇2Ω− (∇Ω)2

sin2 Ω cot Ω
cos2 Ω

]
(227)

= cot Ω
[
∇2Ω− (∇Ω)2

sin2 Ω cot Ω
+

(∇Ω)2

cot Ω

]
= −1

2
∇2(ln(sin2 Ω)) + (∇Ω)2 (228)

The expression for the Hawking mass thereby becomes

MH =

√
A

16π

(
1 +

1

4π

∮ [
− cot Ω sin Ω cos Ω + (∇Ω)2

]
dS2

)

=

√
A

16π

(
1

4π

∮ [
sin2 Ω + (∇Ω)2

]
dS2

)
≥ 0

(229)

But recall that sin2 ΩdS2 = dS. Thus,

MH =

√
A

16π

1

4π

(∮
dS +

∮
(∇Ω)2dS2

)
=

√
A

16π

1

4π

(
A+

∮
(∇Ω)2dS2

)
(230)

Which is positive for all surfaces. Notice how this expression seems to have the wrong dimen-
sionality. This stems from the fact that the radial coordinate is angular, which means that it is
dimensionless. The metric really contains a factor RC (the radius of curvature), with units of
length, which has been set to one:

ds2 = −dt2 +R2
C

(
dr2 + sin2 r(dθ2 + sin2 θdϕ2)

)
(231)

Dimensional analysis implies that

MH =

√
A

16π

1

4πR2
C

(
A+

∮
(∇Ω)2dS2

)
(232)

if RC 6= 1. This length factor sets the curvature scale of the universe, and thereby the cos-
mological constant; in fact, Λ = 1/R2

C . A very small RC means that the constant curvature
is large, which means a large cosmological constant, or, equivalently, a large matter density.
This is re�ected by the Hawking mass: the amount of mass contained increases as the curvature
increases.

While this mass is positive, it does not appear to be monotone in a strict sense. For example:
given a sphere, the integral

∮
(∇Ω)2dS2 is identically zero. It is always possible to construct a

surface contained entirely inside a sphere which has a larger area than the sphere. Such a surface
cannot be a perfect sphere, so its gradient must be atleast partially non-zero. Thus, both parts
that go into the Hawking mass are larger for the contained surface than the exterior sphere, so
that the smaller of the two surfaces has the larger mass.
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8 Discussion

We have herein calculated a few explicit examples of the Hawking mass, which demonstrates
the behaviour of this de�nition, mainly in the Minkowski and Schwarzschild spacetimes. It is
shown how non-spherical surfaces tend to make the Hawking mass negative in the Minkowski
spacetime, which demonstrates that the Hawking mass is a�ected by the shape of the surface and
not just its contents; an ideal de�nition would be identically zero for all surfaces in Minkowski.
In the Schwarzschild spacetime it is not calculated for anything more general than a sphere, but
it is reasonable to believe that the choice of a non-spherical surface would result in a smaller
than expected mass in this spacetime, considering the above.

We then identi�ed a large class of surfaces, the light cone cuts, for which the Hawking mass is
identically zero in Minkowski, and strictly positive for a spacetime with positive cosmological
constant. Thus, in Minkowski, the Hawking mass is independent of the choice of surface within
the class. In other words, these surfaces lack the speci�c property which tends to make the
Hawking mass negative. Further study of these surfaces might make it possible to quantify
this property, which would allow one to state a modi�ed version of the Hawking mass where
the contribution from this property has been removed, which would presumably yield more
consistent results than the Hawking mass.

It would be interesting to work out how the Hawking mass of light cone cuts behaves in space-
times that are not spherically symmetric. An attempt was made to examine this in the Kasner
spacetime, which is a spacetime that expands and contracts in a non-isotropic way. This calcula-
tion turned out to be extremely heavy and time-consuming, and a proper analysis will probably
require more sophisticated methods than used herein. It would also be interesting to look at
light cone cuts in the Schwarzschild spacetime, but since the light cone lacks a simple description
there, this is also expected to require more sophisticated methods.

The Geroch mass, on the other hand, was not originally intended to be a satisfactory de�nition
of quasi-local mass. This is made evident in the calculations we have made, which illustrates
how this de�nition depends a lot upon the choice of spacetime foliation. However, as is also
demonstrated, the Geroch mass has its uses: it can be made monotone under the inverse mean
curvature �ow by a speci�c choice of foliation. This made it useful in proving the positive energy
theorem and the Riemannian Penrose inequality, and it may be useful in proving other geometric
theorems (as may the Hawking mass). The inverse mean curvature �ow was also studied in great
detail, both in theory and numerically, explicitly demonstrating some of the hardships that must
be overcome to solve geometric �ow equations of this kind.

In addition, the contribution of a non-zero cosmological constant was re�ected over, and modi�-
cations of the Hawking and Geroch masses were provided, which makes them equally functional
in spacetimes where Λ 6= 0 as in spacetimes where Λ = 0. Whether or not such a modi�cation
should be made to a quasi-local de�nition of mass depends on whether one wishes to treat the
'dark energy' as a real mass or not, but it seems sensible to do so since it makes the Hawking
and Geroch masses well-de�ned in the limit of large asymptotic spheres.

The numerical evaluation of inverse mean curvature �ow was an excellent way to gain more
insight into geometric �ows and the challenges in dealing with these. The algorithm seems
to work well for its purpose, but there is a lot more that could be done in the analysis of it,
such as a more in depth stability analysis and convergence analysis. It was decided that these
things were somewhat outside of the scope for this report, so they were not pursued further. A
completely rigourous treatment of all aspects of such an algorithm could consitute a full thesis
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on its own.

A further study of quasi-local mass might also look at other de�nitons, such as those suggested
by Wand and Yau [12] or Penrose [11]. The de�nition suggested by Yau and Wang suppos-
edly has all the properties required of a quasi-local mass, but this de�nition is mathematically
very sophisticated and not very explicit, which makes its connection to physical notions rather
obscure. It would be of interest to see how this de�nition of mass can be interpreted from a
physical point of view.
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9 Appendix A - Christo�el symbols of Schwarzschild in trumpet

coordinates

In the trumpet coordinates (t, r, θ, ϕ), where r is measured from an inner sphere of area 4πR0 so that
a radius r corresponds to a sphere of area 4π(R0 + r), the Schwarzschild spacetime is described by the
line element

ds2 = −fdt2 +
2f1

r
dtdr + f2

2 (dr2 + r2dθ2 + r2 sin2 θdϕ2) (233)

where

f =

(
1− 2M

r +R0

)
, f1 =

√
2r(M −R0) +R0(2M −R0), f2 = 1 +

R0

r
, (0 < R0 ≤M) (234)

The Christo�el symbols for these coordinates are not easily found in any standard reference, so we will
give them here

Γtαβ =


Mf1

r(r+R0)2
M
r2 0 0

M
r2

f2(f2
1−R

2
0)

r2f1
0 0

0 0 −f1f2 0
0 0 0 −f1f2 sin2 θ

 (235)

Γrαβ =


Mf

(r+R0)2 − Mf1

r(r+R0)2 0 0

− Mf1

r(r+R0)2 −Mr2 0 0

0 0 −(r +R0)f 0
0 0 0 −(r +R0)f sin2 θ

 (236)

Γθαβ =


0 0 0 0
0 0 1

r+R0
0

0 1
r+R0

0 0

0 0 0 − cos θ sin θ

 , Γϕαβ =


0 0 0 0
0 0 0 1

r+R0

0 0 0 cot θ
0 1

r+R0
cot θ 0

 (237)
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10 Appendix B - Useful geometric theorems

10.1 Gauss' theorema egregium

To understand how the geometry of hypersurfaces is related to their mass content, we shall require Gauss'
theorema egregium (remarkable theorem). This theorem connects the intrinsic and extrinsic curvatures
of a surface, and is therefore very useful in geometry. Gauss himself considered regular two-dimensional
surfaces in a three-dimensional manifold, but we shall state the theorem a bit more generally.

Consider a (n−1) dimensional hypersurface S, embedded in a manifold Σ of dimension n equipped with
a metric gab and its associated covariant derivative ∇a such that ∇agbc = 0. S then has the induced
metric γAB = eaAe

b
Bgab and an associated covariant derivative DA such that DAγBC = 0. Notice the

fact that we have now chosen to use capital indices on tensors in the tangent space of S. This is because
tensors on both Σ and S will occur frequently in the derivation, and the capital letters makes it easier
to see which is which.

The Riemann tensor Rabcd on Σ is de�ned by

[∇a,∇b]vc = Rab
c
dv
d (238)

where vc is any tangent vector of Σ and [∇a,∇b] = ∇a∇b−∇b∇a is the derivative commutator. Likewise,
the Riemann tensor R̃ABCD of S is given by

[DA, DB ]vC = R̃AB
C
Dv

D (239)

for vectors vD that are tangent to S. Now, given the Riemann tensor Rabcd of Σ, one may ask how it
relates to the Riemann tensor R̃ABCD of the embedded surface S. We may answer this question by using
the Gauss-Weingarten equation, which states that

xa∇ayb = xaDay
b −Kacxaycn

b (240)

where xa and yb are tangent vectors of S, Kac is the second fundamental form of S, and nb is its normal
vector �eld. In other words, they can be expanded in terms of a coordinate basis on S, xa = xAeaA.
The same goes for Da and K

ac. This choice of notation means that we have to remember that quantities
like xa are tangential to S, since it is not indicated by their indices.

Next, we shall consider the projection of the Riemann tensor of Σ into the tangent space of S by
contracting it with vectors that are tangential to S. In addition to xa and ya, let za and wa be vectors
in the tangent space of S, and consider the quantity

Rab
c
dx
aybzdwc = xayb[∇a,∇b]zcwc = [xa∇a, yb∇b]zcwc − [xa, ya]∇azcwc (241)

where [xa, ya] ≡ xb∇bya − yb∇bxa. Expanding this expression gives

Rab
c
dx
aybzdwc = xa∇a(yb∇bzc)wc︸ ︷︷ ︸

(1)

− yb∇b(xa∇azc)wc︸ ︷︷ ︸
(2)

− (xb∇bya − yb∇bxa)∇azcwc︸ ︷︷ ︸
(3)

(242)

We will treat each of these three terms separately, and then recombine everything. For the �rst term,
using the Gauss-Weingarten equation to express everything in terms of the derivative Da gives

(1) = xa∇a(ybDbz
c −Kbdybzdn

c)wc = xa∇a(ybDbz
c)wc −Kbdybzd(x

a∇anc)wc (243)

Where some terms vanish due to the contraction of the tangent vector wa with the normal vector na. The
remaining covariant derivatives ∇a can be directly replaced by their counterpart Da on S by invoking
the Gauss-Weingarten equation again33. The result is

(1) = xaDa(ybDbz
c)wc −Kbdybzd(x

aDan
c)wc (244)

33Contracting equation 240 with a vector wb that is tangential to S gives wb(x
a∇ayb) = wb(x

aDay
b) since

wbn
b = 0.
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The second term is identical to the �rst term, but with x and y interchanged:

(2) = yaDa(xbDbz
c)wc −Kbdxbzd(y

aDan
c)wc (245)

Lastly, we apply the Gauss-Weingarten equation to the third term, giving

(3) = (xbDby
a − ybDbx

a −Kbdxdybn
a +Kdbybxdn

a︸ ︷︷ ︸
=0

)∇azcwc = (xbDby
a − ybDbx

a)∇azcwc (246)

where we used the fact that the second fundamental form is symmetric. Like before, the last ∇ may be
directly replaced by a D, since we contract with a tangent vector. Then

(3) = (xbDby
a − ybDbx

a)Daz
cwc (247)

Putting all this together, we see that

Rab
c
dx
aybzdwc = (1)− (2)− (3) = xaDa(ybDbz

c)wc −Kbdybzd(x
aDan

c)wc (248)

− yaDa(xbDbz
c)wc +Kbdxbzd(y

aDan
c)wc − (xbDby

a − ybDbx
a)Daz

cwc (249)

= [xaDa, y
bDb]wc − [xa, ya]SDaz

cwc︸ ︷︷ ︸
R̄abcdxaybzdwc

+Kbd
(
xbzd (yaDan

c)wc︸ ︷︷ ︸
Kacyawc

−ybzd (xaDan
c)wc︸ ︷︷ ︸

Kacxawc

)
(250)

Where R̃ab
c
d is the Riemann tensor on S (a quantity that lives in the tangent space of S) in terms of

coordinates on Σ. Thus, we have

Rab
c
dx
aybzdwc = R̄ab

c
dx
aybzdwc +KbdKac(xbya − ybxa)zdwc (251)

All indices are dummy indices, so we may rearrange them as follows:

Rabcdx
aybzdwc = R̄abcdx

aybzdwc +KbdKac(x
bya − ybxa)zdwc (252)

Renaming some indices and factorizing, this may be written as

Rabcdx
aybzdwc = (R̄abcd +KadKbc −KbdKac)x

aybzdwc (253)

We now use the fact that all of the vectors in this expression are tangent vectors of S, which means
that we can write them as a linear combination of the coordinate basis on S: xa = xieai, and so on,
gives

Rabcd x
AyBzCwD︸ ︷︷ ︸
arbitrary!

eaAe
b
Be

c
Ce

d
D = (R̃abcd +KadKbc −KbdKac)x

AyBzCwD︸ ︷︷ ︸
arbitrary!

eaAe
b
Be

c
Ce

d
D (254)

The linear coe�cients that specify the tangent vectors are completely arbitrary, so the equality must
hold without them:

Rabcde
a
Ae

b
Be

c
Ce

d
D = (R̃abcd +KadKbc −KbdKac)e

a
Ae

b
Be

c
Ce

d
D (255)

All quantities on the right hand side of this equation live in the tangent space of S, so we can write

Rabcde
a
Ae

b
Be

c
Ce

d
D = (R̃ijkl +KilKjk −KjlKik) (256)

We can almost see the �nish line now. Contracting this equation with the induced metric γij on S, we
�nd that

Rabcd e
a
Ae

c
Cγ

AC︸ ︷︷ ︸
=γac

ebBe
d
Dγ

BD︸ ︷︷ ︸
γbd

= RS +KABK
AB − p2 (257)

where RS is the Riemann scalar (intrinsic curvature) of S, and p is the mean extrinsic curvature of S.
Now, we use the fact that

γac = gac − nanc (258)
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where na is the normal vector of S and γac is the metric on S expressed in terms of coordinates on Σ.
The left hand side of equation 257 then becomes

Rabcdγ
acγbd = Rabcd(g

ac − nanc)(gbd − nbnd) =

= Rabcdg
acgbd︸ ︷︷ ︸

=RΣ

+Rabcdn
anbncnd︸ ︷︷ ︸
=0

−Rabcdnancgbd︸ ︷︷ ︸
=Racnanc

−Rabcdnbndgac︸ ︷︷ ︸
=Rbdnbnd

= RΣ − 2Racn
anc = −2Gacn

anc

(259)

where Gac is the Einstein tensor. Finally, we have arrived at the remarkable theorem:

2Gacn
anc = p2 −RS −KABK

AB (260)

Speci�cally, if we choose S to be a three-dimensional spacelike hypersurface and Σ to be four-dimensional
spacetime, then na must be a timelike unit vector. The Einstein �eld equations then gives us a simple
way to express the left-hand side of the above equation:

2Gacn
anc = 16πTacn

anc︸ ︷︷ ︸
2µ

−2Λ gacn
anc︸ ︷︷ ︸
−1

= 2µ+ 2Λ (261)

where µ is the energy density of Σ and Λ is the cosmological constant. This gives

RS = 2µ+ 2Λ +KABK
AB − p2 (262)
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10.2 Second variation of the area

As shown in the preliminary section, the mean curvature p can be interpreted as the change of the area of
a surface if it was transported outwards along the normals. The directional derivative (or Lie derivative)
of p along the normal direction is therefore the second variation of the area. The second variation of
the area theorem gives an explicit expression for this derivative, which has a very simple statement in
terms of the intrinsic and extrinsic curvatures of the surface and the manifold it is embedded in. Proving
this theorem is notoriously complicated; the reader is encouraged to take a look in for example Spivak,
volume four [28], where the proof is over thirty pages long.

Since this theorem is so central to the proof of the monotonicity property of the Geroch mass, and indeed
important in general when considering geometric �ows of surfaces, we shall provide a derivation of it
here. The mathematical details will not be covered as extensively as Spivak or other authors gives them,
so that it is more of a derivation than a proof. The calculation is very dense, but necessarily so.

While it is possible to state the theorem more generally, we shall only be bothered with the speci�c
case which is of use to us; namely two-dimensional surfaces embedded in three-dimensional hypersur-
faces.

Let Σ be a three-dimensional spatial hypersurface, coordinatized by xa = (x1, x2, x3), with metric tensor
gab and covariant derivative ∇a. Let S be a two-dimensional surface embedded within Σ, coordinatized
by uA = (u1, u2), with induced metric γAB (inherited from Σ), its associated covariant derivative DA,
and second fundamental form KAB . We are sticking to the convention to use captial indices for quantities
in the tangent space of S, since a lot of tensors in both tangent spaces will occur.

Let the vector �eld ~n be normal to the surface, and let an overdot denote Lie di�erentiation with respect
to a normal �ow:

ṗ = Lφ~n p (263)

where φ is some scalar function that determines the speed of the �ow. Then, the second variation of the
area is given by

ṗ = −DADAφ−
1

2φ

(
p2 −KABKAB +RS −RΣ

)
(264)

Preliminaries

To begin with, we shall state some necessary identities and relations. The tangent vectors of S are given
by

eaA =
∂xa

∂uA
(265)

The induced metric on S is given by

γAB = ~eA · ~eB = gabe
a
Ae

b
B (266)

The second fundamental form of S is given by

KAB = −~n · ∇~eA~eB = ~eB∇~eA~n = −nbeaA∇aebB = eaAe
b
B∇anb, KAB = KBA (267)

We also note that
L~ngab = nc∇cgab + gac∇bnc + gbc∇anc = ∇bna +∇anb (268)

Which gives us another expression for the second fundamental form:

eaAe
b
BL~ngab = eaAe

b
B(∇bna +∇anb) = KBA +KAB = 2KAB ⇐⇒ KAB =

1

2
eaAe

b
BL~ngab (269)

The Gauss-Weingarten equation:
∇~eA~eB = D~eA~eB −KAB~n (270)
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where D is the covariant derivative on S, such that D~eA~eB = ΓCAB~eC . We will also need the derivative
of the metric on S, which is

γ̇AB = Lφ~nγAB = Lφ~n(eaAe
b
Bgab) = eaAe

b
BLφ~ngab (271)

It may be assumed that Lφ~n~eA = 0, which means that the coordinatization of the surface does not
change as it evolves (this is not necessary always the case, but the coordinates can be chosen in such a
way that this is true). This means that

γ̇AB = eaAe
b
BLφ~ngab = eaAe

b
B

(
φnc∇cgab +∇a(φnb) +∇b(φna)

)
= φeaAe

b
B(nc∇cgab +∇anb +∇bna) = φeaAe

b
BL~ngab = 2φKAB

(272)

and, since ∂(γABγ
BC) = 0, it also follows that γ̇AB = −2φKAB .

Derivation

We are now in a position to derive the second variation of the area. From the de�nition p = γABKAB ,
we have

ṗ = γABK̇AB + γ̇ABKAB (273)

We will need to work out what K̇AB is, since we know the rest already. We have

K̇AB = Lφ~nKAB = Lφ~n(eaAe
b
B∇bna) = eaAe

b
BLφ~n(∇bna) (274)

using the assumption that Lφ~neaA = 0. Continuing, we have

Lφ~n(∇bna) = φnc∇c(∇bna) +∇cna∇b(φnc) +∇bnc∇a(φnc) (275)

Now, recall the de�nition of the Riemann tensor:

(∇a∇b −∇b∇a)ξc = Rabcdξ
d (276)

where ~ξ is an arbitrary vector. This implies that

∇c∇bna = Rcbadn
d +∇b∇cna (277)

Using this, we �nd that

Lφ~n(∇bna) = φRcbadn
cnd︸ ︷︷ ︸

−φRacbdncnd

+φnc∇b∇cna +∇cna∇b(φnc)︸ ︷︷ ︸
∇b(φnc∇cna)

+∇bnc∇a(φnc) (278)

Thus:
K̇AB = −φRacbdeaAncebBnd︸ ︷︷ ︸

(3)

+ eaAe
b
B∇b(φnc∇cna)︸ ︷︷ ︸

(2)

+ eaAe
b
B∇bnc∇a(φnc)︸ ︷︷ ︸

(1)

(279)

Where we have labeled each term by a number so that we may treat them separately. The goal is now
to simplify each term as far as possible. Starting with (1), we have

(1) = (ebB∇bnc)
(
eaA∇a(φnc)

)
= φ(ebB∇bnc)(eaA∇anc) (280)

where it's possible to factor out the φ due to the fact that nc∇bnc = 0. Recall thatKBC = ecC(ebB∇bnc).
This gives

KB
CedC = edCe

cC︸ ︷︷ ︸
=δdc−ndnc

(ebB∇bnc) =⇒ KB
CecC = ebB∇bnc (281)

and by raising and renaming indices, we get

KA
DecD = eaA∇anc (282)
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putting this into (1), we get

(1) = φKB
CKA

D ecCe
c
D︸ ︷︷ ︸

γCD

= φKB
CKAC (283)

Moving on to the next term, we have

(2) = eaAe
b
B∇b(φnc∇cna) (284)

We will begin by looking at the underlined part, with the last index raised.

nc∇cna = gdanc∇cnd (285)

Now, using the fact that
gda = γABeaAe

d
B + nand (286)

we get

nc∇cna = γABeaAe
d
Bn

c∇cnd + ndnanc∇cnd︸ ︷︷ ︸
=0

= γABeaAn
c (edB∇cnd)︸ ︷︷ ︸

=−nd∇cedB

= −γABeaAndnc∇cedB
∗

(287)

since 0 = ∇c(ndedB) = nd∇cedB + edB∇cnd. Now, we will treat the second underlined part. Recall that
Lφ~n~eA = 0. This gives us:

0 = φnc∇cedB − ecB∇c(φnd) = φnc∇cedB − φ ecB∇cnd︸ ︷︷ ︸
KBDedD

−nd ecB∇cφ︸ ︷︷ ︸
DBφ

(288)

where D is the intrinsic derivative on S. We thus have

nc∇cedB
∗

= KB
DedD +

1

φ
ndDBφ (289)

Substituting back, we have

nc∇cna = −γABeaAKB
D nde

d
D︸ ︷︷ ︸

=0

− 1

φ
γABeaA ndn

d︸ ︷︷ ︸
=1

DBφ = − 1

φ
eaAD

Aφ (290)

Lowering the index a and substituting into (2), we get

(2) = −eaAebB∇b(eaCDCφ) = −ebB∇b(eaAeaC︸ ︷︷ ︸
γAC

DCφ) + ebBeaCD
Cφ∇beaA (291)

= −ebB∇b(DAφ) + eaCD
CφebB∇beaA (292)

The Gauss-Weingarten equation tells us that this underlined quantity is:

ebB∇beaA = ebBDbe
a
A −KABn

a (293)

Thus:
(2) = −ebB∇b(DAφ) + (eaCD

Cφ) (ebBDbe
a
A)︸ ︷︷ ︸

=ΓDABeaD

−DCφKAB eaCn
a︸ ︷︷ ︸

=0

(294)

Using the fact that D~eA~eB = ΓDAB~eD. The ∇b in the �rst term acts on a quantity de�ned on S, and is
then projected down to S, so we can replace it by a regular derivative ∂B on S. Hence:

(2) = −∂BDAφ+ eaCe
a
D︸ ︷︷ ︸

=γCD

DCφΓDAB = −
(
∂BDAφ− ΓDABDDφ

)
= −DBDAφ (295)

Moving on to the third term,
(3) = −φRacbdeaAncebBnd (296)
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This can be rewritten using one of the Gauss-Codazzi equations34, which tells us that

Racbde
a
An

cebBn
d = Race

a
Ae

c
B −RAB −KADK

D
B + pKAB (297)

Thus
(3) = −φ

(
Race

a
Ae

c
B −RAB −KADK

D
B + pKAB

)
(298)

Finally, putting everything together, we have

K̇AB = (3) + (2) + (1) = −DBDAφ− φ
(
Race

a
Ae

c
B −RAB − 2KADK

D
B + pKAB

)
(299)

and

ṗ = γABK̇AB + γ̇AB︸︷︷︸
−2φKAB

KAB =

= −DADAφ− φ
(
Rac γ

ABeaAe
c
B︸ ︷︷ ︸

gac−nanc

− γABRAB︸ ︷︷ ︸
=RS

−2 γABKADK
D
B︸ ︷︷ ︸

=KABKAB

+p γABKAB︸ ︷︷ ︸
=p

)
− 2φKABKAB

= −DADAφ− φ
(
RΣ −Racnanc −RS + p2

)
(300)

From the Theorema Egregium, we have

Rabn
anb =

1

2
(RΣ −RS + p2 −KABK

AB) (301)

Which, inserted in the above, gives us

ṗ = −DADAφ−
1

2φ

(
RΣ +RS −KABK

AB − φp2
)

(302)

34Note the similarity to the Theorema Egregium, which we derived above. It is derived in a similar fashion.
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11 Appendix C - Algorithm

11.1 The main program

close all
clear all

%%%%%%%%%%%%%%%%%%%%%%%%

% Program parameters:
N = 200; % Number of data points
targetTime = 3; % How long to evolve the surface
k = 1/24; % Plot every k:th second (approximately)
smoothfirstderivative = 1; % Whether or not to apply smoothing to first derivative

% if yes, algorithm runs much faster.
smoothingparameter = 0.999; % Used to remove noise

% Spheroid parameters
a = 1; % Spheroid lateral axis
b = 2; % Spheroid vertical axis (axis of symmetry)

%Plots:
plot2d = 1; % Plot the main thing
plotall = 1; % Plots derivatives and curvatures too
plot3d = 0; % Make 3D plots of the surface
record = 0; % Record each step into a movie (3D plots). Movie is

% saved to working folder as 'imcf.avi'.
% warning: 3 seconds ~= 100mb with 640x480 resolution.

plotaxis3d = 12; % When plotting in 3d; plots x,y,z between
% +/- plotaxis3d.

xresolution = 640; % Resolution for recording.
yresolution = 480; % Resolution for recording.

% Don't change these:
DeltaX = pi/N; % Spatial resolution is determined by number of points
currentTime = 0; % Keeps track of time
plotTimer = 0; % Counts time since last plot
j = 1; % Counts number of loops

%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Program starts here %%%%

x = linspace(0, pi, N); % Create a vector of x-values.
x1 = x(1:N-1)-pi; % Create a vector of x-values extended one period
x2 = x(2:N)+pi; % in both directions.
xtended = [x1'; x'; x2'];

% Create arrays for Phi (the solution) and its derivatives
Phi = zeros(N, 2);
DPhix = zeros(N,1);
DDPhixx = zeros(N,1);

% Define the initial surface
r = (sin(x).^2/a^2 + cos(x).^2/b^2).^(-1/2);

% Create array for K (curvature) values

62



K = zeros(N,1);

% Set first column of Phi to be the initial surface
Phi(1:N, 1) = r;

% Plot the original curve (as closed contour in the plane)
if(plot2d)

figure(1)
hold on
polar([x'+pi/2; -flipud(x(2:N)')+pi/2; x(1)+pi/2], ...

[Phi(1:N, 1); flipud(Phi(2:N,1)); Phi(1,1)]);
end

% Plot the original curve (radius as function of angle)
if(plotall)

figure(5)
hold on
plot(x', Phi(1:N, 1))

end

% The following part is used for recording 3d-plots into a movie.
if(record)

frames = floor(1/k * targetTime);
mov(frames) = struct('cdata',[],'colormap',[]);
frame = 1;
fig = figure(9);
set(fig, 'Units', 'points', 'Position', [0,0,xresolution,yresolution]);

end

%%%%%%%%%%%%%%%%% Main loop %%%%%%%%%%%%%%%%%

while currentTime < targetTime

% Given Phi at currentTime, we calculate Phi at currentTime+DeltaT.

% Calculate discretized x-derivative
y = NCMirrorDiff(Phi(1:N,1), DeltaX, 0); % NCMirrorDiff is a function that

% numerically differentiates a function,
% assuming that it is periodic and
% mirror symmetric around the origin.

if(smoothfirstderivative)
y1 = -flipud(y(2:N));
y2 = -flipud(y(1:N-1));
padded = [y1; y; y2];
temp = fit(xtended, [y1; y; y2], 'smoothingspline', ...

'SmoothingParam', smoothingparameter);
DPhix(1:N) = temp(x);

else
DPhix(1:N) = y;

end
% Calculate discretized xx-derivative
DDPhixx(1:N) = NCMirrorDiff(DPhix, DeltaX, 1);

% Calculate curvature:
% The extrinsic curvature of a rotationally symmetric body is the sum
% of the curvature of the two-dimensional curve that was rotated and an
% additional term representing the extra curvature in the third dimension.
K2D = Phi(1:N, 1) .* (Phi(1:N, 1).^2 + DPhix(1:N).^2).^(-3/2) ...

.* ((Phi(1:N, 1)-DDPhixx(1:N)) + 2./Phi(1:N, 1) .* DPhix(1:N).^2);
Kextra = (Phi(1:N, 1).^2 + DPhix(1:N).^2).^(-1/2) ...
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.* (1 - DPhix(1:N)./Phi(1:N, 1) .* cot(x'));
Kextra(1) = Kextra(2); % The cotangent becomes problematic at the end-points,
Kextra(N) = Kextra(N-1);% so we replace them with their neighbours. This
K = K2D + Kextra; % approximation is negligible as long as N is large.

% Determine time-step. E3 is the derivative of F (the right hand side)
% w.r.t. the second derivative of phi.
E3 = -Phi(1:N,1).^2.*(DPhix.^2 + Phi(1:N,1).^2).^2 ./ (Phi(1:N,1).* ...

(-3.*DPhix.^2 + (DDPhixx-2.*Phi(1:N,1)).*Phi(1:N,1)) ...
+ DPhix.*(DPhix.^2 + Phi(1:N,1).^2).*cot(x)').^2;

E3(1) = E3(2);
E3(end) = E3(end-1);
if(smoothfirstderivative)

DeltaT = DeltaX / max([2*max(abs(E3)), 1]);
else

DeltaT = DeltaX^2 / max([4*max(abs(E3)), 1]);
end

% Calculate phi at next point in time
F = -(1./K).*(1+DPhix.^2./Phi(1:N, 1).^2).^(1/2);
Phi(1:N,2) = Phi(1:N,1) - DeltaT .* F;

% Draw plots
if(plotTimer >= k)

plotTimer = 0;
if(plotall) % Auxilliary plots

figure(2)
plot(x, DPhix(1:N));
title('First Derivative')
hold on
figure(3)
plot(x,DDPhixx(1:N));
title('Second derivative')
hold on
figure(60)
hold on
plot(x, E3);
title('Derivative of right hand side w.r.t. d^2 phi/dx^2')
figure(8)
plot(x,Kextra)
hold on
title('Extra Curvature')
figure(4)
plot(x,K)
title('Curvature')
hold on
figure(6)
plot(x, 1./K);
title('Inverse curvature')
hold on
figure(7)
plot(x, F);
title('Right hand side')
hold on;
figure(5)
plot(x', Phi(1:N, 2))
title('r(theta)')
hold on

end
if(plot2d) % The main plot
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figure(1)
polar([x'+pi/2; -flipud(x(2:N)')+pi/2; x(1)+pi/2], ...

[Phi(1:N, 2); flipud(Phi(2:N,2)); Phi(1,2)]);
axis equal

end
if(plot3d)

fig = figure(9);
DrawSurfaceOfRevolution(x, Phi(1:N,2), N)
axis([-plotaxis3d plotaxis3d -plotaxis3d ...

plotaxis3d -plotaxis3d plotaxis3d])
if(record)

mov(frame) = getframe(fig);
frame = frame + 1;

end
end

end

% Calculate the integral of the curvature squared over the surface.
% This should decrease as the surface evolves.
Q(j) = 2*pi*sum(K.^2 .* Phi(1:N,1).^2 .* sin(x)' .* DeltaX);

% Set the calculated Phi to current Phi, begin again
Phi(1:N,1) = Phi(1:N, 2);

j = j + 1;
currentTime = currentTime + DeltaT;
plotTimer = plotTimer + DeltaT;

end

if(plotall)
figure(10)
plot(Q)
title('Integral of curvature squared')

end

if(record)
for i = 1:frames

if(length(mov(i).cdata) == 0)
break;

end
end
mov2 = mov(1:(i-1));
movie2avi(mov2, 'imcf.avi');

end

11.2 Help functions

function Df = NCMirrorDiff(f, Delta, even)
N = length(f);

fNext(1:N-1) = f(2:N);
fNext(N) = f(N-1);
fPrev(2:N) = f(1:N-1);
fPrev(1) = f(2);
Df(1:N,1) = (fNext(1:N) - fPrev(1:N))./(2*Delta);

if(even)
Df(1,1) = (fNext(1) + fPrev(1))./(2*Delta);
Df(N,1) = (-fNext(N) - fPrev(N))./(2*Delta);
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end

end

function DrawSurfaceOfRevolution(theta, r, N)

clear tri
clear X
clear Y
clear Z

X = zeros(N*N, 1);
Z = zeros(N*N, 1);
Y = zeros(N*N, 1);

for i = 1:N
for j = 1:N

[X(N*(i-1) + j), Y(N*(i-1) + j), Z(N*(i-1) + j)] = ...
pol2cart(2*pi/N *(j-1),r(i).*sin(theta(i)),r(i).*cos(theta(i)));

end
end

tri = zeros(2*(N^2-N), 3);

for i = 1:(N^2-N)

polygon = 2*i - 1;

if(mod(i,N) == 0)
tri(polygon,1) = i;
tri(polygon,2) = i + N;
tri(polygon,3) = i + 1;

tri(polygon+1,1) = i;
tri(polygon+1,2) = i + 1;
tri(polygon+1,3) = i - N + 1;

else
tri(polygon,1) = i;
tri(polygon,2) = i + N;
tri(polygon,3) = i + N + 1;

tri(polygon+1,1) = i;
tri(polygon+1,2) = i + N + 1;
tri(polygon+1,3) = i + 1;

end

end

h = trisurf(tri, X, Y, Z);

view(33,15)
shading interp
lighting phong
light
colormap summer

end
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