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Abstract

A space-time analogue to the well known Berger sphere, a class of geometries
that interpolate between 3-dimensional and 2-dimensional anti-de Sitter space,
is studied. Special attention is paid to the conformal boundary of the space
as, for 3-dimensional anti-de Sitter space, it is in itself locally conformal to
2-dimensional anti-de Sitter space; and in this light the squashing of anti-de
Sitter space could be viewed as a kind of interpolation of the space onto its
own boundary. It is found that squashed anti-de Sitter space does not posses a
conformal boundary at all. Also it is investigated if the space-times are solutions
to a conformal generalization of the Einstein equation, called the Einstein-Weyl
equation. The answer is found to be - not quite, but almost.
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Chapter 1

Squashing the 3-sphere

The 3-sphere (S3) is in many respects like the ordinary sphere, only three-
dimensional; a totally symmetric space with constant positive curvature. It can
be considered as the surface

X244 Y24 224 W2 =1, (1.1)

in a four dimensional Euclidean space with Cartesian coordinates (X,Y,Z,W).
The symmetries of S? are described by the group of rotations on the four-
dimensional embedding space, O(4). When trying to visualize the 3-sphere,
describing it as a surface in a four-dimensional space is no good because four-
dimensional space is notoriously hard to imagine. Instead one usually projects
it onto flat 3-space and gets a somewhat distorted, but manageable picture. A
mapping appropriate to use here is the stereographic projection, which looks
like this:

2x 2y

X=-""_ y=_2_
1+r2’ 1472’7
2z 1—72
7 _l=r 1.2
1472’ 1472’ (1.2)
r? =2 +y* + 2%, (1.3)

The stereographic projection is a conformal map which means that the metric
of S2 is conformal to the flat metric, that is, it is the flat metric multiplied by
a factor that is a function of the coordinates:

dshs = (da® 4 dy* + dz?%) . (1.4)

4
(14172)
The coordinates (x,y,z) are called stereographic coordinates for the obvious rea-
son. It is of course possible to map the embedded surface to flat space in
different ways and obtain different coordinate systems useful for various things,
but this is not something I will consider here. Stereographic coordinates are



CHAPTER 1. SQUASHING THE 3-SPHERE

useful because they give a true picture of angles and small shapes; distances
are distorted but angles are conserved by the mapping. Another interesting
property of conformal maps is that they can give a picture of how a space looks
“infinitely far away”. R? is an infinite non-compact space while S? is a compact
space. The stereographic projection considered above maps the north pole of
53 to infinity of R3. It turns out that any conformal map of the 3-sphere to flat
space can take at most one point to infinity; or the converse: A conformal map
of flat space will project infinity to a point. This will allow us to say, that in a
way, infinity of flat Euclidean space is a point. For a more thorough, and very
readable, description of conformal maps see [5]. A more interesting example of
infinity will appear in the next chapter when we are looking at anti-de Sitter
space.

We would like to know how the geodesics and the symmetry flow lines look
in this picture. Geodesics appear as lines through the origin, circles intersecting
the equator (the unit-sphere) at antipodal points, or great circles on the equator.
The symmetry flow is generated by the Killing vector fields, which in the case
of the 3-sphere are the generators of rotation:

Jij = Xiaj — Xjai . (15)

There are 6 such linearly independent vectors, and their flow lines are all intrin-
sically circles. In our picture some of them look a bit different because the W
coordinate has been singled out by the stereographic projection. Consider first
rotations in the XY-plane:

JXY :Xé)ny@X :l’ayfyam. (1.6)

These still look like rotations in the stereographic picture and their flow lines
are circles. The z-axis is fixed under this rotation. If we instead rotate in the
ZW-plane we have fixed points where

Z=W=0 = r=1,2=0. (1.7)

This is the unit circle in the xy-plane. The flow lines of rotations are still circles
around this line of fixed points; in the stereographic picture this looks like circles
on a torus.

An interesting and important property of the 3-sphere is that there exists
Killing vector fields that do not have any fixed points, for example the field

E=Jdxy+Jzw=X0y —YOx + Z0w — WOy . (1.8)

This vector field has flow lines that, like those of the Jzy, lie on tori around the
unit circle r=1; but they now also wind one time around the z-axis like those of
the Jxy (see fig 1.1). Since no points in the space are fixed under the action of
this vector field it is clear that every point must lie on a flow line of &; the flow
lines of € fill the whole of S3. This is very different from the 2-sphere, where it
is impossible to find a Killing vector field without fixed points.
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Figure 1.1: Clifford parallels on S3. Picture copied from Penrose

Now, the geometry of S is such that two initially parallel geodesics will
eventually intersect at some point, this because of the constant positive cur-
vature (think of great circles on the sphere). It is however possible to define
another meaning of “parallel” here. Instead of looking at two lines whose tan-
gent vectors are parallel displaced to each other, we rotate one of the lines such
that the two geodesics become skew to each other. Now when we move along
the geodesics the distance will increase between them because they are pointing
in different directions. It is possible to adjust the skewness in such a way that
the diverging effect of the skewness exactly cancels the converging effect of the
geometry and the lines stay at a constant distance of each other along the whole
of their length. Such lines are called Clifford parallels. For S2 it is possible to
completely foliate the space with Clifford parallels [1], and in fact, this foliation
is exactly the space-filling family of flow-lines of £ constructed above.

This construction is what is known as the Hopf fibration of the 3-sphere, and
is a prime example of a fibre bundle, a concept of great interest in several areas
of physics. Since the distance between two Clifford parallels is independent
of where one is along them, one can talk about distance between the Clifford
parallels as whole objects. We define the distance between two Clifford parallels
as the shortest distance between any two points, one on each line. Looking at
S3 in this way it becomes a space of circles (a space whose points are circles).
It turns out that, actually, this space of circles is a 2-sphere. The 3-sphere is a
2-sphere of circles. In a construction like this the 2-sphere is sometimes called
the quotient space of S® with S', denoted as S? = S3/S*; the Clifford parallels
are in a sense “factored out of the space” and what is left is the 2-sphere.

The Berger spheres is a family of geometries that interpolate between the
3-sphere and the 2-sphere; instead of just factoring away the Clifford parallels
we construct a continuous transition between S and S%. It is constructed
by gradually decreasing the distance along the Clifford parallels down to zero.
Being more explicit we can look at the metric of the 3-sphere expressed in Euler
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coordinates,

1
ds? = Z(dr2 + df? + d¢* + 2 cos fdrdg) = (1.9)
= i((df + cos 0 dp)? + db? + sin? 0dp?) . (1.10)

where 7 here is the coordinate along the Clifford parallels. The squashed 3-
sphere is obtained by inserting a new parameter A\ in the metric with values
ranging between 1 and 0.

ds® = i(v (d7 4 cos 0 d¢)? + db? + sin® 0dp?) . (1.11)

For A\ = 1 the metric is that of the 3-sphere, and for A = 0 it is the metric of
the 2-sphere (if one ignores the factor of i in front). For any value in between
it is the metric of a Berger sphere; topologically still a 3-sphere but distorted
and less symmetric. This construction is well known and described in more
detail elsewhere. It is my intention with this thesis to describe another, similar,
construction; a family of geometries that interpolate between 3-dimensional and
2-dimensional anti-de Sitter space.



Chapter 2

Anti-de Sitter space

Anti-de Sitter space is a space-time of constant negative curvature and a solu-
tion to Einsteins equations with negative cosmological constant. It is presently
believed that the universe possesses a positive cosmological constant, which at
first sight makes the study of anti-de Sitter space more of a curiosity than rele-
vant physics. Nevertheless, as one of few simple solutions of Einsteins equations
it merits some attention, and is covered, for example, in Hawking’s and Ellis’s
The large scale structure of space-time. String theorists have given anti-de Sit-
ter space more than just some attention, mainly because of the properties of its
conformal boundary which makes it possible to define conformal field theories
on the boundary that correspond to string theories in the interior. More on the
conformal boundary of anti-de Sitter space below. In this chapter we will take a
detailed look at anti-de Sitter space, especially from a viewpoint that later will
enable us to understand the squashed space.

2.1 Hyperbolic space

The understanding of anti-de Sitter space will greatly be helped by some famil-
iarity with hyperbolic space, thus this is where we will begin. Hyperbolic space,
or in two dimensions the hyperbolic plane, H?, is a space of constant negative
curvature analogous to the sphere. Like the sphere it can be considered as the
set of points at an equal distance from the origin in a higher dimensional flat
space. Unlike the sphere this flat space has indefinite signature metric,

ds* = —dT? +dX? +dY?. (2.1)

The hyperbolic plane is usually defined as the upper sheet of the hyperboloid

TP+ X2 4+Y?2=-1. (2.2)

One could have considered the surface (2.2) embedded in ordinary space, but
this would not have been a space of constant curvature. The necessity of using
space-time as embedding space comes from the fact that both the quadric (2.2)
and Minkowski space-time are invariant under the pseudo-orthogonal transfor-
mations SO(1, 2) while Euclidean space and the sphere has rotational symmetry
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Figure 2.1: Geodesics on H?

SO(3). An SO(1,2)-transformation that transforms between different points on
(2.2) in a Euclidean space would not be a symmetry transformation of the met-
ric, and different points would therefore have different curvature. In Minkowski
space-time however the transformation is a symmetry and all points on the
surface look the same.

Two things one always should want to know about a space are: 1. Its symme-
tries, and 2. How its geodesics look like. The sphere has rotational symmetry
and its geodesics are its great circles. The symmetries of hyperbolic space I
have already described, but what are its geodesics? Remember that there is ex-
actly one geodesic that intersects any given point in a given direction. Consider
now the intersection of the hyperboloid with a vertical plane that contains the
T-axis. Since the hyperboloid is symmetric with respect to reflections in this
plane, geodesics tangential to the plane at some point will be transformed to
other geodesics still tangential to the plane at that point by the reflection. Since
there can only be one geodesic in a given direction at any point, the reflected
geodesic must be the same as the original one and the geodesic must coincide
with the vertical plane. Other geodesics can be constructed by boosting or ro-
tating these, which can be realized as the intersection of any time-like plane
through the origin with the hyperboloid (see fig 2.1).

2.2 The Poincaré disk

Instead of working with hyperbolic geometry as a surface in a flat embedding
space we would like to have a set of intrinsic coordinates. One such coordinate
set is obtained by projecting the hyperboloid down on the XY -plane. Choose
the point T = —1 as the projection point and draw straight lines through the
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-

V...

Figure 2.2: Geodesics are projected into straight lines or circle segments.

hyperboloid. The whole space will be projected onto the unit disk, and infinity
will be mapped to the unit circle. The metric on the projection plane will be

ds® = (1_;[)2)2[@2 + p?d¢?]. (2.3)

It is conformal to the flat metric and the mapping is therefore a conformal one.
One also sees from the conformal factor that the metric is undefined at p = 1.

Geodesics on the Poincaré disk are circle segments or straight lines meeting
the boundary at right angles (see fig 2.2). In the next section we will see that
anti-de Sitter space can be represented as a pile of Poincaré disks, one then has
a clear picture of infinity as a time-like cylinder.

2.3 Anti-de Sitter space

3-dimensional anti-de Sitter space can be considered as the surface

X24Y?-U?-V?=-1, (2.4)

embedded in a 4-dimensional pseudo-Riemannian space with metric

ds®> = dX? +dY? — dU?* — dV?. (2.5)

We would like to represent anti-de Sitter space in a way that can easily be
visualized. A set of intrinsic coordinates that manages this are (¢, p, ¢), defined
through
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2
X = 1_pp2 cos ¢,
2
Y = 1_pp2 sin ¢,
1 2
U= +p2 cost, (2.6)
1—p
1 2
= 1jp2 sint

The whole space is now the interior of the torus p < 1. Time here is periodic
with period 27. We usually “unwind” the time coordinate and let it range from
—00 t0 400, in which the representation becomes the interior of a cylinder
instead. In doing this we are actually dealing with the covering space of anti-de
Sitter space, but the distinction is not that important to us.

The line element in these coordinates is

4 1+ p2\° 14+ p2\°
ds? = m[d,ﬂ + p2de?] — (i;) A2 = di? — <1tz2) a2, (2.7)
where di? is the line element on the hyperbolic plane. The metric is undefined
at p = 1. Earlier when we considered the conformal compactification of the 3-
sphere, we did so by a conformal transformation of one space to another. Here
we have done nothing more than a coordinate change, but the compactification
is not complete yet since the metric is undefined at the boundary. Equivalent
to a conformal transformation is a conformal rescaling of the metric; we can
choose to rescale our metric in such a way that it stays finite at the boundary
of the compactified space (denoted .#). Introducing a metric on .# in this way
with a suitable conformal factor completes the comptacification.

1—p? 4
22 _ 2 _ 2, 2.2 2
ds® = <1+p2>d8 = (1+p2)2(dp + p®do?) — dt”. (2.8)

This gives .# at p = 1 the flat metric

ds% = d¢?* — dt?, (2.9)

or in light-cone coordinates

u=t—¢, v=t+0o, (2.10)

d3* = —dudv. (2.11)

The metric on .# is only a conformal one, that is, it is only defined up to a
conformal factor, since we could have chosen any conformal factor that made the
metric finite at p = 1, but this does not matter for the calculation of conformally
invariant objects like null geodesics. Conformal metrics will re-appear in another
context in the chapter on Einstein-Weyl spaces.
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2.4 The isometry group of Anti-de Sitter space

In embedding coordinates, the Killing vectors of anti-de Sitter space are

Jxy = X0y —YOx, JXU:X8U+U8X, (2.12)

and similarly for the other coordinates.

It will be helpful to us to see that adSs can be given a group structure.
Manifolds with this property are called group manifolds; the points of the space
corresponds to elements in a group. The algebraic structure of the group will
help us understand the symmetries of the space. We are a bit lucky to be able to
use this property since AdSs3 is the only space-time that is also a group manifold.

Consider the group of real 2 x 2-matrices with determinant one, SL(2,R).
A one-to-one correspondence between elements in SL(2,R) and points in AdSs
can be given by

V+X Y+U 2 2 2 2
(YU VX) , X2P4Y2oUt-vi=—1 (2.13)
where (X,Y,U,V) are the coordinates of AdS3 in the embedding space.

A matrix with determinant one can always be written as the exponent of
a traceless matrix m. If we insert a parameter o in the exponent we obtain a
one-parameter subgroup of SL(2,R),

g(o) =€, (2.14)

which from another point of view is a curve in AdS3. At 7 = 0, g is the identity
element, a very special element in the group but like any other point in the
manifold. The tangent vector of the curve at this point is

9(0) lo=0=m. (2.15)

We see that the tangent space of the manifold around the identity element is
the space of traceless matrices. This is the Lie algebra of the group SL(2,R).

Elements of the group can be combined to obtain a new element g; = g1 9o.
This makes it possible to view the group not only as the manifold itself but also
as a group of transformations on the manifold. A group element g; can act on
the manifold in two ways; by left translation ¢ — g1g, or by right translation
g — 991 ! We must act with the inverse from the right to ensure that the group
structure is preserved, gg; 1 9gy ! = g(g291)~". Acting with the subgroup above
from the left we obtain a curve through g,

g(o) = gi(o)g =e""g. (2.16)

Since g is an arbitrary element of the group this gives us a curve through every
point of AdSs, and because of the group laws the curves can not cross each
other, this makes the curves a congruence. The Clifford parallels studied earlier
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can be constructed like this (S® being a group manifold). We can also look
at infinitesimal transformations ég = mg. A basis for the space of traceless
matrices is

00=<(1) _01>, 01:(2 (1)> 02:<_01 ?) (2.17)

Consider an infinitesimal transformation in the o;-direction, m = o,

(3620 0 250) - (V0 (h0 vix)- e

The effect of this transformation on the coordinates(X,Y,U,V) can be worked
out to be the same as that of the Killing vector Jyv — Jxy,

(6X,8Y,8U,8V) = (Jyv — Jxu)(X,Y,U, V). (2.19)

Doing the same with o5 and o¢ we find that they also correspond to the action
of Killing vectors. We then have a basis for the tangent space consisting of three
nowhere vanishing Killing vector fields

Jo=Jdxy —Juv, Ji=Jdyv—Jxu, Jo=-Jyvuv—Jxv. (2-20)

The vector fields are a representation of the Lie algebra sl(2,R). Acting from
the right we get another set of fields, commuting with the first since matrix
multiplication can be done from the right and left independently.

Jo=—JIxy —Juv, Ji=Jdyv+Ixv, Jo=Jyvr—Jxv. (2.21)

Together these two sets of vectors generate the symmetry group of AdSs3, SO(2,2) =
SL(2,R) ® SL(2,R)/Z,; each by themselves, they are two sets of bases for the
tangent space of AdSs = SL(2,R). This dual meaning of the group and its gen-
erators is a property shared by all group manifolds equipped with the natural
metric. The group can act on itself as a symmetry transformation, and it can
do so both from the left and the right independently, giving the group manifold

a symmetry group that is the direct product of itself up to a discrete factor.

It is also interesting to see how the Killing fields act on .#. Since the metric
on . differs from the metric in the interior by the extra conformal factor they
no longer act as true Killing fields but only as conformal ones. That is, the Lie
derivative of the metric is proportional to the metric instead of zero. If £ is a
Killing field with respect to the interior metric, g;;, we have on .%

.,55 Gij = Jgg (QQ gij) = gij 2Q) £§Q + Q2 £§gij = 2££ angij- (2.22)

Listing the conformal Killing fields on .# in light cone coordinates (2.10):

10
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JO:ava jozaua
Jiy =sinvd,, jlz—sinuau,
Jo = —cosv 0, Jo = —cosud, . (2.23)

We can see that all of the generators become light-like on .# and those that
were space-like inside anti-de Sitter space have fixed points on the boundary.

In group manifolds it is possible to define Maurer-Cartan forms. They are
invariant under right (or left) translation and takes values in the Lie algebra. A
right invariant Maurer-Cartan form is written like dgg~"' and that it is invariant
under right translation by a fixed group element ¢, is easily shown:

-1

dgg™" — d(9g1)(991) " = dggigi g =dgg™". (2.24)

A left invariant Maurer-Cartan form is thus written as g~'dg. Since they take
values in the Lie algebra they can be expanded in the basis defined above (2.17),

Clgg_1 =000¢+0101+020,. (2.25)

Solving this equation for the O;’s we find

O = YdX - XdY —VdU +UdV,
©1 = —UdX +VdY +XdU —YdV ,
O, = —VdX —UdY +YdU + XdV . (2.26)

These one-forms are dual to the vectors J; defined above,

Or(Jy) =d1. (2.27)

On a group manifold it is natural to use the Maurer-Cartan forms to define
a metric. The natural metric for the classical groups is given by

1

Since the trace is invariant under cyclical permutations, the natural metric can
also be expanded in the left invariant Maurer-Cartan forms,

1 _ _ 1 _ _ - - -
ds* = —§Tr(dgg tdgg™) = —§Tr(g Ydgg'dg) = —©% + 0% + O03. (2.29)

where the ©;’s are obtained from the equation
g 'dg = 0000+ 0101+ 0205, (2.30)

11
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Oy = —YdX+XdY —VdU +UdV,
0, = UdX +VdY — XdU —-YdV,
O, = —VdX4+UdY —YdU + XdV . (2.31)

and are dual to the J;’s

é](jj) =d7J. (2.32)

A group manifold G equipped with its natural metric is invariant under both

left and right translations and thus has the symmetry group G x G (up to some
discrete factor). The natural metric on SL(2,R) is exactly the metric of AdSs
(2.5).
With the metric expressed in this form of right or left invariant Maurer-Cartan
forms the squashing of AdSs5 to AdS, is straight forward, we just have to insert
a parameter into the metric in front of one of the space-like generators and turn
it down to zero.

ds? = -0+ X037 +03, 0<A<l. (2.33)

We could also, if we wanted to, put A? in front of ©% instead.

ds® = -XN05+07+03, 0<A<L (2.34)

This squashing of AdS3 would, when A is turned to zero, become hyperbolic
space, but it is mainly the first squashing we are interested in here. There is still
some work to be done, however, before we are ready to describe the squashing.
The three vector fields used here to expand the metric do not commute and are
therefore not suitable to use for a coordinate system of AdS3;. We would like to
have a coordinate system in some way adapted to the squashed space. Working
in sausage coordinates or embedding coordinates is possible but cumbersome,
and best avoided. Luckily, the group structure of the manifold will help us find
the coordinate system we are looking for.

2.5 “Euler coordinates” for AdS;

To construct a suitable coordinate system, consider the diameter of one of the
Poincaré disks in the compact picture of anti-de Sitter space described in section
2.3, say the line t = 0, ¢ = 0, 7. This line is both a geodesic and the flow-line of
the Killing vector .J; (and J;) (see fig 2.3).

In the group manifold this line is represented by the set of matrices

—2p
z

Y-U V-X

V4X Y4U 22 g
g=< ) <_11+f’p2 =) pe(-1,1). (2.35)

2

1—p 1—p

12
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~6.
"

n

Figure 2.3: A flow line of J, indicates the direction of translation of the line
t=0,¢=0,7

Note that p ranges from -1 to 1 here in contrast to its normal role as the radial
coordinate in the Poincaré disk.

Now, the vector field .J, is orthogonal to the line we just constructed along
the whole of its length. We can adapt our coordinate system to this vector field
by parameterizing a translation of the line in the direction of Jo; in the group
manifold this translation is simply performed by multiplication of matrices. The
translation in the J,-direction of the line corresponds to multiplying the group
elements g(p) from the right by e~“?2, where w ranges from —oo to oo since Jo
generates a non-compact subgroup of the symmetry group of AdSs.

—-p2  1-p

2p26—w 1+pz ew
A A (2:360)
_lfp26 1—p €

Keeping the cylinder picture of infinity in mind, and the action of Jo on it
(2.23), we can see that the endpoints of the line g(p) each will be translated in
a light-like direction around the cylinder +7 in the u-direction, and that each
end is translated in the opposite direction of the other. The ends end up on
the same line of fixed points of the vector field J> on the boundary, u = £75
respectively, for translation in positive or negative Jo-direction. In fact, each
point of the line g(p) will end up on the same line of fixed points for an infinite
translation in the J,-direction. The line is light-like which makes the section
g(p,w) a space-like section of AdSs with a light-like boundary, where the rest
of the boundary is made up of the flow-lines of J, containing the endpoints of
g(p). The boundary has four kinks at (u,v) = (=%,0),(=5,7),(5,0),(F,m)
(fig 2.4).

All we have to do now to complete our coordinate basis is to find a third
everywhere non-vanishing vector field that commutes with the previous two.
Actually, we already have such a field. The time-like Killing vector from the
set that corresponds to left translation, Jy, commutes with J, and is actually

13
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Figure 2.4: The bundary of the coordinate surface parameterized by p and w.
Arrows indicate the flow of J;

orthogonal to the line g(p) which means that it is orthogonal to all lines g, (p)
that is a result of the translation by J, since this translation is a conformal
transformation. It is not orthogonal to Jo, hence our coordinate system will not
be an orthogonal one. Translating the surface g(p,w) along Jy gives us

. 2p —w 1er2 w
[ cosT —sInT T—2¢ T—2¢ B
9(p,w,7) = ( sinT  cosT ) ( _1*?”2@_‘” = e¥ ) B
1—p2 1—p2
1 (2p cosT + (1 + p*)sinT)e—* ((1+ p?)cosT + 2p sinT)e”
1—p2\ (2psinT — (1+p*)cosT)e ™ ((1+p*)sinT —2p cost)e* | °

(2.37)

From this we can read off the relation between the intrinsic coordinates (p, w, 7)
and the embedding coordinates (X,Y,U,V) by comparing with equation (2.35).
If we at the same time define o through p = tanh(%) and rescale the other
coordinates a bit we arrive at a nice coordinate system of AdSs.

e (5) e (2) () - (5) (2 ().
Y = +sinh () cosh (%) sin (3 ) +cosh (5 ) sinh () cos ()
0= () o) ) 0 5) s (3 3.
V =+ cosh (%) cosh (%) sin (g) — sinh (%) sinh (%) cos (g) . (2.38)

The three vector fields 0, 0,, and 0, are all commuting and linearly independent
inside AdSs and are therefore suitable for use as a coordinate basis, but on .

14
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0, and 0, are both proportional to 9, (remember that the infinitely translated
line g(p) coincides with the line of fixed points of Jo) and hence they are no
longer linearly independent. This will be important when we want to look at
# of the squashed space.

We finish this section with the Killing fields and the metric in our new
coordinates.

Killing vectors

Jo = 287' ’

Ji = 2sint tanho d; — 2 cosT 9, + 2sinTsecho d,, ,

Jo = —2cosT tanhod; —2sinT0, —2cosTsechod,, ,

Jo = 2secho coshwd, + 2sinhwd, — 2tanho coshwd,, ,

J; = 2secho sinhwd, + 2coshwd, — 2tanh o sinhw d,, ,

Jo = 20,. (2.39)
ds® = i(—er + do* + dw? + 2 sinh o d7dw). (2.40)

We can compare this with the metric of the 3-sphere in Euler angles [1].

1
ds%s = Z(dT2 + df* + d¢* + 2 cos Odrdg) (2.41)

where

0<7<A4r 0<o¢p<m 0<f<m. (2.42)
With this we have a description of anti-de Sitter space adapted to the sym-

metries we will use when we are squashing the space, similar to the fibre bundle
description of the 3-sphere.
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Chapter 3

Squashing Anti-de Sitter
space

Since anti-de Sitter space is a space-time and has both time-like and space-like
directions, it is possible to obtain quite different results by choosing to squash in
either the time-like or a space-like direction. The two different ways of squashing
can, as we saw in the previous chapter, be realized by either inserting a param-
eter in the metric in front of a time-like, or a space-like one-form and generator
of the group AdSs. It is mainly the squashing in the space-like direction that
will be described here, but I will spend a few words on the other case too. A
description of the time-like squashing can also be found in [7].

In the previous chapter we made some preparations by giving a fibre bundle
description of the space where the fibre coordinate o runs along the space-like
fibre we intend to squash. The coordinate system is actually adapted to both
cases at the same time, the coordinate 7 runs along a time-like fibre related
to the sausage-coordinates as 7 = ¢t + ¢ = v (2.23). O, generates a subgroup
isomorphic to SO(2) while 0, is the generator of the non-compact subgroup
SO(1,1). The resulting quotient spaces if we were to factor the groups out are
different, as we will see.

In the time-like case we can rewrite the metric (2.40) in the form

1
ds* = Z(—(dT — sinh odw)? + do? + cosh? odw?). (3.1)
(dr — sinhodw) is the the one-form Oy (2.31) expressed in our new coordi-
nates. The metric of (temporally-) squashed anti-de Sitter space is obtained by
inserting a parameter in front of Q.

1
ds3 = Z(—)\Q (dr — sinh odw)? 4 do? + cosh? odw?). (3.2)

When A = 0 we obtain a two-dimensional space parametrized by the coor-
dinates (o,w), with metric

ds3_, = do® + cosh? odw?. (3.3)
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CHAPTER 3. SQUASHING ANTI-DE SITTER SPACE

This metric describes a space of constant negative curvature - the hyperbolic
plane. Thus we can write Hy = AdS3/S0(2).

Let us now look at the other case, the squashing along the space-like fibre
generated by .J,. First we rewrite the metric (2.40) in the form

1
ds* = Z(— cosh? od7? + (dw + sinh odr)? + do?). (3.4)
(d¢ + sinh? wdt) is the one-form O,, dual to J,. The metric of (spatially-
)squashed anti-de Sitter space is obtained by inserting A2 in front of ©,.
1
ds3 = i cosh? odr? + \2(dw + sinh odr)? 4 do?) . (3.5)
By letting A range between 0 and 1 we have a family of metrics that interpolate
between 3-dimensional and 2-dimensional anti-de Sitter space. To convince
ourselves that we do actually arrive at 2-dimensional anti-de Sitter space let us
look at the metric when A = 0:
1
ds3_g = i cosh? od7? + do?). (3.6)
This is one fourth of the metric of 2D-anti-de Sitter space in a commonly used set

of coordinates that can simply be related to a one sheeted hyperboloid defined
in 3D-Minkowski space

2?2 —u?—v?=-1

, ds* = —(du)? — (dv)? + (dx)? (3.7

if we parametrize it as

u = cosho cosT,

cosho sinT,
xz = sinho. (3.8)

The coordinates are static and global.

3.1 Symmetries and Killing Horizons

3-dimensional anti-de Sitter space is a well known space-time of constant neg-
ative curvature and a solution to Einstein’s equations in three dimensions, but
what are these geometries that we obtain when we squash it? One obvious con-
sequence of the squashing is the reduction of symmetry. 3D-anti-de Sitter space
was a maximally symmetric space while the squashed space has a preferred di-
rection along the fibre we choose for the squashing. Of the six Killing vectors
of anti-de Sitter space, (2.20), (2.21), only four still describe symmetries of the
space - those that commuted with the vector of the squashing direction. The
remaining Killing vectors are the three vectors describing left translation on the
group manifold, and the squashing vector itself.
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CHAPTER 3. SQUASHING ANTI-DE SITTER SPACE

{Ekiting} = {Jo, J1, J2, J2} . (3.9)

Thus the symmetry group of squashed anti-de Sitter space is SL(2,R)®S0(1,1),
since .J, generates the group SO(1,1), the set of vectors corresponding to left
translation generates SL(2,R) and .J, commutes with the other three. The
subgroup SL(2,R) of the total symmetry group translates between all points in
the manifold, thus the group is homogeneous, but not isotropic.

Killing horizons are null-surfaces whose generating null-vector coincides with
a Killing vector field [3]. The physical significance of such a surface is that on
it a particle can travel at the speed of light and still seem to be standing still; it
is traveling at the speed of light if its trajectory follows the null generators, but
standing still in the sense that no change in its surroundings can be detected as
this trajectory at the same time is the flow-line of a Killing field (and fixed in
relation to the surface).

In anti-de Sitter space, the Killing vector £ = Jxy generates a Killing hori-
zon. The surface where it becomes null,

o =|Ixu|P=U-X>=U+X)(U—-X)=0, (3.10)

is a null surface consisting of the null planes X = U and X = —U. Naturally
also Jxv, Jyy and Jyy generate identical Killing Horizons of two intersecting
null planes. If one instead considers the Killing vector that is a combination of
a rotation and a boost, £ = (Jxu + Jxv), the surfaces where it becomes null,

% = Jxv+JIxy[P=U+Y)* =0, (3.11)

consists of one single sheet, and the normal to the surface is the zero vector,

Vo(U+Y)?=0. (3.12)

This is called a degenerated Killing horizon.

Much of the symmetries remain in squashed anti-de Sitter space and with
them the Killing horizons they generate, but many do disappear. The gener-
ating vectors of the two-sheeted Killing horizons are constructed by adding the
basis vectors of the symmetry group (2.20), (2.21) together, one from each mu-
tually commuting set. Since two of the basis vectors of the set corresponding to
right translation no longer are Killing vectors (Jy, J1), only the combinations
Jyu = J"’;‘h and Jxy = —J2;J2 still generate Killing horizons. Of the one-
sheeted Killing horizons generated by the rotation-boost vectors none remain,
this because the rotation vectors Jxy and Jyy no longer act as isometries. One
would expect that with the reduction of symmetry there would be a reduction
of Killing horizons too, but curiously, a new horizon emerges when we start to
squash the space. The vector Jy + J; is light-like everywhere in anti-de Sitter
space,
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Jo+J1 = JIxy—Juv+Juv —JIxu =
(Y —U)dx + (V= X)dy + (V= X)oy + (Y = U)dy

(3.13)
o+ > = (Y =UP+(V-X)"=(V-X)= (¥ -U)*= 0

Rewriting the vector in intrinsic coordinates and calculating the norm in the
squashed space we find

Jo+J1 = (2+2sin7 tanho)d; — 2cosTdy + 2sinTsecho 9,
(3.14)
|l Jo+ J1]|> = (A —1)(sinT cosho + sinho)?

It is only light-like on the surface (sin7 cosh o + sinho)? = 0 which has a null
normal for the same reason as the earlier single-sheeted Killing horizons did (a
surface f2(r) = 0 has normal vector Vf2(r) = f(r)Vf(r) = 0), hence it is a
degenerate Killing horizon. It would be interesting to do a more systematic
investigation of the Killing horizons of squashed anti-de Sitter space but due to
restrictions of time none will be done here.

3.2 Conformal infinity of squashed anti-de Sitter
space

What about the boundary then? The space we started with had a confor-
mal boundary in the form of a cylinder. The space we end up with when the
squashing is complete has a boundary consisting of two time-like lines. Does the
squashing just gradually deform the cylinder until it is flat, leaving the bound-
ary more or less intact, or does something else happen? Since J,’s action on &
is known (2.23), it is at first sight natural to assume that the squashing of .# can
be done independently from the squashing of the interior, just tweak the metric
on .7 in the same way as we did with the interior metric. But some further
thought should make us a bit cautious about this conclusion. It is in no way
obvious that there should be a continuous transition between the old .# and the
new one as it is constructed through a limiting procedure. The conformal factor
used before may no longer produce a finite metric at infinity, instead some other
conformal rescaling could be needed to bring the metric under control, with the
effect that the structure of .# dramatically changes. To see what actually hap-
pens we should reconstruct .# from the squashed metric, we may or may not end
up at a cylindrical .# near A\ = 1, but it is impossible to know which beforehand.
Since squashed AdSj is described throughout this thesis with the coordinates
adapted to its symmetries we should first try to conformally compactify the
original 3-dimensional anti-de Sitter space in these coordinates so that we later
can compare it with the compactified squashed space.

Thus, looking at the metric (2.40), we can see that it blows up at large
positive and negative . We can make it finite by a rescaling with the factor
2/sinh o and then let o go to infinity.
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2 1
2 _ 2 _ -2 2 2 :
ds* = sinhads = ZSinha( dr* + do* 4 dw” + 2sinh odrdw) , (3.15)
lim d§*> = drdw. (3.16)

The resulting .7 is flat and 7 and w become light-like coordinates as we would
expect them to be from (2.23). It may seem odd to use only one of the two
space-like coordinates to reach infinity, like compactifying in the x-direction of
a Euclidean space but not the y-direction, but it is actually not. First of all, we
do actually know what infinity looks like in this case, we have done nothing to
the metric except a coordinate change and .# must still be a cylinder. Moreover,
we also know how the coordinate vectors behave on .# in the cylinder picture.
When we travel to t+o-infinity we end up on one of two light-like lines each
reaching 7 w-coordinates around the cylinder. We still have the freedom to
move along these lines in the w-direction (o< u-direction on .#) or the opposite
light-like 7(v)-direction. This freedom of movement will allow us to reach every
point on the cylinder. It will also allow us to travel between the apparently
disjoint patches .# (corresponding to +o infinity) which actually lie only 7 v-
coordinates apart. The extension of the lines in the -direction turn them into
two light-like bands that wrap around the cylinder, joined together at the lines
of fixed points of Js, i.e. at w-infinity, or in the cylinder-light cone coordinates,
at u = +m/2.
If we now look at the squashed space instead

ds3 = =(—cosh®cdr? + \}(dw + sinh odr)? + do?)
[—(cosh? o — A2sinh? 0)dr? + do? 4+ A2dw? 4 2\% sinh odrdw] .

(3.17)

R

we see that a factor of 2/sinh o will not be enough to make the metric finite

when we let o go to infinity, instead we will need something of the order e=27.
Here we will use 1/cosh? o to try to construct a .#.
1
ds? = s—ds? =
cosh” o
1 do? A2dw? A2 tanh odrdw
= Z[—(1—Ntanh?0)dr? + ,
4 = ) cosh’c  cosh®o cosh o ]
(3.18)
1
lim ds* = Z(_(l —A2)d7? +0 - drdw + 07 - dw?). (3.19)
O—00

When o goes to infinity the conformal metric becomes degenerate. This in-
dicates that the boundary of our squashed space is lightlike, in contrast to
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the time-like cylinder of anti-de Sitter space. A finite metric is not enough to
construct .# however, a successfully compactified space should be extendable
beyond .# in such a way that the original space is only a part of a larger space.
For this to work we must make sure that the curvature on .# is finite everywhere.

Calculating the Ricci scalar of the conformally related metric § we find that
it is exponential in o, R = 8 + 22 cosh? o, and hence not finite at .#! It seems
like squashed anti-de Sitter space can not be conformally compactified. To be
absolutely sure one should try to compactify the space with a general confor-
mal factor and see if there is any choice for which the curvature on .# stays
finite. This is in stark contrast to space-times that are solutions to Einstein’s
equation. For such space-times Roger Penrose once showed that the structure
of .# essentially depends on the sign of the cosmological constant. A space-time
with positive cosmological constant has a .# that is space-like, a negative cos-
mological constant gives a time-like .# and a space-time without a cosmological
constant has a . that is null, like Minkowski space does. Our space-time is
of course a solution to the Einstein equation, but with an unphysical energy-
momentum tensor that do not fall of at infinity, which is assumed in Penrose’s
argument. Leaving the constraints the Einstein equation places on the space-
time behind us, we find that not only should we be careful to make assumptions
of the structure of .# based on arguments that are no longer valid, but also that
the very existence of a .# becomes uncertain.
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Chapter 4
Einstein-Weyl spaces

Squashed anti-de Sitter space is not a solution to Einstein’s vacuum equations,
but there is a more general set of equations, called the Einstein-Weyl equations,
to which our space might be a solution. The Einstein-Weyl equations are a con-
formally invariant generalization of the Einstein equations. In three dimensions
the Einstein equations restrict the space to having constant curvature, while
the Einstein-Weyl equations allow the spaces greater freedom. While the local
structure of three-dimensional Einstein spaces are characterized by the single
constant number, the Ricci scalar, it has been shown by Cartan [7] that the
Einstein-Weyl spaces need four arbitrary functions of two variables to be fully
specified, indicating the larger class of geometries they constitute. This chapter
gives a very brief introduction to Einstein-Weyl spaces, for more substantial
treatments of the subject the reader is referred to [7], [10] and [6].

4.1 Definition of Weyl spaces and the Einstein-
Weyl equation

A Weyl space can be defined as a smooth manifold W together with
1. a conformal metric
2. a torsion-free covariant derivative (called the Weyl connection)

where the metric is preserved by the connection.

A conformal metric is actually a class of metrics related by a conformal
factor. The condition that the metric is preserved by the connection means
that if g;; is a choice of metric from the given class and D; is the connection,
then

D; gjr = wi gji (4.1)

where w; is a one-form. The use of another metric from the conformal class is
equivalent to a rescaling of the first with an everywhere non-vanishing conformal
factor Q2.

9ij — §= L5 - (4.2)

22



CHAPTER 4. EINSTEIN-WEYL SPACES

Since the metric must be preserved by the connection, the one-form is required
to transform under the rescaling like

V; is the metric Levi-Civita connection of the chosen metric g;;. The Weyl and
Levi-Civita connections are related by

DiVI =V, Vi VE (4.4)

where 7., can be expressed in terms of w;,

i 1, . . .
Vik = _5(53‘% + 6jwi — gikg” " wm).- (4.5)

From the connection we can construct many of the objects normally associated
with curved spaces; the curvature tensor,

(D;Dj — D;D))VF =W* . v™, (4.6)
the Ricci tensor,
the Ricci scalar,
W = gij Wij 5 (48)

where we use any of the metrics in the conformal class to raise and lower indices.
This means that while the equations themselves are invariant under (4.2) the
objects constructed from D; and g;; are not necessarily so. For example le Kl
and W;; are invariant under (4.2) while W transforms like W — Q~2W. The
Weyl Ricci tensor is not symmetric, and in dividing it into symmetric and anti-
symmetric parts we find (in three dimensions)

3
Wiig) = =5 Viws (4.9)
and
1 1 1 . 1

where the symmetric part of W;; has been expressed in terms of the Ricci tensor
of the Levi-Civita connection.

In an Einstein-Weyl space the symmetric part of the Weyl Ricci tensor is
proportional to the metric
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1
W(ij) = §ngj. (4.11)
This is the Einstein-Weyl equation, which is a natural conformally invariant
generalization of the Einstein equation. Rewritten in terms of the Levi-Civita
connection and w; it looks like

1 1
Rij + 5Vwy) + qwiw; = Agij (4.12)

where A is a scalar function.

4.2 An interesting property

It can be shown that every Einstein-Weyl space, or its complexification, contains
a two-parameter family of totally geodesic null hypersurfaces [7]. In Minkowski
space these null hypersurfaces are the null-planes. The null planes of Minkowski
space can also be considered as light cones with vertex on .#, thus the two-
parameter family of totally geodesic null hypersurfaces can in this case be put
in direct correspondence to .#. This is also true for anti-de Sitter space. It is
not true for generic space-times with matter where light cones can behave in all
manner of complicated ways and do not form hypersurfaces at all; and it is not
clear to me what the requirements on a space-time are to be able to exhibit this
correspondence, but it at least hints at a possibly interesting connection.

The Berger sphere mentioned earlier is an example of an Einstein-Weyl space
[10]. One can specify an Einstein-Weyl space by giving a metric g and a one-
form w from the conformal class. The metric and one-form are here expressed
in the standard basis one-forms on S3.

g = a%+a§+)\20—§,
w = £4XV1-AN203, (4.13)

or if expressed in Euler coordinates,

1
ds*> = Z(A2 (dr + cos 0 dg)* + db* + sin® 0d¢?),
w = £4AV1—=X2(dr 4 cosOdg). (4.14)

Another Einstein-Weyl space is the temporally-squashed anti-de Sitter space [7].

g = —-\0i+e?+el,

w = +4AV1-X20,, (4.15)

in our coordinate system,
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1

ds3 = Z(—)\Q (dr — sinh odw)? + do? + cosh? odw?),
w = +4\y/1-X2(dr —sinhodw). (4.16)

The one-form w (4.1) is proportional to the basis one-form along which the
space is squashed in both cases. This should lead us to believe that squashed
anti de-Sitter space is an Einstein-Weyl space too, since the construction is
identical. If it is, then we know it has a 2-parameter family of totally geodesic
null hypersurfaces, and we could investigate if there is any connection between
this family and the existence of .# on squashed AdSs.

As it turns out though, squashed anti-de Sitter space is an Einstein-Weyl
space only for values of A greater than one. With the metric expressed in the
left-invariant one-forms ©; and using the ansatz w = f()\) ©, in the Einstein-
Weyl equation (4.11) we find the solutions

g = —©f+67+1 63,
w o= F4AVX2-16, (4.17)

or in our coordinates,

1
ds3 = i cosh? odr? 4+ A\?(dw + sinh od7)? + do?),
w = +4AV I —1(dw+ sinhodr). (4.18)

The sign in the square root is reversed which means that the one-form w is
defined only for values of A> > 1. This is a bit of a disappointment since at least
at first sight values of A between zero and one seem seem more interesting.

Finally we note that Penrose’s argument for the relationship between the
sign of the cosmological constant and the signature of the metric on .# can not
be repeated with the Einstein-Weyl equation in place of the Einstein equation,
this because of the conformal invariance of the Einstein-Weyl equation.

25



Bibliography

[1] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States (Cambridge
University Press, to appear)

[2] S. Boersma and T. Dray, Slicing, Threading and Parametric Manifolds,
Gen. Rel. Grav. 27, 319. (1995)

[3] B. Carter, Killing Horizons and Orthogonally Transitive Groups in Space-
Time, J. Math. Phys. 10, 70 (1969)

[4] S.-W. Hawking and G.F.R. Ellis, The large scale structure of space-time
(Cambridge University Press, 1973)

[5] S. Holst, Horizons and time machines -global structures in locally trivial
spacetimes, DPhil thesis, Stockholm University (2000)

[6] P.E. Jones and K.P. Tod, Minitwistor spaces and Einstein-Weyl spaces,
Class. Quant. Grav. 2 565-577 (1985)

[7] H. Pedersen and K.P. Tod, Three-Dimensional Einstein-Weyl Geometry,
Advances in Mathematics 97 74-109 (1993)

[8] R. Penrose, The Geometry of the Universe, in Mathematics Today - Twelve
Informal Essays, ed. L.A. Steen (Springer, 1978)

[9] R. Penrose, Relativistic symmetry groups, in Group Theory in Non-Linear
Problems, ed. A.O. Barut (Reidel, 1972)

[10] K.P. Tod, Three-dimensional Einstein-Weyl Geometry, in Geometry of
Low-dimensional Manifolds, ed. S. Donaldson and C.B. Thomas (Cam-
bridge University Press, 1990)

[11] R.M. Wald, General Relativity (University of Chicago Press, 1984)

26



