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Abstract

The generalization of Mutually Unbiased (MU) bases to continuous variables
is introduced and results by Weigert and Wilkinson [5] are examined and ex-
tended. It is suggested that the state overlap between the generalized eigen-
states of position and momentum has a direct physical meaning, by argu-
ing that these states can be approximated by squeezed states (for which the
state overlap is a physically meaningful quantity) and showing that the over-
lap between such states behaves characteristically like that of the generalized
states under transformations in phase space. Thus, regarding generalized posi-
tion/momentum eigenstates as a limiting case of squeezed states gives physical
meaning to their overlap, which in turn implies that the condition that the
bases must be con�gured as the triples introduced in [5] to be MU is physi-
cally meaningful. It is also shown that the two di�erent triples introduced by
Weigert and Wilkinson, the symmetric and asymmetric triples, are related by
a transformation analogous to a Lorentz-boost in phase space; demonstrating
that these two triples are not unique.
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1 Introduction

In Quantum Mechanics, a particle, such as a photon, exists in a state which may be a superposi-
tion of other states. This superposition can be quanti�ed by selecting a basis, a set of states which
the total state can be expressed as a linear combination of. For example, the polarization state
of a photon can be described by selecting two vectors in a plane; it's then possible to specify an
arbitrary polarization vector as a linear combination of these. A common choice of polarization
basis is to select the orthogonal states |H〉 and |V 〉, corresponding to the photon being polarized
horizontally or vertically with respect to some reference axis. An arbitrary state is then given by

|Ψ〉 = α |H〉+ β |V 〉 where α2 + β2 = 1 (1.1)

If a photon in the state |Ψ〉 arrives at some optical component that diverts horizontally and
vertically polarized photons in di�erent directions, and photon detectors are placed after this
component such that one can tell which way the photon went, then the state has been measured
in the given basis. The probability that the photon will be detected as being in the state |H〉
or |V 〉 is then given by |〈H|Ψ〉|2 = α2 and |〈V |Ψ〉|2 = β2, respectively.

This choice of basis is of course arbitrary. One could aswell construct a measuring device that
di�erentiates between the following states:

|D〉 =
1√
2

(|H〉+ |V 〉) and
∣∣D̄〉 =

1√
2

(|H〉 − |V 〉) (1.2)

Corresponding to diagonal and anti-diagonal polarization with respect to the H-V basis. This
device would then perform a measurement in the D-D̄ basis.

If a photon is prepared in such a way that it is known to be in the diagonally polarized state

|Ψ〉 = |D〉 =
1√
2

(|H〉+ |V 〉) (1.3)

then a measurement in the D-D̄ basis will always �nd that the photon is diagonally polarized. If
the same measurement is instead performed in theH-V basis, then it will be found to be in one of
the states |H〉 or |V 〉, with probabilities |〈H|Ψ〉|2 = 1/2 and |〈V |Ψ〉|2 = 1/2 respectively.

In other words, a state that is uniquely determined in the D-D̄ basis is completely undetermined

in the H-V basis. Bases having this property are called Mutually Unbiased (MU) with respect
to each other, and this is just one example of such bases. Note that this is not a property of a
basis on it's own, but a shared property between two or more bases. It is an extremely useful
property which can be exploited in many applications. A simple example would be using these
bases to set up measurements that are completely random, by preparing a state in one basis and
measuring it in a basis that is MU with respect to the former. This can be useful for constructing
random number generators, for example.

Perhaps more signi�cantly, these bases are important in quantum communication and quantum
encryption. Quantum key distribution, which is a method used to securely share a classical
encryption key between two parties over a quantum channel (such as via exchance of photons),
utilizes MU bases to achieve maximum security. This allows the sharing parties to detect if
the key has been intercepted by an eavesdropper, in which case the key is not used to encrypt
the real message. Many quantum key distribution protocols utilize two MU bases of a two-state
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system [1], but these methods can be generalized to higher-dimensional systems using more than
two MU bases, which gives better security. [2]

The example bases demonstrated above belong to the two-dimensional Hilbert space of photon
polarization states. Mutually unbiased bases can be de�ned more formally, for Hilbert spaces of
arbitrary dimensions, in the following way: In a �nite-dimensional Hilbert space Cd of dimension
d, an orthonormal basis {|ei〉}di=1 is said to be mutually unbiased (MU) with respect to another
basis {|fi〉}di=1 if the basis vectors satisfy the condition [3]∣∣〈ei∣∣fj〉∣∣2 =

1

d
∀ i, j ∈ [1, d] (1.4)

If the state of a system is measured in such a basis, any subsequent measurement performed in
a basis that is mutually unbiased with respect to the former is equally likely to yield all possible
outcomes. This is evident from the de�nition above, since if the system is known to be in state
|ei〉, the probability that it will be found in the state

∣∣fj〉 is given by
∣∣〈fj∣∣ei〉∣∣2, which is de�ned

to be equal for all possible measurements. Note that this de�nition is not limited to only two
bases; it is completely possible to �nd sets of three or more bases that are all mutually unbiased
with respect to eachother.

Since MU bases are important in many applications of quantum theory, it is naturally of great
interest to �nd sets of bases with this property, but this task has proven to be hard. It has been
shown that the maximum number of bases that can be MU with respect to each other is no
more than d + 1 for a Hilbert space Cd of dimension d. Such a set of d + 1 MU bases is called
a complete set. At the present, it is not clear whether all Hilbert spaces has a complete set of
MU bases. It has, however, been proven that a complete set of MU bases exists if the dimension
d is an integral power of a prime number, but it is still an open question whether non-prime
power-dimensional Hilbert spaces may have a complete set of MU bases.[10]

The smallest dimension for which the maximum number of MU bases it not currently known is
when d = 6. Searches for MU bases in six dimensions have so far only found sets of three such
bases, and it has been conjectured that this is the maximum number. Moreover, it has been
suggested that this should be the case for any dimension d = 2(2n + 1), n ∈ Z, i.e. any odd
number multiplied by two.

The concept of MU bases can be generalized to in�nite-dimensional continuous variable Hilbert
spaces. It is then only natural to pose the same question for these Hilbert spaces; what is the
maximum number of MU bases that can be found in an in�nite-dimensional Hilbert space? This
subject has become somewhat of a controversy, where some researchers hold that these Hilbert
spaces must behave characteristically like prime-dimensional spaces and have an in�nite number
of MU bases, whilst others believe they are limited to only three such bases, as is conjectured
for some non-prime �nite-dimensional spaces.

Further understanding of MU bases in continuous variable Hilbert spaces may provide valuable
insights to the nature of MU bases in �nite-dimensional Hilbert spaces. Additionally, continuous
variable MU bases have analogous applications to the �nite-dimensional case, which makes them
a powerful tool and an important �eld of study [4]. In this report I will present an investigation
into continuous variable MU bases, with the intent of shedding some light on the questions raised
above. Speci�cally, I will examine the results of Weigert and Wilkinson [5], which suggest that
the maximum number of MU bases in a continous variable Hilbert space is three, and give my
take on the controversy surrounding this subject by adressing some of the critique that these
results have met [10] with an alternative approach to the problem.
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2 Continuous Variable MU Bases

2.1 Overview

There is an interest in generalizing the concept of mutually unbiased bases to in�nite dimen-
sional continuous variable spaces, such as the Hilbert space L2 of square integrable functions.
This Hilbert space is spanned by the eigenstates of the position and momentum operators, q̂
and p̂ respectively1, which are known to satisfy the condition

|〈q|p〉|2 =
1

2π~
(2.1)

Weigert and Wilkinson thus suggest in [5] that a natural generalization of MU bases to contin-
uous variables take on the form∣∣〈Ψs

∣∣Ψ′s′〉∣∣ = k > 0 ∀ s, s′ ∈ R, k ∈ R (2.2)

for orthonormal bases {|Ψs〉}s∈R. With this de�nition, the eigenbases of momentum and position
are MU with respect to each other.

Since the momentum and position bases are related to each other via a rotation in phase space,
it is reasonable to believe that a linear combination of the two might constitute a third MU
basis. The eigenstates |qθ〉 of the operator q̂θ = cos θq̂ + sin θp̂ are stated in [5] to satisfy the
condition 2.2, with

|〈qθ|q〉|2 =
1

2π~ |sin θ|
or, equivalently |〈qθ|qθ′〉|2 =

1

2π~ |sin(θ − θ′)|
(2.3)

This result will be proven later (section 2.2.4). This state overlap depends only on the relative
angle θ, which makes it possible to construct a set of at most three bases that are mutually
unbiased with respect to each other. This is because of the fact that one can only �nd three
angles whose pairwise di�erence is equal. This type of set is named suitably as a symmetric

triple. An example of such a set is the one composed of the bases B± = {|q±〉} with q̂± =
cos(2π/3)q̂ ± sin(2π/3)p̂ and Bq = {|q〉}.

Weigert and Wilkinson also note that it's possible to set up a second type of MU triple that is
not symmetric. This can be done by complementing the bases Bq and Bp with the eigenbasis
of the operator q̂ − p̂, which can be obtained by multiplying the operator q̂−π/4 by

√
2, which

compensates for the fact that the bases are not symmetric. The resulting set of bases is named
an asymmetric triple. The following sections will give a closer look at these results.

1While position is more commonly labeled by an x, in this text the alternative notation of q is used; which
is usually used when the variable may have interpretations other than spatial position, such as �eld quadrature.
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2.2 State overlap via Wigner functions

2.2.1 Wigner functions

To prove the state overlap formula, one needs to apply the use of Wigner functions. The Wigner
function is a quantum phase space quasiprobability distribution that can be used as an alterna-
tive representation of a quantum state [6][7]. It is a complete description of a quantum state,
in the sense that knowing the Wigner function of a system is equivalent to knowing its density
matrix. It is de�ned as2

WΨ(q, p) =
1

2π

∞∫
−∞

eipx
〈
q − x

2

∣∣∣Ψ〉〈Ψ
∣∣∣q +

x

2

〉
dx (2.4)

This alternative representation of a quantum state has valuable properties, such as containing
the position and momentum probability distributions in it's marginals:

∞∫
−∞

WΨ(q, p)dp = |Ψ(q)|2 and

∞∫
−∞

WΨ(q, p)dq = |Ψ(p)|2 (2.5)

It should be noted that a true phase space probability distribution is not achievable in quantum
mechanics, since position and momentum are conjugate variables and cannot be fully determined
at the same time. The Wigner function resembles a probability distribution in some regards, but
it's not a distribution of probability. The Wigner function can, for example, be negative in some
regions, whilst a true probability distribution is required to be positive everywhere. For these
reasons, the Wigner function is regarded as a quasiprobability distribution. It's important to
note that, while the Wigner function itself is not a real probability distribution, it does reproduce
the probability distributions over q and p, and these are real probability distributions.

The Wigner function representation is useful when working with continuous variable MU bases
because it provides a convenient way to calculate the overlap between two states:

|〈Ψ1|Ψ2〉|2 = 2π

∞∫
−∞

∞∫
−∞

W1(q, p)W2(q, p)dqdp (2.6)

2Units are here chosen so that ~ = 1. This convention will be employed in the rest of the text.
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2.2.2 Position eigenstate Wigner function

To prove equation 2.3 using the Wigner overlap formula 2.6 requires knowing the Wigner func-
tions of the states. It is easiest to begin by �nding the Wigner function of position eigenstates,
as follows:3

WQ(q, p) =
1

2π

∞∫
−∞

eipx
〈
q − x

2

∣∣∣Q〉〈Q∣∣∣q +
x

2

〉
dx

=
1

2π

∞∫
−∞

eipxδ(q − x

2
−Q)δ(Q− q − x

2
)dx

[
u = Q− q − x

2

]
=

1

π

∞∫
−∞

e2ip(u+q−Q)δ(u+ 2q − 2Q)δ(u)du

=
1

π
e2ip(q−Q)δ(2q − 2Q) ≡ 1

2π
δ(q −Q) (2.7)

Figure 2.1: A Wigner function cor-
responding to a position eigenstate.

In the last step, the complex exponential may be discarded
since it equals unity when δ(q −Q) 6= 0.

Figure 2.1 to the right illustrates this Wigner function. It is
a delta function in phase space, meaning it is zero everywhere
except those points where q = Q, where it is in�nite. This is
illustrated in the �gure as a contour line where the function is
non-zero.

3When dealing with Wigner functions, the eigenvalue of the state both labels the function and occurs in it,
so for clarity the eigenvalues are given by a capital letter.
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2.2.3 Rotated eigenstate Wigner function

The Wigner function representation of the eigenstates of q̂θ may be found via a rotational trans-
formation of the position eigenstate function in phase space. The operator q̂θ is given by

q̂θ = Û †(θ)q̂Û(θ) (2.8)

where Û(θ) = exp(−iθâ†â) is the phase shift operator. This implies that

Û †(θ) |q〉 = |qθ〉 (2.9)

Since
Û †(θ)q̂Û(θ) |qθ〉 = qθ |qθ〉 (2.10)

and by multiplying both sides from the left with Û(θ) and using the unitarity property of the
phase shift operator,

q̂Û(θ) |qθ〉 = qθÛ(θ) |qθ〉 (2.11)

In other words, Û(θ) |qθ〉 is an eigenstate of q̂ and, equivalently, Û †(θ) |q〉 is an eigenstate of
q̂θ.

Phase shifting a quantum state can be interpreted as rotating it in phase space. One of the
basic postulates from which the Wigner function representation is derived is that after phase
shifting the quantum state, the phase space distribution should rotate accordingly. This is done
by demanding that the marginal distributions rotate with the state, yielding new distributions
given by:

|Ψθ(q)|2 =

∞∫
−∞

WΨθ(q, p)dp = 〈q|Ψθ〉 〈Ψθ|q〉 = 〈q|U †(θ) |Ψ〉 〈Ψ|U(θ) |q〉

=

∞∫
−∞

WΨ(cos(θ)q + sin(θ)p, cos(θ)p− sin(θ)q)dp (2.12)

Figure 2.2: A Wigner function cor-
responding to a rotated eigenstate.

In other words, the Wigner function of a phase shifted state is
given by rotating the original Wigner function in phase space.4

Thus, the Wigner functions of the q̂θ eigenstates can be found
by a phase space rotation of the position eigenstate Wigner
function:

WQθ(q, p) =
1

2π
δ(cos θq + sin θp−Qθ) (2.13)

An example of this Wigner function is illustrated in �gure 3.1
to the right. It is a delta-function whose orientation in phase
space is given by θ, and it's displacement from the origin is
determined by the eigenvalue Qθ.

4Interestingly, the marginal distributions alone are not enough to characterize a state, but given su�ciently
many phase shifted distributions it is possible to experimentally reconstruct the Wigner function to desired
accuracy, and thereby also the density matrix. See for example [6] and [9]
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2.2.4 Proof of overlap formula

Inserting functions 2.7 and 2.13 into equation 2.6 now allows the overlap to be calculated:

|〈qθ|q〉|2 = 2π

∞∫
−∞

∞∫
−∞

WQ(q, p)WQθ(q, p)dqdp

=
1

2π

∞∫
−∞

∞∫
−∞

δ(q −Q)δ(cos θq + sin θp−Qθ)dqdp

=
1

2π

∫
δ(cos(θ)Q+ sin(θ)p−Qθ)dp[

u = sin(θ)p+ cos(θ)Q−Qθ

]
=

1

2π

∫
δ(u)

du

|sin(θ)|
=

1

2π |sin(θ)|
(2.14)

Figure 2.3: The symmetric con�g-
uration of MU bases. The gray area
signi�es an angle of π/3, the phase
angle di�erence between the states.

Two things about this result is worth a remark. Firstly, the
overlap does not depend on Q or Qθ, i.e. which states one
selects from the bases. This means that these bases are mutu-
ally unbiased, according to the de�nition of continuous variable
MU bases 2.2.

Secondly, the overlap depends on the relative phase factor
|sin θ|. This implies that one can't �nd more than three bases
that are all mutually unbiased with respect to eachother, which
can be understood in a geometric fashion from the Wigner for-
mulation of the states (illustrated in the �gure to the right).
The angle θ is the relative phase angle between two states, and
it is not possible to construct more than three states whose rel-
ative angles are all the same. One can think of the states as
being given by vectors pointing in the direction of their orien-
tation in phase space, and it's not possible to �nd more than
three vectors whose pairwise relative angles are all equal (in
two dimensions).

This seems to imply that the maximum number of MU bases in a continuous variable Hilbert
space is limited to three. However, this result has been met with some skepticism, as will be
discussed in section 3.
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2.3 Generalized overlap formula

If one allows operators such as q̂ − p̂, the overlap formula 2.3 can no longer be applied. These
operators are given from the rotated position operator q̂θ via a simple scalar factor. For example,

q̂ − p̂ =
√

2q̂−π/4 (2.15)

To �nd the overlap between eigenstates of such operators, their Wigner functions needs to be
known. These can be found by simply noting that the operators are related via a linear transform
in position space,

q 7→ q′ =
1

r
q ⇐⇒ q = rq′

q̂ = q 7→ q̂′ = q′ =
q

r
⇐⇒ q̂ = rq̂′ (2.16)

The eigenstates of the operator are given by the same transformation, and so the Wigner func-
tions may also be found. One needs only apply the above transformation and repeat the steps
of equation 2.7 to �nd the rescaled Wigner function of position eigenstates:

Wrq(q, p) =
1

2π
δ(r(q −Q)) =

1

2πr
δ(q −Q) (2.17)

This Wigner function may then be rotated accordingly, as previously, to yield the desired result.
Using this, the overlap formula 2.3 may be corrected for arbitrary linear combinations of the
operators q̂ and p̂:

|〈rqθ|q〉|2 =
1

2πr~ |sin θ|
(2.18)

With this compensating factor r, it becomes possible to construct the previously mentioned
asymmetric triples of bases. This is done by �rst choosing two bases arbitrarily, without a
compensating factor (r = 1). It is then possible to �nd a third base whose pairwise overlaps
with the �rst two are equal, but not necessarily equal to the pairwise overlap between the �rst
two. One can then rescale this overlap by setting r so that all three pairwise overlaps are equal.

Figure 2.4: The asymmetric con-
�guration of MU bases.

This is the case with the bases Bq, Bp and Bq−p, where the
latter has a compensating factor of

√
2 to make it mutually

unbiased with the former two [8]. This situation is illustrated
in the �gure to the right. However, as will be shown later, this
type of con�guration of MU bases is not as asymmetric as it
may seem (section 4).
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3 Realization by squeezed states

Given de�nition 2.2, bases of this type are certainly mutually unbiased in the mathematical
sense, but some authors have been concerned whether there is any actual physical meaning
to these results [10]. In the �nite-dimensional de�nition of mutually unbiased bases 1.4, the
state overlap has a direct physical interpretation as a probability, but this is not true for the
generalization to continuous variables 2.2. In the continuous variable case, the basis states are
idealized and not actually physically realizable states; there is no sense in speaking of a particle
having a precise location or momentum. Quantities such as |〈q|p〉|2 have a numerical value
but do not represent an actual probability. This naturally leads to the question: is there any
meaning in phase shifting these states to achieve di�erent overlaps, or, in other words, does it
matter what the value of the overlap is? If not, then the condition that these bases must be
con�gured symmetrically (or asymmetrically) to be MU is not meaningful.

While the eigenstates of position and momentum may not be physically realizable, it is however
possible to approximate them with physically realizable states, for which the overlaps do have a
physical meaning. A particle may have arbitrarily small variance in its position at the expense
of a large variance in momentum (or vice versa), and, if the variance is small enough, the state
may closely resemble that of the idealized position or momentum eigenstate.

There is a class of states known as squeezed coherent states (or plainly squeezed states) which
are excellent candidates for approximation, for a few reasons. Squeezed states are the most
general type of states that have a strictly positive Wigner function, they are states of minimal
uncertainty, i.e they obey ∆q∆p = 1

2 , and both their Wigner functions and wave functions
are gaussian, so they should be possible to manipulate to closely resemble the desired gener-
alized eigenstates. Furthermore, these states can be created and manipulated in a laboratory
environment [11] [12].

Squeezed states are a generalization of coherent states, which are eigenstates of the annihilation
operator:

â |α〉 = α |α〉 (3.1)

The most basic such state is the ground state of the harmonic oscillator, since

â |0〉 = 0 · |0〉 = 0 (3.2)

An arbitrary coherent state can be produced from the vacuum state via a displacement:

D(α) |0〉 = |α〉 (3.3)

Where D(α) = exp(αâ†−α∗â) is the displacement operator, which displaces the expectation val-
ues of position and momentum by the real and imaginary parts of α, respectively; corresponding
to a translation of the wigner function in phase space.

Coherent states have the lowest possible variances in both q and p, with ∆q = ∆p = 1√
2
.

Squeezed states are the result of taking a coherent state and allowing one of the uncertainties
to become smaller at the cost of the other one becoming larger, e�ectively 'squeezing' the
uncertainties under the constraint that their product remains minimal.

The position-space wave function of a non-displaced squeezed state is, as demonstrated by
Pauli,

ΨS(q) = (2π∆2q)−1/4 exp

[
− q2

4∆2q

]
(3.4)
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Note that in the limit where ∆2q → 0, the wavefunction approaches the delta function, which
is precisely an eigenstate of position; so for a 'su�ciently' squeezed state, this approximation
should become more or less exact.5 The idea, then, is to let these states act as basis states,
and see if they obey the same property of mutual unbiasedness 2.3 as demonstrated for the
generalized eigenstates of position and momentum.

3.1 Squeezed state Wigner function

The squeezed state, as mentioned above, satis�es the condition

∆q∆p =
1

2
(3.5)

A natural parametrization of the uncertainties is

∆q =
1√
2
e−ξ & ∆p =

1√
2
eξ (3.6)

Where ξ is known as the squeezing parameter. The wave function can thus be written on the
parametric form

ΨS(q) = (πe−2ξ)−1/4 exp

[
− q2

2e−2ξ

]
(3.7)

To �nd the Wigner function representation of the squeezed state, the wave function is plugged
into equation 2.4:

WS(q, p) =
1

2π

∞∫
−∞

eipxΨS(q − x

2
)Ψ∗S(q +

x

2
)dx (3.8)

The integral may then be evaluated in a few steps:

WS(q, p) =
1

2π

1√
πe−2ξ

∞∫
−∞

eipx exp

[
−

(q − x
2 )2

2e−2ξ

]
· exp

[
−

(q + x
2 )2

2e−2ξ

]
dx

=
1

2π

1√
πe−2ξ

∞∫
−∞

eipx exp

[
−
q2 + x2

4

e−2ξ

]
dx

=
1

2π

1√
πe−2ξ

exp
[
−e2ξq2

] ∞∫
−∞

eipx exp

[
−e

2ξx2

4

]
dx

[
x = −2πu

]
=

1√
πe−2ξ

exp
[
−e2ξq2

] ∞∫
−∞

e−2πipu exp
[
−π2e2ξu2

]
du (3.9)

The integral on the last line is simply the fourier transform of a gaussian function. The result
of this integral is another gaussian function in p, and the Wigner function becomes

WS(q, p) =
1

π
exp

[
−e2ξq2 − e−2ξp2

]
(3.10)

5See Discussion Section.
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This is of course not the most general form of a squeezed state Wigner function, but it can
easily be produced from the above. Similar to how phase shifting a state constitutes a rotation
in phase space, it can be shown ([6]) that displacing the state is equivalent to translating the
Wigner function in phase-space, i.e. applying the displacement operator D(α) to the wave func-
tion ΨS(q) results in the following translation:

W (q, p) 7→W ′(q′, p′) = W (q′ − q0, p
′ − p0) q0 = <(α) & p0 = =(α) (3.11)

An arbitrary squeezed state can thus be produced by rotating and translating the above Wigner
function in phase space.

Figure 3.1: Example contour-line dia-
gram of squeezed state Wigner functions.

The Wigner function of a squeezed state is a gaussian
function with level curves of elliptic shape, as illustrated
in the �gure to the right. The function in blue (WS1(q, p))
corresponds to a squeezed state that has a positive squeeze
parameter, so that it's variance in q is low and it's variance
in p is high. One can see that the squeezing of the vari-
ances has a direct geometric meaning in phase space, it
e�ectively squeezes the ellipse. In this way, the variances
of a state can be deduced directly from it's phase space
diagram. The function in red corresponds to a squeezed
state that also has been phase shifted and displaced.

3.2 Squeezed state overlap

Using the Wigner function 3.10 derived above, the overlap of two squeezed states can be cal-
culated from the overlap formula 2.6. Given two arbitrary such Wigner functions, it is always
possible to simplify things by applying a change of coordinates so that one of the states becomes
centered at the origin; this does not change the overlap. The problem can be further simpli�ed
by rotating the entire setup until the other state is axis-aligned, so that it has no phase depen-
dence but has been displaced. In addition, it will be assumed here that the states have the same
squeezing parameter. Thereby, the overlap only depends on the relative displacement and phase
shift of the two states, and the squeezing parameter. The overlap is then given by:

|〈S1|S2〉|2 = 2π

∞∫
−∞

∞∫
−∞

WS1(q, p)WS2(q, p)dqdp (3.12)

Where WS1(q, p) and WS2(q, p) are given from 3.10 via the transformations 2.12 and 3.11, re-
spectively, resulting in:

|〈S1|S2〉|2 = 2π

∞∫
−∞

∞∫
−∞

WS(cos(θ)q + sin(θ)p, cos(θ)p− sin(θ)q)WS(q − q0, p− p0)dqdp (3.13)

=
2

π

∞∫
−∞

∞∫
−∞

exp
(
−e2ξ

(
(cos(θ)q + sin(θ)p)2 + (q − q0)2

))
· exp

(
−e−2ξ

(
(cos(θ)p− sin(θ)q)2 + (p− p0)2

))
dqdp (3.14)
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This integral may be simpli�ed by expanding the squares and writing the resulting quadratic
function as a matrix and vector multiplication - the result is a gaussian integral that is easy to
solve:

|〈S1|S2〉|2 =
2

π

∞∫
−∞

∞∫
−∞

exp

(
−1

2
q̄TAq̄ + B̄T q̄ − C

)
dqdp =

√
16

detA
exp

(
1

2
B̄TA−1B̄ − C

)
(3.15)

Where A a matrix, B is a vector and C is a scalar:

A = 2 ·
(
e2ξ(1 + cos2(θ)) + e−2ξ sin2(θ) 2 sinh(2ξ) cos(θ) sin(θ)

2 sinh(2ξ) cos(θ) sin(θ) e−2ξ(1 + cos2(θ)) + e2ξ sin2(θ)

)
(3.16)

B = 2

(
e2ξq0

e−2ξp0

)
C = e2ξq2

0 + e−2ξp2
0 (3.17)

The linear and constant term, given by B̄ and C, describe the overlap's dependence on the
relative displacement. If one sets q0 = p0 = 0, these vanish completely and the overlap only
depends on the matrix A, as the exponential factor of the overlap then equals unity. It is possible
to show that this dependence also vanishes in the limit when ξ →∞. The claim is that

lim
ξ→∞

exp

(
1

2
B̄TA−1B̄ − C

)
= 1 (3.18)

The proof for this is given in Appendix A. This result means that, for su�ciently large values of
ξ, the overlap does not depend on how the states have been displaced6. This is precisely the same
behaviour as that of the generalized eigenstates of position and momentum, whose overlap does
not depend on their displacement. The displacement factor can thus be disregarded completely,
since ξ can be assumed to be large enough for the approximation to hold.

The overlap is then only a function of the determinant of the matrix A, which, after some sim-
pli�cation, evaluates to:

det(A) = 16(sin2(θ) sinh2(2ξ) + 1) (3.19)

The end result is

|〈S1|S2〉|2 =

√
1

sin2(θ) sinh2(2ξ) + 1
(3.20)

As can be seen, the overlap of these states have the same inverse dependence on the sine of
their relative phase as the generalized eigenstates of position and momentum, which means that
the same types of symmetric triples of MU bases could be constructed using these states as a
basis. This result indicates that the requirement that the bases are con�gured in a symmetric
fashion is indeed meaningful, and that the value of the overlap does matter, since the generalized
eigenstates can be seen as a limiting case of squeezed states when ξ →∞, for which the overlap
has a direct physical interpretation as a probability. As will turn out, asymmetric triples are
also possible if one allows the states to have di�erent squeeze parameters.

6That is, the displacement dependence can always be made smaller than experimental precision by choice of
su�ciently large ξ.
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4 Transformational Relation

4.1 Generalized eigenstates

Weigert and Wilkinson present two di�erent possible triples of mutually unbiased bases in [5].
One is the symmetric triple, in which the position eigenbasis is rotated in phase space to yield
three mutually unbiased bases, all of which are eigenbases of the operator q̂θ = cos θq̂ + sin θp̂
and are spaced by equal angles θ. The other is the asymmetric triple, in which all of the bases
are not spaced by equal angles, but one of the bases have been rescaled to correct for this.

It can be shown that these two basis triples are in fact related via a canonical transformation
which preserves overlaps. Given the Wigner function of a state, one can apply a linear phase
space transformation to yield a new state:(

q
p

)
7→
(
q′

p′

)
= T

(
q
p

)
, det(T ) = 1 =⇒ W (q, p) 7→W ′(q′, p′) (4.1)

If all states have equal overlaps and are subjected to the same linear transformation, the resulting
states will also have equal overlaps. This is evident from the integral formulation 2.6 of the
overlap,

2π

∞∫
−∞

∞∫
−∞

W1(q, p)W2(q, p)dqdp = 2π

∞∫
−∞

∞∫
−∞

W ′1(q′, p′)W ′2(q′, p′)
dq′dp′

det(T )
(4.2)

The overlap of two states is scaled by the determinant of the transformation; applying the same
area-preserving transformation to all states thus preserves the overlap, since det(T ) = 1. This
means that new sets of mutually unbiased bases may be produced from a known set by means
of an area-preserving transformation. The most obvious such transformations are of course a
common rotation or translation. These types of transformations are trivial, since they preserve
the geometry of the set, thus not producing any useful new con�gurations.

There is a speci�c type of area-preserving transformation that has some interesting consequences
when applied to the basis states at hand. Speci�cally, the symmetric con�guration of bases can
be transformed into the asymmetric con�guration via a transformation in phase space analogous
to a Lorentz-boost7: (

q
p

)
7→
(
q′

p′

)
=

(
e−ξ 0
0 eξ

)(
q
p

)
(4.3)

Figure 4.1: Lorentz boost acting on
symmetric basis states (blue), transform-
ing them to an asymmetric con�guration
(red) in phase space.

The orientations of the Wigner functions of the basis
states are given by vectors in phase space. Given two
arbitrary vectors that are not orthogonal or parallel, it is
always possible to transform them to an orthogonal pair
via a Lorentz-boost in some direction.

The idea behind this is illustrated in the �gure to the
right. The black lines illustrates the �ow of points in phase
space as a Lorentz-boost along the q-axis is applied.

7This is of course not a Lorentz-boost in the same sense as
in relativity theory, but the transformation is equivalent.
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The symmetric nature of the triple of bases in consideration allows one to orthogonalize two
of the vectors without a�ecting the orientation of the third by choosing the boost axis to be
parallel with one of the states.

This diagram makes it reasonable to believe that it should be possible to transform a symmetric
triple of bases into an asymmetric one. When the aforementioned transformation 4.18 is applied
to the Wigner function of q̂θ eigenstates, the result is

W ′Qθ(q
′, p′) =

1

2π
δ(cos(θ)eξq′ + sin(θ)e−ξp′ −Q) (4.4)

The new state may be renamed, dropping the '-notation for simplicity,

WQθ,ξ(q, p) = W ′Qθ(q, p) (4.5)

To prove that a symmetric triple can be transformed into an asymmetric triple, one may choose
any such symmetric set of basis states. For simplicity, it is best to choose the eigenstates of q̂,
q̂π/3 and q̂−pi/3. The transformed Wigner functions for these states are

WQ,ξ(q, p) =
1

2π
δ(eξq −Q) (4.6)

WQπ/3,ξ(q, p) =
1

2π
δ(
eξq

2
+

√
3e−ξp

2
−Q) (4.7)

WQ−π/3,ξ(q, p) =
1

2π
δ(
eξq

2
−
√

3e−ξp

2
−Q) (4.8)

It is evident that a proper choice of ξ will bring the coe�cients in front of q and p to the same
values for the second and third states. These states will then be orthogonal (in the sense that
their relative angle in phase space is 90◦), and it should then be possible to rotate the entire
setup so that these become eigenstates of q and p (i.e. align them with the axes). The �rst state
will only be a�ected in a scaling sense. The sought after value of ξ is thus given by the equation

eξ

2
=

√
3e−ξ

2
⇐⇒ e2ξ =

√
3 ⇐⇒ ξ =

ln(
√

3)

2
(4.9)

The resulting states are:

WQ,ξ(q, p) =
1

121/4π
δ(
√

2q −
√

2Q

31/4
) (4.10)

WQ2π/3,ξ(q, p) =
1

121/4π
δ(− 1√

2
q +

1√
2
p−
√

2Q

31/4
) (4.11)

WQ−2π/3,ξ(q, p) =
1

121/4π
δ(− 1√

2
q − 1√

2
p−
√

2Q

31/4
) (4.12)

Now, since δ(−x) = δ(x), one can simply �ip the signs of the last two states and it becomes
apparent that this is the asymmetric triple [Bq, Bp, Bq−p] rotated in phase space by −π/4, apart
from a scaling factor common to all states (this is trivial since it can always be amended by
scaling the entire con�guration).

This result shows that the triplets of bases presented by Weigert and Wilkinson as two unique
possibilities are in fact both part of the same one-parametric family of bases and, in a sense,
the asymmetric and the symmetric triples are the same con�guration; since it's only a matter
of your choice of coordinates.
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4.2 Squeezed states

Does the same transformational relation apply to squeezed states? Firstly, one needs to ver-
ify that the Wigner function produced when applying a Lorentz-boost to a squeezed state also
constitutes a valid squeezed state. The Wigner function of a squeezed state (not taking into
acccount displacement) can be written as

WS(q, p) =
1

π
exp(−q̄TAq̄) (4.13)

Where q̄TAq̄ is a quadratic form and A is the matrix that de�nes this form, and thereby the
state itself. Note that applying a linear transformation q̄ 7→ q̄′ = Uq̄ maps the matrix A to
A′ = UTAU .

For a state that has not been phase shifted, the matrix A is given by

A =

(
e2ξ 0
0 e−2ξ

)
(4.14)

as derived in section 3.1.8 This matrix is positive de�nite and has unit determinant, which
is no coincidence; all matrices that ful�ll these properties de�ne a squeezed state, as will be
shown. Any positive de�nite matrix M can be diagonalized by an orthogonal matrix Q, and if
det(M) = 1, it can be written as

M = QTDQ where D =

(
λ 0
0 1

λ

)
(4.15)

The matrix D is on the same form as A, and the matrix Q can be decomposed into rota-
tions and re�ections, due to it being orthogonal, so the matrix M is a rotated and/or re�ected
squeezed state, and these transformations produce valid squeezed states (re�ections are equiva-
lent to rotations when acting on symmetric matrices, and rotations have been shown to be valid
transformations).

With this in mind, it becomes apparent that any transformation that preserves the unit de-
terminant and positive de�niteness of the state's matrix will produce a valid squeezed state.
Any invertible transformation with unit determinant ful�lls this condition, since, if A is positive
de�nite, then A′ = UTAU is also positive de�nite if U is invertible.

Since the Lorentz-boost is an invertible transformation with unit determinant, it can be applied
to a squeezed state to produce another squeezed state. The goal is to show that it is possible
to transform the symmetric triple's states to the asymmetric triple. This is easiest done by
starting from an arbitrary squeezed state, which is done by applying a phase shift to the basic
state de�ned by A, i.e. rotating it in phase space:

(
q
p

)
7→
(
q′

p′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
q
p

)
(4.16)

8The special case when ξ = 0 yields the identity matrix, which is the vacuum state with ∆q∆p = 1
2
; all

squeezed states are technically Lorentz-boosted coherent states. The idea here is to show that applying a Lorentz
boost after phase shifting a state is valid.
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The state is then described by the matrix:

A′ =

(
cos2 θe2ξ + sin2 θe−2ξ 2 cos θ sin θ sinh(2ξ)
2 cos θ sin θ sinh(2ξ) e2χ sin2 θe2ξ + cos2 θe−2ξ

)
(4.17)

Now, applying a Lorentz-boost

(
q′

p′

)
7→
(
q′′

p′′

)
=

(
e−χ 0
0 eχ

)(
q′

p′

)
(4.18)

results in the matrix

A′′ =

(
e−2χ(cos2 θe2ξ + sin2 θe−2ξ) 2 cos θ sin θ sinh(2ξ)

2 cos θ sin θ sinh(−2ξ) e2χ(sin2 θe2ξ + cos2 θe−2ξ)

)
(4.19)

As can be seen, the transformation only acts on the main diagonal elements of the matrix.
The matrix is already symmetric, and both elements on the diagonal are non-zero and strictly
positive, which means that it is always possible to choose χ such that the matrix becomes
bisymmetric:

e−2χA11 = e2χA22 ⇐⇒ χ = ln

(
A11

A22

)
/4 (4.20)

A bisymmetric matrix is invariant under re�ections about the 45◦ line p = q. In other words,
applying the transformation (

q
p

)
7→
(
q′

p′

)
=

(
0 1
1 0

)(
q
p

)
(4.21)

does not change the matrix. This symmetry corresponds to the fact that such a state has it's
axis of symmetry parallell or orthogonal to the 45◦ line.9

It is now possible to show that one can transform a symmetric triple of squeezed states into
an asymmetric triple. A symmetric triple is given by the states Wθ=±π/3(q, p) and Wθ=0(q, p).
After applying a Lorentz-boost, they are described by the matrices

Aθ=±π/3 =

(
e−2χ(cos2 π

3 e
2ξ + sin2 π

3 e
−2ξ) ±2 cos π3 sin π

3 sinh(2ξ)
±2 cos π3 sin π

3 sinh(−2ξ) e2χ(sin2 π
3 e

2ξ + cos2 π
3 e
−2ξ)

)
(4.22)

Aθ=0 =

(
e−2χ+2ξ 0

0 e2χ−2ξ

)
(4.23)

For the right choice of χ, the matrices Aθ=±π/3 will become bisymmetric, and thus one of the
states is oriented parallell to and the other orthogonal to the 45◦ axis (the matrices have opposite
signs on the o�-diagonal elements, so they can't both be parallell to it, as that would imply they
have identical matrices). The state Wθ=0(q, p) does not change it's orientation but gets a boost
to it's squeeze parameter. From this, one can tell that the phase space orientations of these states
are identical to the orientations of the generalized states in the previous section, 4.10-4.12.

9The fact that all bisymmetric matrices (with unit determinant) de�ne states oriented parallel or orthogonal
to the 45◦ axis can also be realized by phase shifting the matrix A by θ = ±π/4 and recognizing that the resulting
matrices can take on the form of any bisymmetric matrix with unit determinant.
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As in the previous section, it is now possible to apply a rotation to put these states on the
form where two states are axis aligned and the other has been rescaled (by a changed squeeze
parameter in this case). The result is a triple of squeezed states that are arranged in the fashion
of the asymmetric triple (as de�ned in section 2.3), and whose overlaps are mutual.

This shows that the transformational relation between the symmetric and asymmetric triples
demonstrated in the previous section also applies to squeezed states, in the sense that applying a
Lorentz-boost to symmetrically arranged squeezed states can produce asymmetrically arranged
squeezed states, whose overlaps are mutual. In this sense, the asymmetric triple also has a
physically realizable counterpart of squeezed states, with overlaps that are physically meaning-
ful.

5 Discussion

The �rst main result of this thesis comes from the approximation of generalized eigenbases by
squeezed states. It is shown that the overlap of these states behave identically to the generalized
eigenstates for su�ciently large values of the squeezing parameter, in the sense that they only
depend on relative phase between states. Regarding the generalized eigenstates as the limit of
squeezed states shows us that the value of the overlap between two states is physically mean-
ingful. This also means that the condition that the bases must be arranged as a symmetric or
asymmetric triple to be mutually unbiased is meaningful. It also demonstrates a way to imple-
ment continuous variable MU bases experimentally, since squeezed states can be created and
manipulated in the laboratory.

The second result is the transformational relation between the symmetric and asymmetric triples
of bases. This result shows that these two con�gurations of bases are not unique, and in fact
represent the same con�guration; one triple can be produced from the other by a simple area-
preserving transformation (preserves overlaps), just as it's possible to rotate any such con�gura-
tion to yield a new triple of bases. In this sense, the only di�erence between these con�gurations
is a choice of coordinates in phase space.

These results also give strength to the hypothesis that the maximum number of mutually un-
biased bases in an in�nite-dimensional continuous variable Hilbert space is limited to three (for
one pair of continuous variables q and p), as it is shown that the overlap between states only
depend on the relative phase shift both for generalized eigenstates and squeezed states, in the
limit when ξ →∞.

A natural next step to take would be to further investigate the approximation of position and
momentum eigenstates by squeezed states, and ideally derive the overlap formula 2.3 as a limit
of the squeezed state overlap.
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6 Appendix A - Displacement invariance for squeezed state over-

laps

In section 3.2, it is claimed that

lim
ξ→∞

exp

(
1

2
B̄TA−1B̄ − C

)
= 1 (6.1)

This shows that squeezed state overlaps are invarant under displacements for su�ciently large values of
ξ. The proof for this is relatively straight-forward. A, B̄ and C are given by:

A = 2 ·
(
e2ξ(1 + cos2(θ)) + e−2ξ sin2(θ) 2 sinh(2ξ) cos(θ) sin(θ)

2 sinh(2ξ) cos(θ) sin(θ) e−2ξ(1 + cos2(θ)) + e2ξ sin2(θ)

)
(6.2)

B = 2

(
e2ξq0
e−2ξp0

)
C = e2ξq20 + e−2ξp20 (6.3)

The problem is equal to showing that

lim
ξ→∞

1

2
B̄TA−1B̄ − C = 0 (6.4)

One has
1

2
B̄TA−1B̄ =

1

2

(
A−11,1B

2
1 + 2 A−12,1︸︷︷︸

=A−1
1,2

B1B2 +A−12,2B
2
2

)
(6.5)

If 6.1 is to be true, then

lim
ξ→∞

(
2e4ξq20A

−1
1,1 + 4q0p0A

−1
2,1 + 2e−4ξp20A

−1
2,2 − e2ξq20 − e−2ξp20

)
= 0 (6.6)

This can be split up into three limits:

lim
ξ→∞

q20

(
2e4ξA−11,1 − e2ξ

)
= 0 & lim

ξ→∞
p20

(
2e−4ξA−12,2 − e−2ξ

)
= 0 & lim

ξ→∞
q0p0A

−1
2,1 = 0 (6.7)

The inverse of A is

A−1 =
e2ξ

6e4x + e8x + 1− (e4x − 1)2 cos(2θ)

(
cos2 θ + e4x sin2 θ + 1 −2e2x cos θ sin θ sinh(2ξ)
−2e2x cos θ sin θ sinh(2ξ) e4x cos2 θ + sin2 θ + e4x

)
(6.8)

Using this, one can verify that the above stated limits are all zero, which is easiest done using software
like Mathematica due to the complicated form of the inverse matrix elements.
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