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Abstract

In the last decades Quantum Information Theory has become an in-

tense �eld of research. In this work we investigate the method of operating

on quantum states, namely Local Operations and Classical Communica-

tion. This method gives rise to a partitioning on the set of states, where

two states are said to be equivalent if they can be transformed into one

another by unit probability. We show that this holds if the transforma-

tion is local unitary. A similar partitioning is based on the demand that

the transformation can be carried out with non-zero probability. For this

scenario we give a new proof that this corresponds to general invertible

transformations.

We then investigate the equivalence problem, namely to �nd condi-

tions when two states can be transformed into one another. By reviewing

the classical Invariant Theory we see how the concepts of invariants of

homogenous polynomials can be used to solve, or at least reiterate, the

equivalence problem in a classical framework.

Using these concepts we give a description of the case of bipartite and

tripartite qubit states.

2



Acknowledgment

I would like to thank my supervisor Professor Ingemar Bengtsson for the
helpful discussions, comments and proofreading done during the course of this
work.

3



Contents

1 Introduction 5

2 General framework: States and Operations 7

2.1 States and density operators . . . . . . . . . . . . . . . . . . . . . 7
2.2 E�ects and operations . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 First Representation Theorem . . . . . . . . . . . . . . . . . . . . 11

3 LOCC and stochastic LOCC 13

3.1 Alice and Bob in the laboratory . . . . . . . . . . . . . . . . . . . 13
3.2 Formal de�nitions of LOCC . . . . . . . . . . . . . . . . . . . . . 13
3.3 Transformations and equivalence . . . . . . . . . . . . . . . . . . 14

3.3.1 Equivalence under LOCC . . . . . . . . . . . . . . . . . . 15
3.3.2 Equivalence under stochastic LOCC . . . . . . . . . . . . 15
3.3.3 Entanglement properties under LOCC and stochastic LOCC 17

4 Classi�cations: Orbits, entanglement types and invariants 19

4.1 Carl von Linné in the laboratory . . . . . . . . . . . . . . . . . . 19
4.2 Orbit spaces and entanglement types . . . . . . . . . . . . . . . . 20

5 Classical Invariant Theory: Invariant properties of Forms 22

5.1 Linear Transformations of Forms . . . . . . . . . . . . . . . . . . 23
5.2 Polynomial Invariants . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Fundamental Results . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Equivalence and Canonical Forms . . . . . . . . . . . . . . . . . . 27
5.5 From Forms to States . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Case study: Bipartite and tripartite qubit states 29

6.1 The bit, the qubit and the tensor product . . . . . . . . . . . . . 29
6.2 Bipartite qubit states . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Tripartite qubit states . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 Orbits under LOCC . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4.1 Computing the polynomial invariants . . . . . . . . . . . 35
6.4.2 Distributed Entanglement . . . . . . . . . . . . . . . . . . 36
6.4.3 Enter the hyperdeterminant . . . . . . . . . . . . . . . . . 37
6.4.4 Physical properties in terms of polynomial invariants . . . 38

6.5 The discrete space of stochastic LOCC . . . . . . . . . . . . . . . 38
6.5.1 Rank distribution . . . . . . . . . . . . . . . . . . . . . . . 38
6.5.2 The case of special linear transformations and stochastic

LOCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Conclusions 42

8 Bibliography 43

4



1 Introduction

Quantum Information Theory has undergone a rapid development during the
last two decades thanks to the insight that the phenomena of entanglement can
be used to produce new protocols capable of tasks beyond the reach of classi-
cal methods. Indeed, already Schrödinger realized that entanglement was the
de�ning feature of quantum mechanics, but it is only in recent years that the
implications for information processing have been investigated. Entanglement
produces statistical correlations between subsystems that can not be reproduced
by classical schemes. This property could therefore be used to device new com-
munication protocols and information processing algorithms.

As a part of the development of Quantum Information Theory comes the
classi�cation of information carrying units, qubits. Since qubits can be entan-
gled between di�erent systems in many di�erent ways there is a need to fully
understand the types and structures that the entanglement gives rise to. One
would also like to know when a given quantum state, or a set of qubits having
some overall entanglement, can be transformed to some other states with unit
or non-zero probability. The classi�cation one needs thus involves the entan-
glement structure as well as understanding how physical properties of a state
change under di�erent transformations.

Interestingly enough, the techniques for dealing with properties that are
invariant under di�erent transformations was one of the important themes of late
19:th century mathematics. The so-called Invariant Theory was developed in
order to understand how functions in the coe�cients of homogenous polynomials
changed under general linear transformations. Speci�cally one wanted to �nd
a set of polynomial functions in the coe�cients (and possibly variables) that
remain unchanged under a transformation and therefore can be used to decide
whether two homogenous polynomials can be transformed into one another.
This idea carries over immediately to the case of classifying quantum states.
The goal is to �nd a �nite set of functions of the coe�cients of a quantum state
such that two states can be transformed into one another if and only if they are
equal on the functions.

In the following paper we shall investigate how this works for the case of
bipartite and tripartite qubit systems. But we also need to know how speci�c
transformations correspond to di�erent types of protocols applicable in the lab-
oratory. More speci�cally, we are interested in Local Operations and Classical
Communication (LOCC), which means that parties perform local actions on
their shared state and communicate the results classically. Our question is thus
when two states can be transformed into one another with unit probability and
what types of transformation this corresponds to. But we are also interested
when there is some non-zero probability of successful transformation since this
may also be applied in our protocols. This scenario is called stochastic LOCC,
and we will see that this also corresponds to speci�c types of transformations.

This paper is organized as follows. In Chapter 2 we look at the basics, namely
the quantum states and how we operate on them. In Chapter 3 we see how these
operations are used for speci�c protocols and how to decide when two states are
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equivalent (that is, can be transformed into one another) in these protocols. The
notion of equivalence of two quantum states is put in a mathematical framework
in Chapter 4 where we also look at the problems encountered when trying to
classify di�erent states. In Chapter 5 we shift gear and look at the classical
Invariant Theory and how it might help us with these problems. In Chapter 6
two speci�c examples are studied in depth, namely the bipartite and tripartite
quantum states. Chapter 7 ends the paper with some conclusions and a look
ahead.
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2 General framework: States and Operations

When we go into the laboratory we basically want to produce quantum states
and operate on them. We therefore need to have a clear picture of how these
experimental procedures look in a mathematical setting. The states that we are
working with are represented as normalized vectors in some Hilbert space

H = V1 ⊗ V2 ⊗ · · · ⊗ Vn,

where Vi is the i:th factor of the Hilbert space. For qubits we have that dim Vi =
2. Generally we will have a mixture of di�erent states that we operate on and
such a mixture is described by a density matrix.

We will now describe some mathematical properties of the density operator
and see how we manipulate it in the laboratory.

2.1 States and density operators

We begin with a formal de�nition:

De�nition A non-negative, hermitian operator with unit trace is called a den-
sity operator.

The density operator ρ contains all the statistical information that can be
available to us when we do measurements on a system. It can be decomposed
in a non-unique way as a weighted sum of projection operators:

ρ =
∑
i

wi |fi⟩ ⟨fi|

with the normalization condition
∑
wi = 1. A density operator is called pure if

the decomposition has rank one, i.e. ρ = |f⟩ ⟨f |, for some unit vector |f⟩ ∈ H.
Suppose now that we have a composite system H1 ⊗ H2 with a density

operator ρ12 de�ned on this system. We say that ρ12 is uncorrelated if it can
be decomposed as

ρ12 =
∑
i

wiρ
i
1 ⊗ ρi2, (1)

where ρi1 and ρi2 can be taken to be pure without loss of generality. If ρ12

has further correlations, that is does not admit a decomposition of the form
(1), we say that the two subsystems H1 and H2 are entangled. Entanglement
will produce statistical correlation between the two subsystems that are not
reproducible in a classical framework.

Given a density operator ρ12 on H1 ⊗H2 we might be interested in the sta-
tistical distribution of one of the subsystems without caring about the other.
We would thus ask if there exists a density operator ρ1 de�ned on H1 that en-
compasses all the statistical information about H1 that ρ12 does. We would also
like to known if this operator is unique. The answer is given in the a�rmative
in both cases and we are lead to the following de�nition:
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De�nition. If ρ12 is a density operator de�ned on H1 ⊗H2 and {fj} is an
orthonormal basis for H2 then ρ1 ≡ tr2 ρ12 is given by

(x, ρ1y) =
∑
j

(x⊗ fj , ρ12 (x⊗ fj)) ,

for all x, y ∈ H1. The partial trace ρ2 ≡ tr1 ρ12 is de�ned analogously.

As an equivalent description we could take an arbitrary operator T1 de�ned
on H1 and demand that

tr ((T1 ⊗ 12) ρ12) = tr (T1ρ1)

This would mean that ρ1 reproduces the same statistical distribution in the sense
that we could either apply T1 on the whole system but leaving H2 una�ected
or apply T1 directly on system H1. Note that if the density operator of the
composite system is just the uncorrelated tensor product ρ12 = σ ⊗ ϕ, then
performing the partial trace gives us back the density operators of the individual
subsystems:

σ = tr2 ρ12

ϕ = tr1 ρ12.

The operator ρ1 ≡ tr2 ρ12 is sometimes called a reduced density operator.

2.2 E�ects and operations

Given a state ρ we would like to know the evolution of this system when it comes
in contact with an environment (or a measuring apparatus). In the following
we develop the theory put forward by Kraus in [Kr1, Kr2, Kr3] . We follow
the exposition in [Kr1] closely but omit most of the mathematical details. We
recommend [Ca] and [Sch] for nice introductions.

We start o� with an operational de�nition of an e�ect. Given a system in
some state we interact with the system with an apparatus and read o� a macro-
scopic change in the apparatus. This macroscopic change is called an e�ect.
Notice that while the density operator ρ may contain information about micro-
scopic properties, the e�ect is always related to a macroscopically observable
change. Associated with an e�ect F is some apparatus, or more precisely the
equivalence class of apparatuses producing the same e�ect.

Given a state and some e�ect F we might be interested in knowing the
probability p (F, ρ) that the e�ect will occur. We can take it as a postulate
(although an axiomatic deduction is possible) that this is given by

p (F, ρ) = tr (Fρ) .

Notice that nothing has been said about the formal mathematical properties of
these e�ects. Originally they were taken to be projection operators, but we will
see that in reality a larger set of operators has to be used to describe the e�ects.
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We now introduce the notion of an operation. If we perform an e�ect F
on an ensemble ρ of N ≫ 1 microsystems and assume that the e�ect does not
annihilate any of the microsystems we will get a new state ρ̃ which also consists
of N microsystems. Keeping F �xed and varying ρ we thus get a mapping

L̃ : K (H) → K (H)

from the set of density operators K (H) to itself. This mapping de�nes an
operation and sometimes a operator that maps operators to operators is called
a superoperator. We call such an operation non-selective since we have not made
any selection on the microsystems based on the outcome of applying F . On the
other hand we could perform a selective operation as follows. The apparatus F
will be triggered in N+ = p (F, ρ)N cases. If we after measurement only select
those N+ microsystems for which the apparatus was triggered and disregard
the remaining N− = N − N+ systems we get a new ensemble with only N+

systems. We call this ensemble ρ̂. By varying ρ while keeping F �xed we could
de�ne a mapping by ρ 7→ ρ̂. But with such a mapping we would loose the
information concerning the transition probabilities and it would not be de�ned
for p (F, ρ) = 0. Instead we de�ne the following mapping:

L (ρ) =

{
p (F, ρ) ρ̂ if tr (Fρ) ̸= 0
0 if tr (Fρ) = 0

(2)

Since tr (ρ̂) = 1 and the trace satis�es tr (AB) = tr (A) tr (B) we have that

p (F, ρ) = tr (L (ρ))

so the �nal state is thus

ρ̂ =
L (ρ)

tr (L (ρ))
.

Before proceeding, let us look at an example with a projection operator P .
A general postulate states that after application of a projection operator on a
state ρ we get a new state

ρ̂ =
PρP

tr (Pρ)
.

Comparing this to our de�nition (2) we get that

L (ρ) = PρP.

Notice that we have done a measurement disregarding those states that are
orthogonal to the space spanned by the support of P . If we would like to do a
non-selective operation we would have to include this space in our �nal state:

L̃ (ρ) = PρP + (I − P ) ρ (I − P )

Here I−P could be viewed as the �non-occurence of P �. So in a non-selective op-
eration our �nal state is in a mixture of the two states PρP and (I − P ) ρ (I − P )
with weights tr (Pρ) and tr ((1 − P ) ρ).
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Having thus de�ned our selective and non-selective operations we would like
to know their mathematical properties. Our operations are characterized by
three important properties which are stated here without proof:

i) The operations are convex-linear. The set of all density operators K (H)
is convex and given λ with 0 ≤ λ ≤ 1 and two operators ρ1 and ρ2 we have

L (λρ1 + (1 − λ) ρ2) = λL (ρ1) + (1 − λ)L (ρ2)

ii) A non-selective operation is trace-preserving, i.e. tr
(
L̃ (ρ)

)
= tr (ρ). A

selective operation is trace-decreasing, i.e. tr (L (ρ)) ≤ tr (ρ). This can be seen
directly from the de�nitions.

iii) L (ρ) is completely positive. Positivity is the requirement that positive
operators map to positive operators, that is if ρ ≥ 0 then L (ρ) ≥ 0. Complete
positivity is a more subtle but necessary condition. If we extend our Hilbert
space to HR ⊗ H, where HR describes some reference system and ρ is the
reduced density operator when we trace out the reference system, we demand
that the mapping 1R ⊗ L on the composite density operator is also positive.
Complete positivity is thus a requirement that positivity is also respected if we
add a system that does not participate in the dynamics. In classical probability
theory this condition is trivial, but in the quantum context it puts a restriction
on the possible operators.

For every selective operator L there is an associated e�ect F . We can use
this to de�ne a complementary operator to L labeled L′. This is done by instead
of selecting the microsystems that F triggered we select those that F did not
trigger. We call this F ′. F and F ′ are related by

F + F ′ = I

so
tr (Fρ) + tr (F ′ρ) = tr ((F + F ′) ρ)

= tr (Iρ) = 1.

We can use this to understand the non-selective operator. Applying F we keep
both the N+ = tr (Fρ)N microsystems that are in a state

ρ̂ =
L (ρ)

tr (L (ρ))

and the remaining N− = tr (F ′ρ)N systems that are in the state

ρ̂′ =
L′ (ρ)

tr (L′ (ρ))
.

So the �nal state ρ̃ is a mixture of ρ̂ and ρ̂′ in the form

ρ̃ = tr (L (ρ)) ρ̂+ tr (L′ (ρ)) ρ̂′

= L (ρ) + L′ (ρ) .
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So the mapping L̃ : K (H) → K (H) is simply given by

L̃ (ρ) = L (ρ) + L′ (ρ) . (3)

The transition probability for non-selective operators is immediately seen to be
unity:

tr
(
L̃ (ρ)

)
= tr (L (ρ)) + tr (L′ (ρ)) = 1.

From (3) we see that non-selective operators are a special case of selective op-
erators.

2.3 First Representation Theorem

So far we have only described L and L̃ operationally. We now shift gear and
state the important First Representation Theorem which provides us with a
mathematical framework for our superoperators. The full proof of the theorem
can be found in [Kr1].

First Representation Theorem. For an arbitrary operation L there exists
operators Ak, k ∈ K (a �nite or countably in�nite index set) on the state space
H satisfying ∑

k∈Ko

A†
kAk ≤ I

for all �nite subsets Ko ⊆ K, such that for arbitrary ρ ∈ K (H) the mapping L
is given by

L (ρ) =
∑
k∈K

AkρA
†
k. (4)

In particular, the e�ect F corresponding to L is given by

F =
∑
k∈K

A†
kAk.

In the theorem we have excluded some facts related to the adjoint of L since
we do not need it in the following discussion. The theorem tells us that we can
always perform a so-called operator sum decomposition of our superoperator.
There also exists a second representation theorem which shows how a given
operator can be represented through a reduced trace on a unitary transformation
of the composite system of the state and the apparatus operating on the state.

Given the operator sum decomposition we can then state the measurement
postulate which sums up our previous discussion (quoted from [BZ]):
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Measurement postulate. Let the space of possible measurement outcomes
consist of n elements related to n measurement operators Ak satisfying the com-
pleteness relation

n∑
k=1

A†
kAk = I. (5)

The quantum measurement performed on the initial state ρ produces the k:th
outcome with probability pk and transforms ρ into ρk according to

ρ 7→ ρk =
AkρA

†
k

tr
(
AkρA

†
k

) (6)

with pk = tr
(
AkρA

†
k

)
.
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3 LOCC and stochastic LOCC

Having thus de�ned how we operate on quantum states we can now describe the
protocols we make use of in the laboratory. As mentioned in the introduction
we are interested in Local Operations and Classical Communications (LOCC).
In order to understand what this implies, let us look at how the two generic
characters Alice and Bob work with a common state.

3.1 Alice and Bob in the laboratory

Suppose that Alice and Bob share a common state |ψ⟩. They only have access
to their part of the common state, so |ψ⟩ could for example be the entangled
state of a decayed pion. So we have an entangled electron and positron going in
opposite direction where Alice and Bob each have access to either the electron
or positron. Since Alice and Bob can only operate on their part we say that
they can only perform local operations. This means that if the entangled state
lives in H = HA ⊗ HB , then Alice can only operate on HA and Bob on HB.
Furthermore, they can add a so-called ancilla to the system, which is an exter-
nal reference system. Alice or Bob could let the electron be seen as a part of a
larger system that does not participate in the dynamics, for example some other
experimental equipment in the room next door. They could also communicate
their results classically to each other. Alice could call Bob up and say: �Hey,
I measured that my electron had a spin component along the direction of the
z-axis.� This would in turn make Bob carry out a special kind of measurement,
perhaps a measurement of the spin component along the x-axis. This type
of protocol, where the participants only perform local operations and possibly
communicate their result classically is a LOCC protocol. We now turn to the
formal properties of LOCC.

3.2 Formal de�nitions of LOCC

Before proceeding with the de�nitions we need to introduce the notion of mul-
tilocality in relation to our superoperators acting on the density operator. The
condition of multilocality means that in the decomposition (4) the operators
can be written Ai = Ai1 ⊗ Ai2 ⊗ · · · ⊗ Ain. This notion will be important since
we consider the operations performed on the density operators as carried out
by di�erent parties in the laboratory who only have access to the subsystems.

De�nition. A LOCC is represented mathematically as a multilocally imple-
mentable superoperator, i.e. a completely positive linear map that does not in-
crease the trace, which can be applied with the aid of classical coordination.

With this de�nition in hand we can proceed to discuss the problem under
what conditions a given state can be transformed into another state. Suppose
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that we want to implement some algorithm which requires a speci�c state ρ but
we can only produce a state ρ′. The question is then whether there exists a
protocol implementable under LOCC so that we can transform ρ into ρ′. We
would like to know what types of transformations this corresponds to mathe-
matically and also if we can decide whether this is possible just by knowing ρ
and ρ′. The problem of deciding whether ρ and ρ′ can be transformed into one
another is known as the equivalence problem.

3.3 Transformations and equivalence

Because of the statistical nature of our quantum operations we have to distin-
guish between two procedures. When ρ is transformed into ρ′ this can be done
with unit probability or with non-zero, non-unit probability. We say that when
a given state can be transformed into another with some non-zero probability
it is reducible, and exact reducability means that the probability for this trans-
formation is unity. The exact de�nitions for our two procedures was given for
the �rst time in [BPRST]. It can be stated as:

De�nition. A state ρ′ is exactly reducible to a state ρ under LOCC if and
only if there exists a multilocally implementable trace preserving superoperator
L such that ρ′ = L (ρ).

De�nition. A state ρ′ is stochastically reducible to a state ρ under LOCC with
yield p if and only if there exists a multilocally implementable superoperator L
such that

ρ′ =
L (ρ)

tr (L (ρ))

and p = tr (L (ρ)).

We thus see that exact reducibility correspond to the special case of stochas-
tic reducibility where p = 1.

Given these de�nition we also see that they establish equivalence relations
on the set of density operators (that is, a symmetric, transitative and re�exive
relation). Two states ρ and ρ′ are said to be exactly (or LOCC) equivalent if
they can be converted to one another under LOCC. Similarly, two states are
said to be stochastically equivalent if they can be converted with some non-zero
probability to one another under stochastic LOCC. These two relations yield
two partitions of the set of density operators into a set of equivalence classes
under either LOCC or stochastic LOCC.

Given such a partition, a plethora of questions naturally arises. Are the
di�erent entanglement measures constant on equivalence classes? What types
of operators do LOCC and stochastic LOCC correspond to? How do we clas-
sify (both in principle and by computationally feasible means) the equivalence
classes? In what sense are they relevant to the di�erent protocols that are
constructed for the production of concrete tasks?
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Many of these questions are ongoing �elds of intense research. Two of them
will be discussed in the following, namely the types of operators corresponding
to LOCC and stochastic LOCC and the classi�cation of the equivalence classes.

If two operators ρ and ρ′ are related under stochastic LOCC it means that
instead of using ρ for our concrete task we could use ρ′, albeit with a non-zero
probability. Starting with a given state ρ we have access to a larger set of states
ρ′ under stochastic LOCC, but we can not be certain that our transformation
protocol will always be successful.

We now move on to consider which transformations correspond to LOCC
and stochastic LOCC.

3.3.1 Equivalence under LOCC

We have already seen what a multilocally implementable superoperator is. The
question of locality also applies to unitary transformations, so it is natural to
state that a unitary operator, that is an operator such that U†U = 1, is called
a local unitary transformation (LUT) if it can be written as

U = U1 ⊗ U2 ⊗ · · · ⊗ Un. (7)

In [BPRST] the following important result was proved:

Theorem. Two states are LOCC equivalent if and only if they are equivalent
under local unitary transformations.

That is if there exists a local unitary transformation U such that

ρ′ = UρU† (8)

then the two states ρ′ and ρ are LOCC equivalent. And conversely, if they are
LOCC equivalent then they are also related in the form of (8) for some local
unitary operator. This theorem actually came out as a corollary from a theo-
rem relating entropic properties to equivalence under LUT. But by observing
the properties giving for the superoperator L and how it is related to LOCC the
theorem follows almost directly from the de�nitions. For suppose that ρ′ and ρ
are LOCC equivalent. Then there exists a multilocally implementable superop-
erator such that ρ′ = L (ρ). But by (6) this can be written as ρ′ = AρA†, where
A satis�es AA† = I according to (5). So A is an unitary operator. Since we also
demand multilocality under LOCC A has to be of the form (7). Suppose instead
that there exists a unitary operator U on the form (7) such that (8) holds. But
then this holds as our transformation protocol and the two operators are then
obviously reducible under LOCC. The unitary operator guarantees the existence
of an inverse operator and so the two states must be equivalent.

3.3.2 Equivalence under stochastic LOCC

For stochastic LOCC the case is not as clear. But in [DVC] the following theorem
was shown:
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Theorem. Two states are stochastically equivalent if and only if there exists
an invertible operator relating them.

The proof relied chie�y on the use of the Schmidt decomposition. But once
again the properties of the superoperator relating states under stochastic LOCC
can be used to give an alternative, direct proof. Suppose �rst that there exists
a multilocally implementable superoperator such that

ρ̂ =
L (ρ)

tr (L (ρ))
.

According to the mathematical properties described previously the mapping L
can be written as ∑

k

AkρA
†
k = AρA†

for pure states. Since we have equivalence under stochastic LOCC the operators
Ak are of the form

Ak = Ak1 ⊗Ak2 ⊗ · · · ⊗Akn

and so the operator A must also be of this form. Furthermore the operator A
satis�es 0 ≤ A†A ≤ I (see [Kr2]). But

tr
(
AρA†) > 0

so A†A > 0. We also have the reverse implementation, namely

ρ =
L′

(ρ̂)
tr (L′ (ρ̂))

with ∑
k

A
′

kρ̂A
′†
k = A

′
ρ̂A

′†.

Again the operator A
′
satis�es 0 < A

′†A
′ ≤ I. With p = tr (L (ρ)) and p′ =

tr
(
L′

(ρ̂)
)
we thus have

p′ρ = A
′
ρ̂A

′† (9)

pρ̂ = AρA†. (10)

We know that A†A and A
′†A

′
are non-singular since they have non-zero eigen-

values (which follows from their positive de�nite form). So

detA†A = detA† detA ̸= 0

and therefore detA† ̸= 0 and detA ̸= 0. So A and A† are also non-singular. By
rewritting (9) and (10) as

ρ =
A

′

√
p′
ρ̂
A

′†
√
p′
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ρ̂ =
A
√
p
ρ
A†
√
p

we thus see that stochastic LOCC implies that the two pure states ρ and ρ̂ are
connected by an invertible local operator.

Suppose instead that ρ and ρ̂ are two pure states related through an trans-
formation with probability p given by an invertible local operator A such that

ρ̂ = AρA†.

We then have that tr
(
AρA†) = 1. De�ne a new operator A

′
by

A
′
=

√
pA.

We then have that tr
(
A

′
ρA

′†
)

= p and A
′
is of course invertible and multi-

locally implementable. We also have that A
′
satis�es 0 < A

′†A ≤ I, so by
de�ning L (ρ) = A

′
ρA

′† we see that ρ and ρ̂ are stochastically equivalent.

3.3.3 Entanglement properties under LOCC and stochastic LOCC

We have seen that equivalence under LOCC yields a partitioning of the set of
states where two states are in the same equivalence class if and only if they are
related by a local unitary transformation. But if one of the parties sharing a
composite state applies a local unitary transformation which is not a unitary
evolution it only means that a local change of basis is done. So the physical
properties of the composite state should remain invariant under the application
of a local unitary transformation, and in particular the entanglement proper-
ties should not change. We can therefore identify the partitioning the LOCC
equivalence gives rise to as a partitioning of the set of entanglement values. Ev-
ery entanglement measure should therefore remain constant on the equivalence
classes.

For stochastic equivalence the situation is somewhat di�erent. We have seen
that the stochastic equivalence amounts to equivalence under general invertible
transformations. This means that we have a coarser partitioning of the set
of states, where the equivalence classes are related to structural features of the
entanglement rather than the actual value given by some entanglement measure.
This coarser partitioning is valuable, however, since it shows which states are
accessible to di�erent parties with non-zero probability.

The transformations under stochastic equivalence live in

GL (n1) ⊗GL (n2) ⊗ · · · ⊗GL (nm) , (11)

where ni is the dimension of the i:th subsystem. When we deal with unnormal-
ized state we may �x the determinant of all the local operators to one, since
the two local operators A and kA, where k ∈ C, will only di�er through the
introduction of a global constant to the transformed state. We thus identify
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equivalence under stochastic LOCC by the multilocal unimodular transforma-
tions in

SL (n1) ⊗ SL (n2) ⊗ · · · ⊗ SL (nm) . (12)

One must be careful, however, to note that transformations in (11) will not give
rise to the same partitioning as those in (12) when one deals with normalized
states. We will address this issue in more detail in section 6.5.2 when dealing
with tripartite qubit states. To avoid confusion we will use the transformations
in (11).

Let us now move on to study how we can classify states according to their
equivalence under either LOCC or stochastic LOCC.
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4 Classi�cations: Orbits, entanglement types and

invariants

So far we have discussed two kinds of protocols we might apply in our laboratory,
LOCC and stochastic LOCC. We have seen that these protocols are essential
when it comes to manipulating our states so that they �t into the scheme we
want to deploy in the production of some concrete task. We have also seen that
at the heart lies the phenomenon of entanglement. The equivalence conditions
that we impose on our states under either LOCC or stochastic LOCC are inti-
mately connected to the entanglement properties of the states. We would thus
like to impose some kind of classi�cation of the states so that we would know
what physical properties they correspond to. This is where Carl von Linné en-
ters the laboratory.

4.1 Carl von Linné in the laboratory

In his great classi�cation of the natural world (although mainly con�ned to
plants) Linné used a static taxonomy where each individual organism would
belong to some species according to a description of its constituent parts. This
stands in contrast to the modern approach where individuals belong to a species
due to a shared evolutionary origin. But the Linnéan approach is very similar to
the classi�cation schemes that we would like to employ on our quantum states.
Given an organism, Linné would investigate a �nite set of traits of the organism
to see which species it belonged to. In the same sense, we would, for a given
quantum state, like to �nd a �nite set of properties (in our case, as we will see
later on, polynomial functions) that completely determines which class the state
belongs to. In terms of multipartite qubit systems we would thus like to produce
a great catalogue of classes where the polynomial functions are used to order
all classes and their physical properties are clearly distinguished through these
polynomial functions. This catalogue would then be used in the construction of
more elaborate information processing technology.

It turns out that the creation of such a catalogue is exceedingly di�cult. To
compute all necessary polynomial functions is very hard for multipartite systems
and the complexity grows quickly with the number of subsystems involved. It
is possible to do algebraic construction for small systems, but one has to resort
to the aid of computers for more complex systems. Even so, without the advent
of some improved algorithm, the Linnean ambition comes to a halt quite early
in the classi�cation endeavour.

But nevertheless we can put the project of classifying all quantum states
up to equivalence in a clear mathematical framework since we now know what
types of transformations the two partitions under LOCC and stochastic LOCC
correspond to. Since the unitary and general (or unimodular) transformations
have a group structure, we may use this to relate our ambitions to some classical
mathematical problems.
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4.2 Orbit spaces and entanglement types

We have seen that exact reducibility implies LUT equivalence and stochastic
equivalence implies equivalence under general invertible local operators. This
means that we can shift perspective and work in a group theoretical framework.
In order to do this we need to introduce some relevant de�nitions.

De�nition. An action of a group G on a set X is a mapping

π : G×X → X

denoted by gx ≡ π (g, x) satisfying

ex = x h (kx) = (hk)x

for all h, k ∈ G and x ∈ X.

We refer to X as a G-set when we let G act on X. Now let R be a relation
such that xRy if and only if there exists a g ∈ G with gx = y. This is an
equivalence relation.

De�nition. The equivalence classes under R are called orbits. The orbit of a
given element x is formed by the elements gx with g ∈ G and is denoted Gx.

The set X is thus partitioned into orbits and the set of all orbits is denoted
X/G. These two de�nitions immediately give us the big picture. The groups

U (n1) ⊗ U (n2) ⊗ · · · ⊗ U (nm) (13)

and
GL (n1) ⊗GL (n2) ⊗ · · · ⊗GL (nm) (14)

act on the set of states and thus induce a partitioning where two elements are
exactly or stochastically equivalent if they are on the same orbit. Our space of
interest will thus be the orbit space. Orbits under (13) thus correspond to states
with the same entanglement measure and orbits under (14) correspond to states
with the same entanglement structure. To get a better grasp of the partitions
and the entanglement properties we want to know the dimension of the orbit
space and the dimension of the orbits. Furthermore we would like to know how
we can decide whether two states are on the same orbit. Using the coe�cients
of our states we would thus form some function that should be invariant for all
states in the orbit. If the function di�ers for two states we know that they are
inequivalent. If the function is the same, however, can we infer that the two
states are equivalent? The answer is no; there is no reason why the function
could not have the same value on two orbits. So how many functions do we
need to compute before we can know that two states are equivalent? How can
we even be certain that there exists a �nite set of functions that allows us to
distinguish the orbits? Staring at the complicated topology of our orbit space
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our initial enthusiasm is quickly buried in the pond of despair that our questions
gives rise to. If we can not even be sure that two states are equivalent, what
use is our entire construction? But then we suddenly remember something that
the math department talked about a long time ago, and at once we are �t to
proceed thanks to Hilbert's Basis Theorem.
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5 Classical Invariant Theory: Invariant proper-

ties of Forms

From the high-tech quantum laboratory of the 21:st century we now move to
the provincial German town of Göttingen at the end of the 19:th century. It was
here that Hilbert and others grappled with the mathematics underlying our basic
questions. The body of knowledge created through the study of transformation
properties of homogenous polynomials came to be known as Invariant Theory.

Even though the reader might never have heard of Invariant Theory, she
has undoubtedly encountered invariants already in high-school while solving
quadratic polynomial equations. In the following all coe�cients are complex.
The general quadratic polynomial equation

ax2 + 2bx+ c = 0

has solutions

x =
−b±

√
∆

a

where
∆ = b2 − ac

is known as the discriminant. We immediately see that if ∆ = 0 we have a
double root and if ∆ < 0 the roots are complex conjugate. What will happen
to the discriminant if we do an a�ne transformation

x̄ = αx+ β α ̸= 0

that corresponds to a scaling and a translation? A straightforward calculation
yields that our new polynomial is

āx̄2 + 2b̄x̄+ c̄

where
ā =

a

α2

b̄ =
bα− aβ

α2

c̄ =
cα2 + aβ2 − 2bβα

α2

Upon calculating the determinant for the polynomial expressed in our new vari-
able x̄ we see that

∆̄ =
1
α2

(
b2 − ca

)
=

1
α2

∆

Interestingly enough, up to a multiplicative factor depending only on the trans-
formation, the discriminant has remained unchanged under our a�ne transfor-
mation. This is not a coincidence; as we saw the discriminant gave us infor-
mation about the types of roots our polynomial has, and these properties of
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the roots should remain unchanged as long as we only rescale and translate our
polynomial.

This simple example of a property that is invariant under a transformation
and thus gives us some purely geometric information about our polynomial really
describes the subject matter of Invariant Theory. The reader might think that
the study of invariant properties of polynomials is a rather special topic without
bifurcations into more general spheres of mathematics or physics. But nothing
could be more wrong. Classical Invariant Theory is to algebra what Klein's
Erlangen Program is to geometry. Both helped to classify invariant properties
under algebraic or geometric manipulations (and not to say the least about the
deep connections between them!) which in turn was an important underpinning
of one of the great themes of 20:th century mathematical physics: The question
of symmetry and invariance.

With this background we now introduce the basic de�nitions and results.
If the reader wishes to read a more comprehensive introduction [Olv] is highly
recommended. It appeals to mathematicians as much as to physicists since ev-
erything is done in characteristic zero. For a more classical approach involving
the somewhat enigmatic symbolic method the reader should consult [Tu]. Fi-
nally, Hilbert's original lectures [Hi] on the topic are also recommended. They
are clear, accessible and give a �rm grasp of the kind of problems that occupied
the mind of late 19:th century mathematicians.

5.1 Linear Transformations of Forms

In the preceding example we looked at a quadratic polynomial in one single
variable. In Invariant Theory the interest is chie�y on homogenous polynomials
in several variables xi. Homogeneity means that

Q (tx) = tdQ (x)

where x = (x1, . . . , xn). Here d is called the degree of the polynomial and n the
order. A homogenous polynomial is classically referred to as a form. A general
homogenous polynomial of order d in n variables is written as

Q (x) =
∑
I

(
d
I

)
aIx

I

where
xI = xi11 · · ·xinn

and the summation is over all multi-indices I = (i1, . . . , in) with ik ≥ 0 and
i1 + · · · + in = d. Thus, for example, a quadratic form in two variables (also
known as a binary form) is written as

Q (x, y) = a2x
2 + 2a1xy + a0y

2
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and a general binary form is written as

Q (x, y) =
n∑
i=0

(
n
i

)
aix

iyn−i.

The binomial coe�cients are introduced for convenience. In the following we
restrict the attention to binary forms since this will simplify the notation. There
is no loss of generality in doing this since the theory in principle looks the same
for higher orders. Notice that we have two fundamental sets: the coe�cients ai
and the variables xi. A general linear invertible transformation of two variables
takes the form

x̄ = αx+ βy

ȳ = γx+ δy

where αδ − βγ ̸= 0. When the variables are transformed a given polynomial is
also transformed as

Q̄ (x̄, ȳ) = Q̄ (αx+ βy, γx+ δy) = Q (x, y)

and we thus get an induced transformation of the coe�cients. There is an ex-
plicit formula for the new coe�cients, but in reality it does not carry much
importance in the determination of invariants and therefore we will not state
it here. But it is important to note that the general linear invertible transfor-
mation transforms homogenous polynomials to homogenous polynomials of the
same degree. This is the reason why attention is almost exclusively paid to
homogenous polynomials: We can always decompose a general inhomogenous
polynomial as a sum of homogenous polynomials.

5.2 Polynomial Invariants

Having seen that a general linear invertible transformation transforms a form
to another form of the same degree and order we can thus state the general
de�nition of a invariant.

De�nition. An invariant of a binary form Q(x, y) is a function I (a) =
I (a0, . . . , an) depending on the coe�cients a = (a0, . . . , an) of the form, which,
up to a determinantal factor, does not change under the general linear transfor-
mation:

I (a) = (αδ − βγ)k I (ā) ,

where ā = (ā0, . . . , ān) are the coe�cients of the transformed polynomial.

The integer k is called the weight of the invariant. In particular we will pay
attention to when I (a) is a polynomial. It is then called a polynomial invari-
ant. The de�nition raises several questions. How many independent polynomial
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invariants are there of a given degree? What do they tell us about the form?
Can we �nd a basis for the polynomial invariants?

Before we present some of the results relating to these questions we have
to introduce another important de�nition. The function I (a) depended only
on the coe�cients a = (a0, . . . , an) of the form. But we previously made the
rather trivial remark that a form is characterized by two sets, the coe�cients
and the variables. We would thus like to identify a new invariant function that
also includes the variables. Such a function is called a covariant and is given by
the following de�nition:

De�nition. A covariant of weight k of a binary form Q of degree n is a func-
tion J (a, x) = J (a0, . . . , an, x, y) depending both on the coe�cients ai and on
the independent variables x = (x, y) which, up to a determinantal factor, is
unchanged under linear transformations:

J (a, x) = (αδ − βγ)k J̄ (ā, x̄)

From this de�nition follows that an invariant is just a covariant that does
not depend explicitly on the variables. In the analysis of quantum states we will
not make use of the concept of a covariant. But it is such a central concept in
Invariant Theory that it would be shameful not to mention it.

Let us look at the invariants and covariants of a cubic binary form

Q (x) = a3x
3 + 3a2x

2y + 3a1xy
2 + a0y

3.

There is one fundamental invariant which is the discriminant of the cubic:

∆ = a2
0a

2
3 − 6a0a1a2a3 + 4a0a

3
2 − 3a2

1a
2
2 + 4a3

1a3.

The obvious covariant for all forms is the form itself, Q. Another important
covariant is the Hessian

H = det
(
Qxx Qxy
Qxy Qyy

)
= QxxQyy −Q2

xy

which for the cubic binary form is given by

1
36
H =

(
a1a3 − a2

2

)
x2 + (a0a3 − a1a2)xy +

(
a0a2 − a2

1

)
y2.

The �nal covariant (all other covariants can be given by polynomial combina-
tions of these three and the discriminant) is the Jacobian between the Hessian
and the form itself:

T = QxHy −QyHx

We will not give the complete expression here since it is rather lengthy and
not especially enlighting. So given these three covariants and the discriminant
we can use them to completely classify the cubic binary form in terms of the
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character of its roots. The interested reader may consult [Olv] for this and
related classi�cations.

Let us now move on to the fundamental results concerning invariants and
covariants that have direct bearing on our original goal: How to characterize
the entanglement types of quantum states. The reader may not be entirely con-
vinced that the study of polynomials is suitable to this end but the following
theorems will hopefully show how algebraic generalizations can be made which
are applicable in other frameworks.

5.3 Fundamental Results

There are two Fundamental Theorems related to Invariant Theory. To introduce
them would take us too far a�eld since they deal with concepts relating to
di�erent methods of creating invariants and covariant. Su�ce to say, however,
they basically claim that there is a process, called transvection, for creating
all the possible independent invariants and covariants and that there is a �nite
list of non-polynomial relations (so-called syzygies) between the invariants and
covariants.

But what about the �niteness of the invariants and covariants? Is there an
in�nite supply of invariants and covariants for a given form, or is there a �nite
basis so that all other invariants and covariants can be expressed in this basis?
Let us start with the relevant de�nition:

De�nition. Suppose Q1, . . . , Ql are a collection of binary forms. A �nite col-
lection of invariants I1, . . . , Im forms a Hilbert basis if every other invariant can
be written as a polynomial function of the basis invariants: I = P (I1, . . . , Im).
Similarly, a �nite collection of covariants J1, . . . , Jk forms a Hilbert basis if ev-
ery other covariant J can be written as a polynomial in the basis covariants:
J = P (J1, . . . , Jk).

It was postulated that for binary forms of degree seven or more there does
not exist a �nite basis. But in 1868 Gordan proved his Finiteness Theorem (also
known as Gordan's Theorem) for binary forms. So, irrespective of degree, all
binary forms have a Hilbert basis. The theorem was constructive since it actually
gave an explicit procedure for the construction of the basis. But what about
higher order forms? Once again, a conjecture was made that there does not
exist a �nite basis in general. So the mathematical community was subsequently
shocked when Hilbert proved that this actually holds for all forms:

Theorem. Any �nite system of homogeneous polynomials admits a Hilbert
Basis for its invariants, as well as for its covariants.

His proof was not constructive, however, which made Gordan remark: �Das
ist Theologie und nicht Mathematik.� Hilbert created a second, more di�cult
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but constructive proof. It is an open question how to actually implement this
constructive proof computationally.

Our fundamental result that we carry over into our investigation of quantum
states is thus the existance of a �nite set of generating invariants which may be
used to distinguish between inequivalent states.

Furthermore, we might wonder if this �niteness also holds when we restrict
our transformations to a subgroup of the general invertible transformations, wich
was the case for the LUT equivalence of LOCC. Hilbert and Weyl showed that
for every reductive group (that is a group for which all linear representations
are direct sums of irreducible representations) this holds. In particular, it will
hold for our local unitary transformations. Whether it holds for all subgroups
of the general linear invertible transformations became Hilbert's 14:th problem
and it was not until 1959 that Nagata gave a counterexample.

We now turn to the question of equivalence and canonical forms.

5.4 Equivalence and Canonical Forms

If we let P (n, d) be the set of all homogenous polynomials of order n and
degree d, then G = GL (n,C) de�nes an action on P (n, d) through the mapping
x′ = Gx where x = (x1, x2, . . . , xn) are the variables of the polynomial. The
equivalence problem is then to �nd conditions when two polynomials p and p′ in
P (n, d) lie on the same orbit, that is p′ = gp for some g ∈ GL (n,C). For each
such orbit we can pick a polynomial that has some particularly simple form and
let that polynomial be a representative of the orbit. Such a polynomial is called
a canonical form and a complete list of canonical forms can thus be identi�ed
with a complete list of the orbits. So by observing whether two polynomials
can be transformed to the same canonical form one can solve the equivalence
problem.

In Invariant Theory we saw that there exist invariants and covariants that, up
to a determinantal factor, do not change under general linear transformations.
We would therefore like to have a complete list of invariants and covariants so
that a given polynomial can be transformed into a canonical form if and only if
they both attain the same value on the invariants and covariants of our list. As
we saw through Hilbert's Basis Theorem, such a list does indeed exist.

We now move on to see how we may translate this procedure into the frame-
work of quantum states.

5.5 From Forms to States

We have seen that Invariant Theory describes invariant properties of homoge-
nous polynomials under general linear transformations. How may we adapt this
knowledge to our problem of �nding conditions of equivalence under LOCC and
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stochastic LOCC? If we write a qubit state in multilinear form

f (x) = f
(
x(1), . . . , x(k)

)
=

1∑
i1,...,ik=0

ai1i2···ikx
(1)
i1

· · ·x(k)
ik
, (15)

where x(j) =
(
x

(j)
0 , x

(j)
1

)
are pairs of variables, we get an action of the operator

g =
(
g(1), . . . , g(k)

)
by gx = x′ where x′(j) = g(j)x(j). The coe�cients a′i1···ik

are de�ned by the equation

1∑
i1,...,ik=0

ai1i2···ikx
(1)
i1

· · ·x(k)
ik

=
1∑

i1,...,ik=0

a′i1i2···ikx
′(1)
i1

· · ·x′(k)ik
.

We thus want to �nd invariants of the form

I (a, ā) = I (a′, ā′)

where a is shorthand for the coe�cients and ā is the complex conjugate. In
this case we can apply results from Invariant Theory in order to construct and
investigate these invariants.
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6 Case study: Bipartite and tripartite qubit states

Having thus discussed Invariant Theory and its procedures for the classi�cation
of forms we now return to see how this could help us when analyzing quantum
states. We will look at the two fully understood states: the bipartite and tri-
partite qubit systems.

6.1 The bit, the qubit and the tensor product

In classical information procedures the standard information unit is the bit.
It is characterized by two possible states: 0 and 1. The simplicity of these
two discrete states makes it possible to implement the bit in a wide variety of
physical medium. In quantum information theory we no longer have a discrete
distribution of states, but rather a linear superposition of basic states. A qubit
is thus a superposition

|ψ⟩ = α |0⟩ + β |1⟩

subject to the normalization condition |α|2 + |β|2 = 1. Upon measurement the

state will be found either as |0⟩ with probability |α|2 or as |1⟩ with probability

|β|2. This interplay of superposition and probability changes some of the fun-
damental laws in classical information theory. For example, the total entropy
of a system might be smaller than the entropy of one of the subsystems. Such
a situation would never be possible in a classical context.

The outstanding feature of quantum information theory is the phenomenon
of entanglement. This is a statistical e�ect that is not reproducible by any
classical scheme. In quantum mechanics systems are joined under a tensor
product which means that we have the possibility of global superpositions of
joint states. The tensor product is written as HA ⊗HB and if |ei⟩ and |fj⟩ is a
basis for HA and HB, respectively, then |ei⟩ ⊗ |fj⟩ will be a basis of HA ⊗HB.
If n and m are the dimensions of HA and HB, the dimension of HA ⊗ HB

will be nm. So a system is de�ned by the number of tensor products and the
dimension of the subsystems. If all subsystems have dimension two they are
called qubit systems. If we have a tensor product between two qubit systems it
is called bipartite and if we have a tensor product between three qubit systems
it is called tripartite.

We now move on to study the bipartite qubit system.

6.2 Bipartite qubit states

The bipartite qubit system is written as C2 ⊗ C2 and a generic state has the
form

|ψ⟩ =
1∑

i,j=0

aij |ei⟩ ⊗ |fj⟩ . (16)
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For a bipartite system (irrespective of the dimensions of the two subsystems)
we have a very powerful tool called the Schmidt decomposition. It allows us to
change the basis of a given state so that we can write it as a single instead of a
double sum.

Theorem. Every pure state in the Hilbert space HAB = HA ⊗ HB can be
expressed in the form

|ψ⟩ =
n∑
i=1

√
λi |ei⟩ ⊗ |fi⟩

where {|ei⟩}n1
i=0 and {|fj⟩}n2

j=0 is an orthonormal basis for HA and HB, respec-

tively, and n ≤ min {n1, n2}.

A proof of the theorem may be given as follows. Starting from the generic
form

|ψ⟩ =
n1∑
i=1

n2∑
j=1

aij |êi⟩ ⊗
∣∣∣f̂j⟩ (17)

we can form the density operator ρψ = |ψ⟩ ⟨ψ|. Without loss of generality we
can assume that n1 ≥ n2. We can perform a partial trace on ρψ to get the
reduced density operator for system A:

ρA = trB (ρψ) =
n1∑
i,j=1

n2∑
n=1

aina
†
jn |êi⟩ ⟨êj | . (18)

But this operator can always be written in diagonal form using a unitary
transformation:

ρA =
n1∑
i=1

λi |ei⟩ ⟨ei| . (19)

We now reexpress (17) in terms of this new basis:

|ψ⟩ =
n1∑
i=1

n2∑
j=1

cij |ei⟩ ⊗
∣∣∣f̂j⟩ , (20)

where cij =
⟨
ei ⊗ f̂j | ψ

⟩
. We can now de�ne

|fi⟩ =
n2∑
j=1

cij√
λi

∣∣∣f̂j⟩ . (21)

The new basis for system B will satisfy the orthonormality relation ⟨fi | fj⟩ =
δij . Using this together with (20) we get the desired result:

|ψ⟩ =
n1∑
i=1

n2∑
j=1

√
λi |ei⟩ ⊗

cij√
λi

∣∣∣f̂j⟩
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=
n1∑
i=1

√
λi |ei⟩ ⊗ |fi⟩ .

The coe�cients
√
λi are called Schmidt coe�cients and n is the rank of |ψ⟩.

If we write |ψ⟩ in terms of a pure density operator, ρ = |ψ⟩ ⟨ψ|, the rank of
the operator is de�ned as the dimension of the range of the operator. This
concept is important for density operators since if the rank of a reduced density
operator is greater than one we have the presence of entanglement. In the case
of bipartite qubit systems this means that every state can be written as

|ψ⟩ = x00 |00⟩ + x11 |11⟩ (22)

Here |00⟩ and |11⟩ is shorthand for |0⟩ ⊗ |0⟩ and |1⟩ ⊗ |1⟩. x00 and x11 are the
Schmidt coe�cients. Notice that if either x00 or x11 equals zero the state is
unentangled.

In order to change an arbitrary bipartite qubit state to the form (22) one
applies only unitary transformations. We thus have an immediate answer to the
question when two states are equivalent under LOCC:

Proposition. Two bipartite qubit states are equivalent under LOCC when
they have equal Schmidt coe�cients under a Schmidt decomposition.

Notice, however, that the general form of a bipartite qubit state is

|ψ⟩ = a00 |00⟩ + a01 |01⟩ + a10 |10⟩ + a11 |11⟩ , (23)

whereas in (22) we had transformed (23) according to the Schmidt decomposi-
tion. But we want to express our equivalence in terms of invariant polynomals
of the co�cients of (23). This is possible if we include the complex conjugate
of the coe�cients. If we notice that the square of the Schmidt coe�cients are
eigenvalues of the reduced density operator ρA (or ρB) we conclude that the
coe�cients of the characteristic polynomial of ρA must remain invariant. The
characteristic polynomial for a 2 × 2-matrix A can be written:

p (A) = λ2 − tr (A)λ+
1
2

(
tr (A)2 − tr

(
A2

))
. (24)

So in particular tr (ρA) and tr
(
ρ2
A

)
must be invariant. For clarity we compute

these for the bipartite qubit state. The density operator is given as a matrix

ρ =
∑
ij

∑
kl

ρij,kl |ij⟩ ⟨kl|

and the reduced density operator is

ρA = trB (ρ) =
∑
i

∑
k

σik |i⟩ ⟨k|
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where σik is given by

σik =
∑
j

ρij,kj .

Starting from (23) we thus write the pure density operator as the matrix

ρ = |ψ⟩ ⟨ψ| =


a00ā00 a00ā01 a00ā10 a00ā11

a01ā00 a01ā01 a01ā10 a01ā11

a10ā00 a10ā01 a10ā10 a10ā11

a11ā00 a11ā01 a11ā10 a11ā11

 .

The reduced density operator is then

ρA = trB (ρ) =
∑
ik

σik |i⟩ ⟨k|

where
σik =

∑
j

aij ākj

Writing this out in detail gives us

ρA =
(
a00ā00 + a01ā01 a00ā10 + a01ā11

a10ā00 + a11ā01 a10ā10 + a11ā11

)
and

ρ2
A =

(
c00 c01
c10 c11

)
where

c00 = (a00ā00 + a01ā01)
2 + (a00ā10 + a01ā11) (a10ā00 + a11ā01)

c01 = (a00ā00 + a01ā01) (a00ā10 + a01ā11) + (a00ā10 + a01ā11) (a10ā10 + a11ā11)

c10 = (a10ā00 + a11ā01) (a00ā00 + a01ā01) + (a10ā10 + a11ā11) (a10ā00 + a11ā01)

c11 = (a10ā00 + a11ā01) (a00ā10 + a01ā11) + (a10ā10 + a11ā11)
2
.

From this we thus see that the invariant polynomials are

I1 = tr (ρA) = a00ā00 + a01ā01 + a10ā10 + a11ā11

and
I2 = tr

(
ρ2
A

)
= a2

00ā
2
00 + a2

01ā
2
01 + a2

10ā
2
10 + a2

11ā
2
11

+2a00a01ā00ā01 + 2a10a11ā10ā11 + 2a00a10ā00ā10

+2a00a11ā10ā01 + 2a01a10ā11ā00 + 2a01a11ā11ā01.

Furthermore, it is a standard result in linear algebra that the coe�cients of the
characteristic polynomial can be written as elementary symmetric polynomials
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of the eigenvalues. This follows from the fact that the expansion of a monic
polynomial (that is, a polynomial in which the leading coe�cient is 1) is

n∏
i=1

(λ−Xj) = λn − e1 (X1, . . . , Xn)λn−1

+e2 (X1, . . . , Xn)λn−2 − · · · + (−1)n en (X1, . . . , Xn)

where ei (X1, . . . , Xn) is the i:th elementary symmetric polynomial in n vari-
ables. The polynomials are given by the formulae

e0 (X1, . . . , Xn) = 1

e1 (X1, . . . , Xn) =
∑

1≤i≤n

Xi

e2 (X1, . . . , Xn) =
∑

1≤i<j≤n

XiXj

em (X1, . . . , Xn) =
∑

1≤i<j<k≤n

XiXjXk

...

en (X1, . . . , Xn) = X1X2 · · ·Xn.

In the case of bipartite qubit states we have(
λ− x2

00

) (
λ− x2

11

)
= λ2 −

(
x2

00 + x2
11

)
λ+ x2

00x
2
11.

and comparing this with (24) we thus have

λ2 −
(
x2

00 + x2
11

)
λ+ x2

00x
2
11 = λ2 − tr (ρA)λ+

1
2

(
tr (ρA)2 − tr

(
ρ2
A

))
.

So we can relate our invariants to symmetric elementary polynomials of the
Schmidt coe�cients:

I1 = x2
00 + x2

11

1
2

(
I2
1 − I2

)
= x2

00x
2
11

It also makes sense that we have to check two invariant polynomials, since we
have two Schmidt coe�cients that have to be equal for LOCC equivalence.

The previous results can be generalized to the fact that the polynomial
invariants of bipartite states are the polynomials In = tr (ρn) where n goes
from 1 to the minimum of the dimension of the two systems involved. The
polynomials In can also be related to elementary symmetric polynomials of the
eigenvalues of ρ. See [Sud] for a more thorough discussion of the permutation
structure behind bipartite states.

What then characterizes equivalence under stochastic LOCC? We will get
two discrete orbits under SLOCC corresponding to entanglement and no entan-
glement.
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Proposition. Two bipartite qubit states are equivalent under stochastic LOCC
when they have equal rank.

Two states have bipartite states have equal rank if they have the same num-
ber of non-zero Schmidt coe�cients. In the qubit scenario this simply means
that a state is entangled if both Schmidt coe�cients are non-zero and unentan-
gled if one is zero.

We have arrived at the type of classi�cation that LOCC and stochastic
LOCC should correspond to. LOCC should single out the orbits where the
entanglement is the same, while stochastic LOCC should have a classi�cation
according to structural properties of entanglement.

6.3 Tripartite qubit states

We now move on to look at tripartie qubit states, C2⊗C2⊗C2. In the bipartite
scenario the Schmidt decomposition was a valuable tool in analyzing the orbits.
But the decomposition does not generalize to multiple tensor products. We have
to resort to other tools to analyze the orbits. In the case of LOCC equivalence,
Invariant Theory is used to analyze the oribts. For stochastic LOCC the orbits
are characterized by the rank of the reduced density operators.

In the bipartite scenario the situation was clear-cut regarding the structural
properties of entanglement: Either there was the presence of entanglement be-
cause of superposition or not. For tripartite qubit states we can have di�erent
kinds of entanglement. For example, the �rst system could be entangled with
the second, but not to the third. Or all systems are entangled with each other.
This means that we should have di�erent orbits under stochastic LOCC that
correspond to these di�erent scenarios.

We will see that there is a �nite set of polynomial invariants that can be
used to describe the orbits under both LOCC and stochastic LOCC.

6.4 Orbits under LOCC

The generators of the polynomial invariants under LOCC have been computed
in several places, for example [Gr], [Ke], [Sud] and [LTT]. The fundamental
invariants are interesting in themselves since they tell us something about the
physical properties about the states (so they are not only mathematical devices
used to separate the orbits). In the following we will look at the invariants as
calculated by Sudbery in [Sud] since they can be used rather neatly to distin-
guish the orbits under stochastic LOCC. Sudbery only computed six polynomial
invariants, but [Gr] and [LTT] gave the complete list of the polynomial invariant
generators with seven invariants. But it is the invariants that Sudbery computed
that will be our chief attention since they can be used in the classi�cation of
the orbits under stochastic LOCC.
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6.4.1 Computing the polynomial invariants

Let a generic tripartite qubit state be written as

|ψ⟩ =
1∑

i,j,k=0

aijk |ijk⟩

In order to calculate the invariants Sudbery used the fact that any polynomial
in aijk which is invariant under the action of U (2) ⊗ U (2) ⊗ U (2) is a sum of
homogeneous polynomials of even degree of the form

Pστ (a) = ai1j1k1 · · · airjrkr āi1jσ(1)kτ(1) · · · āirjσ(r)kτ(r)

where σ and τ are permutations of (1, . . . , r) and 2r is the degree of the poly-
nomial. We use the summation convention of repeated indices with one index
in the upper position and one in the lower. Using this procedure together with
an analysis of the relevant permutation structure the following invariants were
calculated.

The only independent polynomial invariant of degree 2 is the norm of |ψ⟩:

I1 = aijkāijk = ⟨ψ|ψ⟩ . (25)

For degree 4 we have the following linearly independent quartic invariants:

I2 = ai1j1k1 āi1j1k2a
i2j2k2 āi2j2k1 = tr

(
ρ2
C

)
(26)

I3 = ai1j1k1 āi1j2k1a
i2j2k2 āi2j1k2 = tr

(
ρ2
B

)
(27)

I4 = ai1j1k1 āi1j2k2a
i2j2k2 āi2j1k1 = tr

(
ρ2
A

)
. (28)

The polynomial invariant of degree 6 is

I5 = ai1j1k1ai2j2k2ai3j3k3 āi1j2k3 āi2j3k1 āi3j1k2

= (ρBC)j1k1j2k3
(ρBC)j2k2j3k1

(ρBC)j3k3j1k2
. (29)

This expression would be the same if, instead for ρBC , we used ρAC or ρAB .
The invariant of degree 8 is given as

I6 = 2
∣∣ϵi1i2ϵi3i4ϵj1j2ϵj3j4ϵk1k3ϵk2k4ai1j1k1ai2j2k2ai3j3k3ai4j4k∣∣ (30)

where ϵ01 = −ϵ10 = 1 and ϵ00 = ϵ11 = 0 is the antisymmetric tensor. All
of these six polynomial invariants carry a physical signi�cance related to the
entanglement properties of the tripartite qubit state. But there also exists an
invariant of degree 12, whose physical signi�cance has not been explored, with
5988 terms [Gr]. We will not state it here.

Before we investigate the properties of our six invariants of degree up to 8,
we need to introduce the concept of the 2-tangle and 3-tangle.

35



6.4.2 Distributed Entanglement

In [CKW] Co�man, Kundu and Wootters introduced the entanglement measure
between tripartite states called the 3-tangle. It is a measure of the global en-
tanglement between the three systems that can not be expressed as the sum of
local entanglement between the subsystems.

To begin with, let ρAB be a density matrix of a pure or mixed bipartite state
and de�ne the �spin-�ipped� density matrix as

ρ̄AB = (σy ⊗ σy) ρ∗AB (σy ⊗ σy) .

Here ρ∗AB is complex conjugation of ρAB and σy is one of the Pauli matrices and

can be written as

(
0 −i
i 0

)
. Since both ρAB and ρ̄AB are positive operators,

their product ρAB ρ̄AB will also have real and non-negative eigenvalues, accord-
ing to [CKW]. Let the square roots of these eigenvalues, in decreasing order, be
λ1, λ2, λ3 and λ4. The tangle of ρAB is then de�ned as

τAB = [max {λ1 − λ2 − λ3 − λ4, 0}]2 .

This is a measure of the entanglement for mixed states, where τ = 0 corresponds
to an unentangled state and τ = 1 to a competely entangled state. The question
Co�man et al. asked is whether there exists, for a pure tripartite qubit state, an
inequality relating the tangles τAB and τAC with the tangle between the systems
B and C taken together, τA(BC). Notice that the composite system BC has
dimension four but is still treated in this context as a qubit of dimension two.
This is possible since only two dimensions are required for a full description of
the pure state ρABC , namely those that are spanned by the eigenstates of ρBC
that have non-zero eigenvalues. With this in background Co�man et al. showed
that a relevant inequality exists, namely

τAB + τAC ≤ τA(BC).

This inequality is also as sharp as it can be, since that for the state

|W ⟩ =
1√
3

(|001⟩ + |010⟩ + |100⟩)

it reduces to an equality. The 3-tangle, or residual tangle, is de�ned as

τABC = τA(BC) − τAB − τAC .

Mathematically it is unchanged under permutation of the systems:

τABC = τB(CA) − τBC − τBA

and so on. It therefore measures an entanglement that is shared by all systems
and is not restricted to the entanglement of one system with the other systems.
Interestingly enough, the 3-tangle is directly expressible in terms of the modulus
of the hyperdeterminant.
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6.4.3 Enter the hyperdeterminant

The hyperdeterminant was originally introduced by Cayley in 1845 in one of the
�rst investigations of Invariant Theory. We can arrange the 8 coe�cients as a
2 × 2 × 2 hypermatrix. The hyperdeterminant is then a quartic polynomial in
the coe�cients of the hypermatrix. More precisely, if we label the coe�cients as
aijk where i, j, k = {0, 1} the hyperdeterminant of the hypermatrix A is written
as

Hdet (A) = d1 − 2d2 + 4d3 (31)

where
d1 = a2

000a
2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

100a
2
011

d2 = a000a111a011a100 + a000a111a101a010 + a000a111a110a001

+a011a100a101a010 + a011a100a110a001 + a101a010a110a001

d3 = a000a110a101a011 + a111a001a010a100.

We can get a nice pictorial interpretation of d1, d2 and d3 if we arrange the
coe�cients aijk as corners of a cube where i = {0, 1} corresponds to vertical
displacement, j = {0, 1} to horizontal discplacement and k = {0, 1} to depth
displacement (see Figure 1). In this scenario the terms in d1 corresponds to
diagonal lines, in d2 to diagonal planes and in d3 to a tetrahedron. For all
the di�erent terms in d1, d2 and d3 the �center of mass� in the geometrical
arrangement will always lie in the center of the cube. We will observe in section
6.5.1 that this arrangement makes sense for tripartite qubit systems and can
also be used to identify canonical forms geometrically.

Figure 1: Distribution of eight coe�cients on a cube to give a geometrical
interpretation of the hyperdeterminant.

Since a generic state in |ψ⟩ ∈ C2 ⊗ C2 ⊗ C2 can be arranged in terms of a
hypermatrix there is no unambiguity in writting

Hdet (|ψ⟩) = d1 − 2d2 + 4d3.

It now turns out that the 3-tangle of a state |ψ⟩ can be written (see [CKW]):
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τABC = 4 |d1 − 2d2 + d3| = 4 |Hdet (|ψ⟩)|

At this point the reader should be impressed by the fact that an abstract math-
ematical device invented in 1845 resurfaces in the beginning of the 21:th century
as a tool for classifying entanglement properties.

6.4.4 Physical properties in terms of polynomial invariants

Looking back at I2, I3 and I4 and remembering that tr
(
ρ2
A

)
= 1 for unentangled

states we see that these quartic invariants express whether system C, B and A
are entangled or not. But we also saw that the 2-tangle τAB is a measure of the
entanglement of the bipartite system. It should therefore not come as a surprise
that the invariants and the 2-tangle are related. Sudbery computed the exact
relations1 as

τAB = 1 + I2 − I3 − I4 −
1
2
I6 (32)

τAC = 1 − I2 + I3 − I4 −
1
2
I6 (33)

τBC = 1 − I2 − I3 + I4 −
1
2
I6. (34)

Furthermore the 3-tangle is directly expressible in terms of our invariant of
degree 8:

I6 = τABC . (35)

Since the tangles are expressed in terms of the polynomial invariants, we see
that they are constant under local unitary transformations. Furthermore, they
will be important when we analyze the orbits under SLOCC.

6.5 The discrete space of stochastic LOCC

We have seen the we have six basic polynomial invariants under LOCC. We thus
have a continuous parametrization of the orbits. For stochastic LOCC we get
a di�erent situation in the tripartite qubit case. We will only have a discrete
set of orbits characterized mainly by the rank of the reduced density operators.
It is through the study of the rank of the reduced density operators that Dür,
Vidal and Cirac [DVC] classi�ed the orbits under stochastic LOCC. We will
now review and comment upon their results.

6.5.1 Rank distribution

We basically have three possible scenarios: 1) All reduced density operators have
rank one. 2) Two reduced density operators have rank two and the remaining
rank one. 3) All three reduced density operators have rank two. The �rst case

1Here we state the relations in [Sud] but with I2 and I4 interchanged. In [Sud] the relation
4 det (ρA) = 2

(
I2
1 − I2

)
was used in the computation whereas 4 det (ρA) = 2

(
I2
1 − I4

)
is the

correct one.
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is rather trivial and corresponds to a completely unentangled situation. The
second case corresponds to the presence of entanglement between two systems
whereas the third is not entangled. In the third case all three systems share
some kind of entanglement, but interestingly enough this genuine tripartite en-
tanglement can be constructed in two inequivalent ways. The canonical form of
these two inequivalent states are

|GHZ⟩ =
1√
2

(|000⟩ + |111⟩)

|W ⟩ =
1√
3

(|001⟩ + |010⟩ + |100⟩)

Since the number of product terms are inequal (namely two and three), these
two states can not be transformed into one another by any invertible linear
transformation. Furthermore, it was shown in [DVC] that any state with max-
imal local rank of two can be converted to either |GHZ⟩ or |W ⟩ through a
invertible linear transformation. We thus have the following canonical forms for
the orbits under stochastic LOCC:

|ψA−B−C⟩ = |000⟩ (36)

|ψA−BC⟩ =
1√
2

(|000⟩ + |011⟩) (37)

|ψB−AC⟩ =
1√
2

(|000⟩ + |101⟩) (38)

|ψC−AB⟩ =
1√
2

(|000⟩ + |110⟩) (39)

|W ⟩ =
1√
3

(|001⟩ + |010⟩ + |100⟩) (40)

|GHZ⟩ =
1√
2

(|000⟩ + |111⟩) (41)

How do we distinguish between these states in terms of the coe�cients? In
this scenario the tangle comes in handy. All six states can be distinguished by
observing whether the tangles vanish or not. To see this, we �rst look at the
values of the polynomial invariants (25)-(30). They are presented in Table 1.
Notice that all the states are normalized, so I1 is therefore equal to unity.
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Class I1 I2 I3 I4 I5 I6

|ψA−B−C⟩ 1 1 1 1 1 0

|ψA−BC⟩ 1 1
2

1
2 1 1

8 0

|ψB−AC⟩ 1 1
2 1 1

2
1
8 0

|ψC−AB⟩ 1 1 1
2

1
2

1
8 0

|W ⟩ 1 5
9

5
9

5
9

2
9 0

|GHZ⟩ 1 1
2

1
2

1
2

1
4 1

Table 1: Values of polynomial invariants for the canonical forms of tripartite
qubit system.

Using the values of the polynomial invariants we can calculate the di�erent
tangles through formulae (32)-(35). We have the following table:

Class τAB τAC τBC τABC

|ψA−B−C⟩ 0 0 0 0
|ψA−BC⟩ 0 0 x 0
|ψB−AC⟩ 0 x 0 0
|ψC−AB⟩ x 0 0 0

|W ⟩ x x x 0
|GHZ⟩ 0 0 0 x

Table 2: The tangle is used to distinguish the orbits under stochastic LOCC.
An x means that the value is non-vanishing.

We thus see that the hyperdeterminant enters as arbiter between the |GHZ⟩
state and the other states through the 3-tangle. The tangle, which is a poly-
nomial expression in the coe�cients, can thus be used to clearly distinguish
between the di�erent canonical forms. It singles out the relevant physical prop-
erties of each form, namely the type of entanglement the form has both locally
between di�erent subsystems and globally.

If we return to our arrangement of the coe�cients aijk as a cube we can
get a geometrical interpretation of the canonical forms on the cube. When we
have a tensor product A⊗B it is isomorphic to B⊗A. For our tripartite qubit
system this means that C2

1 ⊗ C2
2 ⊗ C2

3 is isomorphic to C2
σ(1) ⊗ C2

σ(2) ⊗ C2
σ(3),

where σ ∈ S (3) (the group of permutations on 3 letters). So when we place our
coe�cients on the cube we want the terms in (31) to retain their geometrical
interpretation as lines, planes and tetrahedrons under the permutations aijk 7→
aσ(ijk). But the labeling we used in 6.4.3 preserves this aspect. Geometrically,
then, we have the following interpretation:

The completely unentangled state (36) corresponds to corners of the cube.
The partially entangled states (37), (38) and (39) correspond to diagonal

lines in the same plane.
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The state (41) corresponds to diagonal lines across the cube (with center of
mass in the center of the cube).

Finally the state (40) corresponds to a triangle inscribed into the cube.

6.5.2 The case of special linear transformations and stochastic LOCC

We now wish to comment on an issue raised by a statement in [DVC]. When
operating on the unnormalized states in

H(n) = C2 ⊗ C2 ⊗ · · · ⊗ C2,

where the tensor product enters n times, Dür et. al. want to identify vectors
related through an invertible linear transformation in GL (2) ⊗ GL (2) ⊗ · · · ⊗
GL (2). They argue that the determinant of each local party operator of this
transformation can be �xed to one, det (A) = 1, since the only di�erence between
A and kA is that the latter will introduce an extra global constant to our
transformed state. Since we use an unnormalized state this should not make
any di�erence and we can therefore restrict our attention to SL (2) ⊗ SL (2) ⊗
· · · ⊗ SL (2). The equivalence classes that we are interested in are thus the
quotient space

H(n)

SL (2) ⊗ SL (2) ⊗ · · · ⊗ SL (2)
.

But it is a well known result that the hyperdeterminant remains invariant under
the action of SL (2) ⊗ SL (2) ⊗ SL (2). If we look at the state

|ψ⟩ =
1√
3
|000⟩ +

√
2
3
|111⟩

we see by (31) that

Hdet (|ψ⟩) =
2
9

whereas

Hdet (|GHZ⟩) =
1
4
.

So there is no operator in SL (2)⊗SL (2)⊗ · · · ⊗SL (2) that can transform |ψ⟩
into |GHZ⟩ directly. However, if we say that two states are equivalent up to a
global complex constant, which tacitly was the assumption when operating on

H(n), we can introduce the extra global constant
(

9
8

) 1
4 to |ψ⟩ which will alter the

determinant to 1
4 . In this case we may say that |ψ⟩ and |GHZ⟩ are equivalent

under the unimodular transformation.
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7 Conclusions

We established a mathematical framework for the operation on quantum states.
We saw that we could use this framework to understand mathematically what we
do in the laboratory in terms of Local Operations and Classical Communications
(LOCC). We found out what it means mathematically that two states can be
transformed into one another with either unit or non-zero probability, namely
that these two cases correspond to local unitary or general transformations. We
then asked under what conditions such transformations exist given two states.
This made us shift focus and look at a similar problem, namely when two
polynomial functions can be transformed into one another. Reviewing classical
Invariant Theory we found that we could its results and concepts. Returning
back with these new weapons after a short raid into the mathematical armory
we laid siege to the bipartite and tripartite qubit states to fully explore their
equivalence properties.

After having seen that the bipartite and tripartite qubit states are indeed
accessible to a full description, one might ponder if this is possible for more
complex systems? Not surprisingly the answer is no. The polynomial invariants
for four qubits (that is, for C2⊗C2⊗C2⊗C2) were constructed by Luque, Thibon
and Toumazet but they also report that �in practice, obtaining a description of
the algebra in terms of generators and syzygies seems to be out of reach for
more than four qubits�. The computational complexity increases quickly as the
systems become bigger.

But an even more important issue than performing actual computation might
be to �nd a relevant entanglement measure. Many di�erent measures have
been proposed. They all have to be constant on the orbits of LOCC (that
is be una�ected by local unitary transformations), but they should single out
important properties of stochastic LOCC. So far no agreement has been found
on a canonical measure. But investigations into the invariant structures might
provide insights on how such a measure should be constructed.
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