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The two included papers are Incomplete Kochen-Specker coloring and The frame function,

on average.



Abstract

This thesis is centered around mathematical structures of fundamental importance to quan-
tum foundations and quantum information. Its introductory part acquaints the reader with
the basics of the general ideas of frames and simplices, as well as with some central quan-
tum mechanical concepts like density matrices and Hilbert spaces.
Article I deals with the question of contextuality in relation to quantum measurement.
Using a specific strategy of assigning truth values to state vectors, some aspects of the
Kochen-Specker theorem are explored.
In Article II an object called SIC-POVM is studied, more specifically by investigating the
behaviour of a function used to measure the closeness of an arbitrary vector set to such a
configuration.
In addition to putting the results of these two papers into context, the aim of this thesis
is to offer a discussion of the search for connections between the SIC-POVM and so-called
MUBs in odd prime dimensions, as well as a brief comment on a structure here introduced
as a Kochen-Specker frame; it is shown that the latter plays a part in the proof of Hardy’s
paradox as well as for an inequality for testing contextuality due to Klyachko et al.
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Chapter 1

POVMs and mathematical

preliminaries

1.1 Introduction

What makes a mathematical structure interesting? From a physicist’s point of view the
answer is not so much its intricacy - the simpler the better, really - as its ubiquitousness.
The more frequently it turns up in unexpected places, the more inclined one is to consider
it important. Just like π, the sphere or the Golden Mean, the configurations encountered
in this thesis are of interest because they arise from the formalism in a natural way. What’s
more, they make out a convergence point for several areas of mathematical physics, tying
together subjects as diverse as group theory, algebraic geometry and combinatorics.

A class of objects around which much of this thesis will revolve - POVMs or Positive
Operator Valued Measures - constitutes a good starting point for introducing the mathe-
matical concepts necessary to proceed. The POVM is a set of m positive operators {Pi}
summing to the identity:

m
∑

i=1

Pi = 1, P †
i = Pi, Pi ≥ 0.

If the Pi are all rank one projectors, i.e. proportional to | ψi〉〈ψi | for some pure state | ψi〉
in the Hilbert space H , the POVM is said to be pure. Any non-pure POVM can, however,
be taken into pure form by further partitioning of the POVM elements. For this reason,
all POVMs will in the following be assumed to be pure, and by an element of the POVM
we will interchangeably mean a Hilbert space vector and the operator constructed from
it. Remembering that the operator space - here taken to be real and of finite dimension
- has Hilbert space structure when equipped with the Hilbert-Schmidt inner product, we
can interpret the operators as vectors in this space. The POVM can then be seen as a
generalization of an orthonormal basis, in this context referred to as a PVM (Projective
Valued Measure), with the criteria of orthogonality and normalization relaxed.
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In terms of what goes on in the laboratory, the POVM can be said to represent a generalized
notion of measurement. For a measurement setup corresponding to the regular ON-basis,
the results obtained are mutually exclusive (for instance, m = j means m 6= j − 1, ...,−j).
For a POVM, however, this is not the case. Also, while the projectors of a PVM always
commute, no such assumption is made for the elements of a general POVM - both these
properties are due to the fact that the POVM elements need not necessarily be orthogonal.
Another consequence of this is that the number of POVM elements need not equal the
dimension even though they form a basis for the space. According to Naimark’s theorem,
however, any POVM is equivalent to a PVM and can hence be described in terms of a von
Neumann measurement, if the latter is performed in a higher dimension.

1.2 Spaces and density matrices

The definition of a POVM given above is in terms of projection operators in the space of
Hermitian matrices. This is a vector space, with the Hilbert-Schmidt product Va · Vb =
TrVaVb as inner product, and the zero matrix as origin. A projector constructed by taking
the outer product of a pure state | ψ〉〈ψ | in a Hilbert space of dimension N with itself
is an operator sitting in this N2-dimensional space. The set P of positive operators, i.e.
matrices with non-negative spectra, forms a convex cone in this operator space with apex
at the zero matrix. P is defined by the property that for P ∈ P, 〈ψ | P | ψ〉 ≥ 0 for all
| ψ〉 ∈ H , a condition that is equivalent to P being Hermitian and having all its eigenval-
ues non-negative. Clearly, then, the sum of two positive operators is again positive, which
justifies the claim that P is a convex set.

Another space that will also be of relevance to the following is what will here be called
Bloch space: the N2 − 1-dimensional space of Hermitian matrices with unit trace, with
the maximally mixed state - 1

N
times the unit matrix - as origin. This space contains the

convex set {ρ} of density matrices as those matrices in the space that have non-negative
spectra. That all density matrices obey the trace one conditions follows from the quantum
rule (i.e. Gleason’s theorem) for calculating probabilites: given that Pi = TrEiρ, the con-
dition

∑

i Pi = 1 that the probabilities sum to unity enforces that Trρ = 1.

The matrices with constant trace, of which the unit trace matrices are a special case,
form parallel hyperplanes in the larger space of all Hermitian operators. In dimension two,
the set of density matrices - the intersection of the cone of positive operators with the
set of unit trace 2 × 2-matrices - is a ball known as the Bloch ball, with the sphere of
pure states as its boundary. Unfortunately, as soon as N is larger than two, the situation
becomes more complicated. The set of density matrices will then lie in the cross section be-
tween the positive cone and the unit trace hyperplane, but will no longer fill it completely.
The reason for this dimension two anomaly can be understood by studying the symmetry
group of the set of density matrices for an N -dimensional system, SU(N)/ZN . For all N ,
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it is true that this is a subgroup of SO(N2 − 1) - for N equals two the two groups are
in fact isomorphic. In general, though, a unitary transformation in Hilbert space can be
interpreted as a rotation in operator space, but not conversely. In passing it can be said
that the symmetry group of the set of density matrices reveals that this convex set is not
a polytope - if there exists a symmetry group for a polytope, it is by necessity discrete,
whereas SU(N)/ZN is a continuous group of transformations.

Bloch space operators are constructed from state space vectors in the following way. Given
a unit vector | v〉 in Hilbert space, we turn the corresponding projector | v〉〈v | into a
vector in RN2−1 via the formula

V =| v〉〈v | −ρ∗, (1.1)

where ρ∗ is the maximally mixed state. The trace operation then functions as inner product
on this space, and a calculation shows that | v〉 being a unit vector leads to

V2 =
N − 1

2N
(1.2)

and that for unit vectors in Hilbert space

〈vi | vj〉 = 0 ⇔ Vi · Vj = −
1

2N
. (1.3)

1.3 Frames

If a set of state space vectors {| ψi〉} define a POVM there always exist constants 0 < a ≤
b <∞ such that

a | 〈v | v〉 |2 ≤
∑

k

| 〈v | ψk〉 |
2 ≤ b | 〈v | v〉 |2 (1.4)

for all vectors | v〉 ∈ H , and conversely. A set for which such constants can be found is
called a frame. If a = b in equation (1.4) the frame is said to be tight; any non-tight frame
can be made tight by a canonical transformation.

Many other objects considered in foundational research in quantum mechanics also con-
stitute frames. Besides the POVM, or rather certain special cases of it, a configuration
here introduced as a Kochen-Specker frame will be discussed at some length in this thesis.
The latter is not encountered in standard works on frame theory, and the terminology is
not established. Other frames of relevance to quantum mechanics, besides the familiar
ON-basis, include complete sets of MUBs and sets of coherent states.
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1.4 Simplices

Another mathematical object intimately connected to the POVM is the simplex. Formally,
an N -simplex in an affine space is the convex hull of a set of N + 1 points not confined to
any N −1 dimensional subspace, i.e. a convex polytope consisting of all points of the form

x = λ0x0 + λ1x1 + ...+ λNxN , λ0 + λ1 + ...+ λN = 1, λi ≥ 0, (1.5)

with the xi affinely independent. The simplex is a special case of a convex polytope, which
is the convex hull of a finite number of points. The convexity property means that given
two points x1 and x2 in the set, the linear combination, or mixture,

x = x1 + (1 − λ)x2

also belongs to it for all λ between zero and one.

A face F of the polytope is defined by its stability under mixing and purification, in
the sense that

x = x1 + (1 − λ)x2, 0 ≤ λ ≤ 1

lies in F if and only if x1 and x2 do, and that a point obtained by mixing pure points in
the face cannot be obtained as a mixture of other pure points not belonging to the face.

The dimension of the faces of a convex N -polytope runs between zero and N - the single
N -dimensional face is the polytope itself, whereas the zero-dimensional faces are the ex-
tremal, or pure, points of the polytope. For a simplex, the number of m-faces is equal to
the mth binomial coefficient. Any point of a convex body can be expressed as a convex
combination of the pure points of the body, and the rank of a point is defined as the min-
imal number of pure points needed in the expression. What is special about the simplex
is that this expression is unique: a point in a simplex can be written as a mixture of pure
points in one and only one way.

As it happens, the simplex with N2 corners realizes a special type of POVM known as
the IC-POVM, where IC stands for Informationally Complete. The meaning of this phrase
is that the statistics of the POVM - now interpreted as representing a measurement - fully
determines the density matrix of the system to which it is applied. Another way to state
this is that the corners of the IC-POVM simplex can be used to define barycentric coor-
dinates for any density matrix. For a quantum system of Hilbert space dimension N , the
corresponding Bloch space has N2 − 1 dimensions, and N2 is just the number of measure-
ments required to uniquely determine the state. The simplex is in this sense a minimal
IC-POVM - one can of course find configurations with a larger number of elements having
the same statistical properties.
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Many of the configurations considered in the area of quantum foundations are geomet-
rically simplices and as we will see below, the simplicial structure also plays a role in the
search for connections between two important, but as of yet unlinked, structures: SIC-
POVMs and MUBs. Polytopes of other types than simplices are also encountered, for
instance in the description of quantum statistical correlations. The MUB polytope, which
can be seen as a generalization of Birkhoff’s four-dimensional polytope, is one example.
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Chapter 2

SICs, MUBs and the search for

connections

Formally, a SIC-POVM - Symmetric Informationally Complete Positive Operator Valued
Measure - is a set of N2 positive operators Pi that act on an N dimensional Hilbert space
H N , and that satisfy

1

N

N2

∑

i=1

Pi = 1, P †
i = Pi, Pi ≥ 0 and Tr(P †

i Pj) =
1

N + 1
, i 6= j. (2.1)

Equivalently, and simpler, it is a set | ψi〉 of N2 unit vectors in H N that satisfy

|〈ψi|ψj〉|
2 =

1

N + 1
1 ≤ i, j ≤ N , i 6= j; (2.2)

the first definition of the SIC-POVM (henceforth referred to as simply a SIC) is obtained
from the second by from each vector | ψi〉 forming the operator Pi =| ψi〉〈ψi |. The same
configuration has been also studied under the name of ”equiangular lines”[2], ”equiangular
tight frame”[3] and ”maximal quantum design”[1]. Most work in recent years has focussed
on the problem of proving the existence of SIC structures in arbitrary dimension. Given the
relatively simple definition of the SIC one would imagine that the question in what dimen-
sions such an object exists would be easy to answer. That this is not the case is illustrated
by the fact that although they have been constructed in most (but not all) dimensions
N ≤ 19 [1, 4, 5, 6, 7] and numerical searches have been successful for all N ≤ 64 [11, 13],
a general formula has yet to emerge.

Just as IC-POVMs without the additional symmetry requirement, the SIC is important
because its statistics allow us to fully determine the density matrix of the system to which
it is applied. From an experimental point of view the SIC is preferrable in that it minimizes
the uncertainties associated with measurement among all N2 element IC-POVMs. Tomog-
raphy of a quantum state - and this should be stressed - always makes use of a number
of identical copies of the system of interest; once a measurement is performed the state
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of the individual system is irreversibly destroyed. In the ideal case of an infinite number
of copies and measurements, the measured frequencies agree exactly with the probabilities
one wishes to determine. In reality, however, the statistics are the result of a finite number
of measurements, and afflicted by deviations due to this fact. The SIC is - as are the MUBs
of section 2.1 - particularly insensitive to this type of uncertainty.

In the N2-dimensional space of all Hermitian matrices, the SIC has also been shown to
be as close to an orthonormal basis as is possible to find for this space given that the
basis vectors are all required to lie in the cone of positive operators [12]. In contrast to a
general IC-POVM the SIC elements all have the same weight, which means that the SIC
(after appropriate rescaling) can be seen as sitting in Bloch space. The interpretation of
the SIC as a set of points in the space of Hermitian matrices of unit trace also enables
us to state the existence problem as one that concerns the shape of the convex body of
density matrices mentioned in section 1.2: is it possible to inscribe a regular simplex with
N2 corners in this body? The task is not trivial; whereas the outsphere on which all pure

states lie - defined to be the sphere of radius
√

N−1
2N

- has dimension N2 −2, the dimension

of the set of pure states is only 2N − 2. Although a regular simplex with N2 corners on
the outsphere of the body of density matrices can be constructed, it is not clear that it
can always be rotated so that its corners all coincide with pure state vectors.

2.1 Projection on the MUB planes

Besides the existence problem, another question that has received some attention in the
last years is that of the connection between SICs and MUBs - Mutually Unbiased Bases.
One of the motivations for investigating the relation between the two configurations also
has to do with proving existence - if one could find a way of constructing a complete set
of MUBs from a SIC, or vice versa, one would automatically ascertain existence of one in
all dimensions where the other is known to exist. Currently, full sets of MUBs - meaning
N +1 basis sets which are all mutually unbiased with respect to each other - are known to
exist when the dimension N is a prime number, or a power of a prime - the constructive
proof of existence uses the fact that ZN is a field whenever N is prime. In the following,
we will restrict our attention to prime dimensions larger than two.

A pair of orthogonal basis sets {| ei〉} and {| fi〉} of some N -dimensional space are said to
be mutually unbiased if for all i and j it is true that

| 〈ei | fj〉 |
2 = constant =

1

N
. (2.3)

In Bloch space terms this is equivalent to

Ei · Fj = 0, (2.4)
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again with the trace operation as scalar product. From this we see that any (Bloch space)
vector in one MUB is orthogonal to any vector in any of the others. This means that
the MUBs, interpreted as vectors in the N2 − 1 dimensional space of Hermitian matrices
with unit trace, define a set of N + 1 totally orthogonal hyperplanes of dimension N − 1
or, equivalently, a highly symmetric polytope consisting of the N + 1 totally orthogonal
MUB-simplices. This constitutes the basis for the claim that the MUB polytope general-
izes Birkhoff’s polytope BN for N = 3; the latter is the set of bistochastic 3× 3 matrices,
a four-dimensional convex polytope with the set of 3! = 6 permutation matrices as its
extreme points. The analogy is provided by the fact that B3 can be described in terms of
two equilateral triangles each sitting in one of two totally orthogonal planes - as already
stated, the MUB polytope then consists of four simplices in as many totally orthogonal
planes, more generally of N+1, of them. In passing, it can also be said that the difficulties
of finding a complete set of MUBs stem from the same properties of the body of density
matrices as do those of proving SIC existence. Just as the task of finding a SIC is equiv-
alent to inscribing a regular simplex in the outsphere with all corners on the submanifold
of the sphere corresponding to pure states, finding a full set of MUBs means succeeding in
the same maneuvre for the MUB polytope.

As it stands, the question of the connection between SICs and MUBs is not very spe-
cific, and there are of course many possible ways to go about an investigation of their
relation. One well defined, and arguably relevant, question is that of the result when the
SIC is projected onto the planes defined by the MUBs. To the extent that the answer is
known, it indicates that looking at the projections is a fruitful way of exploring the MUB-
SIC relation. If, by projecting onto the MUB planes, one would be able to substantially
cut down the dimensionality of the space in which one performs the search for SIC vectors,
projection would be a very valuable tool in the task of proving the existence of SICs in
(possibly) all dimensions.

Before we look at the projection properties, some mathematical preliminaries have to
be put in place. More specifically, we need the definition of a certain finite group with
N2 elements: the Weyl-Heisenberg group [8]. The Weyl-Heisenberg group - also known to
physicists as the generalized Pauli group and to mathematicians as the Heisenberg group
- is the group generated by two elements X and Z subject to the relations

XZ = qXZ , XN = ZN = 1 , q ≡ e2πi/N . (2.5)

The definition of q guarantees that qN = 1 but qr 6= 1 for all r 6= 0 mod N . Up to unitary
equivalence there is a unique unitary representation of this group such that

Z|a〉 = qa|a〉 X|a〉 = |a+ 1〉 , 0 ≤ a ≤ N − 1 ; (2.6)

this is known as the clock and shift representation. The set {| a〉} forms an orthonormal
basis for Hilbert space. For prime N , the Weyl-Heisenberg group contains N + 1 cyclic
subgroups, each with N elements, generated by X, Z, XZ, X2Z,...,XN−1Z.
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Up to phases, which we do not have to care about, a general group element is

Dij = X iZj , 0 ≤ i, j ≤ N − 1 . (2.7)

The assumption here will be that the SIC that is projected is an orbit under this group,
meaning that it is generated by first choosing a fiducial vector |ψ0〉, and then acting on this
vector with the N2 elements of the (projective) Weyl-Heisenberg group. That such a group
covariant SIC can be found in all dimensions (where SICs exist) is part of the content of
a conjecture due to Zauner [1], likely but as of yet unproved. A further assumption that
we will make is that each MUB in the complete set is the eigenbasis of a cyclic subgroup
of the Weyl-Heisenberg group, which has been shown to be the case in prime dimensions.
In prime power dimensions the same assumption holds if the Weyl-Heisenberg group is
replaced by a related group. As we will see, the characteristics of projection of the SIC on
the MUB planes are highly dependent on this assumption.
A description of the Weyl-Heisenberg group action on the MUB planes in terms of rotations
is provided by the fact that the group is a subgroup of SU(N), which in turn is isomorphic
to a subgroup of SO(N2 − 1) - the rotation group in Bloch space. Should one be surprised
by the existence of a group with the properties presented above? Basically what we ask
for is rotations that, when repeated N times, take every corner of the MUB simplex back
to its original position. That this works in three dimensions - when the MUB vectors form
an equilateral triangle in a two-plane - is no surprise. Intuitively one realizes - and this can
also be shown - that the same thing is not possible in dimension four, in which the MUB
simplex is a regular tetrahedron. On the other hand, not many of us have the intuition
sufficient to decide whether or not this is possible for N = 5, when the MUB points are the
corners of a regular four-simplex with corners on the three-sphere. The Weyl-Heisenberg
group does, however, accomplish this in five dimensions - in fact it does so for all prime N .

The properties of the projected SIC points differ in several ways from those of a gen-
eral projection. When projecting the N2 SIC points down on any of the MUB planes,
only N distinct points are obtained. These points form a regular N -simplex inscribed in
the larger N -simplex defined by the MUB vectors. The radius of the sphere on which the
N points lie is independent of which MUB plane we are looking at and, as it happens,
the sphere is that on which we also find the minimum uncertainty states, to be further
introduced below. For N = 3 the projected SIC simplex is only defined up to a phase, and
its orientation relative to the simplex defined by the MUB vectors spanning the plane can
be chosen at will. For N > 3, however, the exact position of the corners of the simplex
matters. In order to explain these properties, we have to look a bit further into the Weyl-
Heisenberg group.

As already stated, we are assuming the MUB vectors to all be eigenvectors of some cyclic
subgroup of the Weyl-Heisenberg group. This means that the corresponding plane is left
invariant by action of this subgroup: for instance, the plane defined by the standard basis
- which can without loss of generality always be taken to be one of the bases in a set of
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MUBs - is left invariant by the cyclic subgroup generated by the element Z. The action of
the Weyl-Heisenberg group on the MUB planes results in N different rotations of a given
plane, meaning that several elements give the same rotation. Taken together with the
assumption that a Weyl-Heisenberg covariant SIC can always be found, this implies that
|ψ0〉, Z|ψ0〉 and Z2|ψ0〉,...,Z

N−1 | ψ0〉 are all elements of the SIC and hence all project to
the same point on the MUB plane corresponding to the standard basis. The analogous
thing goes for the other MUBs, which explains the fact that the N2 SIC points give rise
only to N points in each hyperplane when projected.

Another striking fact of the projection of the SIC is that in each MUB plane, the N
projected points lie on a sphere centered at the origin, with the same radius in all of the
planes. On this sphere one also finds the set of minimum uncertainty states, so called
because they minimize the quadratic Rényi entropy, a relative of the possibly more rep-
utable Shannon entropy. This functional, which as the name suggests is a measure of the
randomness or level of uncertainty of a system, is defined as

HR = − log(
N−1
∑

i=0

p2
i ) (2.8)

where pi is the probability of outcome i, which in the quantum mechanical case would
correspond to the quantity | 〈ei | ψ〉 |

2 for some suitably chosen set of state vectors {| ei〉}.
The minimum uncertainty states minimize this quantity not for a single von Neumann
measurement, but when averaged over the N +1 measurements corresponding to a full set
of MUBs.

Letting i number the bases in a complete set of MUBs and j number the vectors in each
MUB, it has been shown that for a pure state | ψ〉 to be a minimum uncertainty state in
this sense it must hold that

N−1
∑

j=0

| 〈ei,j | ψ〉 |
2=

2

N + 1
. (2.9)

A moderately long calculation shows that this condition is equivalent to | ψ〉 (or rather the
operator corresponding to | ψ〉) making the same angle with all the MUB hyperplanes, so
that the radii of the spheres on which the projections lie are the same, as already claimed
- this can also be realized from the fact that the average of HR in (2.8) over the N + 1
MUBs is minimized by putting all the pi equal to 1

N
.

The minimum uncertainty condition, as stated above, is a geometrical condition. We
know in what directions from each MUB hyperplane to look for such states, and going
out in any of these we sooner or later hit the outsphere of the body of density matrices.
And, at the same moment, we confront the same question that has already arisen several
times in this thesis: just how does the body of density matrices sit on this outsphere? It is
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not clear that the direction indicated by the above criterion at all corresponds to a state.
Some things are, however, known. Firstly that, for prime N > 3, the set of SIC fiducials is
discrete, and therefore smaller than the continuous set of minimum uncertainty states. A
conjecture due to Wootters has it that the latter has real dimension N − 2, which would
allow the two sets to coincide for N = 3 [23]. Secondly, in all odd prime dimensions the
SIC vectors, if they exist, are minimum uncertainty states [12].

As has been mentioned, N = 3 makes for a special case in that it offers the freedom
of an undetermined phase in the projected SIC simplex, so that the projection is not fixed
until the exact position of the projected simplex in one of the planes is chosen. This is
partly explained by the fact that the sphere - then a circle - on which the projected points
lie is entirely contained in the MUB simplex, which is not the case in other dimensions. In
all other cases, when the exact orientation of the simplex is important, the rotation relating
the SIC simplex to that defined by the MUB vectors is apparently not of any simple form.
[22]

2.2 Special configurations and elliptic curves

It is perhaps somewhat unexpected that a connection between SICs and MUBs is offered
by a mathematical result dating from the 19th century, having to do with something known
as the Hesse configuration. In three dimensions this construction contains the MUBs as
well as the SICs. This is encouraging but maybe not as much so as one might think -
from a natural generalization to higher dimensions the SICs fail to fall out, even though
the MUB vectors are still there. Possible applications to the MUB-SIC problem aside,
the configurations of this section are interesting in their own right, not least because they
are a meeting point of mathematical disciplines such as group theory, projective geometry,
combinatorics and the theory of elliptic functions.

The Hesse configuration was originally defined by Otto Hesse in 1844 [24]. While it might
at first sound surprising that Hesse’s construction is intimately connected to the SIC and
MUB problems, closer inspection shows that the link is provided by the Weyl-Heisenberg
group. We have already seen that the group plays a fundamental role in the construction
of both SICs and MUBs, and it does so also for the Hessian curve. The latter results from
asking for the most general homogeneous cubic polynomial in three variables left invariant
by action of the Weyl-Heisenberg group. Choosing an explicit matrix representation for
the group, and letting it act on a vector, its coordinates in the fixed basis transform in
some way; the constraint is then that the homogeneous cubic polynomial in these three
coordinates should be unaffected by this transformation. Settling for the clock and shift

12



representation defined in (2.6) , the generators of the Weyl-Heisenberg group are

Z =





1 0 0
0 q 0
0 0 q2





and

X =





0 0 1
1 0 0
0 1 0



 .

Choosing the basis {| a〉}2
a=0 for our three-dimensional Hilbert space and letting x, y, z be

the coordinates for a vector expressed in this basis, action by the Weyl-Heisenberg group
results in these coordinates being permuted or multiplicated by a phase. For instance,
application of X to the vector x | 0〉+y | 1〉+z | 2〉 results in the coordinate transformation
x → y, y → z, z → x. What one finds is that the most general homogeneous cubic
polynomial left invariant by the Weyl-Heisenberg action is

f = x3 + y3 + z3 + txyz, (2.10)

for a (complex) parameter t - this is Hesse’s canonical form.

Setting this polynomial equal to zero, a plane cubic curve is obtained, which assuming
that z 6= 0, can be expressed in affine coordinates as

(
x

z
)3 + (

y

z
)3 + 1 +

x

z

y

z
= 0.

The condition t3 6= −33 and t 6= ∞ guarantees that no points other than (0, 0, 0) satisfy

f = 0, f ′
x = f ′

y = f ′
z = 0; (2.11)

the curve is then said to be non-singular, implying in particular that it has no self-crossings.
Here we will initially assume this assumption to hold, although we will return to the case
when the curve is singular and does cross itself.

From the plane cubic curve, as from any curve, its Hessian curve can be constructed
as the roots of the equation

h ≡ detf ′′
ij = 0; (2.12)

this curve will again be a cubic. For the curve (2.10) it is

h = (63 + 2t)xyz − 6t2(x3 + y3 + z3) = 0. (2.13)

As is easily seen, this is a member of the pencil of cubic curves obtained by varying the
complex parameter t.

13



With the help of Hesse we can now proceed: one of his theorems state that each in-
tersection of a non-singular plane cubic curve with its Hessian curve is an inflexion point
of the original curve, and conversely. Given that the original curve is brought to Hesse’s
canonical form before constructing its Hessian, the intersection points are nine SIC-vectors.
The fact that there are nine of them is a consequence of Bézout’s theorem, which implies
that two plane cubic curves intersect in exactly 3 × 3 points.

It turns out - this result is also due to Hesse1 - that the nine SIC-points so obtained
are a realization of the Hesse configuration. The latter is a set of points and lines, whose
relations can be summarized as

(94, 123). (2.14)

The way this is read out is that the configuration consists of 9 points, each of which lies
on 4 of the 12 lines, which in turn contain 3 points each. Points and lines here refer to the
objects in CP2 corresponding to one- and two-dimensional subspaces of C3, respectively.
From this it is clear that a line is defined by two points, just as a two-dimensional subspace
of a vector space is obtained from two one-dimensional ones.

The setup can also be inverted (using orthogonal complements in C3) to obtain the dual
Hesse configuration,

(123, 94), (2.15)

consisting of twelve points and nine lines. This maneuvre makes visible the MUB vectors,
which correspond to the twelve points - i.e. twelve one-dimensional subspaces, or vectors,
in C3. The nine lines, or two-dimensional subspaces, correspond to eigenspaces of the phase
point operators originally introduced by Wootter’s. We will return to these operators in
a little bit, but can note here that their existence is in fact suggested already by Hesse’s
canonical form. One symmetry that is not required by Weyl-Heisenberg invariance but is
clearly possessed by the polynomial (2.10) is given by the transformation x → x, y ↔ z.
This is exactly the action of the involution represented by a phase point operator A. The
phase point operators exist in all odd prime dimensions, and the dual Hesse configuration
is easily generalized to arbitrary such dimension, with its connection to MUBs and phase
point operators preserved.

The Hesse configuration is, with its nine points and twelve lines, a realization of an affine
plane of order three. An affine plane is defined as a set of points {aα} and lines {lω}.
The lines are subsets of the set of points, each line being defined uniquely by two points,
although it can of course contain a larger number. A point set constituting an affine plane
satisfies the below conditions:

(1) If aα and aβ are distinct points, there is a unique line lω such that aα, aβ ∈ lω.

1Building on earlier work by Julius Plücker, who in addition to his work in the field in question also

made many other important contributions to geometry as well as to experimental physics.
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(2) If aα /∈ lω there is a unique line lσ such that aα ∈ lσ and lω ∩ lσ = ⊘.

(3) There are at least two points on each line, and there are at least two lines.

If the point set is finite, all the lines contain the same number of points and this number,
N , defines the order of the affine plane. For an affine plane of order N , it can be shown
that that the total number of points must be N2, and the number of lines N2 + N . One
should be aware, however, that the words ’points’ and ’lines’ are here in some sense ar-
bitrary - its combinatoric properties are the real characteristics of the affine plane. As it
happens, however, the points and lines as defined in the context of the Hesse configuration
correspond exactly to points and lines in the abstract, combinatorial sense of the affine
plane.

Hence, the characteristic intersection properties of the Hesse configuration are those of
an affine plane of order three. There is, however, even more structure to the configuration
than can be read directly off (2.14) or immediately derived from the affine plane axioms.
Hesse provides also this information: the six inflexion points that do not lie on one partic-
ular line, lie by threes upon two other lines. This set of three lines forms a triangle in CP2,
and the nine inflexion points all lie by threes upon the sides of any one of the four inflexion
triangles. The vertices of these triangles, on the sides of which the SIC-points lie, are the
twelve vectors in a complete set of MUBs. In other words, the four sets of parallell lines
that can be found in the affine plane correspond to four sets of three rays arranged in a
triangle in CP2. The intersection points of these rays - the vertices of the triangles - do not
correspond to any of the points in the affine plane, but instead give the twelve MUB vectors.

This can be compared with the cases so far not considered: the choices of the parame-
ter t for which the curve has singular points. These are the three - remember that t is
complex - values that give t3 = −27, and t = ∞. In all these four cases, the solution curve
for the equation f = 0 collapses to three lines forming a triangle, the vertices of which are
self-crossings or singular points of the curve. These vertices will again be the MUB vec-
tors, and it turns out that the four ’forbidden’ choices for t together give a full set of MUBs.

These considerations show that, in three dimensions, the SIC and the MUBs are inti-
mately tied together by Hesse’s construction in conjunction with the results stated above.
This fact provides motivation for investigating generalizations of the Hesse configuration
for N larger than three, in the hope of finding a corresponding link in all dimensions.

Such a generalization is in fact provided indirectly by Wootters’ phase point operator
A. As has already been mentioned, this operator constitutes an important tool in the
translation between the language of plane cubic curves and that of group theory, and in
higher dimensions it defines an arrangement called the Segre configuration [9], a possible
generalization of the Hesse configuration to all (odd) prime dimensions. Just as the phase

15



point operator constitutes a part of the symmetry group of the plane cubic in dimension
three, the group constructed by adjoining such an object to the Weyl-Heisenberg group
gives the symmetry group of the corresponding elliptic curve in all these dimensions. Some
further aquaintance with the operator A - or rather the N2 operators Aij obtained by
acting on it with the elements of the Weyl-Heisenberg group - will now be made.

The phase point operators of Wootter’s are constructed via the procedure described above
for dimension three, starting from the affine plane obtained from a phase space description
of an N level quantum system, namely as points (q, p), with q, p ∈ ZN . For N an odd
prime, which is the case that will here be considered, ZN is a field and an affine plane
of order N exists. A consequence of this is that phase space can be decomposed into N
parallell lines in N + 1 different ways - such a decomposition is called a pencil. Letting
each pencil be represented by that of its lines passing through the origin and calling this
line a ray, it can be shown that from these N +1 rays a complete set of MUBs can be con-
structed, again in complete analogue with the three-dimensional case. The construction is
such that each ray corresponds to a specific member of an orthogonal basis, and the other
lines in the pencil are the remaining members, meaning that the rays all represent different
basis sets. Choosing the projector constructed from the MUB vector corresponding to each
ray to represent it, and letting the other vectors of the respective MUBs to represent the
other lines in the pencils, we obtain an assignment of vectors to lines in phase space. This
assignment, finally, can be used to define the phase space operator at a point (q, p) as

A(q, p) =
∑

λ

Pλ − 1,

where the projector sum runs over the N + 1 lines passing through the point (q, p), the
projectors being constructed from the vectors associated to the lines according to the above
prescription. Put in terms of the correspondence between pencil lines and MUB elements,
the N2 phase point operators are obtained by choosing one vector from each basis in a
complete set of N + 1 MUBs.

For each of the N2 operators A(q, p) or, switching indices, Aij, a projector can be de-
fined according to

Πij =
1

2
(Aij + 1).

As explained above, this will give a projection onto an n-dimensional subspace of H N ,
with N = 2n − 1. A pair of such subspaces will always have a common vector, but from
the definition of the phase point operators follows that the subspaces obtained from the
set of Aij will intersect in exactly N(N +1) distinct vectors in CP2n−1, and in CP2n−2 we
have the configuration

(N(N + 1)N , N
2
N+1)
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of N(N+1) points that each lie in N (n−1)-planes, and N2 (n−1)-planes, each containing
N+1 points. However, neither from this construction or from its dual, one directly obtains
the N2 points corresponding to a SIC.

We have already seen that the Weyl-Heisenberg group is of central importance to the
construction of SICs and MUBs, as well as to the definition of Hesse’s canonical form. Al-
though not directly visible in the above account of the phase point operator construction,
it lies in the background here as well: the phase point operators can in fact be seen as
elements of a subgroup of all unitaries, singled out by its action on the Weyl-Heisenberg
group. The Clifford group, to which the operators Aij belong, is the normalizer of the
Weyl-Heisenberg group in the group of all unitary matrices. This by definition means
that the Clifford group is the set of unitary operators U such that sandwiching a Weyl-
Heisenberg group element between U and U † gives back an element of the Weyl-Heisenberg
group (times an irrelevant phase). In equations:

UDijU
† = ωDi′j′, (2.16)

where ω is a phase factor.

The Clifford group is isomorphic to a semi-direct product between a symplectic group
and the Weyl-Heisenberg group itself. In odd dimensions N = 2n − 1 it contains the
Wootters phase point operators Aij as the elements fulfilling

A2 = 1 and ADijA
† = D−i−j. (2.17)

Each of these operators, which are both unitary and Hermitian, splits Hilbert space into
two subspaces H± with dimensions n and n− 1, respectively. That this is so follows from
the fact that they square to unity - so that their spectra consist of 1’s and −1’s - and that
they have trace one, meaning that the number of 1’s in the spectra must be exactly one
more than the number of −1’s. In section 2.3 some properties of these subspaces will be
further investigated.

Even though the N -dimensional Segre configuration comes from (the symmetry group
of) an elliptic normal curve of degree N in the complex projective space CPN−1, the con-
nection to elliptic curves and their torsion points is not explicit in the above description.
It can be made so by using the correspondence between curves and tori, making it possible
to interpret the curve as a group manifold. Considering the elliptic curve as a group - there
is a natural definition of group action that allows this - one can define its N -torsion points
as the points, or group elements g, that satisfy gN = 1. In this case, these points on the
curve define a lattice of N2 points on this manifold, giving the group ZN × ZN together
with the point face operator involution introduced above. When lifted to the embedding
space - which for a normal curve is some complex projective space - the Weyl-Heisenberg
group and Wootter’s phase point operators, in terms of which the problem is stated here,
results. This is a generalization of what happens in CP2, where putting the origin at one
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of the nine inflexion points that an elliptic curve then has, the set of inflexion points is
exactly the set of torsion points.

Another class of Clifford group elements that will be of interest in the following are those
of order three, i.e. elements B satisfying

B3 = 1,

first studied in this context by Zauner [1]. The fiducial vector propositioned by Zauner
is also conjectured to be an eigenvector of such an operator, so that it lies in one of the
three subspaces corresponding to the three eigenvalues. Just as the existence of the fiducial
vector, this part of Zauner’s conjecture has proved to hold in all cases that have so far been
checked [5]. To reconnect to the elliptic curve, it can be noted that although its torsion
points do not correspond to SIC-vectors for N > 3, for N = 3 these points on the curve
also lie in one of the eigenspaces of an element of order three. This opens for the possibility
that it might be possible to find an alternative generalization of Hesse’s configuration, for
which the SICs could be obtained from order three symmetries.

2.3 The frame potential, on average

It can be shown [10] that the torsion points mentioned in the previous section lie in the
(n − 1)-dimensional subspaces defined by phase point operators in all odd prime dimen-
sions, whereas known SIC vectors only do for N = 3. Given this slighty disheartening fact,
we now proceed to look at these and other subspaces and their relation to SICs from a
somewhat different angle.

The arguably most natural measure of how close a set of N2 unit vectors in H
N is to

forming a SIC is provided by the function

f ≡
1

2

∑

i6=j

(

|〈ψi|ψj〉|
2 −

1

N + 1

)2

. (2.18)

By construction f = 0 if and only if the vector set is a SIC. For any frame and for any
integer t one can define a frame potential according to [3, 18]

Ft ≡
∑

i,j

| 〈ψi | ψj〉 |
2t . (2.19)

The function f is related to the first two of these frame potentials,

Ft ≡
∑

i,j

|〈ψi|ψj〉|
2t , t ∈ {1, 2}, (2.20)

by
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f =
1

2
F2 −

1

N + 1
F1 . (2.21)

Just as f does, these frame potentials assume their global minimum for a SIC. In numerical
searches for SICs only F2 is usually employed, since any global minimum for the second
frame potential is known to be one for F1 as well.

Computing the frame potential f for the 25 torsion points for the N = 5 elliptic curve, I
found it to take the value 10.42, independently of how the modular parameter of the curve
was varied. The question then arose if this value is to be considered high or low - in other
words, can a set of N2 vectors giving this value be said to be close to forming a SIC, or is
it instead far from it?

One way to answer this question - in dimension five and other - is by considering the
average of f over Hilbert space, as well as over some subspaces of possible relevance in the
search for SICs. A special case of interest is when the N2 vectors in the set form an orbit
of the Weyl-Heisenberg group, in which case f is a function not of N2 vectors but of a
single fiducial i.e. a function on the projective Hilbert space CPN−1. In this case

|ψij〉 = Dij |ψ0〉 , (2.22)

for some fiducial unit vector |ψ0〉, and the frame potential becomes

fH =
N2

2

∑

i,j 6=0,0

(

|〈ψ0|ψij〉|
2 −

1

N + 1

)2

. (2.23)

An explicit matrix representation of Dij can be used to write [12, 14]

〈ψ0|Dij|ψ0〉 = Z̄aq
bjδa

b+iZ
b = q(a−b)jZ̄aZa−i (2.24)

and following this up by taking the Fourier transform

1

N

∑

j

qkj|〈ψ0|Dij|ψ0〉|
2 =

∑

a

Z̄aZ̄a+k−iZa+kZa−i (2.25)

we find that

fH =
N3

2





N−1
∑

i=0

N−1
∑

k=0

∣

∣

∣

∣

∣

N−1
∑

a=0

Z̄aZ̄a+k−iZa+kZa−i

∣

∣

∣

∣

∣

2

−
2

N + 1



 . (2.26)

The results of averaging this function, as well as the unrestricted function f , over Hilbert
space and four relevant subspaces are given in Article II, where arguments are also given
for the results in Table 2.3 followed by a bracketed question mark, for which rigorous
proofs are currently lacking. The numbers given in the table are valid for N = 7, in which
dimension the subspaces considered are H± - the ones singled out by the special element of
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order two presented in the previous section - and H1 and Hα, labelled by the eigenvalues
of a Clifford group element of order three.

f fH fH(H+) fH(H−) fH(H1) fH(Hα)
Minimum 0 0 12.2 (?) 4.764 (?) 0 -
Average 18.375 14.29 25.72 25.72 15.98 11.75
Maximum 900.4 128.6 (?) 128.6 (?) 42.88 (?) - -

Table 2.3: Averages over certain special subspaces for N = 7.
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Chapter 3

Kochen-Specker frames

The theorem known as Kochen and Specker’s theorem (KS) was formulated by Simon
Kochen and Ernst Specker [28] in 1967. The effective statement of the theorem, sometimes
referred to as the Bell-Kochen-Specker theorem, is that it in a Hilbert space of dimension
N ≥ 3 is impossible to assign definite values from {0, 1} to all projection operators, i.e.
vectors in such a way that each set of N orthogonal vectors contains exactly one vector
with the value 1. Just as in the above, each unit vector will represent all vectors with
the same direction, because only orthogonality relations are of importance. The KS result
is, in effect, a corollary to Gleason’s theorem [33], since it can be shown that no den-
sity matrices give such probabilities, but it was proved independently of Gleason’s result
(albeit 10 years later). The structure of the proof is of a somewhat different character
than Gleason’s - whereas the KS result is proved by using an iterated graph structure in
a relatively straightforward manner, the proof of Gleason’s theorem contains many subtle
steps. Gleason’s proof is, however, much simplified when the assumption made to prove
the theorem is strengthened to include not only orthogonal bases but the full set of POVMs
[17]. It can then also be shown to hold in two dimensions as well, which is not the case for
Gleason’s original statement. While making the assumption only for the restricted set of
POVMs defined by SICs does not suffice [18], a Gleason-type theorem can very likely be
proved in two dimensions 1 for all other four element POVMs [29].

The conditions, formally stated, are

g : H
N → {0, 1} (3.1)

N
∑

i=1

g(Pi) = 1 (3.2)

for all sets {Pi} of N orthogonal vectors in H
N .

1With a slight modification: continuity of the frame function is assumed instead of shown to follow

from the other assumptions.
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The physical implications of KS in relation to hidden variable theories have been much
discussed, and the most common interpretation is that the theorem places severe restric-
tions on any such theory; in effect, the theorem implies that any well-defined properties
possessed by particles would necessarily have to be contextual - the original authors them-
selves thought their result to establish the ’nonexistence of hidden variables’. However,
arguments have been made for an understanding of KS rather as an epistemological state-
ment about the limitation of the knowledge possible to obtain through measurement [30].

Figure 3.1: The basic building block of the graph used in the original proof of the Kochen-
Specker theorem.

3.1 Kochen-Specker colourings

In proving their result, Kochen and Specker made use of a discrete subset of vectors, rather
than working in continuous three-space; in fact their proof takes place in R3, and the result
is then extended to CN via C3. By arranging a set of 117 three-dimensional real vectors
in an ingenious way they were able to prove that a non-contextuality assumption is in
conflict with quantum mechanics - the impossibility of assigning truth values to all vectors
in three dimensions of course follows from the impossibility of making such an assignment
for a (discrete) subset, just as the KS result in all dimensions larger than two is implied
by the fact that it holds in three.

For the competitionally inclined, the task of reducing the number of vectors used to prove
the theorem seems a natural one to take on. Consequently, a downright contest has re-
sulted in the record in three dimensions, due to Conway and Kochen, being pressed down
to 31. This number can be further reduced in higher dimensions, and for most of them it is
not known whether or not the existing record actually is a minimal set. In dimension four,
however, the current record of 18 vectors [19] has been shown to be the best obtainable
[20], and in three dimensions an uncolourable set must contain at least 20 vectors, even
though it is not known whether or not such a minimal set exists.
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The way one usually sees the problem of finding KS collections stated is in terms of colour-
ings of vector sets. Letting the colour green represent the digit 1 (i.e. a yes-answer to some
experimentally posed question) and red correspond to 0, the conditions (3.1) and (3.2)
mean that only one vector in each orthogonal N -plet can be green. Non-contextuality
then amounts to the assumption that each vector has one well-defined colour, no matter
of what orthogonal basis it is considered a part.

If we let vectors be represented by nodes and orthogonality relations by edges, our consid-
erations here lead us into another area of combinatorics, namely that of graph colouring.
The Kochen-Specker problem can be seen as a variation of the classical combinatorial prob-
lem of assigning a so-called chromatic number χ to a graph - the least number of colours
needed to colour the graph in such a way that no adjacent vertices have the same colour.
For instance, the complete graph with n vertices, Kn has χ(Kn) = n. The definition of
chromatic number can be modified for topological spaces such as the two-sphere, for which
χS2 = 4. The latter result is due to Godsil and Zaks [31], who have also shown that the
corresponding number when only rational points on the sphere are included is three. The
definition of ’adjacent’ is in this case orthogonal, which means that as a corollary of this
result - just identify two of the three colours - a Kochen-Specker assignment of values to
the rational sphere in dimension three is possible. This fact has been used to argue that
the KS theorem is irrelevant from an experimental point of view [32].

Given that it is impossible to assign values from {0, 1} according to the KS criteria to
all vectors in R3 (and higher dimensions) in a consistent way, one might ask how close
one can get to making a complete assigment. In terms of colourings: how much of R3 -
or S2 because we are looking at rays rather than vectors - can be coloured, in such a way
that no matter how an orthogonal triple of unit vectors is inscribed in the sphere, two of
its vectors will never be red and three of its vectors will never be green at the same time.
(Because of the impossibility of a complete colouring we must, however, accept that one
or more of the vectors sometimes lie in an ’undefined’ area.)

For a given colouring strategy, originally suggested by Appleby in dimension three, the
answer is that 87% of all vectors in R3 can be coloured according to the criteria given
above; the numbers in higher dimensions are given in Article I and can be read off the plot
in Figure 3.2. That the colourable fraction does not go to zero but instead approaches
68% as N increases is perhaps somewhat unexpected, especially considering the somewhat
arbitrary choice of method for colouring.
It can, however, be argued that a more physically relevant measure of colouring effectivity
than the fraction of vectors (or rays) coloured is that of orthogonal bases. In this case, the
result is 69% in three real dimensions and 34% in four.
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Figure 3.2: Percentage of the sphere in N dimensions that is colourable using the method
suggested by Appleby, as a function of N .

3.2 A Kochen-Specker inequality

Before diving into the subject of the present section2, we will stop to take a look at the
so-called magical basis, introduced by Bennett et al in a 1996 paper [34]. This basis has the
interesting and useful property that the reality of vectors expressed in it carries physical
meaning.

To introduce the magical basis, we first make the trivial observation that any Hilbert
space vector can be decomposed into real and imaginary parts according to

| ψ〉 = cosσx + sinσy, (3.3)

with x2 = y2 = 1 and with the trigonometric coefficients guaranteeing normalization.
Further, the fact that we are looking at complex projective space - meaning that we do
not differentiate between vectors that differ only by an overall multiplicative phase - gives
a certain freedom, which can be used to impose the additional conditions

x · y = 0, 0 ≤ σ ≤
π

4
. (3.4)

This representation is useful when considering group action that preserves real and imagi-
nary parts. This is not the situation in general: unitary transformations do not respect this
decomposition. If, on the other hand, the relevant subgroup happens to be some SO(N),
no mixing of real and imaginary parts takes place under the group action. Examples of
cases where SO(N) in fact determines the orbits of interest include two entangled qubits
- due to the fact that SU(2) × SU(2) is isomorphic to SO(4) - as well as two entangled
j = 3

2
fermions, with SU(4) ≃ SO(6) as the relevant subgroup. Another case - and the

one that will be of interest here - is SU(2) ≃ SO(3).

2This section is based on unpublished work together with P. Badziag, I. Bengtsson, A. Cabello and

J-Å. Larsson.
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For a two qubit system one can check that maximally entangled states will correspond
to completely real vectors, whereas the separable states will be represented by vectors with
equal real and imaginary parts, when expressed in the magical basis. For three dimensional
vectors, in analogue, the (classical) spin, or SU(2), coherent states have real and imaginary
parts equal, while completely real corresponds to maximally non-classical states. The vec-
tors used by Klyachko in deriving a KS-type contradiction between classical assumptions
on the one hand and quantum mechanical predictions (and experimental outcomes) on
the other can in this sense be viewed as maximally quantum. The advantage of choosing
real vectors in the pentagram is that the resulting operator then, in addition to being
Hermitian, is real and symmetrical, so that it can be diagonalized by means of rotations in
SO(2). As already mentioned, the transformations in this subgroup of SU(2) preserve real
and imaginary parts, and hence the correspondence between reality and (non-)classicality.

The configuration that will here be called a Kochen-Specker frame and that was recently
discussed in relation to experimental tests of non-contextuality by Klyachko et al [27] (al-
though, as we will see, it has implicitly appeared in other problems) is a set of vectors
whose orthogonality graph forms a pentagram (or, equivalently, a pentagon); the config-
uration is depicted in Figure 3.2. From these vectors we can, in analogy with the Bell
construction used for tests of local realism, form an operator according to

Σ =

4
∑

i=0

| k〉〈k | . (3.5)

The labelling of the five vectors is chosen such that

〈k | k + 2〉 = 0, (3.6)

with addition modulo five understood.

As earlier mentioned, the pentagram vectors constitute a frame, and the frame bounds
defined in equation (2.19) can be found for the configuration. Inspection yields that these
are in fact the smallest and largest eigenvalues for the operator - hence, if the spectrum
is non-degenerate, the frame will not be tight. As for the pentagram operator, it is never
completely degenerate. It can, however, be partly degenerate - so that two of the eigen-
values are equal - but this is not enough to make the pentagram into a tight frame.

Also in analogy with the Bell case, we can derive an inequality from this operator that can
be used to test the assumption not of local realism, but of contextuality.

Each operator in (3.5) corresponds to an observable, which is here taken to be dichotomic
with values in {0, 1}. With the same reasoning used in the original KS argument, only one
operator in each orthogonal triple can result in the value 1 when applied to a given state.
The orthogonality relations given in (3.6) then for instance imply that given an assigment
of the value 1 to the observable associated to the vector | 1〉, a zero must be assigned to
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Figure 3.3: The vectors of the Kochen-Specker frame, forming a pentagram or pentagon,
with orthogonality between vectors (nodes) represented by an edge between them.

both that of | 3〉 and that of | 4〉. Following this line of reasoning, one finds that at most
two of the projectors in (3.5) can give the value one, so that the inequality

〈Σ〉 ≤ 2 (3.7)

holds. A contradiction between quantum mechanics and the classical assumptions of the
above argument now arises because states can be found for which the expectation value of
Σ exceeds this bound.

It is important that one understands the difference between the two types of KS configura-
tions, with corresponding arguments, that are encountered in this thesis: the uncolourable
sets and the sets giving a (probabilistic) contradiction. Although the Kochen-Specker
frame figures in a fundamental way as part of the uncolourable set given by the original
authors - the configuration in Figure 3.1 basically consists of a couple of pentagons with two
vertices in common - the frame is itself not uncolourable. However, by assigning explicit
states, fullfilling the orthogonality relations of the graph, to the nodes one is able to derive
a contradiction between quantum mechanics (or experiments) and the non-contextuality
assumption behind the colouring.

When a testable pentagram inequality was originally introduced by Klyachko and col-
laborators, it was claimed that the fact the setup is all local would make it correspond
to a Bell test with the option of non-locality removed. A violation of the regular Bell
inequalities - in, for example, the CHSH version - is usually taken as proof that either
locality or realism must go. Meaning that, if we accept experimental violations as a fact
but still want to talk about classical properties of quantum objects, we must abandon
the assumption of locality. If, on the other hand, we are unwilling to negotiate with the
locality principle, we must agree to question the idea that observables have well defined
values before they are measured. These claims, however, are false: because the spacial
distance is removed, sticking to realism does not imply having to let go of locality, because
everything takes place locally. The implications of a violation of (3.7) is not that reality is
a problematic assumption, either, but simply that classical properties, if they exist, have
to be ascribed to full measurement situations rather than isolated objects: in short, that
nature is contextual.
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3.3 The Hardy paradox

As we have seen, the logical structure represented by the Kochen-Specker frame plays a
central role in the proof of the original KS result, as well as in the Klyachko construc-
tion for an experimental contextuality test. A slight modification of the same structure
occurs also in the formulation of another important result having to do with the non-
classicality of quantum mechanics: Hardy’s paradox [15, 16, 21]. In a 1993 paper, Lucien
Hardy introduced a thought experiment which, without relying on inequalities, was said
to demonstrate the nonlocality of almost all bipartite entangled states. (The only state
for which his argument failed was, somewhat surprisingly, the maximally entangled one.)
From the standpoint of actual experimental realization, the fact that it involved only two
observers, each measuring two dicotomic observables, Ai and Bi, respectively, is a great
advantage. On the other hand, the fact that the logical contradiction arises without any
appeal to inequalities is a theoretical merit. The assumptions made are weaker than in
many other Bell-type arguments, in the sense that they are not sufficient to force an as-
sumption like that made by EPR [26] about the existence of so-called ’elements of reality’,
classical properties or hidden variables of the particles involved. It is, however, strong
enough, to result in a contradiction according to the following.
The variables A1, A2, B1 and B2 all take values in {−1, 1} and (adopting the notation that
x stands for X = 1, x̄ for X = −1, it is assumed that

P (b̄2 | a1) = P (ā2 | b1) = P (b2 | a1) = 0.

This enforces

P (a1 | b1) = 0,

from which a contradiction is derived, because the quantum mechanical overlap between
the two states giving A1 = 1 and B1 = 1 is non-zero.

The orthogonality graph for Hardy’s paradox, which can be seen in Figure 3.4, consists of
two pentagons, or Kochen-Specker frames, sharing two vectors and with two extra orthog-
onalities added - so far, the graph is identical to the one that occurs in the original KS
argument as accounted for in the beginning of this chapter. In addition, one more vector
is introduced, orthogonal to all the others in the configuration except the top one.

As noted above, the orthogonality graph of the vectors used in deriving Hardy’s paradox
reveals an intimate connection between the configurations used in his argument, and in the
Kochen-Specker argument presented by Klyachko. One should, however, not let oneself be
misled by appearances: although related the two vector sets are fundamentally different.
Whereas Klyachko deals with vectors in three real dimensions, Hardy’s configuration needs
four dimensions to be realized and also uses vectors with complex components. Neverthe-
less, the similarity between the two structures suggests that the pentagram configuration -
the Kochen-Specker frame - plays a central role in non-contextuality arguments. This begs
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Figure 3.4: The orthogonality graph representation of the configuration used in the deriva-
tion of Hardy’s paradox.

the question what relation - if any - there is between vector sets that violate the inequality
(3.7) and that lead to a contradiction in the Hardy case.
A partial answer supports the strong link between the two: for Hardy’s set as well as for the
KS graph, the most non-classical configuration corresponds to a maximal overlap between
the uppermost and lowermost vectors in Figures 3.4 and 3.1, respectively. In both cases,
maximizing the non-classical probability between these two is equivalent to maximizing the
violation of the pentagram inequality (3.7) when the operator Σ for the upper KS frame
is applied to the bottom state.
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A particular incomplete Kochen-Specker coloring, suggested by Appleby �Stud.
Hist. Philos. Mod. Phys. 36, 1 �2005�� in dimension three, is generalized to arbi-
trary dimension. We investigate its effectivity as a function of dimension, using two
different measures. A limit is derived for the fraction of the sphere that can be
colored using the generalized Appleby construction as the number of dimensions
approaches infinity. The second, and physically more relevant measure of effectiv-
ity, is to look at the fraction of properly colored ON bases. Using this measure, we
derive a “lower bound for the upper bound” in three and four real dimensions. ©
2007 American Institute of Physics. �DOI: 10.1063/1.2779764�

I. INTRODUCTION

The Kochen-Specker theorem1 is a result that has proven to be of great conceptual interest to
quantum mechanics and its interpretation. Let f be a function from the set of projection operators
in some Hilbert space to the set �0,1� such that

�
i=1

N

f�Pi� = 1, �1�

where the Pi are projection operators associated with the vectors �ei	, forming an ON basis for the
Hilbert space, and N is the dimension of the space.

The statement of the Kochen-Specker theorem is that no such truth value assignments exist if
the dimension of the Hilbert space is larger than 2. This result is often translated in terms of two-
colorings of spheres, and the same terminology will be used here. The statement of Kochen-
Specker �KS� �in N real dimensions� is in these terms that no complete coloring of the
�N−1�-sphere obeying the KS criteria �1� is possible. The question then arises how close to
complete we can possibly get. A collection of rather eccentric colorings “almost” satisfying the KS
criteria has been proposed by Pitowsky,2 Meyer,3 Kent,4 and Clifton and Kent.5

Partly in response to these constructions and the interpretations claimed for them, Appleby6 in
a 2005 paper derived an upper bound for the effectivity of a coloring that, in contrast to the
colorings mentioned above, is measurable and hence arguably of greater physical interest.

Appleby considered the question of maximal effectivity in the case of three-dimensional real
Hilbert space and argues that the maximal fraction of S2 that can be satisfactorily KS colored
might be as large as 99%. To provide a lower bound for the maximal effectivity in terms of area
of S2 colored, Appleby also suggested a specific incomplete coloring that covers 87% of the
sphere.

Here, the Appleby construction will be generalized to an arbitrary number of real dimensions.

a�Electronic mail: helenag@math.su.se
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For N=4 the coloring analogous to that proposed by Appleby in dimension three covers of 79% of
SN−1, 74% for N=5, and 71% for N=6. The integer giving the least percentage is N=12; about
66.76%.

A natural question to ask is what happens to this percentage as the number of dimensions gets
very large. Does the colorable fraction, using this specific construction, go to zero? In fact, it does
not, but instead tends to 68% as N approaches infinity.

A possibly more physically relevant way of phrasing the question of effectivity is in terms of
the fraction of all possible ON bases that can be colored. In the following, we will look at the
cases N=3 and N=4. The percentages turn out to be 69% and 34%, respectively. The fact that the
falloff is considerably larger than was the case for vectors suggests that this fraction might go to
zero with an increase in the number of dimensions.

Several questions remain unanswered, however. Perhaps most importantly, our discussion is
limited to families of pure states whose components are all real in some suitable basis in complex
Hilbert space, and different results might be obtained if this restriction was lifted. Secondly, one
would want to evaluate the effectivity of the coloring in arbitrary dimension, using the fraction of
colorable bases as a measure. One could also try to experiment with other constructions to further
sharpen the lower bound for the upper bound provided by specific examples.

II. AN INCOMPLETE KOCHEN-SPECKER COLORING

Let us first consider the three-dimensional case and then go on from there to higher dimen-
sions. We are interested in assigning the value 0 or 1 to vectors in H3 in such a way that no set of
three mutually orthogonal vectors are all assigned the value of 0, and no pair of orthogonal vectors
both have the value of 1. More precisely, we will color the one-dimensional subspaces spanned by
vectors. These conditions can be expressed as

f:S2 → �0,1� , �2�

f�P1� + f�P2� + f�P3� = 1, �3�

for all sets of orthogonal vectors �P1 , P2 , P3�, S2 being the unit two-sphere. Letting white represent
the value of 0 and black the value of 1, this problem can be translated into the problem of coloring
S2, in a way that satisfies the conditions just stated. In particular, antipodal points will have the
same color.

Any such assignment of truth values �probabilities from �0,1�� to all vectors in the Hilbert
space of some system would correspond to �the possibility of� the system having well-defined
properties, independent of measurement context. That is, for any possible observable the outcome
of the corresponding measurement would be fully determined in advance. However, by the KS
theorem, a complete such assigment of truth values is impossible. Hence, what we will do is to
assign probabilities from �0,1� according to Eq. �3� to some of the vectors in H—some vectors
will necessarily remain uncolored, by KS.

The way to go about this suggested by Appleby is to start out by coloring the two polar caps
defined by �tan ���1 black and the region around the equator bounded by �tan ��=
2 white, where
� is the usual polar angle. This type of coloring is sketched in Fig. 1.

These limits are derived as follows. The two polar caps are made small enough so that no two
vectors in an orthogonal triple can simultaneously lie in the black region, which means that they
will extend down to �=� /4. The white section around the equator is just wide enough so that not
all three vectors can lie in it at the same time.

Already in four dimensions the contribution to the total area by the black cap is close to
negligible. As we will see below it reduces further with increasing dimension, which is why we
will primarily be interested in the area taken up by the white section.

The fraction of the sphere in N dimensions that can be colored white with the given restriction
is
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F =
�arcsin 
�N−1�/N

�/2 sinN−2 �d�

�0
�/2 sinN−2 �d�

= 2
vol�SN−2�
vol�SN−1��arcsin 
�N−1�/N

�/2

sinN−2 �d� , �4�

where vol�Sd� denotes the surface area of the d-dimensional sphere. The intergral limits are
derived using the expression

Rn =
 n

n + 1
=
N − 1

N
�5�

for the radius of the circumsphere of a regular n simplex, where n=N−1 is the dimension of the
sphere in N dimensions.

As for the black area, BN, it will in analogy with the N=3 case be located around the poles of
the sphere, with limiting angle � /4,

BN = vol�SN−2��
0

�/4

sinN−2 �d� . �6�

What, one may ask, is the fraction of the sphere in N dimensions that can be colored using this
method in the limit N→�? As can be seen from the expression

vol�Sd� = vol�Sd−1��
0

�

sind−1 �d� �7�

for high dimensions, the fraction of the area of the sphere that will lie around the poles is
negligible due to the increasingly sharp peak around �=� /2 of the sine function power. Thus, the
fraction of the surface area taken up by the black section will be very small.

To determine the fraction of the sphere taken up by the white section requires a bit more
careful analysis. We will need to evaluate the expression

lim
N→�

2
vol�SN−2�
vol�SN−1��arcsin 
�N−1�/N

�/2

sinN−2 �d� . �8�

Using the known formula for vol�Sd� we find that

FIG. 1. A possible �incomplete� KS coloring of the unit two-sphere.
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vol�SN−2�
vol�SN−1�

=
1


�

��N/2�
���N − 1�/2�

. �9�

This tends to 
N /2� as N→�.
Next, let us take a look at the behavior of the integral,

�
arcsin 
�N−1�/N

�/2

sinN−2 �d� = �
0

arccos 
�N−1�/N
cosN−2 �d� �10�

when N grows large. The second form is convenient because all expansions can be done around
zero.

In the limit of large N we can use

arccos
N − 1

N
=

1

N

+ O 1

N3/2� . �11�

Expanding cos t around t=0 and using the regular binomial expansion and the fact that when
N is large N−2 can be approximated with N,

lim
N→�

cosN−2 � = 1 −
�2

2
�N

+ h��,N� = h��,N� + 1 − N
�2

2
+

N2

2!

�4

4
−

N3

3!

�6

8
+ ¯ , �12�

where h�� ,N� is a function such that

lim
N→�


N�
0

arccos 
�N−1�/N
h��,N� = 0. �13�

Integrating term by term and using the cosine expansion and Eq. �11� for the expansion of
arccosine, we get

lim
N→�

�
0

arccos 
�N−1�/N
cosN−2 �d� =

1

N

�
k=0

�
1

2k

1

k!

�− 1�k

�2k + 1�
=
 �

2N
erf 1


2
� , �14�

with erf the statistic-probabilistic error function,

erf�z� �
2


�
�

0

z

e−t2dt . �15�

Putting all of this together, we have the result

lim
N→�

2
vol�Sn−2�
vol�Sn−1��arcsin 
�N−1�/N

�/2

sinN−2 �d� = erf 1

2

� � 0.68. �16�

So, approaching the limit of an infinite number of dimensions of the Hilbert space H in which our
projective measurements are conducted, binary probabilities �corresponding to well-defined, non-
contextual properties of the system with available states in H� can be assigned to approximately
68% of the vectors in H.

The behavior of the percentage as a function of dimension is given in Fig. 2. The results are
1−1/
2+1/
3=87% of all vectors for N=3, 79% for N=4, 74% for N=5, and 71% for N=6. The
integer giving the least percentage is N=12, about 66.76%.

What has been derived above is a lower bound for the area of the sphere that is KS colorable
in arbitrary dimension. The possibility remains, however, that a maximally effective coloring
could cover a much larger area—possibly, in fact, as much as 99% of the sphere in R3, see Ref. 6.
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III. A SECOND EFFECTIVITY MEASURE

The physically relevant question is, arguably, not how large a fraction of all states can be
assigned probabilities 1 or 0, but rather what percentage of all complete orthogonal bases �mea-
surements� can have all their basis vectors assigned binary probabilities in a consistent way. We
will answer this question specifically for the Appleby coloring in three and four dimensions.

Let us first consider the coloring of the two-sphere proposed above—a black cap and a white
equatorial belt covering in total 87% of the sphere—and make use of the regular measure on R3 to
compare the number of properly colored bases consisting of vectors from these sections with the
total number of ordered orthonormal triples in R3.

In a properly colored base exactly one vector is black, so one of the three vectors in an
orthogonal triple has to be chosen to lie on one of the black caps. The remaining two orthogonal
vectors can then be chosen from a great circle orthogonal to the first vector—the question is how
large a fraction of this great circle will lie within the white section and also how the second vector
�which determines the third basis vector up to a sign� can be chosen so that the third vector will
also be contained within the white section.

Figure 3 depicts the plane of the great circle orthogonal to the first �black� vector on which the
remaining two vectors in the orthogonal triple will have to lie. The circle segment bounding the
shaded area is the cut between the white belt and the orthogonal great circle. For any choice of
second vector from this section, the third vector will be fully determined �up to a sign�. Hence, we
cannot choose our second vector in a properly colored triple from any part of the circle-belt
overlap in Fig. 3, but only from the sectors that will result in the third vector lying in the white belt
as well. Given a second vector, the third is obtained by rotation in the great circle plane by an

FIG. 2. Percentage of the sphere in N dimensions that is colorable using the above method, as a function of N.

FIG. 3. A cut through the plane of the great circle orthogonal to the vector chosen to lie on the black cap. The intersection
with the white area is shaded.
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angle of � /2. The allowed choices for second vector are then the points such that the points
corresponding to a � /2 rotation of these points are also white. This set of points is just the overlap
between the white �shaded� sector in Fig. 3 and the same sector rotated by � /2, as illustrated in
Fig. 4, an overlap that can be shown to always be nonempty. Hence, what we will need to find is
the total angle taken up by the shaded section in Fig. 4—this will be denoted by �. It is clear that
this � can be expressed in terms of the � of Fig. 3 as

� = 4� − 2� . �17�

The angle �, in turn, can be expressed in terms of the regular polar angle � that specifies our
choice of black vector using the following procedure.

First, consider the plane spanned by the vector chosen to lie in the black section, call it z�, and
a vector y� in the plane orthogonal to z�; �x ,y ,z� is a reference coordinate system as shown. The
vector x� orthogonal to y� and z� is chosen so that its z component equals zero. From Fig. 5 it is
clear that

FIG. 4. The overlap between the white section of the great circle and its rotation by � /2 is the shaded section.

FIG. 5. The vector y� will make an angle �-� with the z axis.
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z = 0x� + sin �y� + cos �z�. �18�

Meanwhile, as can be seen from Fig. 6, a vector v lying just on the boundary of the white belt can
be expressed in terms of y� and x� as

v = cos ��x� + sin ��y�, �19�

with ��=� /2, its z component being equal to zero. We also know that the z component of our
vector v is just h, with h=1/
3 according to our earlier deliberations. Taken together, this gives

v · z = h = �cos ��x� + sin ��y�� · z = sin ��y� · z = sin �� sin � , �20�

so that

� = 2 arcsin
h

sin �
�21�

and

� = 8 arcsin
h

sin �
− 2� . �22�

When ��arcsin 1/
3 expression �Eq. �21�� for � is not defined, for those angles all of the vectors
orthogonal to the black section vector defined by the angle � lie within the white section.

This enables us to express the fraction of the orthogonal great circle corresponding to every
choice of vector z� in terms of the angle �, making possible integration over all values of � and
thereby the comparison we have in mind.

So, the integrals we want to evaluate are

I = 2��
0

arcsin 1/
3

sin �d� + �
arcsin 1/
3

�/4 8 arcsin
h

sin �
− 2��sin �d� . �23�

This sum turns out to equal 1.4572.
This, multiplied by a combinatorial factor of 3 because what we considered the first vector

could as well have been the second or third, should be compared to the value of the integral

FIG. 6. Coordinates x� and y� are introduced in the plane of the great circle orthogonal to the vector z�.

092101-7 Incomplete Kochen-Specker coloring J. Math. Phys. 48, 092101 �2007�

Downloaded 30 Jul 2009 to 130.237.165.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



2��
0

�/2

sin �d� = 2� . �24�

The result is that approximately 69% of all ordered bases in R3 can be KS colored using the given
construction.

The above considerations for the three-dimensional case can, with some modification, be
applied also in four dimensions. Introducing spherical coordinates �� ,�1 ,�2� on the three sphere,
we will start out by finding the intersectional area of the orthgonal two-sphere and the white
“belt.” Let z� denote the black vector, let z be a reference coordinate, and let y� be a vector on the
orthogonal two-sphere, as in Fig. 7.

The white section is the set of vectors,

�u: �u · z� 	 A�, A = 1
2 . �25�

For any vector u in this set we have that

u · z� = 0. �26�

Now, let us make the ansatz,

y� = az + bz�. �27�

Normalization together with condition �26� then gives

a =
1

sin �2
, b = −

cos �2

sin �2
. �28�

Also,

u · z� = 0 ⇒ u · y� = u · �az + bz�� = au · z . �29�

So, using Eq. �25�, the belt on the orthogonal two-sphere will be the set of vectors,

�v: �v� 	 B�, B = aA =
1

2 sin �2
. �30�

For 0	�2	arcsin 1/2 the orthogonal two-sphere will lie entirely within the white section.
This intersection between the orthogonal two-sphere and the white section on the three sphere

can now be treated in analogy with the previous case. Given a black first vector, when placing the
second vector in the white section, the segment of the great circle orthogonal to this second vector
on which we can choose the third in order for the fourth to lie in the white section is given by

FIG. 7. y� lies on the two-sphere orthogonal to the vector z�.
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 = 8 arcsin
B

sin �1
− 2� . �31�

Also in analogy with the previous case, all of the orthogonal great circle will be white for
arccos B	�1	arcsin B. To summarize, we have integration over the angle �2 which runs between
0 and � /2, covering the black cap; and the possibilities available for choosing the remaining three
vectors are governed by a function of �2, obtained from an integration over the angle �1 between
arccos B and � /2, that is, over the white section of the two-sphere orthogonal to the first vector
specified by �2, B being a function of �2.

To make all of this explicit, we have the following integrals

I = 2��
arccos B

arcsin B

sin �1d�1 + �
arcsin B

�/2 8 arcsin
B

sin �1
− 2��sin �1d�1 �32�

and, finally,

4��
0

arcsin 1/2

sin2 �2d�2 + �
arcsin 1/2

�/4

I sin2 �2d�2. �33�

The result when comparing this, multiplied by an overall combinatorial factor of 4, to the value of
the expression

4��
0

�/2

sin2 �d� �34�

is that 34% of the ordered orthogonal triples in R4 are properly colored using the chosen method.

IV. CONCLUSIONS

Generalizing a method of coloring proposed by Appleby in three real dimensions, we have
found a lower bound on the area of the n sphere that can be KS colored, but we are still ignorant
as to a sharp upper bound. In three and four dimensions, we have calculated how large a fraction
of all bases the colored area corresponds to, and the behavior of the percentage �69% in three
dimensions and 34% in four dimensions� suggests that the asymptotic value for a large number of
dimensions might well be zero. These results are restricted to families of pure states that span a
real subspace of complex Hilbert space, and clearly it would be interesting to see this restriction
lifted. It should also be noted that the main advantage of the Appleby coloring is that it is easily
generalized to higher dimensions, but that there is no reason to believe that it is particularly
effective. It is also not obvious that the same method of coloring would be maximal in different
dimensions, and our lower bound for the upper bound might be considerably sharpened by ex-
perimenting with other constructions.
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Abstract

A SIC consists of N2 equiangular unit vectors in an N dimensional Hilbert
space. The frame potential is a function of N2 unit vectors. It has a unique
global minimum if the vectors form a SIC, and this property has been made
use of in numerical searches for SICs. When the vectors form an orbit of
the Heisenberg group the frame potential becomes a function of a single
fiducial vector. We analytically compute the average of this function over
Hilbert space. We also compute averages when the fiducial vector is placed
in certain special subspaces defined by the Clifford group.
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1. Introduction

Symmetric Informationally Complete Positive Operator Valued Measures, or
SICs, is the unwieldy name for a simple idea [1, 2]: a set of N2 unit vectors
in an N dimensional Hilbert space, equiangular in the sense that

|〈ψI |ψJ〉|
2 =

1

N + 1
, 1 ≤ I, J ≤ N , I 6= J . (1)

If the vectors are reinterpreted as projectors, that is as points in the set of
Hermitian matrices of unit trace (the space where the density matrices live),
they form a regular simplex in an N2 − 1 dimensional Euclidean space. This
also explains why we want their number to be N2. The corners of such a
simplex can be used to define barycentric coordinates for any density matrix,
which is what “informationally complete” stands for. In quantum informa-
tion theory SICs have attracted attention because they—if they exist—are
useful for quantum state tomography [2, 3]. In quantum foundations they
have attracted attention as a preferred kind of measurement [4]—and they
have been studied in many other branches of science under names such as
“equiangular lines” [5], “equiangular tight frames” [6], and “maximal quan-
tum designs” [1]. Strohmer and Heath provide a mathematical survey [7].

The question whether SICs exist for all N has turned out to be extraor-
dinarily difficult to answer. They have been constructed in most (but not
all) dimensions N ≤ 19 [1, 8, 9, 10, 11]. Numerical searches have been suc-
cessful for all N ≤ 45 [2], but no general formula has emerged. This is a
bit surprising, given that we are really asking a very simple question about
the shape of the convex body of density matrices: is it possible to inscribe a
regular simplex in this body, with N2 corners on its outsphere? The avail-
able evidence does however suggest that the answer is “yes” for all N , and
moreover one can always find a SIC covariant under the Heisenberg-Weyl
group, meaning that it can be constructed by first choosing a fiducial vector
|ψ0〉, and then acting on this vector with the N2 elements of the (projective)
Heisenberg-Weyl group.

A natural measure of how close a given set of N2 unit vectors |ψI〉 is to
forming a SIC is given by the function

f ≡
1

2

∑

I 6=J

(

|〈ψI |ψJ〉|
2 −

1

N + 1

)2

. (2)
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By construction f = 0 if and only if the vectors form a SIC. The function f
is related to the frame potentials

Ft ≡
∑

I,J

|〈ψI |ψJ〉|
2t , t ∈ {1, 2} (3)

by

f =
1

2
F2 −

1

N + 1
F1 . (4)

These frame potentials also assume their global minimum for a SIC, and in
fact it is enough if F2 assumes its minimum, since F1 is known to follow
suit. Therefore numerical searches for SICs have focused on minimizing F2.
Actually a frame potential is defined for any integer t [2, 6], but this does
not concern us here.

We will have nothing to say about the existence problem here, rather we
will compute averages of the function f , with and without the assumption of
group covariance. We use the Fubini-Study measure on complex projective
space to perform the averaging. We also compute averages when the fidu-
cial vector is restricted to lie in certain subspaces defined by the Heisenberg
group and its normalizer (the so-called Clifford group). These calculations
were made for a reason: in the course of an investigation of certain config-
urations of N2 vectors that occur in a related problem (to be precise but
perhaps not informative, the torsion points of an elliptic curve defined by a
complete set of mutually unbiased bases) we computed the values of f for
these configurations. And the question then arose whether the values we ob-
tained were high or low. To answer questions like this—and there are many
such questions—one needs to know these averages.

Our final results have a certain elegance. Our paper is organized as
follows: in section 2 we state some definitions, and in section 3 we describe the
special subspaces we are interested in. In section 4 we give details concerning
our calculations, which were carried out by brute force. Readers who are
familiar with the SIC problem, and who do not want the details of an involved
calculation, are advised to go directly to section 5, where we state our results
and make some comments.3

3The first version of this paper contained a mistake, in eq. (34). A counterintuitive
and exciting result ensued. The mistake was spotted by Christopher Fuchs and by an
anonymous referee; it is better to be right than to be exciting, and we thank them for this.
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2. Definitions

The Heisenberg-Weyl group [12] is the group generated by two elements τ
and σ subject to the relations

στ = qτσ , τN = σN = 1 , q ≡ e2πi/N . (5)

Up to unitary equivalence there is a unique unitary representation of this
group such that

σ|a〉 = qa|a〉 τ |a〉 = |a+ 1〉 , 0 ≤ a ≤ N − 1 . (6)

This is how we fix coordinates in Hilbert space; vectors can then be defined
by their components

|ψ〉 =
N−1
∑

a=0

Za|a〉 . (7)

Up to phases, a general group element is

Dij = τ iσj , 0 ≤ i, j ≤ N − 1 . (8)

The phases do not matter to us.
Now consider N2 unit vectors forming an orbit under the Heisenberg

group,

|ψij〉 = Dij |ψ0〉 , (9)

where |ψ0〉 is some fiducial unit vector. The frame potential evaluated on
such an orbit becomes a function on the projective Hilbert space CPN−1.
This is the case we are most interested in, so we define

fH =
N2

2

∑

i,j 6=0,0

(

|〈ψ0|ψij〉|
2 −

1

N + 1

)2

. (10)

Because of group covariance there are only N2 − 1 terms in the sum.
The definition of fH can be manipulated further [4, 13]. Following Ap-

pleby, Dang and Fuchs we use an explicit matrix representation of Dij to
write
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〈ψ0|Dij|ψ0〉 = Z̄aq
bjδa

b+iZ
b = q(a−b)jZ̄aZa−i . (11)

Then we take the Fourier transform

1

N

∑

j

qkj|〈ψ0|Dij|ψ0〉|
2 =

∑

a

Z̄aZ̄a+k−iZa+kZa−i . (12)

From this it is easy to show that the first frame potential F1 = N3 (this is
true for all SIC-POVMs), and moreover that

fH =
N3

2





N−1
∑

i=0

N−1
∑

k=0

∣

∣

∣

∣

∣

N−1
∑

a=0

Z̄aZ̄a+k−iZa+kZa−i

∣

∣

∣

∣

∣

2

−
2

N + 1



 . (13)

This is the expression we will work with in the sequel.
We will be interested in averages of f and fH . To compute these averages

we use the Fubini-Study measure dµFS on projective Hilbert space [14]; this is
the natural definition of an average in the absence of any special information.
What we wish to compute is

〈f〉 ≡
1

vol[CPN−1]

∫

dµFS f , (14)

and similarly for fH . Computing 〈f〉 is straightforward: using first the linear-
ity of the expectation value and then the unitary invariance of the measure
we obtain

〈f〉 =
N2(N2 − 1)

2

〈

(

|〈ψ0|ψ〉|
2 −

1

N + 1

)2
〉

. (15)

Here |ψ0〉 is any fixed vector. To compute 〈fH〉 requires more work—we will
fall back on the explicit expression (13), and then collect terms.

We have now defined the functions we wish to average, and we have
defined “average”. It remains to define the special subspaces of Hilbert space
that we are about to consider.

3. Special subspaces
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We will compute averages of fH also when the fiducial vector is confined to
lie in certain interesting subspaces of the Hilbert space, picked out by the
Clifford group. By definition the latter is the normalizer of the Heisenberg-
Weyl group in the group of all unitaries. Thus the Clifford group is the group
of all unitaries U such that

UDijU
† = ωDi′j′ , (16)

where ω is a phase factor. We are interested in representations up to a phase,
and it can be shown that the Clifford group with the phases ignored is iso-
morphic to a semi-direct product of a symplectic group with the Heisenberg
group itself. The importance of this automorphism group was stressed by
Zauner [1] and Grassl [8]; for a self-contained account see Appleby [9].

When the dimension is odd the Clifford group contains elements of order
2. They play a major role in the definition of discrete Wigner functions
for the odd dimensional case [15, 16], and for the special case when the
dimension is an odd prime number they are also known as Wootters’ phase
point operators [17]. They are symmetries of an elliptic curve associated to a
complete set of mutually unbiased bases [18]. An elliptic curve can be defined
as an embedding of a torus into complex projective space. The Heisenberg
group acts on this torus, and gives rise to N2 torsion points on the curve,
roughly analogous to the Nth roots of unity on a circle. Hughston [19] has
made the interesting comment that, in the special case N = 3, these torsion
points define a SIC. In general it is known that the torsion points lie in the N2

subspaces defined by elements of the Clifford group of order 2. In particular
there is such an element A obeying

ADijA = D−i,−j . (17)

Because A2 = 1, the operator A is both unitary and Hermitean. It splits
Hilbert space into two subspaces H± of dimensions n and n−1, respectively,
where N = 2n− 1. Explicitly these subspaces are defined by
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H+ :
1
√

2





























√
2x0

x1
...

xn−1

xn−1
...
x1





























H− :
1
√

2





























0
x1
...

xn−1

−xn−1
...

−x1





























. (18)

Unfortunately the fiducial vectors of the SICs do not lie in these subspaces
when N > 3. However, we believe that fH averaged using the Fubini-Study
measure in such subspaces gives some feeling for the systematics of the SIC
problem, and we will compute this average.

For any N the Clifford group contains elements of order 3. Zauner [1]
conjectured that there always exists a SIC such that the fiducial vector is an
eigenvector of a symplectic transformation of order 3, and his conjecture has
been verified by Appleby [9] in all available cases [2]. We would therefore like
to know the average of fH over such subspaces. Unfortunately it is not so
easy to describe these subspaces for arbitrary N , and we therefore confined
ourselves to the special case N = 7. Then there exists an element of order 3
acting like a permutation matrix, and the subspaces are explicitly

H1 :
1
√

3



























√
3x0

x1

x1

x2

x1

x2

x2



























Hα :
1
√

3



























0
x1

α2x1

x2

αx1

αx2

α2x2



























(19)

where α, the eigenvalue, is a primitive third root of unity. The dimension of
the subspace H1 is 3, and the dimensions of the two orthogonal subspaces
are 2. There is a fiducial vector for a SIC in H1 [9]. It seemed reasonable to
expect that the average fH over this subspace would be quite low, but this
expectation was not borne out.

4. Calculations
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In order to average the frame potential (13) over the entire Hilbert space,
we observe—see eq. (25) below—that the angular integrals will make all
non-real terms of the sum disappear. We also note that a term of the form
|Z1|

4|Z2|
4 gives the exact same contribution to the average as one of, say, the

form |Z3|
4|Z5|

4, and all one needs to keep track of is the number of different
|Zi| in a term, as well as the exponents present. Consequently, we look at
the sum (13), and ask in how many ways we can get a term of the type |Z1|

8,
in how many ways one of the type |Z1|

6|Z2|
2, and so on. The problem has

then been reduced to elementary equation solving.
Computing the average of fH as given in (13), amounts to computing the

average

〈Σ〉 =

〈

N−1
∑

i=0

N−1
∑

k=0

∣

∣

∣

∣

∣

N−1
∑

a=0

Z̄aZ̄a+k−iZa+kZa−i

∣

∣

∣

∣

∣

2〉

. (20)

For calculational convenience, the sum can be split into two parts: the i = 0
part where all terms are real and we have to keep track of cross terms, and
the remaining i 6= 0 part, where cross terms contribute only in special cases:

〈Σ〉 =
N−1
∑

k=0

(

N−1
∑

a=0

|Za|
2|Za+k|

2

)2

+
N−1
∑

i=1

N−1
∑

k=0

∣

∣

∣

∣

∣

N−1
∑

a=0

Z̄aZ̄a+k−iZa+kZa−i

∣

∣

∣

∣

∣

2

. (21)

Let us first consider the i = 0 term, which can be rewritten as

N−1
∑

k=0

N−1
∑

a=0

N−1
∑

b=0

|Za|
2|Za+k|

2|Zb|
2|Zb+k|

2.

We will divide our analysis into two cases, the case a = b and the case a 6= b.
When a = b the terms we get will be either of the type |Z1|

8—this will occur
for k = 0—or of the type |Z1|

4|Z2|
4, which will be the case for all remaining

values of k, no matter what is the value of a and b. The total contribution,
modulo integration, from the i = 0 term will for a = b then be

N |Z1|
8 +N(N − 1)|Z1|

4|Z2|
4, (22)

where the factor N in front of the first term comes from the number of
possible choices of a = b, and the second term is multiplied by the factor
N(N − 1) for N different choices of a = b and N − 1 choices of k 6= 0.
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We now turn to the sum for different values of a and b. In this case,
we will have four different types of |Zi|, each to the power of two, in each
term, except in the three special cases where the values of two or more of
the indices coincide, namely when a = b + k, b = a + k and k = 0. In
the first two cases we get terms of the |Z1|

4|Z2|
2|Z3|

2 type, in the last we
get a |Z1|

4|Z2|
4 type term. The remaining choices of k, a and b—there are

N(N − 1)(N − 3) of them—give terms with all indices different, i.e. terms
of the type |Z1|

2|Z2|
2|Z3|

2|Z4|
2. The total contribution from the i = 0 term

is given in table 1.
Moving on to the i 6= 0 case, we can forget about cross terms except when

k = 0. Consequently, when k 6= 0 we can consider the sum

N−1
∑

i=1

N−1
∑

k=1

N−1
∑

a=0

|Za|
2|Za+k−i|

2|Za+k|
2|Za−i|

2,

while when k = 0 we still have to work with the expression from equation
(21). As in the previous case, we ask what special cases occur, i.e. when
two or more indices take on equal values. These cases turn out to be k = i,
k = −i and k = 0. The respective contributions to the average are given in
the table, as is the contribution for all other choices of indices.

Z8
1 Z6

1Z
2
2 Z4

1Z
4
2 Z4

1Z
2
2Z

2
3 Z2

1Z
2
2Z

2
3Z

2
4

i = 0, a = b N — N(N − 1) — —
i = 0, a 6= b, k = 0 — — N(N − 1) — —
i = 0, a 6= b, k = a− b — — — N(N − 1) —
i = 0, a 6= b, k = b− a — — — N(N − 1) —
i = 0, others — — — — N(N − 1)(N − 3)
i 6= 0, k = 0 — — N(N − 1) 2N(N − 1) N(N − 1)(N − 3)
i 6= 0, k = i — — — N(N − 1) —
i 6= 0, k = −i — — — N(N − 1) —
i 6= 0, others — — — — N(N − 1)(N − 3)
total N — 3N(N − 1) 6N(N − 1) 3N(N − 1)(N − 3)

Table 1: Number of different type terms in the average for odd N .

Subtracting the constant term and multiplying by the initial factor of
(13) yields an expression which can be integrated over all of Hilbert space
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in order to obtain the SIC-function average. To perform the integrals we
parametrize the unit vectors as

Za = (
√
p0,

√
pke

iνk) , (23)

where the ranges of the parameters are

p0 + p1 + . . .+ pN−1 = 1 , p0 ≥ 0 , pk ≥ 0 , 0 ≤ νk < 2π . (24)

We solve for p0, and obtain the explicit expression [14]

〈f〉 =
(N − 1)!

(2π)N−1

∫ 1

0
dp1 . . .

∫ 1−p1−...−pN−2

0
dpN−1

∫ 2π

0
dν1 . . .

∫ 2π

0
dνN−1 f .

(25)
In calculating the averages a number of standard integrals will be used,

namely

〈

|Z1Z2Z3Z4|
2
〉

=
(N − 1)!

(N + 3)!
(26)

〈

|Z1|
4|Z2Z3|

2
〉

= 2
(N − 1)!

(N + 3)!
(27)

〈

|Z1Z2|
4
〉

= 22 (N − 1)!

(N + 3)!
(28)

〈

|Z1|
6|Z2|

2
〉

= 3!
(N − 1)!

(N + 3)!
(29)

〈

|Z1|
8
〉

= 4!
(N − 1)!

(N + 3)!
. (30)

The computations for odd values of N are straightforward, with few com-
plications. Even N are, however, a somewhat different story. To begin with,
cross terms play in also for non-zero values of i and k, and in a somewhat
different manner than in the odd N case. Whereas we get cross term contri-
butions for odd N only when all terms are real in a sum—as for k = 0, for

10



instance—we here find pairwise equal terms inside the modulus sign of the
i 6= 0 term of equation (21), so that care has to be exercised when squaring.
Using the same strategy as for odd N—dividing the sum into i = 0 and i 6= 0
parts and asking when two or more indices are equal—we find a number of
index choices for which terms of order higher than two occur, some of which
coincide with the ones for odd N . As opposed to in the odd N case, though,
the number of possible choices for the summation indices depend on the par-
ity of i, as well as on the modulo four value of N , so that the calculational
details differ beteween, for instance, N = 6 and N = 8. This is because the
restrictions one gets when solving the equal-indices-equations, are sometimes
equivalent for, say, i = 3 and N = 0 mod 4 and independent for N = 2 mod
4 for the same i, giving a different number of combinatorial possibilities. The
final results for the frame potential average taken over Hilbert space, on the
other hand, turns out to be identical for the two cases; this average is given
in section 5.

Also when considering the sum average over H+ and H−, the calcula-
tions get more involved than in the non-restricted odd N case. As for even
N , we get cross term contributions to the integral, and further technical
complications are due to the fact that the respective subspace conditions,

Zi = Z−i (31)

and
Zi = −Z−i , (32)

make the number of equations to solve when asking what possibilities there
are for the power of any Zi to be higher than two in a term larger. In other
words, the calculations have to be divided into a greater number of different
cases, but the logic is much the same as in the calculations for all of Hilbert
space sketched above. In using equations (26 - 30), one should keep in mind
that the dimension of the space over which the average is taken is no longer
equal to N .

5. Results

Our results are easy to state. The function f attains its global minimum at
a SIC, and its global maximum if all the N2 unit vectors coincide. Thus

11



0 ≤ f ≤
N4

2

N − 1

N + 1
. (33)

Its Fubini-Study average value is

〈f〉FS =
N2

2

N − 1

N + 1
. (34)

When the dimension is large, the scalar product between randomly choosen
vectors is close to zero, and this is reflected by the average.

If we specialize to N2 unit vectors forming an orbit under the Weyl-
Heisenberg group we believe that the global maximum occurs if the fiducial
vector is an eigenvector of some element in the group, in which case the orbit
collapses to an eigenbasis. Thus

0 ≤ fH ≤
N3

2

N − 1

N + 1
.

(Unfortunately we were unable to prove that the eigenbasis represents the
global maximum. It seems obvious that this is so, and we did check that it is
a local extremum. For safety, we do not number this equation.) The average
value depends on whether the Hilbert space dimension is odd or even:

N = 2n− 1 : 〈fH〉FS =
N2

2

N(N − 1)

(N + 2)(N + 1)
(35)

N = 2n : 〈fH〉FS =
N2

2

N2

(N + 3)(N + 1)
. (36)

Asymptotically there is no difference. It is perhaps somewhat unexpected
that the average of fH has the same asymptotic behaviour as the average of
f .

We also computed the average when the fiducial vector is restricted to lie
in certain interesting subspaces defined by elements of the Clifford group (the
normalizer of the Weyl-Heisenberg group). Elements of order 2 occur in odd
dimensions N = 2n− 1. Their eigenspaces have dimension dim[H−] = n− 1
and dim[H+] = n. As observed by Hughston [19], when N = 3 H− contains
only one vector, and it is a fiducial vector for a SIC. However, 3 is a very
special dimension. The complementary subspace H+ contains a SIC fiducial

12



vector too, as well as four vectors from a complete set of four mutually
unbiased bases, for which fH attains its (conjectured) maximum. The average
over H+ is 〈fH〉 = 81/40. For N > 3 the situation is quite different. We find

N = 2n− 1 > 3 : 〈fH〉H− = 〈fH〉H+ = N2 N(N − 1)

(N + 3)(N + 1)
. (37)

Asymptotically this is twice the average over the full Hilbert space. It is a
bit striking that the averages are equal.

It is harder to deal with the subspaces defined by elements of order 3.
At the same time they are more interesting, because Zauner’s conjecture
[1, 9, 20] says that the fiducial vector can always be choosen to lie in the
subspace with eigenvalue 1. We did compute averages for N = 7. There are
three subspaces H1, Hα, Hα2 , labelled by the eigenvalues of the element that
cubes to one (α = e2πi/3). Their dimensions are respectively 3, 2, and 2. The
average values of fH in the three subspaces are

〈fH〉H1
=

151 · 73

5 · 34 · 23
≈ 15.985 (38)

〈fH〉Hα
= 〈fH〉H

α2
=

37 · 73

5 · 33 · 23
≈ 11.751 . (39)

The average over the subspace that contains the SIC fiducial vector is above
the average 〈fH〉 over the full Hilbert space. This surprised us.

The values of fH vary widely, also within the special subspaces (except
that fH is actually constant on H− when N = 5). We describe the situation
for N = 7 in the following table:

f fH fH(H+) fH(H−) fH(H1) fH(Hα)
Minimum 0 0 12.2 (?) 4.764 (?) 0 ?
Average 18.375 14.29 25.72 25.72 15.98 11.75
Maximum 900.4 128.6 (?) 128.6 (?) 42.88 (?) ? ?

Some entries were left uncomputed, and some without proofs—we marked
the latter with a question mark within bracket, even though we are sure they
are correct.
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Unfortunately we are unable to see how to compute the asymptotic be-
haviour of 〈fH〉 for a fiducial vector in subspaces of the kind considered by
Zauner. We expect them to depend on number theoretical details of the
dimension. It would be interesting to see numerical studies of such averages
however.
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