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Abstract

Limits of spacetimes are obtained through a coordinate dependent
procedure and in particular, limits of black hole spacetimes yield limit
spacetimes that are some variants of anti-de Sitter space. These limits are
of use in string theory, and in particular in the adS/CFT correspondence.
By defining null coordinates, we are able to derive these limits in a clearer
fashion for the whole spacetime and analyzing these new coordinates and
the limit spacetimes, we see which region of the limit spacetime is covered
by these coordinates.

Conformal isometries are special symmetries of spacetimes where the
light cone structure of the spacetime is conserved. The charged black hole
in a cosmological background possesses a discrete conformal isometry for
certain values of its parameters and we show that this conformal isometry
extends throughout the whole spacetime and beyond.

The Killing vector fields of the spinning black hole give insight into how
an observer can move in certain regions of the spacetime. In particular, the
so called velocity of light surface tells us where an observer can no longer
corotate with the black hole. For an extremal black hole, we find that this
surface lies both inside and outside the horizon of the black hole.
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Chapter 1

Introduction

In physical terms, a black hole is a region of spacetime from which nothing
can escape, light ray or otherwise. In more mathematical terms, a black hole
is the complement of the chronological past of future null infinity of an
asymptotically flat spacetime or

B = M − J−
(
I +

)
, (1.1)

where M is the spacetime, J− is the causal past and I + is future null
infinity. These terms require some explanation.

The causal past of a point p in a spacetime M is defined as the set of
events that can be reached by a past directed causal curve starting from
p. The causal future of a point p is defined analogously but we will not
need that in this thesis. The causal past of a surface S as it is used in the
equation above, is simply the union of the causal pasts of all points in S. In
simple terms, future null infinity, I +, is the surface where future directed
null curves end. Likewise, past null infinity, I −, is the surface where past
directed null curves end. We will see an example of these surfaces later in
this thesis. An asymptotically flat spacetime has the property that at infinity
the metric that describes the spacetime approaches the metric of flat space
in appropriate coordinates. Another way to define an asymptotically flat
spacetime is to say that one can attach the hypersurfaces I ± to it. With
these definitions at hand we see that these first two definitions of black
holes describe the same property but in two different languages.

The event horizon, H , of the black hole is the boundary of B,

H = J̇−
(
I +

)
∩M, (1.2)

where J̇− is the boundary of J−. That is, the event horizon is a region of no
return and once an observer passes into it, he can not escape from the black
hole.
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Non-rotating (a = 0) Rotating (a 6= 0)
Uncharged (e = 0) Schwarzschild Kerr

Charged (e 6= 0) Reissner-Nordström Kerr-Newman

Table 1.1: The different types of stationary black holes.

In more practical terms, a black hole is a solution to second order, non-
linear, partial differential equations for the metric tensor gab, the Einstein-
Maxwell equations,

Rab −
1

2
gabR+ λgab = 8πTab, (1.3)

where Rab is the Ricci tensor, R is the Ricci scalar, Tab is the stress-energy
tensor and λ is the cosmological constant. It turns out that the solutions
we are interested in, force Tab to take on a very special form due to
the spacetimes being electrovac. The equation is written in the so-called
geometric units, where the speed of light c, the gravitational constant G
and Coulomb’s constant ke are all equal to one and are dimensionless. We
will use these units in the rest of this thesis. Solutions to this equation
that describe black hole spacetimes are electrovac and in the case of
this thesis, stationary. That is, the spacetimes we will consider possess a
timelike Killing vector field and the only matter fields they have will be
electromagnetic fields.

Surprisingly, black holes are described by only three parameters once
the cosmological constant has been fixed: Their massm, charge e and angu-
lar momentum (per unit mass) a = j/m, where j is the angular momentum.
These parameters are defined by the gravitational and electromagnetic
fields far from the hole. Assuming that a black hole must have mass, we
conclude that there are four types of black holes. These are depicted in table
1.1 and their names given.

One thing that all four types of black holes have in common is the
existence of horizons, as we know from the second definition of a black hole
above. While some of them have multiple horizons, it is always the case
that the outermost horizon of the spacetime is the previously mentioned
event horizon. As indicated in the definitions of black holes above, nothing
escapes from the black hole once it is within the event horizon.

As we will see in chapters 5 and 6, the dimensionless ratio of the
charge and the mass or angular momentum and the mass squared is of
vital importance to the geometry of the black hole. It so happens that in
the units used in equation (1.3) these ratios are dimensionless without
the help of any constants as m, e and a all have the same units. That is,
these ratios are simply e/m and j/m2 = a/m. When this ratio is unity,
the geometry changes dramatically and black holes with this property are
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called extremal. The namesake comes from the fact that this value of the
charge or angular momentum is the highest value where the spacetime has
a horizon. We will see how this happens in practice in chapters 5 and 6,
where the positions of the horizons are given in terms of m and a or e.
As an example, the dimensionless charge to mass ratio for an electron is
of the order of e/me ≈ 1021 and the dimensionless angular momentum
to mass squared ratio for the Earth is aE/mE ≈ 894 while for the sun it
is a�/m� ≈ 1.25. This implies that black holes are restricted to relatively
low values of charge and angular momentum compared to other objects.
If the Sun or Earth were to become black holes, they would have to shed a
considerable amount of their rotational angular momentum in the process.

It has been argued in various ways that one cannot spin a black hole
up beyond, or even up to, the extremal value. As Thorne points out[1],
when one tries to spin up a black hole by infall of particles from the inner
edge of an accretion disk, there is an upper limit on the achievable ratio of
the angular momentum and the mass. This ratio is less than unity and is
a indication that a black hole can not be spun up to extremality. On top of
this, it turns out that black holes tend to have low electric charge. All hope is
not lost since in string theory extremal black holes are of particular interest
because in these extremal cases, it has been possible to calculate black hole
entropy from first principles. Therefore the mathematical properties of such
black holes are of importance.

The horizons of black holes have many interesting properties. In a large
part of this thesis we will focus on investigating the geometry very close
to the horizon of the black hole, in the so called near-horizon limit. There
the metric takes on a certain form as we will see in chapters 5 and 6.
In particular, in all the limits we will discuss it turns out that the limit
spacetime involve some variants of anti de-Sitter space, which will be
discussed in chapter 3.

Taking limits of spacetimes has to be done with care as it is a coordinate
dependent procedure. This is most easily demonstrated by a simple example.

The Schwarzschild black hole is described by the metric

ds2 = −
(

1− 2m

r

)
dt2 +

dr2

1− 2m
r

+ r2dΩ2
2, (1.4)

where dΩ2 is the metric of the two-sphere, dΩ2
2 = dθ2 +sin2 θdφ2. A possible

limit to investigate is letting the mass tend to infinity, but in this form of the
metric, the limit is ill defined so we have to make a change of coordinates.
The first set of coordinates we will use are defined by

x = r +m4/3, θ′ = m4/3θ. (1.5)
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After performing this transformation and letting the mass go to infinity, the
metric takes the form

ds2 = −dt2 + dx2 + dθ′2 + θ′2dφ2, (1.6)

which is Minkowski space in cylindrical coordinates. However, if we
instead use the coordinates defined by

r′ = m−1/3r, t′ = m1/3t, θ′ = m1/3θ, (1.7)

and let m→∞, the metric becomes

ds2 =
2

r′
dt′2 − r′

2
dr′2 + r′2

(
dθ′2 + θ′2dφ2

)
, (1.8)

which is the so called Kasner metric, a non-flat solution to Einstein’s
equations and describes an anisotropic universe without matter[2]. We
see that in this limit, two totally different limit spacetimes are obtained
depending on the choice of coordinates. While the two limits we will look
at in this thesis turn out to be the same limit obtained via different paths
this is however a good reminder that one must take care when taking limits
of spacetimes and be clear as to what coordinate system is being used.

Along with the limits of the charged and spinning black holes in
chapters 5 and 6, respectively, we will look at conformal isometries of the
charged black hole in a cosmological background and Killing vector fields
of the spinning black hole. To prepare for this, we will discuss Killing vector
fields and conformal spacetimes and isometries in chapter 2.

In chapter 4 we will discuss Carter-Penrose diagrams. These are con-
formally compactified diagrams of spherically symmetric spacetimes that
capture the essential causal properties of the spacetime in a simple two
dimensional diagram. These diagrams will be helpful when analyzing
the Reissner-Nordström spacetime, both with and without a cosmological
constant.
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Chapter 2

Various mathematical topics

In this thesis we will be interested in many properties of the black hole
spacetimes in question. This chapter will introduce the most important
of these properties and explain them before looking at the black hole
spacetimes themselves. First we will look at Killing vector fields and
discuss what they tell us about the spacetime. After that we will see what it
means for two spacetimes to be conformal and what it means if a spacetime
has a conformal isometry.

It is assumed that the reader is familiar with general relativity at the
level of an introductory course using, for example, Schutz’s book[3].

2.1 Killing vector fields

A vector field ξa is a Killing vector field if the Lie derivative with respect to
ξa of the metric vanishes, that is

£ξgab = 0. (2.1)

From the definition of a Lie derivative of a second rank tensor this gives
Killing’s equation

£ξgab = ξc∇cgab + gcb∇aξc + gac∇bξc

= ∇aξb +∇bξa,
(2.2)

where the second equality sign holds when ∇a is the derivative operator
associated with gab. Notice from this that a linear combination of two
vector fields that both satisfy equation (2.2) on their own, is also a Killing
vector field. In physical terms, flows generated by Killing vector fields are
continuous isometries of the manifold. More simply, the flow generates a
symmetry in the sense that moving along it in the spacetime will not change
the spacetime.
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In terms of the metric, an easy way to find some Killing vector fields is
simply to see which coordinates the metric is independent of. Let us use
the Schwarzschild metric, defined by equation (1.4), as an example. We
notice immediately that gab is independent of both t and φ which means
that moving along a vector field that lies along these coordinates will not
change the spacetime. That is ∂t and ∂φ are both Killing vector fields.
These Killing vector fields correspond to time translational symmetry and
rotational symmetry around the z axis, respectively. However, there are
also two Killing vector fields that are not at all obvious from the form of
the metric. These are

sinφ∂θ + cot θ cosφ∂φ, cosφ∂θ − cot θ sinφ∂φ, (2.3)

which correspond to the two remaining rotational symmetries of the two-
sphere. Along with ∂φ these two Killing vectors generate the Lie group
SO(3).

In what follows, it will be important to know how a Killing vector field
behaves under coordinate transformation. For simplicity let us assume that
a spacetime has the Killing vector field ξa = (∂t)

a where t is one of its
coordinates. For both the charged and spinning black hole it is beneficial to
perform a coordinate transform of the form

t→ t̃ = t− f(r), (2.4)

where r is another coordinate of the spacetime and f(r) is some function of
r. We know that a derivative transforms covariantly and therefore

∂t̃ =
∂t

∂t̃
∂t −

∂f

∂t̃

∂r

∂f
∂r, (2.5)

but since r, and therefore f(r), is independent of t̃ we see that this reduces
to

∂t̃ = ∂t. (2.6)

We will use this when we discuss the Killing vector fields of the spinning
black hole spacetime in chapter 6.

2.1.1 Surface gravity for a spherically symmetric metric

As an example of what Killing vectors can be used for, we will derive the
surface gravity of a spherically symmetric metric.
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The surface gravity of an object is the gravitational acceleration experi-
enced at its surface. As a familiar example, the surface gravity of the Earth
is g ≈ 9.8m/s2. However, when dealing with black holes the acceleration
of a test particle at the event horizon turns out to be infinite. Due to
this, a renormalized value is used. This new value corresponds to the
Newtonian value in the non-relativistic limit and is generally defined as
the local proper acceleration multiplied by the gravitational redshift factor.
The former diverges at the event horizon while the latter goes to zero.

If ka is a Killing vector field which goes null on a particular hypersur-
face and the hypersurface is also null, we say that it is a Killing horizon.
Note that for any null hypersurface, the normal vector is tangent to the
hypersurface itself. This defines a vector field on the hypersurface and the
flow lines are null geodesics. It follows that the Killing vector field goes
along these geodesics.

From all of this, it follows that[4]

∇ak2 = 2κka, (2.7)

where we can choose κ ≥ 0 by changing the sign of k as needed. κ is the
surface gravity of a black hole whose event horizon is a Killing horizon,
and we can rewrite equation (2.7) as

ka∇akb = κkb, (2.8)

which is to be evaluated at the horizon.
We are interested in metrics of the form

ds2 = −V (r)dt2 + V −1(r)dr2 + r2dΩ2
2. (2.9)

The metric has a timelike Killing vector

χ = ∂t, (2.10)

which has a norm

‖χ‖2 = gtt

= −V (r). (2.11)

To calculate the surface gravity, we use that equation (2.8) implies

∇aχbχb = −2κχa, (2.12)
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where κ is the surface gravity. Combining these two equations yields

∇aV (r) = 2κgabχ
b.

If we now, transform coordinates such that

t = t′ − f(r′), (2.13)
r = r′, (2.14)

We see that this transformation puts the metric into the form

ds2 = −V (r′)dt′2 + 2V (r′)f ′(r′)dt′dr′ +
dr′2

V (r′)

(
1− V 2(r′)f ′2(r′)

)
. (2.15)

Choosing f ′ such that 1− V 2f ′2 = V and putting a = r′ we see that

∂

∂r′
V (r′) = 2κgr′t′χ

t′

= 2κV (r′)f ′(r′)

= ±2κ
√

1− V (r′),

or

κ =
1

2

∣∣∣∣∣ ∂
∂rV (r)√
1− V (r)

∣∣∣∣∣ . (2.16)

This was to be evaluated at the horizon and since V (r) = 0 at the horizon,
we see that

κ =
1

2

∣∣∣∣ ∂∂rV (r)

∣∣∣∣
r=r0

, (2.17)

where r0 is a horizon, or in other words, a root of V (r).
A few observations that will be useful for what is to come are in order.

• We see that κ has an absolute zero when the Killing horizon is
degenerate. Note that this is the proper definition of an extremal black
hole. That is, a black hole which has a degenerate Killing horizon.

• κ is only defined up to a constant factor that is fixed implicitly when
the factor in front of the Killing vector is chosen.

• κ is constant along each generator and constant over the entire
horizon[4].

These properties are similar to the properties of absolute temperature
and if we look ahead, hint at that equation (5.20) makes sense.
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2.2 Conformal spacetimes and isometries

Two spacetimes M and M̂ , described by the two metrics g and ĝ, are said
to be conformal if

g = Ω2ĝ. (2.18)

This means that for any four vectors x, y, v and w at a point p the following
holds

g (x,y)

g (v,w)
=
ĝ (x,y)

ĝ (v,w)
, (2.19)

where g(x,y) is the inner product of x and y with respect to the metric
g. This tells us that angles and ratios of magnitudes are conserved under
a conformal transformation and that the null cone structure of the two
spacetimes are the same. The geodesics of massive particles do however
change but they only change in the direction of a coordinate that Ω is a
function of. For example, a metric given by g = Ω(x)2η, where η is the
metric of flat space, will have geodesics along the y and z directions as that
of flat space while the geodesic along the x direction changes. A spacetime
described by a metric with this property is said to be conformally flat.

It turns out that M could be a subset of M̂ . That is, ĝ from equation
(2.18) can be made to work in more than M . Including, and going beyond,
I ±. This means that the hypersurfaces I ±, defined by Ω = 0, are
ordinary hypersurfaces in the unphysical spacetime M̂ . The spacetime M̂
is therefore in a way unphysical as it goes beyond our physical spacetime
M . Note that the word unphysical in this context is a technical term as the
region of the spacetime M̂ that is not in the spacetimeM is unphysical with
respect to M . In chapter 4 we will see examples of this where the Penrose
diagrams for both Minkowski space and anti-de Sitter space will be regions
of the static Einstein universe.

A conformal isometry is in a way similar to the symmetry that arises
from a Killing vector field. As we saw above, moving along the orbits
of a Killing vector field will not change the metric. That is, lengths
between points are preserved. If the vector field is instead associated with
a conformal isometry, moving along its orbits will not preserve lengths but
it will preserve the light cone structure of the spacetime. This difference
shows up in the right hand side of equation (2.1) as

£ξgab = fgab, (2.20)

where f is some function. In chapter 5 we will see examples of spacetimes
that have conformal isometries.
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It is also helpful to look at the Weyl tensor, which is the traceless part of
the Riemann tensor. The Weyl tensor is given by[5]

Cabcd = Rabcd +
(
ga[dRc]b + gb[cRd]a

)
+

1

3
Rga[cgd]b, (2.21)

where square brackets stand for the totally antisymmetric part of that
tensor. The Weyl tensor is conformally invariant. As we will see an example
of later, if the Weyl tensor of a metric vanishes, the metric is conformally
flat.

This knowledge will come in handy when we consider conformally
compactified diagrams of spacetimes in chapter 3 as well as when we
explore the conformal isometry of the charged black hole in a cosmological
background in chapter 5.
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Chapter 3

Anti-de Sitter space

As was mentioned in the introduction, the limit spacetimes of the charged
or spinning black holes involve some variants of anti de-Sitter space. Due
to this we will dedicate some time to discussing some relevant properties
of these spaces and see how they arise in general relativity.

As Hawking and Ellis point out, spacetime metrics of constant curva-
ture are locally characterized by the condition[5]

Rabcd =
1

12
(gacgbd − gadgbc)R, (3.1)

This is equivalent to the traceless Ricci tensor and the Weyl tensor, defined
by equation (2.21), vanishing

Cabcd = 0 = Rab −
1

4
gabR, (3.2)

as can be seen from its definition. In fact, by rearranging equation (2.21)
we see that it splits the Riemann tensor into its three irreducible parts. That
is, the Riemann tensor is split into terms containing the Weyl tensor, the
traceless Ricci tensor and the scalar curvature. This means that the Riemann
tensor of spacetimes with constant curvature is completely determined by
the Ricci scalar. It follows from the equations above and the contracted
Bianchi identities

Rac;a =
1

2
R;c, (3.3)

that R is constant in the whole spacetime as expected. We see that the
Einstein tensor becomes

Gab = Rab −
1

2
gabR = −1

4
Rgab, (3.4)
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which means that one can interpret these spacetimes as vacuum solutions
of the field equations (1.3) with a cosmological constant λ = 1

4R. If R =
0 we obtain the familiar Minkowski space, if R > 0 we obtain de Sitter
space which we will not discuss and if R < 0 we obtain anti-de Sitter space
which we are interested in. That is, anti-de Sitter space, adS, is a solution
to Einstein’s equations, (1.3), with a negative cosmological constant. The
topology of adSn is S1 ×Rn−1 and can be visualized as the quadric

x2
1 + x2

2 + . . .+ x2
n−1 − u2 − v2 = −1, (3.5)

embedded in a n+ 1-dimensional flat space with the metric

ds2 = dx2
1 + dx2

2 + . . .+ dx2
n−1 − du2 − dv2. (3.6)

The cases when n = 2 or n = 3 are of special interest to us in this thesis
so we will discuss them further. When n = 2, the surface becomes a
hyperboloid as is shown in figure 3.1. The three-dimensional case will be
discussed in section 3.1 as we will be looking at a very special case of that
spacetime.

Figure 3.1: adS2 depicted as a hyperboloid embedded in three-dimensional
Minkowski space. Only in this 1 + 1 dimensional case is the embedding
space Minkowski space as is clear from equation (3.6).

For the two-dimensional case, we can define new coordinates, a and b,
by
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x =
√

1 + a2 cosh b, u =
√

1 + a2 sinh b, v = a, (3.7)

which put the metric in the form

ds2 = −(1 + a2)db2 +
da2

1 + a2
, (3.8)

which is one of the forms we will recognize as adS2 later in this thesis. As
we will see, the different limits we look at in chapter 5 will cover different
regions of the hyperboloid in figure 3.1. The coordinate transformation in
(3.7) only cover half of the hyperboloid since x is always positive. We will
see different representations of adS2 in chapter 5.

3.1 Squashed or stretched

Even and odd dimensional spheres are considerably different. For our
discussion, the most important difference is known as the hairy ball theo-
rem[6], which tells us that on even dimensional spheres, it is impossible
to a find a nowhere vanishing vector field. However, for odd dimensional
spheres it is possible to find such vector fields. This means that odd
dimensional spheres, and in particular S3, can be squashed along these
vector fields[7]. Squashing can be pictured as shrinking the spacetime along
these particular vector fields. We are not restricted to simply squashing as
we will see later, we can also stretch. In the same manner, it is possible to
squash or stretch three-dimensional anti-de Sitter space along fibres that
are space-, timelike or null[8]. For our purposes we will stick to spacelike
squashing. We are interested in this very special variant of adS3 as it turns
out that one of the limit spacetimes we will deal with in chapter 6 is
squashed anti-de Sitter space.

Equation (3.5) with n = 3 tells us that adS3 is defined as the quadric

x2 + y2 − u2 − v2 = −1,

embedded in a flat four-dimensional space with the metric

ds2 = dx2 + dy2 − dy2 − dv2.

We can represent this as the group manifold of SL(2,R), in other words,
matrices of the form
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g =

(
v + x y + u
y − u v − x

)
,

with determinant one.
We can generate three everywhere non-vanishing Killing vectors by

acting on g from the left with the matrices1,

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ0 =

(
0 −1
1 0

)
,

which gives

J1 = −x∂u − u∂x − y∂v − v∂y,
J2 = −x∂v − v∂x + y∂u + u∂y, (3.9)
J0 = −x∂y + y∂x + u∂v − v∂u.

From Tr(dgg−1) = 0, we find that

dgg2 = Σσiθi. (3.10)

Solving these equations for θi gives

θ1 = −udx− vdy + xdu+ ydv,

θ2 = −vdx+ udy − ydu+ xdv, (3.11)
θ3 = −ydx+ xdu− vdu+ udv,

known as the Maurer-Cartan forms. Notice that θi(Jj) = δij .
We introduce new coordinates τ , ω and σ such that

g = eτσ0/2eωσ2/2e−σσ1/2

=

(
cos τ2 − sin τ

2
sin τ

2 cos τ2

)(
sinh ω

2 cosh ω
2

− cosh ω
2 − sinh ω

2

)(
e−σ/2 0

0 eσ/2

)
.

(3.12)

We can expand these matrices and compare to g calculated in terms of x,y,u
and v from equations (3.10) and (3.11) to find

1Acting from the right would give three more Killing vectors, making the dimension
of the isometry group six, SL(2,R) × SL(2,R) but we don’t need them for the following
calculation so their exact forms will be skipped.
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x = cos
τ

2
sinh

ω

2
cosh

σ

2
− sin

τ

2
cosh

ω

2
sinh

σ

2
,

y = sin
τ

2
sinh

ω

2
cosh

σ

2
+ cos

τ

2
cosh

ω

2
sinh

σ

2
,

u = cos
τ

2
cosh

ω

2
cosh

σ

2
+ sin

τ

2
sinh

ω

2
sinh

σ

2
,

v = sin
τ

2
cosh

ω

2
cosh

σ

2
− cos

τ

2
sinh

ω

2
sinh

σ

2
,

(3.13)

and in terms of these new coordinates, the θi can be written as

θ1 =
1

2
(sinhσ coshωdτ − coshσdω) ,

θ2 =
1

2
(sinhωdτ + dσ) ,

θ0 =
1

2
(coshω coshσdτ − sinhσdω) .

Up to a constant, the metric is given by[7]

ds2 = Tr(dgg−1dgg−1)

= −θ2
0 + θ2

1 + θ2
2

=
1

4

(
− cosh2 ωdτ2 + dω2 + (dσ + sinhωdτ)2

)
,

which we can squash or stretch along J2

ds2 =
1

4

(
− cosh2 ωdτ2 + dω2 + α2 (dσ + sinhωdτ)2

)
, (3.14)

where α is the squashing or stretching parameter. It is less than one when
squashing and larger than one when stretching.

Let us look at what happens to the Killing vectors when we squash or
stretch. Writing the Killing vectors in terms of τ , ω and σ gives[9]

J1 = −2 sinhσ

coshω
∂τ − 2 coshσ∂ω + 2 tanhω sinhσ∂σ,

J2 = 2∂σ,

J0 =
2 coshσ

coshω
+ 2 sinhσ∂ω − 2 tanhω coshσ∂σ.

We can check how the isometry group changes under this squashing or
stretching. To do this, we look at the Lie derivative of the metric with
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respect to each Killing vector and see if it vanishes as it did before we
squashed or stretched

£ξgab = ξa;b + ξb;a

= ∂aξb + ∂bξa − 2ξcΓ
c

ab ,

which is zero for J2 as can be seen from the Christoffel symbols for the
metric (3.14) since (J2)iΓ

i
ab = 0, where i is any pair combination of τ , ω

and σ. However, J1 and J0 have a few non-zero elements

£J1gτω = −1

2
sinhσ sinhω

(
1− α2

)
, £J0gτω =

1

2
coshσ sinhω

(
1− α2

)
,

£J1gτσ = −1

2
coshσ coshω

(
1− α2

)
, £J0gτσ =

1

2
sinhσ coshω

(
1− α2

)
,

£J1gωσ = −1

2
sinhσ

(
1− α2

)
, £J0gωσ =

1

2
coshσ

(
1− α2

)
,

so we see that J1 and J0 are no longer Killing vectors if α 6= 1, that is
they only remain Killing vectors if there is no squashing or stretching at
all. Since the other three Killing vectors (the ones “from the right”) are not
affected by this, they obviously remain Killing vectors. It now follows that
the isometry group is four dimensional, as opposed to six as it was before
squashing or stretching. It also remains a homogeneous space in the sense
that any point in the space can be reached by moving only along Killing
vector fields.
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Chapter 4

Carter-Penrose diagrams

Since the spacetimes we will be working with in this thesis are typically
of dimensions higher than two, it is beneficial to conformally compactify
them into a two-dimensional picture that captures the causal structure of
the original spacetime, a so called Carter-Penrose diagram. This means that
it is possible to attach a boundary to this picture which captures the idea of
asymptotically flat spacetimes, as discussed in chapter 1. In general, if the
cosmological constant is non-vanishing the picture captures the asymptotic
behaviour of the gravitational field. We will see that these diagrams capture
the causal structure of the original spacetime due to the results from
chapter 2. Namely, it will turn out that these diagrams are regions of an
unphysical spacetime that is conformal to the original spacetime so we see
that they share the same causal structure.

If the spacetime is spherically symmetric, we know that every point in
the spacetime sits on a round sphere. This means we can let each point in
the conformally compactified picture represent an entire round sphere, so
that the picture becomes two-dimensional. These diagrams will show us
the most important features of the original spacetime while remaning very
simple.

We start by drawing the Carter-Penrose diagram for (four-dimensional)
Minkowski space and then move on to more complicated things. As we
know the metric for Minkowski space is

ds2 = −dt2 + dr2 + r2dΩ2
2, (4.1)

where dΩ2
2 is the metric of the two-sphere. Making the range of coordinates

finite by defining p and q as

tan p = t− r, tan q = t+ r, (4.2)

the Minkowski metric becomes
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dŝ2 =
1

4 cos2 p cos2 q

(
−4dpdq + sin2 (p− q) dΩ2

2

)
, (4.3)

which we can conformally scale to get rid of the infinity at cos q or cos p
equal to zero. This means that the conformally scaled metric is now

ds2 = Ω2dŝ2

= −4dpdq + sin2 (p− q) dΩ2
2.

(4.4)

Changing coordinates one last time with

τ = p+ q, ρ = q − p, (4.5)

puts the metric in the form

ds2 = −dτ2 + dρ2 + sin2 ρdΩ2
2, (4.6)

which is the static Einstein universe. We see that it has the topology of R
times a sphere, where the spheres are round and do not change with time.
From equation (4.5) and the fact that p and q range between −π/2 and π/2,
we see that

−π < τ + ρ < π, −π < τ − ρ < π, ρ ≥ 0. (4.7)

As promised in chapter 2, Minkowski space is conformal to a finite region
of the static Einstein universe, defined by the restrictions (4.7). Here
the term unphysical spacetime from chapter 2 becomes clear as we see
that while on its own, the static Einstein universe is perfectly physical,
the region which is not covered by the coordinates in equation (4.7) is
unphysical with respect the original Minkowski space as it lies beyond
infinity in a sense. From this we draw the Carter-Penrose diagram of
Minkowski space in figure 4.1b as half of the region depicted in figure 4.1a.

The different points and surfaces on the figures are

• i−: past timelike infinity, given by τ = −π and ρ = 0,

• i+: future timelike infinity, given by τ = π and ρ = 0,

• i0: spatial infinity, given by τ = 0 and ρ = π,

• I −: past null infinity, given by τ = −π + ρ for 0 < ρ < π,

• I +: future null infinity, given by τ = π − ρ for 0ρ < π.
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From this we see that all timelike geodesics begin at i− and end at i+,
all spacelike geodesics begin and end at i0 and all null geodesics begin at
I − and end at I +. These terms will show up again in the Carter-Penrose
diagrams for other spacetimes.

(a) The static Einstein uni-
verse

I −

I +

r
=

0

i−

i+

i0

(b) The Carter-Penrose diagram

Figure 4.1: The static Einstein universe with the region defined by (4.7) and
the corresponding Carter-Penrose diagram. Notice that r = 0 and ρ = 0
are the same curves. In figure 4.1b each point represents a sphere except
the dashed line where the sphere has shrunk to radius zero and therefore
points are simply points. We note that if figure 4.1a is taken to show a 1 + 1
dimensional Einstein universe each point represents a point. However, if
figure 4.1b is taken to show a 1+1 dimensonal Minkowski space each point
(except those on the dashed line) represents a pair of points, but we know
that a pair of points is the zero-dimensional sphere, S0.

The Carter-Penrose diagram for anti-de Sitter space can be obtained in
a similar way. The metric

ds2 = − cosh2 rdτ2 + dr2 + sinh2 rdΩ2
2, (4.8)

covers the whole of four-dimensional anti-de Sitter space[5]. If we intro-
duce a new coordinate ρ such that
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ρ = 2 tan−1 (er)− π

2
, (4.9)

which means that 0 ≤ ρ ≤ π
2 . Using the following identities

dr

dρ
=

1

cos ρ
, cosh r =

1

cos ρ
, sinh r =

sin ρ

cos ρ
, (4.10)

we can write the metric in the following form

ds2 = cos−2 ρds2, (4.11)

where ds2 is given by equation (4.6) and ds2 by equation (4.8). Just as for
the Minkowski spacetime, we see that anti-de Sitter space is conformal
to a region of the static Einstein universe, in particular the region where
0 ≤ ρ ≤ π/2. We draw its Carter-Penrose diagram in figure 4.2b as half
of the region depicted in figure 4.2a. Notice that I is timelike rather than
lightlike as it is for Minkowski space. In fact, it can be proven[10] that I is
a timelike hypersurface when λ < 0, a spacelike hypersurface when λ > 0
and a null hypersurface when λ = 0. As was mentioned before, notice that
the hypersurface I in figure 4.2b is an ordinary hypersurface in the static
Einstein universe defined by ρ = π/2, or Ω = 0 since ρ = π/2 corresponds
to r =∞ as is clear from equation (4.9).
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(a) The static Einstein uni-
verse.

r
=

0

I

(b) The Carter-Penrose dia-
gram

Figure 4.2: The static Einstein universe and the region defined by 0 ≤ ρ ≤ π
2

and the corresponding Carter-Penrose diagram. As for Minkowski space,
we see from equation (4.9) that r = 0 and ρ = 0 are the same curve.
Remember that each point in figure 4.2b is a sphere, except the points on
the dashed line as before.

For black hole spacetimes, the coordinate transformations required to
bring the metric to a conformal form such as the metric (4.6) are a bit
more involved. Therefore it is beneficial to introduce block diagrams, as
discussed by Walker in [11]. Due to the nature of Carter-Penrose diagrams
we will only consider spherically symmetric black holes. That is, we work
with an interesting case of a spherically symmetric, static two-surface with
a metric of the form

ds2 = −V dt2 + dr2/V, (4.12)

where V is the norm of the timelike Killing vector of the metric and has n
roots. This surface is totally geodesic. That is, any geodesic on this surface
is also a geodesic in the full spacetime. V is a function of r and could be a
function of the other coordinates on the rest of spacetime as well, but due
to being totally geodesic we know that the other coordinates can be chosen
to be constant on this surface.

When V vanishes, the orbits of the Killing vector become null so one can
think of the roots splitting the spacetime into n + 1 regions. These regions
can be bounded by three different cases. Either two of the null orbits, one
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null orbit and I or a null orbit and a singular line, which is defined as a
point where both V and the Gaussian curvature,

K =
1

2

d2V

dr2
, (4.13)

become unbounded. In terms more related to the rest of this thesis, these
three cases correspond to being bounded by two horizons, a horizon and
infinity or a horizon and a curvature singularity, respectively. These blocks
can then be glued together along nonsingular boundaries, called seams, to
create Carter-Penrose diagrams. It turns out that the timelike coordinate in
each block changes vertically and that the Gaussian curvature, K, must be
smooth across the seam between two blocks, which as Walker points out,
means that a block cannot be flipped and joined to itself. Blocks bounded
by two horizons or a horizon and I where the block is asymptotically flat
take the shape of a diamond while blocks bounded a horizon and a singular
line or a horizon and I where the block is not asymptotically flat take the
shape of a triangle.

As an example, we will draw the Carter-Penrose diagram for the
Schwarzschild metric given by equation (1.4). Here each point represents
a sphere with no exceptions since the topology of the maximally extended
Schwarzschild solution isR2 times S2, as opposed toR4 for the Minkowski
case.

Now, V = 1 − 2m
r which has one zero at r = 2m. So there are two

blocks that we can draw. We start by drawing a block, T1, which is bounded
by a horizon and I . Since the Schwarzschild spacetime is asymptotically
flat this will be a diamond. The second block, T2, is bounded by a horizon
and a singular line, meaning that it will be a triangle. We glue the two
blocks together along their common seams, the horizon, and draw figure
4.4. On the figure, the maximal analytical extension of the spacetime has
been drawn in red. This is done by gluing together the blocks in every
possible way. In our case, we turn T2 up side down and glue it along the
lower seam on T1 and add a second T1 block to the left of the two T2 blocks
which is mirrored compared to the other T1 block.
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r
=

2m

r
=

2m

I +

I −

(a) T1

r
=

2m
r
=

2m

r = 0

(b) T2

Figure 4.3: The blocks of the Schwarzschild spacetime.

r
=

2m

r
=

2m

r
=

2m

i+

i0

i−

r
=

2m

I +

I −

I +

I −

r = 0

r = 0

Figure 4.4: Carter-Penrose diagram for the Schwarzschild black hole. The
red lines indicate the maximal extension of the spacetime. The dashed lines
are surfaces of constant r.
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Chapter 5

Reissner-Nordström - a charged
black hole

The first black hole we will consider is the charged black hole. A spherical
charged black hole is described by the Reissner-Nordström metric,

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

2, (5.1)

where

V (r) =
(r − r+)(r − r−)

r2
(5.2)

and

r± = m±
√
m2 − e2, (5.3)

and dΩ2
2 is the metric of the two-sphere. It is clear that putting the charge,

e, to zero will give the Schwarzschild metric as given by equation (1.4).
This spacetime has two horizons positioned at r− and r+. We notice that if
e2 > m2, r± turn imaginary and there would be no horizons. This case will
not be considered as we are only interested in spacetimes with horizons.

Just as for the Schwarzschild metric, the singularity at r = 0 is the
curvature singularity. The Killing vector fields for the charged black hole
are the same as that of the Schwarzschild black hole[12] as given in chapter
2.

When e2 = m2 the black hole is extremal, it has the maximum available
charge while remaining a black hole. As was mentioned in chapter 2, while
this is a convenient way to see whether a black hole is extremal or not, it
is not exactly correct. As we will see in section 5.3, a black hole that has
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e2 = m2 sitting in a cosmological background will not be extremal as the
proper definition of an extremal black hole is a black hole that has zero
surface gravity. That is, its Killing horizon is degenerate.

Turning back to the extremal black hole, we notice that there is only one
degenerate horizon, sitting at r = m, as was expected. That this happens
is easily verified in equation (5.3). This changes the spacetime in various
ways. The most obvious change is that gtt and grr no longer change sign
when crossing the horizon as they do in the non-extremal case so t and r
are always time- and spacelike coordinates respectively. Another peculiar
feature of this extremal spacetime is that if we calculate the distance along
a spacelike curve from a point sitting at r0 > r+ and to the horizon it turns
out to be infinite. Therefore it is of interest to look at how the spacetime
changes when close to the horizon.

Following the prescription for drawing Carter-Penrose diagrams from
section 4, we draw figure 5.1a for the metric (5.1). However, we see that
the two horizons split the spacetime into three blocks, or regions. Since the
horizon is degenerate when e2 = m2, we see that region II has disappeared
since it was defined as the region between the two horizons. Drawing a
diagram corresponding to the black region of figure 4.4 for the extremal
Reissner-Nordström black hole shows this. That is, figure 5.1b only has
regions I and III.

To look at this further, we can calculate the distance between r− and r+

(in the non-extremal case). That is, we can calculate the length of a timelike
curve at constant θ, φ and t

L = −
∫ r−

r+

dr
r√

(r − r+)(r − r−)
= πm, (5.4)

and we see that the distance between r− and r+ is a constant which does
not depend on e[13]. This seems to go against the fact that the two null
hypersurfaces, r±, coincide for the extremal black hole. On one hand the
two null hypersurfaces, r±, coincide and therefore from figure 5.1b the
length calculated in equation (5.4) seems to disappear, or become a null
curve. But on the other hand, equation (5.4) suggests that it does not vanish.
This tells us that we should take care when discussing and calculating
things that have to do with these two hypersurfaces in the scaling limit,
as we do below.
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r
=

0

r+

r−

I −

I +

I

II

III

(a) Non-extremal

r
=
m

r
=
m

I

III

I −

I +

r
=

0

(b) Extremal

Figure 5.1: Carter-Penrose diagram for both the non-extremal (a) and the
extremal (b) Reissner-Nordström black hole.
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5.1 Near-horizon

We want to look closely at the geometry close to the horizon of an extremal
charged black hole. We know that the metric is still given by equation (5.1),
but now V (r) is

V (r) =
(r −m)2

r2
, (5.5)

which has a single horizon at r = m as was mentioned above. We are
interested in looking at the limit r → m, but just as for the Schwarzschild
limits, we need to define new coordinates that allow the limit to be taken
more clearly,

r = m+ εχ, t = m2ψ

ε
, (5.6)

where ε is a dimensionless parameter that goes towards zero as we zoom
in on the horizon. Note that the limit r → m is now ε → 0. Doing these
coordinates changes and taking the limit, the metric becomes

ds2 = m2

(
−χ2dψ2 +

1

χ2
dχ2 + dΩ2

2

)
, (5.7)

which is the product of two-dimensional anti de-Sitter space and a two-
sphere of constant radius, adS2×S2. This metric is an electrovac solution to
the Einstein-Maxwell equations called the Bertotti-Robinson solution. We
see that hypersurfaces at constant ψ, which are in a sense constant time
hypersurfaces, are infinitely long cylinders.

However, these coordinates do not cover the whole adS2 spacetime. To
find out which region of adS2 they cover, we use that adS2 is defined as the
quadric,

x2 − u2 − v2 = −1, (5.8)

embedded in a space with the metric

ds2 = dx2 − du2 − dv2. (5.9)

Defining y and t such that x+ = 1/y and v = ψ/y where x± = x ± u and
using equations (5.8) and (5.9) the metric becomes

ds2 =
1

y2

(
−dψ2 + dy2

)
, (5.10)
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if we now define y = 1/χ, this becomes the same metric as above. We see
that in the coordinate transformation y cannot be zero and thus we have
to make a choice whether it is positive or negative. Since x+ is simply the
inverse of y we see that it carries the same sign so the choice of y translates
to x+ u being either positive or negative in the embedding space. In figure
5.2 the hyperboloid defined by equation (5.8) has been drawn in blue along
with the plane x+ u = 0 in green. Depending on the choice of y, the region
of adS2 that this metric covers is on either side of this green plane. If y is
positive, then so is x+u and therefore the region of adS2 are those points in
the embedding space that sit on the hyperboloid defined by equation (5.8)
and lie above the plane x + u = 0. The opposite holds if y is chosen to be
negative, the points would lie below the plane x + u = 0. We notice that
the plane x+ u = 0 splits the hyperboloid of figure 5.2 in half so the metric
(5.7) covers half adS2 space.

Figure 5.2: Plot of x, u and v, showing which piece of the diagram the metric
(5.10) covers. The region is the part of the blue surface that is above the
green surface if y was chosen to be positive and below if negative.

In figure 5.3 we show a Carter-Penrose diagram of the Bertotti-Robinson
spacetime. Since time is periodic, we see very clearly that only half of the
spacetime is covered.
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y
=
∞

y
=

0

x
+
u

=
0

x
+
u

=
0

x+ u > 0

Figure 5.3: Plot of ψ and y, showing how the condition on x + u translates
to this diagram. Notice that we are not looking at an infinitely long strip as
we assume that time is periodic.

An interesting feature of the metric (5.10) and also the metric (5.7) is
that it is conformally flat. That is, we can rewrite, after defining χ = 1/y,
the latter metric as

ds2 =
m2

y2

(
−dψ2 + dy2 + y2dΩ2

2

)
,

=
m2

y2
ds2

flat, (5.11)

where ds2
flat is the metric of flat space. In physical terms, this means that

the region close to the horizon of an extremal black hole is conformal a
neighbourhood around I . This means that the light cone structure of the
near-horizon geometry is that of flat space.

The extremal charged black hole has a conformal isometry before taking
the near-horizon limit. As Couch and Torrence showed[14], if we define a
new coordinate x′ = −m/(r −m) in the original metric (5.1) with (5.2) as
V (r), the transformation x = 1/x′ is a conformal transformation. That is,

ds2 =
dt2

(x′ − 1)2 −m
2
(
x′ − 1

)2 dx′2
x′4
− m2 (x′ − 1)2

x′2
dΩ2

2,

= x2

(
dt2

(x− 1)2 −m
2 (x− 1)2 dx

2

x4
− m2 (x− 1)2

x2
dΩ2

2

)
.

(5.12)
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We see that it is an inversion in the sense that it interchanges the event
horizon, H , and null infinity, I . In preparation for what is to come, it is
worth mentioning that this conformal isometry acts as a reflection around
the surface r = 2m since x(2m) = −1 and is mapped into itself. It
is therefore not a continuous isometry but a discrete one. As Brännlund
pointed out in [15] such a conformal isometry also exists in a special case
when a non-zero cosmological constant is present. This will be discussed
in detail in section 5.3.

5.2 e→ m scaling limit

It is possible to take the near-horizon limit in a different manner. Rather
than making the black hole extremal and then taking the near-horizon limit,
these two steps can be taken simultaneously for the whole spacetime. As
we are now focusing on the whole spacetime, not just the region close to
the horizon, we switch to Eddington-Finkelstein coordinates1 that are non-
singular at the horizon(s), defined by

η = t+ r∗, r∗ =

∫
dr

1

V (r)
, (5.13)

where V (r) = (r−r+)(r−r−)
r2

. In these coordinates the metric becomes

ds2 = −V (r)dη2 + 2dηdr + r2dΩ2
2. (5.14)

A coordinate transformation identical to the transformation from equation
(5.6), with η replacing t, will serve for this limit as well. However this time
around, the parameter ε is now defined as

ε =
√
m2 − e2, (5.15)

such that it goes to zero in the limit e2 → m2. This limit was considered by
Carroll et al[13], but done separately for each of the three regions. Using
the coordinate transformations on the metric in equation (5.14) and letting
e2 → m2, we obtain

ds2 = m2
(
−
(
χ2 − 1

)
dψ2 + 2dψdχ+ dΩ2

2

)
, (5.16)

which as before is adS2 × S2 but it is not the same region as in the near-
horizon limit. The fact that we used the same coordinate transformation
as before warrants some discussion. By using the same transformation,

1The suggestion to use these coordinates was made by José Senovilla.
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we are not looking at a case analogous to the simple example in the
introduction, where we had two different limits of the same spacetime
depending on which coordinate transformation was done. Here we are
looking at two different, but related (e2 = m2 and e2 6= m2) spacetimes and
taking two limits that in the physical sense mean different things but in the
mathematical sense are represented by the same coordinate transformation.
This is highlighted even further by the fact that the resulting spacetimes in
all cases describe the geometry close to the horizon so both limits are in a
sense a near-horizon limit while the one we call the scaling limit is more
direct in a sense.

Turning back to which region of adS2 the spacetime in equation (5.16)
covers we must find a coordinate transformation from these coordinates
to the embedding space and see which restrictions apply, just as in the
near-horizon limit. Due to the behaviour at χ = ±1, we must use different
transformations in the different regions,

|χ| > 1 : x = ±
√
χ2 − 1 cosh (ψ − χ∗) ,

u = ±
√
χ2 − 1 sinh (ψ − χ∗) , (5.17)

v = ±χ

|χ| < 1 : x = ±
√

1− χ2 sinh (ψ − χ∗) ,

u = ±
√

1− χ2 cosh (ψ − χ∗) , (5.18)
v = ±χ,

where χ∗ is defined in an analogous way to r∗ but with respect to the limit
metric (5.16). All of these transformations, for different choices of the pluses
and minuses give the metric (5.16) from the embedding metric. Note that
the different plus and minus signs are not related and choosing one of them
does not fix the others.

In equations (5.18) we choose the plus signs. By making this choice we
only consider positive values of u in that region and this explains why we
look down on the hyperboloid in figure 5.4a.
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(b) The Carter-Penrose diagram

Figure 5.4: The relationship between regions of the top down view of the
hyperboloid and the conformal regions.

For |χ| > 1, we have multiple choices. These choices are represented
by the regions i, iii, iv and v in figures 5.4a and 5.4b. In principle, any two
pairs of the four regions could be chosen, six in total. However, there is
another restriction which narrows the choices we can make when selecting
those regions. Before taking the scaling limit, the metric is given by (5.14).
This metric has a null coordinate that extends through the whole spacetime.
In terms of figure 5.4b, this means that this null coordinate can be drawn
as a straight line going through the spacetime from minus infinity to
infinity. Therefore if we want to keep this feature of the spacetime, we
are limited to only two possible choices for the signs in equations (5.17)
and (5.18), corresponding to ingoing or outgoing null coordinates. These
choices correspond to the pairs (i,iii) and (iv,v), respectively. But from
equation (5.13) we know that our null coordinate is ingoing and therefore
we choose regions i and iii.

To get a better view of the hyperboloid we draw a figure similar to 5.2.
This is shown in figure 5.5 and for completeness we also draw the Carter-
Penrose diagram and color the regions coordingly in figure 5.6. From these
we see that region I covers the part facing outwards in figure 5.5 but only
for positive x, region II covers the part between the two surfaces but only
for positive u and region III covers a similar part as region I but on the
other side of the second surface and only for negative x, and as mentioned
before, it only covers all of it in the scaling limit. From this we notice that
in all three regions, due to the restrictions on x and u from equations (5.17)
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and (5.18), these coordinates cover only half of the respective region. We
conclude that the metric covers half of adS2, but it is not the same half that
is covered by the near-horizon limit, as was discussed above.

Figure 5.5: The three regions of the Carter-Penrose diagram in figure 5.1a.
Region I for positive x and v, region II between the two surfaces and region
III for negative x and v.

In figure 5.6 it is even clearer that half of adS2 is covered. There the
conformal version of adS2 has been drawn and the three regions colored in
red, green and blue.
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Figure 5.6: Regions I, II and III from figures 5.1 and 5.5 in a block diagram.
The dashed line moves into the light blue area as e gets closer to m and
concides with χ = −∞ once extremality is achieved.

Therefore we see that the scaling limit is very similar to the near-horizon
limit. The main differences are that the region covered of adS2 by the limit
spacetime is different and that the calculation is done in one swoop rather
than making the black hole extremal and then zooming in on the horizon.
This is depicted schematically in figure 5.7. This figure explains what was
discussed in the introduction, namely that we are not taking limits of the
same spacetime, rather that we are taking limits of different spacetimes but
the limit spacetime turns out to be the same.

RN

e
=
m

NH

e
→
m eRN

NH
lim

it

Figure 5.7: A schematic picture of the different limits for the charged (RN)
black hole. The scaling limit (e → m) is taken in one step while the near
horizon limit (NH) has the extremal Reissner-Nordström black hole (eRN)
as its starting point.

34



In figure 5.8 we look at the hyperboloid again from the top down.
There we see clearly which parts of the hyperboloid are covered by which
limit. The purple region is covered by both limits while the red region is
only covered by the scaling limit and the blue region only by the near-
horizon limit. These two regions correspond to regions i and iv in figure
5.4, respectively.

x

v

Figure 5.8: Looking down on the hyperboloid. The purple region is the
common region of the two limits while the blue region only belongs to the
near-horizon limit and the red region only to the scaling limit.
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5.3 Reissner-Nordström de Sitter - a cosmological back-
ground

We now turn our attention towards slightly different things. If we put
the charged black hole into a universe with positive curvature, we obtain
the so called Reissner-Nordström de Sitter spacetime. It is still spherically
symmetric and therefore the metric is given by (5.1) just like the charged
black hole but with a different V (r) given by

V (r) = 1− 2m

r
+
e2

r2
− λ

3
r2, (5.19)

where λ is the cosmological constant. By adding this new term, the metric
terms gtt and grr have picked up two new more roots, a total of four.
One of them is unphysical, two of them are the usual Reissner-Nordström
horizons and the last, and largest, is the cosmological horizon. Note that
in a de Sitter spacetime without a black hole, there is still a cosmological
horizon.

We know that the Hawking temperature of a horizon is given by[16]

TH =
κ

2π
, (5.20)

where κ is the surface gravity, defined by equation (2.17) in section 2.1.1.
An interesting case for this black hole is when the temperatures of the outer
black hole horizon, rb, and the cosmological horizon, rc, are the same. From
equations (2.17) and (5.20), we see that this requires

V ′(rb) = ±V ′(rc), (5.21)

where we choose the minus sign to ensure that there are no other roots
between the two horizons. This condition, along with that V (r) has roots at
rb and rc, implies that V (r) takes the form[17]

V (r) = 1− 2rbrc
(rb + rc) r

+
r2
br

2
c

(rb + rc)
2 r2
− r2

(rb + rc)
2 . (5.22)

Comparing this to equation (5.19) we can identify

m =
rbrc
rb + rc

, e2 =
r2
br

2
c

(rb + rc)
2 , λ =

3

(rb + rc)
2 , (5.23)

so we see that the condition that the two horizons are of the same
temperature forces the charge and the mass of the black hole to be equal,
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since m2 = e2. As mentioned previously, a proper definition of an extremal
black hole is that it has zero surface gravity, as is clear from equation (2.17).
Due to this, it is not correct to call this black hole extremal, since even
though its mass and charge are the same its surface gravity is non-zero.

From these calculations, we can use equations (2.17), (5.20) and (5.22)
to calculate the temperature at rb and rc in terms of rb and rc. As expected,
they are the same and take the value

Trb = Trc =
|rc − rb|

2π (rc + rb)
2 . (5.24)

This tells us that the black hole and cosmological horizons, rb and rc
respectively, have the same temperature. A black hole with this property
is called lukewarm.

5.3.1 Conformal isometries of the lukewarm black hole

When the black hole is lukewarm, that is when the temperatures of the two
horizons are equal, we put e2 = m2 and λ = 3 by choosing rb + rc = 1, so
V (r) becomes

V (r) =
(r −m)2 − r4

r2
, (5.25)

and the horizons are positioned at the roots of V (r), as usual. We obtain
four roots,

r0 = −1

2

(
1 +
√

1 + 4m
)
, ra =

1

2

(
−1 +

√
1 + 4m

)
,

rb = +
1

2

(
1−
√

1− 4m
)
, rc =

1

2

(
+1 +

√
1− 4m

)
,

(5.26)

and as mentioned above, r0 < 0 < ra < rb < rc.
Since the extremal charged black hole with a zero cosmological constant

has a conformal isometry that interchanges the event horizon and null
infinity, we follow the same line of thinking and define a new coordinate
x′ = x′(r) that under x = 1/x′, will interchange the event horizon at rb with
the cosmological horizon at rc,

x′(2m) = 1, x′(rb) = 0, x′(rc) =∞. (5.27)

But the formula for Möbius transformations,
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f(z) =
az + b

cz + d
, (5.28)

where ab− cd 6= 0, tells us that

x′(r) =
r − rb
rc − r

rc
rb
. (5.29)

We see that this transformation is different from the one Couch and
Torrence[14] used. While we could define an almost identical transforma-
tion to theirs to get the results that are to follow, we use this one as it
simplifies the calculations quite a bit. If we now invert this coordinate

x′ → x = 1/x′, (5.30)

the metric takes the form

ds2 = −V
(

1

x

)
dt2 +

dx2

V
(

1
x

) ( dr

dx′

(
1

x

)
dx′

dx

)2

+ r2

(
1

x

)
dΩ2

2, (5.31)

What we now want to show is that this metric is conformal to the original
metric. That is, we want to show that the right hand side of equation (5.31)
is equal to

Ω2(x)

(
−V (x)dt2 +

dx2

V (x)

(
dr

dx

)2

+ r2(x)dΩ2
2

)
, (5.32)

where Ω2(x) is some function of x chosen that the two sides are equal. Thus
the problem results in solving three equations, one for each of the metric
terms, and finding a common Ω(x). The Ω(x) that does the trick for the last
term is easy to find as x only enters the equation through r. It is

Ω(x) =
xrb + rc
xrc + rb

, (5.33)

and after some calculations it is easily verified that it also works for the
other two terms. In order to visualize these results better, it is helpful to
draw a Carter-Penrose diagram of this spacetime.
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Figure 5.9: Carter-Penrose diagram for the conformally extended Reissner-
Nordström de Sitter black hole.

Remember that due to our definition of the coordinate x′ in equation
(5.29), when it is inverted by defining x, we map r = 2m into itself and rb
into rc and vice versa. We notice that x′ = 1, corresponding to r = 2m, is not
the only fixed point of the transformation, x = −1 is also mapped into itself
and corresponds to r = 0. If looked at from the point of figure 5.9, we can
speculate that the coordinate transformation from equation (5.30) maps the
areas to the left and right of the surface r = 2m into each other. This leads
to the question whether the conformal isometry is extended beyond rb and
rc. An easy calculation shows that

x′(m) =
rc − 1

rc
, x′(∞) =

rc
rc − 1

, (5.34)

in other words, the surface r = m is conformal to the surface r = ∞,
which is flat so the former surface is conformally flat. This can also be seen
from appendix A. But there is no reason to stop here. It turns out that the
unphysical root, r0, maps into the inner black hole root, ra, under these
transformation just as rb and rc do. That is
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x′(r0)x′(ra) = 1, (5.35)

And as was mentioned above, since both r = 2m and r = 0 are fixed points
of this transformation, we see that this transformation acts not only as as
a mirroring of the regions on either side of r = 2m but r = 0 as well. This
goes back to what was discussed in chapter 2 about the physical spacetime
M being contained in the unphysical spacetime M̂ . Here, the unphysical
root r0, which lies in a region of the unphysical spacetime M̂ that is not in
the physical spacetime M , is conformal to the physical root ra, which is a
part of the physical spacetimeM . As was mentioned above, when choosing
the first transformation defined by equation (5.27) we could have mapped
different points into each other to achieve the same results. Figure 5.9 tells
us which points we could have chosen as any of the three pairs (rb,rc),
(r0,ra) or (m,∞) along with either r = 2m or r = 0 mapped into itself
would have achieved the same results.

Since the region between r = m and r = 0 are to be mapped into
negative values of r beyond r = ∞ this solution shows a formal analogy
between certain systems in statistical physics where negative temperatures
show up when going beyond infinity. That is, going further than positive
infinity brings you to negative infinity and eventually you approach zero
from below. Or in other words, r0 < 0 does not lie below ra as expected but
rather above infinity.

While this similarity is interesting and certainly a part of the complete
solution, it is doubtful that it holds any physical meaning. However,
in certain approaches to numerical relativity it has been suggested that
instead of looking at the physical spacetime one should focus on the
extended spacetime[18]. In what we have shown, we see that in some cases,
the extended spacetime can contain singularities. In particular, we see that
the extended spacetime of equation (5.12) contains a timelike singularity
passing through spatial infinity. This suggests that what we have shown
here could be of some importance in numerical relativity even though it
probably holds no physical meaning.

This discussion might be worth keeping in mind when considering
Friedrich’s[19] program since in both the conformal isometry discussed
in this section and the conformal isometry of the extremal Reissner-
Nordström black hole as discussed by Couch and Torrence, a singularity
in the unphysical spacetime passes through spatial infinity, i0 which might
influence numerical calculations there.
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Chapter 6

Kerr - a spinning black hole

We turn now to the spinning black hole without charge. While it would
be possible to consider a spinning black hole with charge we do not do
this as it does not change things in any very interesting way and simply
complicates some formulas. Many of the methods used in chapter 5 will
not work here as the spacetime is not spherically symmetric. A spinning
black hole is described by the Kerr metric[20],

ds2 = −
(

1− 2mr

r2 + a2 cos2 θ

)(
dv + a sin2 θdφ

)2
+ 2

(
dv + a sin2 θdφ

) (
dr + a sin2 θdφ

)
+
(
r2 + a2 cos2 θ

) (
dθ2 + sin2 θdφ2

)
,

(6.1)

where a is the angular momentum per unit mass. We notice that this metric
is more complicated than the metric for the charged black hole due to the off
diagonal terms. This is not where the difference ends but we will postpone
that discussion until we switch coordinates.

There are some things we can observe about the spacetime before
changing to a more suitable coordinate system. We notice that the metric
has a problem when when r2 + a2 cos2 θ = 0, that is when

r = 0, θ =
π

2
,
3π

2
. (6.2)

This turns out to be an actual curvature singularity. This singularity is
often called a ring singularity as it it forms a circle if you consider that the
singularity happens at any value of φ but for a fixed value of r and θ. From
the metric itself, we see immediately that there are two Killing vectors,

ξa = (∂v)
a , ψa = (∂φ)a , (6.3)
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which correspond to time and axial symmetry, respectively.
It can be shown that the general form of a Killing vector field for this

spacetime is a linear combination of these two. That is, the isometry group
is two dimensional, as opposed to both the Schwarzschild and Reissner-
Nordström spacetimes which have a four dimensional isometry group.

Letting a go to zero puts the metric in the form

ds2 = −
(

1− 2m

r

)
dv2 + 2dvdr + r2

(
dθ2 + sin2 θdφ2

)
, (6.4)

which is the Schwarzschild metric in advanced Eddington-Finkelstein
coordinates, defined analogously to the coordinates in equation (5.13) with
e = 0.

Now, let us switch to coordinates better suited for some calculations.
Defining t and then t̃ and φ̃ by

v = t+ r, t = t̃+ 2m

∫
rdr

r2 − 2mr + a2
,

φ = −φ̃− a
∫

dr

r2 − 2mr + a2
,

(6.5)

puts the metric into the so called Boyer-Lindquist form

ds2 = −e2νdt̃2 +
ρ2

∆
dr2 + ρ2dθ2 +

∆ sin2 θ

e2ν

(
dφ̃− Ωdt̃

)2
, (6.6)

where

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2mr + a2,

e2ν =
∆ρ2

A
, Ω =

2amr

A
,

A =
(
r2 + a2

)2 − a2∆ sin2 θ.

(6.7)

Since the form of transformation from t̃ to v is the same as the one covered
in chapter 2 the Killing vectors from equation (6.3) are unchanged except
that t̃ replaces v and φ̃ replaces φ.

Let us discuss briefly an important difference between the spinning
black hole and the other types of black holes we know. Both the Schwarzschild
and Reissner-Nordström metrics can be naturally split into space and
time parts. This can be seen from the fact that their Killing vector fields
are hypersurface forming. Whether any of the Killing vector fields of the
Kerr spacetime are hypersurface forming can be checked with Fröbenius’
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theorem[4], which states that a vector field ta is hypersurface forming if
and only if

t[a∇btc] = 0. (6.8)

A short calculation confirms that this does not hold for ta = ∂at ,∂
a
φ or a

linear combination of those two so none of the Killing vectors of the Kerr
metric are hypersurface forming. Whether a vector field is hypersurface
forming or not can be visualized in the following way. Consider a tangent
three-plane to a vector field and if these three-planes form a hypersurface
throughout the spacetime, the vector field is said to be hypersurface
forming. This means that the Kerr spacetime does not split naturally into
space and time parts and visualizing it completely is much harder as one
can not suppress any of the four dimensions.

We notice that in addition to the singularity defined by (6.2) there are
coordinate singularities at the roots of ∆ = 0. These are the two horizons of
the black hole and they are positioned at ∆ = 0 which has roots at

r± = m±
√
m2 − a2, (6.9)

which has the exact same form as the horizons of the charged black hole
with e replacing a. This means that the discussion there about r± becoming
imaginary also holds here so we look only at a2 ≤ m2. This also tells us
that, just as for the charged black hole, the black hole is extremal when
a2 = m2 and there is only one horizon sitting at r = m in that case. That is,
a black hole with a2 = m2 has the maximum available angular momentum
while remaining a black hole. Just as for the charged black hole, these two
roots split the spacetime into three regions or blocks, depicted in a Carter-
Penrose diagram drawn for the equatorial plane in figure 6.1. Region I
which is outside the black hole, region II which is between the two horizons
of the black hole and region III which is inside the inner horizon and
contains the curvature singularity. Region III is significantly different from
region III in the Reissner-Nordström spacetime in the sense that it provides
an extra asymptotic region when r → −∞. As opposed to the Einstein-
Rosen bridge of the Schwarzschild solution, whose t = 0 hypersurface
is symmetric around the event horizon, the three regions of Kerr are not
symmetric as the spacetime behaves differently at r → ∞ and r → −∞.
In fact, it behaves as Schwarzschild when r → ∞ but Schwarzschild with
negative mass at infinity when r → −∞, which is sort of a sick spacetime
as it has a naked singularity. Along with this, the fact that∥∥∂aφ∥∥2 ∝ A
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can become negative when r < 0 in region III means that closed timelike
curves exist there.

r
=

0

r+

r−

I −

I +

I

II

III

Figure 6.1: The Carter-Penrose diagram of the equatorial plane of the Kerr
spacetime. Here each point in the picture represents a circle.

If we look at the norm of the timelike Killing vector field, ‖ξa‖, we see
that it is spacelike in a region outside the event horizon. That is, we see that
it is null when

0 = r2 + a2 cos2 θ − 2mr, (6.10)

which tells us that

re = m+
√
m2 − a2 cos2 θ. (6.11)

Therefore, between r+ and re the timelike Killing vector field is spacelike.
This region is called the ergosphere. An observer in the ergosphere can not
remain stationary since he would have to travel faster than the speed of
light to follow the orbits of ξa. In figure 6.2 we draw a throat picture of the
Kerr spacetime. This shows the region where ξa is spacelike colored red
and the ergosphere as the part of that region above the curve indicating r+.
The reason for drawing a diagram like this instead of a typical polar plot
is clear when we notice that the curvature singularity defined by equation
(6.2) is represented as a pair of points on the curve r = 0, corresponding
to θ = π/2,3π/2, while on a polar plot the point r = 0 would include all
values of θ.

Due to this behaviour we see that the coordinates in the Kerr spacetime
behave differently than in the Reissner-Nordström spacetime. For the
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Reissner-Nordström case, both grr and gtt changed signs at the horizons
and became time- and spacelike, respectively, between r+ and r−. But for
the spinning case, we see that this does not happen. Both of them still
change sign but it does not happen at the same place. This happens due to
the spacetime not being spherically symmetric and is the reason why our
method for drawing Carter-Penrose diagrams can only draw the diagram
for a fixed θ as we did in figure 6.1.

~4
.

Figure 6.2: The throat picture of the Kerr spacetime which shows a surface
where both t and φ are kept fixed. We see that all three blocks are present
lying in their respective places according to r = 0, r = r+ and r = r−. We
also see very clearly that the ring singularity is only visible as two points at
r = 0, for θ = π/2 and 3π/2. The region where the timelike Killing vector
field is spacelike is colored in red. This figure is and the throat pictures that
follow are all inspired by Carter[21].

As was the case for the charged black hole, it is of interest to see what
happens to region II when the black hole is extremal. As region II is defined
as the region between the two horizons, r±, given by equation (6.9), we
see that in the scaling limit they take the same value. This leads us to
believe that the region might have vanished. However, we can write down
an equation similar to (5.4) for a timelike curve at constant t and φ going
between r− and r+
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L = −
∫ r−

r+

dr

√
r2 + a2 cos2 θ

(r+ − r) (r − r−)
, (6.12)

which is plotted as a function of a and θ in figure 6.3.

Figure 6.3: The scaled distance between r+ and r−, L/πm, as a function of
a and θ

We see that the edges on the graph, a = 0 or θ = π/2, are where the
minimum value for L/ (πm), unity, occurs and we see that it is always at
least that large and always larger than zero, as was the case for the charged
black hole. Just as for the charged black hole, this calculation suggests that
the region between r+ and r− vanishes. But, we do not take it literally and
only use it to serve as a warning that taking limits must be done with care.
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6.1 Near-horizon limit

Just as for the charged black hole we can look at the geometry close to the
horizon of the extremal spinning black hole[22]. To this end, we define new
coordinates

r = m+ εx, t̃ = 2m2 t

ε
, φ̃ = φ+ a

t

ε
, (6.13)

where x > 0 and as before, ε is a dimensionless parameter that goes to zero
as we zoom in on the horizon. Doing this coordinate transformation and
letting ε→ 0 gives the metric

ds2 = m2
(
1 + cos2 θ

)(
−x2dt2 +

dx2

x2
+ dθ2

)
+

4m2 sin2 θ

1 + cos2 θ
(dφ+ xdt)2 ,

(6.14)

which, as we will see below, is conformal to the product of squashed three-
dimensional anti-de Sitter space with a circle as given by equation (3.14).
We see that the squashing factor is θ-dependent and given by

α =
2 sin θ

1 + cos2 θ
. (6.15)

This case is slightly different as the squashing or stretching now depends
on where you are on the circle but for each θ it is still the usual squashing
or stretching. Equation (6.15) tells us a few things about the squashing. As
mentioned above the squashing or stretching is θ dependent. When α < 1
the spacetime is squashed while it is stretched if α > 1. At the poles α = 0
and we see that the metric reduces to a form of adS2 as given by equation
(5.7) but as the φ part of the metric disappears when we squash completely
it is only adS2 × S1, not adS2 × S2. As was mentioned in section 3.1 we see
that when α = 1 the metric takes the form of adS3 × S1. In other words,
when

2 sin θ = 1 + cos2 θ, (6.16)

which happens at

sin θS =
√

3− 1, (6.17)

so from the previous discussion we see that between θ = 0 and θS , the
spacetime is squashed while from θS and to θ = π/2 it is stretched. We
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will see later that this particular value of θ is also of importance when it
comes to the Killing vectors of the metric but first we will look at other
things. Notice that due to this squashing the isometry group reduces to
SL(2,R)×U(1) instead of SL(2,R)×R as was the case in section 3.1 due to
φ being periodic.

For completeness, we can analytically extend the spacetime by fol-
lowing what Bardeen and Horowitz showed in [22] so that it becomes
geodesically complete with a coordinate transformation

x = coshω cos τ + sinhω, t =
coshω sin τ

x
, φ = σ + f (τ,ω) , (6.18)

where f(τ,ω) is chosen such that the metric simplifies. In these coordinates
the metric takes the form

ds2 = m2
(
1 + cos2 θ

) (
− cosh2 ωdτ2 + dω2 + dθ2

)
+

4m2 sin2 θ

1 + cos2 θ
(dσ + sinh dτ)2 .

(6.19)

In these coordinates, it is obvious that it is indeed squashed adS3, given by
equation (3.14), with a θ dependent squashing parameter. If the coordinates
are allowed to run over their full ranges, and not the one restricted from the
transformation (6.18), this metric covers all of squashed adS3 .

Just as for the near-horizon geometry of the charged black hole, the
spacetime described by the metric (6.14) does not cover all of squashed
adS3 × S1. However, rather than going through the whole procedure of
seeing what restrictions apply when going from our metric to the embed-
ding space, we see that the adS2 part of the metric (6.14) is identical to the
adS2 part of the near-horizon metric for the charged black hole, equation
(5.7). Since there are no restrictions on any of the other coordinates, we see
that the region covered by the metric (6.14) of all squashed adS3 is simply
the region of adS2 shown in figure 5.3 times S1 and something extra from
the last part of the metric.

6.2 a→ m scaling limit

In chapter 5 we addressed what happens to region II using an alternative
limit first studied by Carroll et al, but made their observation more
nearly global, by covering all three regions using Eddington-Finkelstein
coordinates. Now we want to see if the same procedure can be applied to
Kerr. Following what we did for the charged black hole, we look at the
scaling limit of the spinning black hole. Even though we did write the
Kerr metric down in a form which is analogous to Eddington-Finkelstein
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coordinates in equation (6.1) we will define the new coordinates in a
slightly different, but equivalent, way

dv = dt̃+
(
r2 + a2

) dr
∆
, dφ′ = dφ̃+ a

dr

∆
, (6.20)

which puts our metric, (6.6), into the form

ds2 = −e2νdv2 + 2dvdr + ρ2dθ2 − 2a sin2 θdrdφ′

+
∆ sin2 θ

e2ν

(
dφ′ − Ωdv

)2
.

(6.21)

Now we are ready to take the scaling limit. Defining new coordinates by

r = m+ εχ, v =
(
m2 + a2

) ψ
ε
, φ′ = φ+

aψ

ε
, (6.22)

where ε now stands for
√
m2 − a2 and not a dimensionless parameter.

Performing this transformation and taking the limit ε→ 0 we obtain

ds2 = m2
(
1 + cos2 θ

) (
−
(
χ2 − 1

)
dψ2 + 2dψdχ+ dθ2

)
+

4m2 sin2 θ

1 + cos2 θ
(dφ+ χdψ)2 ,

(6.23)

which is squashed or stretched adS3 × S1 just as for the near-horizon limit.
We notice that the squashing factor is still given by equation (6.15).

As usual, the region covered by the metric (6.23) does not cover the
whole spacetime. However, the same logic applies here as in the near-
horizon case above. That is, the region which our metric (6.23) covers of
squashed adS3 simply the three regions depicted in figure 5.6 times S1 and
the same extra piece as in the near-horizon case.
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6.3 Killing vector fields

A useful concept when discussing Killing vector fields is a so-called
bivector. In geometric terms, a bivector generalizes the idea of a vector
in the sense that while a vector can be thought of as a directed line
segment a bivector can be thought of as an oriented plane segment. In
three dimensions, given two vectors a and b their exterior product a ∧ b
is a bivector. For this particular bivector, its magnitude is the area of the
parallelogram formed by a and a. Its orientation is that of a rotation that
would make a parallel to b. Note that this bivector is antisymmetric.

This idea can be extended to Killing vectors and Killing bivectors. A
Killing bivector of the Kerr metric is a rank two antisymmetric tensor

Kab = 2ξ[aψb]. (6.24)

Note that Kab is left unchanged by transformations of the form

ξa = ∂at → ∂at + c∂aφ,

ψa = ∂aφ → ∂aφ + c∂at ,
(6.25)

as is easily verified. By considering a two-plane in tangent space, charac-
terized by the Killing bivector Kab and spanned by the two Killing vectors
in equation (6.3), we can make a statement about the existence of a Killing
vector in the spacetime. That is, if

1

2
KabK

ab (6.26)

is negative, the two-plane characterized by the Killing bivector is timelike
and therefore a Killing vector must exist. For the metric given by equation
(6.6) we see that

1

2
KabK

ab = ∂t̃a∂φ̃b

(
∂a
t̃
∂b
φ̃
− ∂b

t̃
∂a
φ̃

)
= ‖∂t̃‖

2
∥∥∥∂φ̃∥∥∥2

−
(
∂t̃ · ∂φ̃

)2

= gt̃t̃gφ̃φ̃ − g
2
t̃φ̃

= − sin2 θ∆.

(6.27)

Since ∆ is positive everywhere outside the horizon we can say that there
exists a timelike Killing vector everywhere outside the horizon. Since the
idea of a bivector is that of two-planes we can ask whether a bivector is
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surface forming, just as we did for the tangent two-planes of Killing vector
fields. As Carter points out[23], the condition for the Killing bivector Kab

to be surface forming is

ξ[a;bKcd] = 0

ψ[a;bKcd] = 0,
(6.28)

which can be seen to vanish due to the fact that the metric only depends
on r and θ and the fact that the Killing bivector is antisymmetric. Therefore
the Killing bivector is actually surface forming for the Kerr spacetime in
Boyer-Lindquist coordinates. However, this is not surprising since if one
considers how these coordinates were defined, it is clear that this property
was used to define them.

In the near-horizon coordinates defined by (6.13) one of the Killing
vector fields lies along ∂t since

∂t =
∂t̃

∂t
∂t̃ +

∂φ̃

∂t
∂φ̃

=
1

λ

(
2m2∂t̃ + a∂φ̃

)
which is a linear combination of the two Killing vectors from equations
(6.3) in the Boyer-Lindquist coordinates. Therefore

χa ∝ (∂t)
a .

Since the coefficients in front of ∂t̃ and ∂φ̃ can be scaled arbitrarily we
choose the most general Killing vector field to be

χa = (∂t̃)
a + ΩH

(
∂φ̃

)a
, (6.29)

where ΩH = a
2mr+

= 1
2m is the angular velocity of the horizon in the

extremal case. This constant is chosen such that χa is null along the horizon.
We can see this if we look at one of the principal null vectors[4] of the metric
at the horizon ∆ = 0,

`a =
1

∆

((
r2 + a2

)
(∂t̃)

a + a(∂φ̃)a + ∆(∂r)
a
)
,

∆`a

r2 + a2

∣∣∣∣
∆=0

= (∂t̃)
a +

a

r2 + a2
(∂φ̃)a +

∆

r2 + a2
(∂r)

a

∣∣∣∣
∆=0

,

0 = (∂t̃)
a +

a(
r2

+ + a2
)(∂φ̃)a

= (∂t̃)
a +

a

2mr+
(∂φ̃)a,
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where r+ = a = m in the extremal case. We can also check whether this
Killing vector field is null anywhere else in the near-horizon geometry,

0 = χaχa

= −m2x2
(
1 + cos2 θ

)(
1− 4 sin2 θ

(1 + cos2 θ)2

)
, (6.30)

which we recognize to be the same position as that of where the near
horizon metric is adS3, θS . This means that there are two surfaces where
the Killing vector field has zero length, the Killing horizon and the surface
defined by the above θ value which is timelike. We see that this Killing
vector field is timelike when we squash (α2 < 1) and spacelike when we
stretch (α2 > 1) as long as we are not at the Killing horizon.

Let us do the same calculation for the original metric given by equation
(6.6). That is, let us look at the norm of the Killing vector field

‖χa‖2 =

∥∥∥∥∂t̃ +
a

2mr+
∂φ̃

∥∥∥∥2

= gt̃t̃ +
a

mr+
gt̃φ̃ +

(
a

2mr+

)2

gφ̃φ̃

= − r − r+

4m2r2
+ρ

2
f(r,θ).

(6.31)

where

f(r,θ) =
(
4m2r2

+ (r − r−)− a2 sin2 θ
(
4m2 (r − r+) + (r − r−)

(
ρ2 + 2mr

)))
.

(6.32)

As expected, the Killing vector field goes null at the event horizon however
it does also go null when f(r,θ) = 0. The surface defined by f(r,θ) = 0 is
called the velocity of light surface[24]. What this means is that a timelike
observer inside the velocity of light surface can corotate with the black
hole[25]. When a is very small, the surface moves to infinity and when(
a
m

)2
= 2

(√
2− 1

)
the surface coincides with the ergosphere at θ = π/2,

as can be seen from putting θ = π/2 in equations (6.32) and (6.11) to find
that r = 2m at the equator for the ergosphere. Solving for a/m, we see that
the velocity of light surface moves closer and closer to the black hole with
increasing a/m. We draw the case when the velocity of light surface and
the ergosphere meet at θ = π/2 in figure 6.4.
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Figure 6.4: A throat diagram, a surface with both t and φ kept fixed as
before, of the velocity of light surface (as the boundary between the blue
and green regions) drawn for the value (a/m)2 = 2(

√
2 − 1) when it

coincides with the ergosphere at θ = π/2. Just as in figure 6.2 the three
regions are visible and the ring singularity shows up as two points. The
blue region is where the Killing vector field is spacelike and green and red
where it is timelike.

This figure tells us that a timelike observer can only corotate with the
black hole if he is in the green or red regions. As mentioned above, the
surface approaches the horizon as a/m→ 1 but as is usually the case when
considering the scaling limit, that is not the whole story.

Let us therefore consider now what happens in the extremal case and
not just when approaching it. When a2 = m2, equation (6.31) becomes

‖χa‖2 = −(r −m)2

4m4ρ2
f ′(r,θ), (6.33)

where

f ′(r,θ) =
(
4m4 −m2 sin2 θ

(
4m2 + ρ2 + 2mr

))
, (6.34)

which goes null at θS , defined by equation (6.17). This was to be expected
as the near-horizon limit zoomed in on the horizon and we saw that the
Killing vector field went null at this particular θ value. However, we also
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notice that before the black hole becomes extremal you can always find
a region arbitrarily close to the horizon where the Killing vector field is
timelike. But once the black hole is extremal, the surface where the Killing
vector field is null crosses the horizon and at certain points outside the
horizon, the Killing vector field is always spacelike. Solving f ′(r,θ) = 0
outside the horizon gives the exact curve at which the Killing vector field
goes null

r

m
=

1

sin θ

(
2− sin2 θ

)
− 1, (6.35)

which we can use to schematically draw the different regions where the
Killing vector field goes time-, spacelike or null in a throat diagram. We see
that r →∞ as θ → 0 and that r = 0 when θ = π/2 which is at the curvature
singularity. Using these two points along with the fact that we know that
sin θ =

√
3− 1 when r = m we can draw figure 6.5.

This means that for the extremal spinning black hole, it is not possible
to corotate with the black hole except in a small r dependent region around
the azimuthal axis. This region is drawn in green in figure 6.5
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Figure 6.5: The extremal Kerr throat, as usual drawn as a surface where
both t and φ are kept fixed. Since it is extremal, we see that there is only
one horizon sitting at r = r+ = m and therefore there are only two regions
visible, regions I and III. The ring singularity remains as two points at r = 0.
The blue region is roughly where the Killing vector field of equation (6.29)
is spacelike and the green region where it is timelike.

These results might seem to contradict what was said above about the
existence of a timelike Killing vector everywhere outside the horizon. That
is, first we showed that there exists a timelike Killing vector everywhere
outside the horizon. These results held for both non-extremal and extremal
black hole as ∆ is positive outside the horizon in both cases. After that
we showed that for the extremal black hole the most general Killing vector
field is spacelike everywhere in a certain region on both sides of the horizon
of the black hole. However, this is not a contradiction to the previous
statement even though it seems to be at first sight.

The answer lies in the difference between a Killing vector and a Killing
vector field. In the first calculation, we showed that there exists a timelike
killing vector while in the second calculation we showed that a Killing vector
field is spacelike in a certain region around the horizon.

When one makes this distinction there is no contradiction as one could
think of a combination, not linear, of Killing vectors that do not form a
Killing vector field, for example if the coefficients in the combination would
depend on the coordinates. This would mean that there exists a timelike
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Killing vector everywhere outside the horizon but we can not make a
statement about a timelike Killing vector field, but it probably does not
exist.
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Chapter 7

Conclusions

Let us summarize what we have done in this thesis. In preparation for
what was to come we reviewed properties of Killing vectors, conformal
spacetimes, conformal isometries and anti-de Sitter space and then these
things were used to draw the Penrose diagrams of various spacetimes. In
particular, along with Penrose diagrams for Minkowski space and anti-
de Sitter space an algorithm was put forth on how to draw the Penrose
diagrams of spherically symmetric spacetimes.

After that the charged black hole, described by the Reissner-Nordström
metric, was discussed. The near-horizon and e → m scaling limits were
taken and the resulting spacetimes investigated. By using coordinates that
cover all three blocks of the metric, we were able to clarify a puzzling result
due to Carroll et al[13] and arrive at a more nearly global result.

Next the charged black hole was put in a positively curved cosmological
background and just as for the extremal charged black hole, it was shown
to possess a conformal isometry just as Brännlund pointed out[15]. The
new contribution here is that this isometry was extended throughout the
complete spacetime. In fact, the isometry is extended even further as the
unphysical root of the Reissner-Nordström de Sitter metric is conformal to
one of the physical roots. While it is doubtful that this has any physical
meaning it might hold a lesson for one approach to numerical relativity.

A discussion of the Kerr black hole went along the same lines as for
the charged black hole. The two limits were discussed and in addition, the
behaviour of a horizon Killing vector field was discussed when the black
hole became extremal. Similar results had been derived by Amsel et al[25]
but using less global coordinates.

As was know from previous work by Amsel et al[25], it turns out that
the so-called velocity of light surface, a surface beyond which an observer
can no longer corotate with the black hole, makes a discontinuous jump
from being completely outside the horizon to being partly inside and partly
outside once the black hole is extremal[24]. The velocity of light surface
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is of some importance when discussing quantum field theory close to
the horizon as in order to define positive and negative energy states, a
timelike Killing vector must be available. We provide additional detail to
this discussion.

While working on this thesis, new ideas and problems have emerged. A
natural follow up to the discussion in chapter 5 on region II of figure 5.1 is to
what extent the question about what happens to the region in the limit can
be made precise. That is, does it make sense at all to worry about whether it
has vanished or not. While it was discussed there, it could be investigated
even further in the fashion Geroch suggests the limit e → 0 could be
looked at[2]. That is, considering which points lying in the region r− and r+

survive in the limit and which do not when the charge vanishes. We believe
that Geroch’s treatment could be made more precise in order to understand
the limiting behavior of the black hole. An idea is that the points between
r− and the hypersurface r = e2/m are the ones that disappear while the
points between r = e2/m and r+ will survive. This idea comes from the
fact that the Weyl tensor vanishes on this hypersurface and plays a role in
section 5.3.

We could ask a similar question of the e → m scaling limit and see
which points vanish and which do not once the limit has been taken. The
same question applies to the Kerr spacetime with a replacing e.

Following up on the discussion about the Killing vector field defined in
equation (6.29), we can ask whether its norm, as given by equation (6.32),
factorizes even further. With symbolic and numerical calculations1, it can
be shown that f(r,θ) has three real roots,

f(r,θ) ∼ P (3)(r), (7.1)

where P (3)(r) is a third order polynomial in r that has coefficients which
are a function of θ. One of the roots of P (3)(r) corresponds to the velocity
of light surface that lies outside the horizon. It turns out that the velocity
of light surface is the only root outside the event horizon and that one
of the other roots is negative. This means that the Killing vector field
will change sign again inside the horizon due to the third root which lies
somewhere between the two horizons of the black hole. This tells us that
corotating with the black hole inside the black hole might not be possible in
certain regions close to the curvature singularity. In the extremal case, the

1Jan E. Åman, private communication
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corresponding equation is (6.34), which is a second order polynomial and
has at most two roots,

f ′(r,θ) ∼ P (2)(r) (7.2)

where P (2)(r) is a second order polynomial in r that has coefficients which
are a function of θ. We know that one its roots lies both inside and outside
the horizon and corresponds to the velocity of light surface. This root can be
interpreted in the way that the two positive roots of the non-extremal case,
one inside and one outside the horizon, merge to form this single positive
root of the extremal case. The second root is negative and therefore not of
very much interest.

We end this thesis by quoting Chandrasekhar[26]

“In my entire scientific life...the most shattering experience has been
the realization that an exact solution of general relativity, discovered
by the New Zealand mathematician Roy Kerr, provides the absolutely
exact representation of untold numbers of massive black holes that
populate the Universe.”

and conclude that it is worthwhile to explore every mathematical detail, no
matter how small or peculiar it may seem, of the black hole solutions of
general relativity.
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Appendix A

The Weyl tensor for the
lukewarm black hole

We present here the Weyl tensor for the lukewarm RNdS spacetime as see
that it vanishes at r = m and r =∞.

Ctrtr =
2 (m− r)m

r4
,

Ctθtθ = −
m (m− r)

(
m2 − r2 − r

) (
m+ r2 − r

)
r4

,

Ctφtφ = sin2 θCtθtθ,

Crθrθ =
(m− r)m

r2 − 2mr − r4 +m2
,

Crφrφ = sin θCrθrθ,

Cθφθφ = 2m sin2 θ (r −m)
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