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Preface

This thesis was finished in June 2014 – some months before this preface was written in
conjunction with the submission of the thesis. The relationship we propose in this thesis between
the level of SICness and MUSness of a state, has since been systematically researched. In
formalising this relationship the posed conjecture as to the maximum MUSness for any given
SICness has since been proved. Furthermore the ideas of this thesis have proven successful for
finding the MUB-balanced states introduced by Amburg et al. [5]. Using the methods presented
in Chapter 6 we have provided circumstantial evidence that the MUB-balanced states found by
these authors are the only ones that exist [7].

We have chosen not to include this research in this thesis since these ideas are still being
developed. Also, in the spirit of keeping this thesis self-contained, this omission was neces-
sary. However, the continued research will be presented in a future paper by D. Andersson, I.
Bengtsson, H. B. Dang. and K. Blanchfield.



Abstract

In this thesis for the degree of Master of Science from Stockholm University we explore the
ideas of Symmetric Informationally Complete Positive Valued Measures (SIC-POVMs; commonly
just SICs). This is an emerging concept in quantum information theory with ambitious claims,
such as being a candidate for standard measurements [23] and perhaps being of importance to
error correcting universal quantum computing [32]. While the definition of a SIC is exceedingly
simple they have proven notoriously hard to find. This thesis explores new approaches to finding
SICs.

It is our ambition that this thesis shall provide the reader unfamiliar with SICs with a
thorough introduction to the subject along with both the necessary quantum theory and group
theory. We also hope to intrigue the reader already attuned to SICs by establishing a link
between how close to a SIC a state is and how close to a MUS (Minimum Uncertainty State)
it is. This is the main result of this thesis and we leave the reader with several open questions
relating to this discovery to provoke further scrutiny of the matter.

The thesis is divided into two parts: the first part provides the necessary background and
theory; while the second part presents our results. There are also three appendices attached to
this thesis where we delve into a discussion about computing power and also present some of
the code used. Being appendices these are not essential to the thesis per se – they are rather
supplied as a reference for the curious reader who might be interested in recreating some of our
results.



Sammanfattning

I det här examensarbetet i teoretisk fysik vid Stockholms Universitet undersöker vi konceptet
Symmetriska Informationellt Kompletta Positiva Mått, som vi, lånat från engelskan, kommer att
förkorta SIC eller SIC:ar. Det här är vissa uppsättningar av tillstånd som introducerades på
90-talet av G. Zauner [35] men som de senaste åren fått ökad uppmärksamhet eftersom de är
kandidater till nya standardmätningar i kvantfysik [23] och de kan även vara av intresse för
universella kvantdatorer [32]. Definitionen av en SIC är överväldigande enkel och bygger endast
på elementär linjär algebra, det har däremot visat sig förrädiskt svårt att faktiskt finna SIC:ar.

Den här rapporten ger läsaren som inte är bekant med SIC:ar en bred introduction till dessa
med utgångpunkt i både den nödvändiga fysiken och matematiken. Icke desto mindre är rap-
porten även riktad till den redan insatte läsaren. Förutom att rapporten sammanfattar viktiga
delar av det arbete som gjorts på SIC:ar i låga dimensioner, etableras i rapportens slutskede
en länk mellan så kallade Minimalt Osäkra Tillstånd (MUS:ar) och SIC:ar. Rapporten lämnar
flera öppna frågor som relaterar till det här sambandet som var och en i sig själva rättfärdigar
ytterligare studier.

Rapporten är indelad i två huvudsakliga delar. Den första delen redogör för den teoretiska
bakgrund som behövs för att förstå SIC:ar och MUS:ar, medan den andra delen redogör för de
faktiska resultaten som presterats i det här examensarbetet. Det läggs även tre appendix till den
här rapporten om det omfattande datoranvändande som föreligger resultaten. Här presenteras
såväl utdrag av kod som en diskussion om vilka begränsingar som sätts av beräkningskapacitet.
Trots att det här avsnittet varken presenterar resultat eller bakomliggande teori, är det en bra
referens för den som vill återskapa, eller ta vidare, delar av det här examensarbetet.
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List of Abbreviations and Conventions

Here we list the most crucial abbreviations, conventions, definitions and notation introduced in
this thesis. We hope that it will prove a useful reference for the reader whenever xe needs it.
The order is such that relating concepts come in the order that they are introduced in the thesis.

POVM

Positive Operator Valued Measure; gives the most general notion of a measurement used in
quantum mechanics (def. page 3).

MUBs

Mutually Unbiased Bases; a set of orthonormal bases where the inner product of any pair of
basis vectors from separate bases has a fixed value (def. page 8).

MUS

Minimum Uncertainty State; a state which is situated in a similar way relative to all the bases
in a complete set of MUBs (def. page 9).

SIC-POVM (SIC)

Symmetric Informationally Complete POVM; a set of vectors satisfying some simple relations
for their inner and outer products (def. page 24).

GWH

The Weyl-Heisenberg Group; a group which has played a major role in quantum mechanics since
its introduction, we make extensive use of it throughout this whole thesis (def. page 13).

Dij

The Displacement Operator; an operator representing some elementXiY j in theWeyl-Heisenberg
group (def. page 15).

GC

The Clifford Group; the normaliser of the Weyl-Heisenberg group with respect to the group of
unitary matrices (def. 17).

U

Clifford Group Element; a unitary matrix being an arbitrary element in the Clifford Group.

SL(2, ZN)

The Special Linear Group of 2× 2 matrices modulo N ; a group of all linear 2× 2 matrices with
unit determinant and with elements being integers modulo N (def. in unitary representation
page 18).
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ψ0

SIC-Fiducial Vector; a vector generating a SIC as an orbit under the Weyl-Heisenberg group.

ψij

A Shifted Vector; some vector ψ shifted by some displacement operator Dij , such that Dij |ψ〉 =
|ψij〉.

fSIC

The SICness Function; a function determining how much of a SIC some given state is (def. page
26).

fMUS

The MUSness Function; a function determining how much of a MUS some given state is (def.
page 59).

N

Dimension; the dimension of a space.

CPN

The Complex Projective Space; the set of all straight lines passing through the origin in CN+1.

RPN

The Real Projective Space; the set of all straight lines passing through the origin in RN+1.

ω

A primitive root of unity, e
2πi
N .
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Why You Should Care About SICs

“When there is something that is really puzzling and cannot be understood,
it usually deserves the closest attention because some time or other some big
theory will emerge from it.”
– André Weil

The 20th century was a turbulent century from the point of view of physics with three
paradigm shifts – the formulation of quantum mechanics, the theory of relativity and the re-
vision of statistical mechanics – irreversibly changing how we understand the universe. Since
its formulation, quantum mechanics has been the cause of many lively discussions, much due to
its being fundamentally unintuitive. Ninety years after its formulation, we are still struggling
to address fundamental issues such as the interpretation of the theory. There are also many
seemingly basic mathematical questions yet to be answered, this thesis focuses on shedding some
light on a few of these.

We start out from one of the pillars of quantum mechanics: the measurement. Tradition-
ally we associate measurements in quantum mechanics with certain Hermitian∗ operators aptly
called ’observables’. This kind of measurements are referred to as ’von Neumann measurements’.
Broadly speaking there are two qualities to measurements in quantum mechanics; they are quan-
tized and they may be incompatible. The topics discussed in this thesis relate to the latter of
these.

When we write that two measurements are incompatible we mean that we cannot perform
them at the same time. This is represented in the theory as two observables that are non-
commuting – or perhaps more striking – that cannot be simultaneously diagonalised. Bohr
was greatly intrigued by a certain class of incompatible observables known as ’complementary
observables’, being maximally incompatible†. Bohr’s insights led to the introduction of ’the
principle of complementarity’.

In finite dimension we regard maximally incompatible observables as two observables whose
eigenvectors satisfy the following inner product: |〈ei|fj〉|2 = 1

N , where N is the dimension.
Notice that this captures exactly the complementarity that fascinated Bohr so long ago; if we
know the outcome for a measurement in the |e〉-eigenbasis then, |ψ〉 = |ei〉 for some i. But then
the probability for every outcome in the |f〉-eigenbase is 1

N . Which means that we know nothing
about the state in the |f〉-eigenbase.

At this point a very relevant question arises: “Can we always find a complete set of bases being
complementary?”. By ’complete’ we mean ’such that we can completely characterise a quantum
state using these bases’‡. We call such a set of bases a complete set of Mutually Unbiased Bases
(MUBs) and say that two bases are mutually unbiased if they satisfy the inner product from last
paragraph. In any given dimension, a complete set of MUBs consists of N + 1 MUBs. Schwinger
and many after him have tried to answer this simple question, but to this day it remains an open
question. Partial results have been proven though, Schwinger proved that there exist pairs of
complementary bases in each dimension and it has since been shown that there exist complete
sets of MUBs in all prime power dimensions [34].

Another concept central to this thesis which is a way related to MUBs is the Positive Operator
Valued Measure (POVM). This is a generalisation of the von Neumann measurements. Whereas

∗By certain eccentrics, ’Hermitean’ (with a silent ’H’, phonetic: EK’miS@n), from French.
†Specifically Bohr studied the wave particle duality as a result of position and impulse being complementary.
‡The technical term for characterising a quantum state being ’quantum tomography’.
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von Neumann measurements require orthonormal (ON) eigenbases of Hermitian operators there
are no such requirement for a POVM. Certainly an ON-basis is a special case of an POVM, but
the POVM also allows for over complete bases. In fact, the POVM captures the most general
idea of a measurement in quantum mechanics.

We might of course enquire as to whether there exists any other special POVMs, except for the
ON-basis. One extraordinary POVM, and indeed the main focus of this thesis, is the Symmetric
Informationally Complete POVM (SIC-POVM; commonly just ’SIC’). This is a set of unit vectors
with constant inner products and whose outer products sum to identity. Furthermore, there are
N2 vectors in a SIC, this enables us to do quantum tomography using SICs and corresponds to
the ’informationally complete’ part of the SIC. While the definition of a SIC is simpler than that
of a MUB, they have proven even harder to construct, although it seems as though they exists
in every dimension [30].

As far as applications to physics goes both MUBs and SICs are both active research subjects.
Between January and September this year 30 papers on MUBs were published (source: arXiv).
MUBs are especially popular in quantum information theory where they are used in a variety of
contexts, for instance in quantum cryptography and signal processing [17]. The subject of MUBs
engages both respected experimentalists such as A. Zeilinger, who arranged a conference on the
matter [1], as well as leading mathematicians. Despite the popularity of MUBs they have only
been successfully constructed in prime power dimensions.

The research on SICs is more limited, with 7 articles between January and September this
year (source: arXiv). Still, SICs are an emerging concept with many promising applications
in quantum information theory, including being a candidate for succeeding the von Neumann
measurements [23], as well as potentially being useful in quantum computing [32].

However, our motivation for investigating the SICs runs much deeper than these applications,
it really has its roots in one of Hilbert’s famous problems§. Hilbert’s 12th problem states: “Extend
the Kronecker–Weber theorem on abelian extensions of the rational numbers to any base number
field.”. While we will avoid any entanglement with this sophisticated mathematical problem itself,
it is curious to note that all numbers occurring in a SIC sit in such a number field. Specifically
they all sit in a kind of number field which, it is agreed, forms the first extension of this theorem:
an abelian extension field of a real quadratic field [9].

An intuitive, and not too bad, picture of such number fields is that they are made up of
roots of unity and Euclidean numbers, which is what we call the numbers that can be realised
within Euclidean geometry using only unscaled rulers and pairs of compasses (e.g. nested roots,
all rational numbers, etc.).

Apart from this observation there is a group that adds significant structure to the SICs. This
is a group well known to quantum mechanics called the Weyl-Heisenberg group and it has strong
ties to both MUBs and SICs. We shall see that this group introduces a natural framework for
working with SICs and we shall use it extensively to generate SICs among other things.

In the spirit of Weil and encouraged by leading researchers in the field [24] we shall take it
upon ourselves to give this puzzling entity called a ’SIC’ the closest attention, in hope that we
might one day understand it, and that from this understanding something big shall emerge.

§1902 D. Hilbert compiled a list of, at the time, open mathematical questions, much like the modern ’Millen-
nium Problems’ posed by Clay Institute.



Chapter 0

Introduction

The purpose of this chapter is to introduce the subject of this thesis on an as non-technical
level as possible. We will arrive at two dimensional versions of most central concepts, it is our
ambition that this two dimensional case-study shall provide some intuition as to what roles these
concepts actually play. In the main part of this thesis we shall formulate all our theory in the
most general manner possible. Hopefully, this chapter will ease the grasping of this imminent
abstract formulation.

This chapter should be regarded as something of a pre-appendix, that is to say, an appendix
before the main text—as opposed to after. The reader familiar with theoretical aspects of quantum
information theory or foundations of quantum mechanics can skip ahead to Chapter 1. For the
same very reason, there may be some minor repetitions in the main text of what is stated here.

0.1 A sphere of states

Regard a two level quantum system and a two dimensional Hilbert space. The prime example
of such a system would be the spin space of an electron, though any two dimensional quantum
system will suffice. We will consider the polarisation space of a single photon as this more closely
relates to quantum information as it is implemented in the lab.

The point of this first section is to convince the reader that the set of states of any two level
quantum system is readily realised as a sphere and that the orientation of states on this sphere
is relevant. We shall start to argue this from pure physical grounds using photon polarisation as
our example. At this point we shall involve a minimal amount of mathematical constructions.
Afterwards, we shall develop a mathematical description of this argument which applies to any
two level system, convincing ourselves that this is the model we should use when talking about
the set of quantum states.

0.1.1 The physical approach
Generic light is said to be ’unpolarised’, which is kind of an inapt terminology, rather it has a
maximally mixed polarization, that is to say, it has components in all polarisation directions.
Polarised light on the other hand, in its most simple implementation, is linearly polarised. We
obtain linearly polarised light by letting unpolarised light pass through a linear polarisation filter,
as is shown in Figure 1.

Notice that a linear polariser imposes a polarisation direction on the light. In Figure 1 we
filter every component but the vertical part, and we say that the obtained light is polarised along

vii
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Figure 1: A vertical polarisation filter. Image credit: Bob Mellish at Wikimedia commons, image
used under the Creative Commons Attribution-Share Alike 3.0 Unported-licence.

the y-axis, or, simply, that it is vertically polarised. We see from the figure that every linear
polarisation can be expressed in terms of two polarisation modes, horizontal (x-) and vertical
(y-) polarisation, as such we might take them for bases vectors for the linear polarisation space.

In this polarisation plane we may represent any given linear polarisation by a normalised
polarisation vector, pointing at a unit circle of polarisation states. E.g. the vector (1/

√
2 , 1/

√
2 )

points at the state having equal amounts of horizontal and vertical polarisation, which makes
an angle of π/4 with the x-axis, this polarisation vector corresponds to a diagonal polarisation.
There are two diagonal polarisation directions, we call them left and right diagonal polarisations,
with the π/4 one being right diagonal polarisation. Note that there is some potential ambiguity
going on here, the polarisation vector is not effected by the sign, such that the polarisation vectors
(x, y) and (−x,−y) both correspond to the same polarisation. This mishap will be compensated
for in a moment.

This is a good point to introduce the concept of orthogonality at a physical level. If we apply
a vertical polarisation filter it is known that only vertically polarised light passes through it. If
one then applies a horizontal polarisation filter to the obtained light, all light will be filtered out,
as is hinted in Figure 1. We say that these states are opposite, or, that they are orthogonal with
respect to the horizontal-vertical polarisation basis∗. In general, having polarised light in any
given direction, the amount of light passing through a second filter is given by sine square of the
angle between the polarisation axes.

This pattern can be understood within the context of measurements. Regard a polariser as
a device preparing copies of some quantum state. Let us say, for the sake of the argument, that
this is a horizontal polariser. A second polariser might then be viewed as a measurement. If we
measure these prepared states by asking: “Is this a horizontally polarised photon?” to each and
every photon, the answer will always be ’yes’. Similarly, if we ask every photon if it is vertically
polarised, the answer will always be ’no’, and no light will be allowed to pass through. Finally,
we know from last paragraph that half of the light should be filtered by a right diagonal polariser.
This corresponds to half of the photons resulting in ’yes’ and the other half resulting in ’no’.

From this observation and by the superposition principle we can not only verify that the
states of vertical and horizontal polarisation are orthogonal—we can also conclude that the
right diagonal polarisation state sit equidistant to these states. Regarding the polariser as a

∗Note that this is not the x-y-base introduced for the polarisation plane. This has to do with the sign
dependency.
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Figure 2: Decomposition of circular polarisation.

measurement (which is all in order), the photons stacking up in half ’yes’, half ’no’, corresponds
to each measurement having probability 1/2 for yielding ’yes’ or ’no’. This is equivalent of
saying that there is no bias with respect to horizontal or vertical polarisation when making
this measurement. Hence, this measurement corresponds to a measurement in a different basis,
specifically an unbiased basis, more on this later.

In order to obtain a more general description of photon polarisation we need to regard po-
larisation states where the polarisation vector rotates. This is conceived by letting the x and y
components oscillate with time. The result is illustrated in Figure 2.

We see that the result is a circular polarisation. Note that we obtain two different kinds of
circular polarisation states since the polarisation vector can either rotate in the positive or nega-
tive direction. This is determined by the relative oscillatory motion of the x and y components.
Figure 2 might be of help to visualise this. We label the respective polarisation states as right
and left circular polarisation.

Note that any linear polarisation state can be realised as a combination of these circular
polarisation states. But what about elliptical polarisation states? An ellipse in the polarisation
plane would correspond to the oscillatory range being different in the x and y directions in Figure
2. This renders the set of polarisations into a sphere, with the circular polarisation modes at the
poles; the circle of linear polarisations situated at the equator; and where the rest corresponds
to various elliptic polarisations. This is shown in Figure 3. A more rigid argument can be found
e.g. here [28].

Figure 3: The sphere of photon polarisations.

Also, note that through the introduction of this polarisation picture, the before mentioned
ambiguity of the circle of linear polarisations have been resolved. Now points of opposite sign
correspond to orthogonal states – as it should be.
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u v |ψ〉 State vector Polarisation

0 1 |1〉
(

0
1

)
1 0 |0〉

(
1
0

)
1 1 1√

2
|0〉+ 1√

2
|1〉 1√

2

(
1
1

)
1 −1 1√

2
|0〉 − 1√

2
|1〉 1√

2

(
1
−1

)

1 i 1√
2
|0〉+ i 1√

2
|1〉 1√

2

(
1
i

)
1 −i 1√

2
|0〉 − i 1√

2
|1〉 1√

2

(
1
−i

)
Table 1: Certain superpositions of interest. In this table we have imposed normalisation. In the
case of photon polarisation the resulting polarisation is also given in this table.

0.1.2 The mathematical approach
Photon polarisation is a good example of why we use mathematics as the language to express
physics – the reasoning above is exquisitely described in mathematics. We start out by intro-
ducing two distinct state vectors

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
(1)

and we identify these with the left- and right circular polarization modes of the photon.

In accordance with the laws of quantum mechanics we may very well (and should!) consider
superposition of these basis vectors. A superposition would then be some state

|ψ〉 = u|0〉+ v|1〉 (2)

where u, v ∈ C.

We immediately single out some interesting states in table 1.

Now, we know from quantum mechanics that a state vector scaled by some arbitrary complex
number still corresponds to the same physical state. As such, any physical, two dimensional,
state (equation 2) is uniquely determined by the quotient of the complex coefficients u and v.
Hence, we introduce

z =
u

v
(3)

Let us investigate this claim. We can easily calculate z for the states given in the table above†.
†The attentive reader might at this point argue that this quotient does not handle v = 0 very well – which is

bad, since this is one of our basic states given in table 1 However, this will be compensated for in a moment!
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Figure 4: The stereographic projection of the Bloch sphere.

However, these nice states are exceptions, a general state does not sit in any of these ’privileged’
positions. Moreover, z assumes values from the whole of C∞‡, so it is obviously not the length
of some state on the sphere. Rather u and v spans a C2-plane.

In fact, the quotient z corresponds to a stereographic projection from the south pole of the
sphere§ [28]. By imposing this stereographic projection every state is uniquely labelled by a
complex number, though we need to add infinity to deal with the point of projection. This
stereographic projection is illustrated in Figure 4.

This sphere is referred to as ’the Bloch sphere’¶. In a complex 3-space this sphere would be
oriented around the origin with the special points in table 1 situated oppositely at a distance of
1/2 along respective axis, forming an octahedron. The radius 1/2 is chosen by convention and is
motivated by the fact that we want the maximum distance between two states to be π/2. The
Bloch sphere is given in Figure 5.

Figure 5: The Bloch sphere of quantum states, where the MUB-vectors form a octahedron.

The introduction of a Bloch sphere is a very deep result that is one of the founding blocks
of quantum information. Realising the orthogonal states |0〉 and |1〉 as left and right circular
polarisation the equatorial states are required to represent linear polarisation, as is stated in
table 1. This observation renders the remaining states on the Bloch sphere elliptic polarisation
states, the result is given in 3.

‡This is the field of complex numbers including infinity.
§Such a projective space is called a Riemann sphere.
¶Named after the Swiss physicist Felix Bloch.
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We shall use the Bloch sphere picture to calculate the probability of finding |ψ〉 in some
specific state is. Assume that |ψ〉 is in the state |0〉 + |1〉. Assume also, for simplicity, that
we restrict ourselves to states that sit on the equator of the Bloch sphere. The result will be
qualitatively the same regardless of initial state and whether we choose states on the equator or
not, since we can always orient our coordinate system such that this is the case. Writing |ψ〉 as
|ψ〉 = 1√

2
(|0〉+ eiφ|1〉), the probability for finding some state is

p =

∣∣∣∣〈ψ|( 1√
2
|0〉+

1√
2
|1〉
)∣∣∣∣2 =

1

4
|1 + eiφ|2 =

1

2
(1 + cosφ) (4)

where φ is the angle between the vectors.

Hence, the probability of finding |ψ〉 in the same very state is unity while it is 0 for finding
the state in the orthogonal state, as it should be. More interestingly however, if we calculate the
probability of finding |0〉+ i|1〉 or |0〉− i|1〉 we find that it is precisely 1

2 . Noting how these states
are situated on the Bloch sphere we realise that they sit in two completely different bases. In
fact, this corresponds to the two corresponding observables being complementary. Recall that
we introduced complementarity as: “If we know everything about a state in some base, then we
know nothing at all about it in the complementary base”, thus the complete set of complementary
bases in the Bloch sphere forms a complete set of Mutually Unbiased Bases (MUBs) such that
they satisfy the MUB criterion

|〈ei|fj〉| =
1

2
∀ i, j (5)

where |ei〉 and |fj〉 are basis vectors in two different bases.

This mathematical description is well in tune with the photon polarisation discussed before.
The orthogonality of states and the statement that horizontal and diagonal polarisation sit in
mutually unbiased bases is in agreement with this formalism.

Before we move on, we shall emphasise two statements of great importance.

“The set of states of a two level system constitutes a sphere.”
We have derived this result from both a physical and a mathematical line. This carries
over to higher dimensions in a similar but more complicated fashion.

“The position on this sphere is important.”
Not only do the states sit on a sphere (or make up a sphere, depending on your perspective),
the relative positioning of the states is also of relevance. We have seen that certain positions
of states corresponds to orthogonality among other things.

Both these observations play a key role as structural elements throughout this thesis.

0.2 The notion of a group

We now introduce the operators

Z =

(
1 0
0 −1

)
X =

(
0 1
1 0

)
ZX =

(
0 −1
1 0

)
(6)

Acting with Z on our special states in table 1 while disregarding normalising factors we find
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Z

(
1
0

)
=

(
1
0

)
(7)

Z

(
1
1

)
=

(
1
−1

)
(8)

Z

(
1
i

)
=

(
1
−i

)
(9)

Looking at Figure 5 we realise that this operation actually corresponds to a rotation by π
about the ’z-axis’, or rather, about the orthonormal (ON) base spanned by

(
0
1

)
and

(
1
0

)
, which

is mutually unbiased to the other two ON-bases spanning the Bloch sphere. Similarly, the X
and ZX operations correspond to rotations about the ’x’ and ’y’ axes respectively.

Now, this structure right here, is due to an underlying group, and moreover a – for this thesis –
very important group; the Weyl-Heisenberg group. The two dimensional Weyl-Heisenberg group
is given by the operators above and the identity operator. We will use this group extensively
throughout the rest of this thesis.

Regarding, once again, that the MUBs form a octahedron we identify another potentially
interesting configuration of points on the Bloch sphere, namely the eight points that maximise the
distance from the MUB-vectors. These special points should correspond to something remarkable
– and indeed, they form two Symmetric Informationally Complete Positive Operator Valued
Measures (SIC-POVMs; or just SICs) – the key player of this thesis. A SIC is a set of states
on the Bloch sphere given by equiangular vectors that, in two dimensions, span a tetrahedron.
Moreover, in any dimension these states are situated as to maximise the distance from the MUB-
vectors. A SIC is given in Figure 6.

Figure 6: A SIC on the Bloch sphere with MUB-vectors given as balls for reference. The SIC
forms an inscribed tetrahedron.

That the SIC-vectors span a tetrahedron is derived from the fact that the vectors are equian-
gular. This structure is preserved as we advance to higher dimensions. The SICs will always
span regular polyhedra—albeit in a slightly more complicated implementation. Since the vectors
are equiangular, the inner product of any two vectors in the SIC is constant, in two dimensions
it is

|〈ψi|ψj〉|2 =
1

3
(10)

A SIC is generated by acting on any one state in the set with all elements in the Weyl-
Heisenberg group. We call such a vector a SIC-fiducial vector and say that the SIC is an orbit
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under the Weyl-Heisenberg group. Recall that we have just learnt that acting with the Weyl-
Heisenberg group elements corresponds to doing certain rotations on the Bloch sphere. A fiducial
vector in two dimensions is [35]

ψ0 =


√

1
2

(
1 + 1√

3

)
eiπ/4

√
1
2

(
1− 1√

3

)
 (11)

Acting with the Weyl-Heisenberg elements on this state we find some more vectors like this
one. Even from a quick glance we decide that these states are a great deal more complicated
than the ones found before. This observation foreshadows the hardship of finding SICs in higher
dimensions. We will use the Weyl-Heisenberg group in similar ways later on.

The introduction of SICs introduces yet another important operator – the Zauner operator
UZ .‖ This is an order 3 operator that acts in a similar way on SIC-vectors as the Weyl-Heisenberg
group did on MUB-vectors. Fixating one state in the SIC, the Zauner operator will embody the
order 3 rotational symmetry of the tetrahedron around the symmetry axis passing through this
state on the Bloch sphere.

Since both the Zauner operator and the Weyl-Heisenberg group are realised as rotations of the
Bloch sphere – and by the fact that they both relate to SICs – we might suspect that there is a
connection between the two. By imposing that the tetrahedron spanned by the SIC is oriented in
a special way (such that they maximise the distance to the MUB-vectors), the Zauner operator
and the Weyl-Heisenberg group become simultaneously meaningful as illustrated in Figure 7.
This further strengthens the statement that the relative positioning of states are important on
the Bloch sphere.

Figure 7: Acting with the Zauner operator corresponds to a rotation of 2π
3 . This permutes the

vectors in the SIC- and MUB-vectors.

Without having to do any calculation we can see from this picture that the Zauner operator
will permute the set of MUBs. Hence, starting from one single MUB-vector we can generate the
set of MUBs by consecutively acting with the Zauner operator. As such the Zauner operator is
a ’MUB-cycler’ in two dimensions.

‖It is labelled U since it is a unitary operator.
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0.3 Looking ahead

Summarising we have studied some of the most central concepts of this thesis in two dimensions:
the MUBs, the SIC, and the Weyl-Heisenberg group. We even got to mention the MUB-cycler
in the end, to which we will return in the last chapter of this thesis.

Be aware that not all the structure present in this two dimensional case study will carry over
to higher dimensions. We will clarify why this is the case in the Chapter 1. However, the outline
will be the same. We will, at length, study the interaction between these key players, and while
some of the structure is specific to two dimensions much is inherited to higher dimensions.

As the thesis progresses it will become increasingly hard to provide decent pictures of the
spaces which we study. In fact, being able to visualise the whole Hilbert space is a luxury
enjoyed solely in two dimensions. Even in C3, being the next dimension, the Bloch space is eight
dimensional. As such we will largely rely on algebra to express our results. However, we will try
to illustrate our results to the extent it is possible, there are some nice geometrical tricks yet to
be unveiled!



Part I

BACKGROUND

1



Chapter 1

On the Geometry of Quantum
States

In this chapter we shall introduce the quantum theory required for this thesis. We will scope
the idea of a measurement of a quantum system and adopt a geometry for quantum states. The
reader is assumed to have previous knowledge of quantum mechanics and the Dirac formalism
equivalent to that of an undergraduate, e.g. Sakurai’s “Modern Quantum Mechanics” [29].

1.1 Classification of states

At the heart of quantum mechanics dwells the idea of a state. A state is that which contains
all conditional information of any given system. To specify this entity in more detail using gen-
eral terms is hard – if at all possible – and at any rate not the purpose of this text. Rather, we
shall arrive at a precise mathematical definition in the language of convexity and density matrices.

1930-1932 P.A.M. Dirac and J. von Neumann developed the axiomatic formalism of quantum
mechanics. Herein they postulated the intrinsic probabilistic nature of all quantum theory [20]
[33]; this is where we start our journey.

Regard the following two situations

1. A set-up preparing half of the states as |0〉 and the other half of the states as |1〉 written

ρ =
1

2
|0〉〈0|+ 1

2
|1〉〈1| (1.1)

2. A set-up producing states in the superposition 1√
2
|0〉+ 1√

2
|1〉 written

ρ =
1

2
(|0〉+ |1〉)(〈0|+ 〈1|) =

1

2
|0〉〈0|+ 1

2
|1〉〈1|+ 1

2
|0〉〈1|+ 1

2
|1〉〈0| (1.2)

Measuring either of these systems the probability for finding the system in the state |0〉 is the
same, namely 1

2 . It is a philosophical question whether the nature of these probabilities are
the same. Regardless of your take on that issue there is, as of today, no way of distinguishing
between the two when making a measurement. That is to say; they are numerically identical.

2
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As such we must have a mathematical description of quantum states that incorporate both of
these probabilities.

Any measurement in quantum mechanics can be represented by a Positive Operator Valued
Measure (hereinafter POVM), we define a POVM as

Definition 1. Positive Operator Valued Measures (POVMs)

Let Ei be an operator. We say that it is a POVM if it satisfies

I Completeness
N∑
i=1

Ei = 1 (1.3)

II Hermiticity
Ei = E†i (1.4)

III Non negativity1

Ei ≥ 0 (1.5)

Additionally, if Ei is an ON-base the POVM corresponds to a projective measurement, which
is typically the kind of measurement we do in the lab.

In this formalism, the probability for the outcome numbered i given a state |ψ〉 is

pi = |〈ψ|Ei|ψ〉| (1.6)

It follows from the definition of POVMs that

pi ≥ 0 (1.7)

N∑
i=1

pi = 1 (1.8)

Suppose that we have a source that by some means generates a set of states {|ψj〉} with some
corresponding probabilities p′j . Measuring this ensemble of states we find

pi =

K∑
j=1

p′j〈ψj |Ei|ψj〉 = Tr

Ei N∑
j=1

p′j |ψj〉〈ψj |

 (1.9)

We now define the density matrix

Definition 2. Density Matrix

Let {|ψj〉} be a set of states with associated probabilities p′j, then the density matrix for any
given state is

ρ =

N∑
j=1

p′j |ψj〉〈ψj | (1.10)

satisfying
1It has non negative real eigenvalues, λi.
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I Hermiticity
ρi = ρ†i (1.11)

II Non negative eigenvalues
ρ ≥ 0 (1.12)

III Normalisation
Tr ρ = 1 (1.13)

We can take the density matrix to be a more mathematical definition of a state. In the
formalism of density matrices we write 1.9 as

pi = Tr (Eiρ) (1.14)

This is a rather enjoyable expression. Since the trace is the same regardless of basis we may
choose to evaluate this in any convenient basis.

The density matrix contains all the viable information of a quantum system. Combining density
matrices and POVMs in this way we find a very concise formalism for calculating the probabili-
ties of a given system.

If ρ represents a pure state we have

ρ2 = |ψ〉〈ψ|ψ〉〈ψ| = |ψ〉〈ψ| = ρ (1.15)

Which means that for a pure state

Tr ρ2 = 1 (1.16)

This means that we can always chose a basis such that ρ is of the form

ρ =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 (1.17)

Or equivalently

λj = 1 λi = 0 ∀ i 6= j (1.18)

We say that ρ has the spectrum (1, 0, . . . , 0).2 Conversely Tr ρ2 < 1 implies that the state is
mixed.

The notion of density matrices may be expanded by introducing the convex mixing of density
matrices.

ρ = pρ1 + (1− p)ρ2 (1.19)

where p is some probability.

This convex mixing of states accounts for the mixed states and it is the most general notion of
a state that we will use. However, we shall mainly concern ourselves with pure states why from
here on all states are assumed to be pure if nothing else is explicitly stated.

2Of course any one diagonal element can be 1, we just chose the first one for convenience.



CHAPTER 1. ON THE GEOMETRY OF QUANTUM STATES 5

1.2 The geometry of density matrices

For pure states we recognise that |ψ〉 and eiθ|ψ〉 both represents the same physical state. We
express this relation as

eiθ|ψ〉H ←→ |ψ〉CPN−1 (1.20)

Such that there exists a bijection between physical states and rays in Hilbert space. This is
illustrated in Figure 1.1. The set of rays spans the complex projective N −1-plane CPN−1 where
every point corresponds to a state. Accounting for the phase in equation 1.20 and for normalisa-
tion (〈ψ|ψ〉 = 1) this space has 2(N − 1) real dimensions, cf. HN which has 2N real dimensions.
This property of quantum states (1.20) is very important since it greatly reduces the number of
states which are physically relevant.

Figure 1.1: The bijection between points in the complex projective space (CPN−1) and rays in
Hilbert space (H) illustrated. The complete set of rays in HN spans CPN−1, the space of all
quantum states.

We introduce the N2− 1 real dimensional vector space, V , of all traceless, Hermitian N ×N
matrices. N2 − 1-dimensional because a general Hermetian matrix has N2 parameters but the
requirement of tracelessness removes one degree of freedom, leaving us with N2 − 1 parameters.

In V

ψ 7−→ |ψ〉〈ψ| − 1

N
1 (1.21)

is a 2(N − 1) dimensional vector.

We introduce the following geometry on V

I Scalar product

A ◦B =
1

2
TrAB (1.22)

II Norm
||A||2 =

1

2
TrA2 (1.23)



CHAPTER 1. ON THE GEOMETRY OF QUANTUM STATES 6

Let’s work out some of the features of this vector space given the geometry above.

For any two, orthogonal, basis vectors in RN

〈ei|ej〉 = 0 (1.24)

We transfer these into V by the transformations

ei = |ei〉〈ei| −
1

N
1 (1.25)

ej = |ej〉〈ej | −
1

N
1 (1.26)

and check the consequences of orthogonality

ei ◦ ej =
1

2
Tr

[(
|ei〉〈ei| −

1

N
1

)(
|ej〉〈ej | −

1

N
1

)]
=

1

2
Tr

[
− 1

N
|ei〉〈ei| −

1

N
|ej〉〈ej |+

1

N2
1

]
=

1

2

(
− 1

N
− 1

N
+

1

N

)
= − 1

2N

(1.27)

This calculation shows us that we have lost the familiar orthogonality of the basis vectors. How-
ever, it also tells us that the basis vectors now span a regular simplex, since all the inner products
take the same value.

We can verify this by calculating the distance between two basis vectors.

||ei − ej||2 =
1

2
Tr

(
|ei〉〈ei| − |ej〉〈ej | − 2

1

N
1

)2

=
1

2
Tr(|ei〉〈ei|+ |ej〉〈ej |)

=
1

2
(1 + 1) = 1

(1.28)

In order to get a feeling for this coordinate system we shall investigate the case N = 3. By
equations 1.27 and 1.28 the distance between any two basis vectors is 1 and their scalar product
is − 1

6 accounting for an angle 2π
3 between them. This forces the length of the basis vectors to

be 1√
3
. Hence the three basis vectors e1, e2 and e3 spans a 2-simplex as shown in Figure 1.2.

The intuitive coordinate system on a simplex is the barycentric coordinate system. An arbitrary
vector in this coordinate system can be written

v = α1e1 + α2e2 + · · ·+ αNeN αi ≥ 0 ∀ i (1.29)

We note that e1 +e2 + · · ·+eN = 0 by symmetry; this is easily realised by regarding the N = 3
case. We may choose the following normalisation as a constraint for the coefficients αi

α1 + α2 + · · ·+ αN = 1 (1.30)

Using this normalisation we can realise the coefficients as probabilities and we relabel them ap-
propriately as p1, p2, . . . , pN . This provides a nice, intuitive, picture of what a vector, v, in the
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Figure 1.2: In three dimensions the basis vectors of the vector space V forms a 2-simplex.

simplex actually represents. Regard Figure 1.2 once again, equations 1.27 and 1.28 tell us that
at the furthermost top of e1 we have p1 = 1, p2 = p3 = 0, hence this is where we find the pure
state with eigenvalues (1, 0, 0). Likewise the other pure states are found at respective vertex.
Whereas in the middle of the edges we find states like p1 = 0, p2 = p3 = 1/2 (bottom line) which
corresponds to the mixed state with eigenvalues (0, 1/2, 1/2). The maximally mixed state sits in
the middle with p1 = p2 = p3 = 1/3. We call this density matrix ρ∗.

We calculate the length of an arbitrary vector v in the simplex as

v ◦ v =

(
N∑
i=1

piei

)2

=

N∑
i=1

p2
iei ◦ ei +

 N∑
i=1
i 6=j

N∑
j=1
j 6=i

pipjei ◦ ej


= \ ei ◦ ei =

N − 1

2N
ei ◦ ej = − 1

2N
\

=
N − 1

2N

N∑
i=1

p2
i −

1

2N

N∑
i=1
i 6=j

N∑
j=1
j 6=i

pipj =
N − 1

2N

N∑
i=1

p2
i −

1

N

1

2

(
N∑
i=1

pi

)2

− 1

2

N∑
i=1

p2
i


=
N − 1

2N

N∑
i=1

p2
i +

1

2N

N∑
i=1

p2
i −

1

2N
=

1

2

N∑
i=1

p2
i −

1

2N

(1.31)
Summarising, the barycentric coordinates pi are subject to the following constraints

N∑
i=1

pi = 1 (1.32)

N∑
i=1

p2
i = 2||v||2 +

1

N
(1.33)
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1.3 Mutually unbiased bases

The attentive reader might recall that the state |ψ〉 sits in an N2 − 1-dimensional real space,
RN2−1, and argue that insofar, in N = 3, we have only talked about some vector in a 2-simplex,
which is a vector in, R2, rather than a vector in R8. This is however all in order, note that a
vector in a 2-simplex is actually a vector in some 2-dimensional plane. The simplex from last
section is but one simplex sitting in one out of four totally orthogonal planes in R8. There
are three additional simplices orthogonal to this one, making a total of 2 × 4 = 8 dimensions.
However, in order to construct them we need to introduce the concept of Mutually Unbiased
Bases [26][34]

Definition 3. Mutually Unbiased Bases (MUBs)

Let {ei} and {fj} be two complete sets of basis vectors spanning the bases E and F . These
are said to be mutually unbiased if and only if

|〈ei|fj〉|2 =
1

N
∀ i, j (1.34)

Taking the inner product of two basis vectors from two different MUBs in V we find,

ei ◦ fj =
1

2
Tr

[(
|ei〉〈ei| −

1

N
1

)(
|fj〉〈fj | −

1

N
1

)]

=
1

2
Tr

− 1

N
|ei〉〈ei| −

1

N
|fj〉〈fj |+ |ei〉〈ei|fj〉〈fj |︸ ︷︷ ︸

= |〈ei|fj〉|2 = 1
N

+
1

N2
1


=

1

N

(
− 1

N
− 1

N
+

1

N
+

1

N

)
= 0

(1.35)

thus the simplices are MUBs and sit in totally orthogonal planes in V .

This completes the example of the 3-dimensional Hilbert space by concluding that any state
|ψ〉 is given by its projection onto four totally orthogonal simplices as shown in Figure 1.3. The
length of each component corresponds to the convex mixing of density matrices in that basis.
Note that this is all valid for both mixed and pure states, hence this formalism incorporates
classical mixing of states as well as quantum probabilities. This will be further exemplified in
the end of this section.

It follows from equation 1.31 that the total length of some vector |ψ〉 in V is

||ψ|| =
N+1∑
j=1

 N∑
i=1

p
(j)
i

2

2
− 1

2N

 (1.36)

We can generalise this case study by arguing that in N dimensions the MUBs form N − 1-
simplices with N − 1 real parameters. We also know that any state can be decomposed with
projective measurements onto the MUBs. Hence, in N dimensions there must be at least
N2−1
N−1 = N + 1 MUBs. Furthermore, if N ∈ P then the number of MUBs is always N + 1,
where P is the set of prime numbers [26][34].
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Figure 1.3: ψ decomposed into four MUBs.

Having introduced MUBs we turn to a related piece in the puzzle of quantum state geometry;
the notion of minimum uncertainty states [8].

Definition 4. Minimum Uncertainty State (MUS)
Let |ψ〉 be a state in Hilbert space and let p(j)

i be the component of |ψ〉 along the i:th basis
vector in the j:th MUB such that p(j)

i = |〈ψ|e(j)
i 〉|2. Then |ψ〉 is a minimum uncertainty state if

and only if

N∑
i=1

(p
(j)
i )2 =

2

N + 1
∀ j ∈ [1, N + 1] (1.37)

Figure 1.4: The inner sphere of MUS and the outer sphere of MUB-states in N = 3.

In V , MUSs are in a way antipodal to the MUB vectors (the basis vectors of the MUBs).
Once again turning to the 3-dimensional case for intuition, we realise from equation 1.37 and
Figure 1.2 that while MUB vectors have coordinates such as (1, 0, 0) the MUSs have coordinates
such as

(
0, 1

2 ,
1
2

)
. Thus the MUB vectors are situated as far away from their corresponding MUS

as possible [21], see Figure 1.4. Note that a state |ψ〉 which is a MUB vector in one MUB is
projected to ρ∗ in all other MUBs, hence the antipodal analogy only holds in one MUB. On the
contrary MUSs have components of equal length in all four MUBs. This property of MUSs is
the direct geometrical realisation of equation 1.37, thus we may take it to be the defining quality
of a MUS.

This nicely generalises to an arbitrary prime dimension N as [21]

1. ψ sits in a N2 − 1 dimensional space.

2. ψ is decomposed into N + 1 MUBs being N − 1-simplices.
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3. The pure states sit at a distance

d2
pure =

1

2

N∑
i=1

p2
i −

1

2N
=

1

2
− 1

2N
=
N − 1

2N
(1.38)

where we used
pj = 1 =⇒ pi = 0 ∀ i 6= j (1.39)

4. The MUS sit at a distance

d2
MUS =

1

2

N∑
i=1

p2
i −

1

2N
=

1

N − 1
− 1

2N
=

N − 1

2N(N + 1)
(1.40)

where we used the MUS condition from Definition 4.

All quantum states ψ – mixed and pure – are enclosed by a sphere. This sphere has dimension
N2 − 2 since the sphere of highest dimension that can be embedded in RN

2−1 (the space of all
quantum states) is SN2−2. The set of pure states, CPN−1, forms a submanifold on the surface
of this sphere and has dimension 2(N − 1) [21].

Note that N = 2 is quite special. Here the dimension of V is R3 which makes two dimensions
exceptional for working out some intuition as to how this geometry is realised. According to sub-
sequent sections the MUBs in two dimensions are pairs of opposite lines (1-simplices) emerging
from ρ∗ with lengths 1

4 . Hence all the pure states are sitting on a sphere of radius 1
4 enclosing

the mixed states. But this is just the Bloch ball(!), which is the set of all quantum states for a
two level system (widely recognised as a qubit).

Figure 1.5: |ψ〉 decomposed into three 1-simplices (lines). Each simplex is spanned by two basis
vectors corresponding to the spin directions of a 2-dimensional quantum system. A state is
projected onto these MUBs where it is assigned a value corresponding the probability in that
base.

For the sake of intuition we include a figure showing how the states are geometrically related
to the simplices, see Figure 1.5. We see that there is a disc of states orthogonal to every point on
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a given MUB vector which are projected onto this point, this is also the case in higher dimensions
albeit it is hard to visualise, eg. in N = 3 at every point in the simplex there is a sphere of
points orthogonal to that point being projected to that point. Any state ket |ψ〉 is decomposed
into the MUBs with lengths corresponding to the probabilities for that outcome.

We conclude this chapter by proving the following theorem which shall be useful later on.

Theorem 1. Probability when summing over all MUBs

Given an arbitrary state vector in CN

|ψ〉 =


√
p1√

p2 e
µ1i

...√
pn e

µni

 (1.41)

and an inner product

pi = |〈ψ|e(j)
i 〉|

2 (1.42)

where e(j)
i is the i:th basis vector of the j:th MUB in dimension N , N ∈ P

Then

N+1∑
j=0

N∑
i=1

p
(j)
i = 2 (1.43)

Proof.

By equations 1.36 and 1.38

N − 1

2N
=

N+1∑
j=1

 N∑
i=1

p
(j)
i

2

2
− 1

2N

 ⇐⇒
N+1∑
j=1

N∑
i=1

p
(j)
i

2
= 2

(
N − 1

2N
+
N + 1

2N

)
= 2

(1.44)

and the proof is done.

�



Chapter 2

Exploring the Weyl-Heisenberg
Group

The subject of group theory is an elegant part of abstract algebra. Although being a subject that
is sometimes overlooked in the undergraduate physics programmes, it has a lot of applications in
physics. With this in mind we shall assume no prior knowledge of groups from the reader. While
we cannot spend a lot of time on giving a thorough introduction to group theory, we shall at least
have the common courtesy of formally define (most of) the group theoretical concepts to be used.

The reader who is inclined towards learning more about the fascinating subject of groups is re-
ferred to the literature; e.g. Flaleigh’s “A First Course in Abstract Algebra” [22] or for a more
comprehensive (and more advanced) reference Lang’s “Algebra” [27]. We hope that the reader
already familiar with group theory bears with us.

Throughout this chapter Einstein summation convention for tensors is implied1.

2.1 Mathematical definitions

Like any proper text in mathematics we inaugurate this chapter with a definition. We will define
the abstract algebraic entity called a group. This is a very general notion defined as follows

Definition 5. Group

We define a group (G, ?) as a set, G, under a binary operation, ?, satisfying the so called
group axioms

I Closure
a ? b = c ∈ G ∀ a, b ∈ G (2.1)

II Associtivity
(a ? b) ? c = a ? (b ? c) ∀ a, b, c ∈ G (2.2)

1Contracted indices implies summation, eg. Aijxαyβgαβ = Aij
∑l
α=1

∑l
β=1 x

αyβgαβ . Note that all terms in
an expression are elements of some tensors in this formalism, as such they commute: gαβxαbβ = gαβb

βxα.

12
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III Existence of identity element

∃ e ∈ G | e ? a = a ? e = a ∀ a ∈ G (2.3)

IV Existence of inverse element

∃ a′ ∈ G | a′ ? a = a ? a′ = e ∀ a ∈ G (2.4)

When working with groups it is inevitable to come across the concept of homomorphisms, so
we define it right away

Definition 6. Homomorphism

Let (G, ?) and (H, ∗) be two groups, we define the homomorphism to be a function such that

∃ φ : G 7−→ H | φ(u ? v) = φ(u) ∗ φ(v)∀ u, v ∈ G (2.5)

The homomorphism can be thought of as a generic function between two groups. We can
formulate other functions, but generally the functions have to obey this criterion to make any
sense. In accordance with common group theory practice we shall emphasise two special types
of homomorphisms worthy of their own definitions.

Definition 7. Isomorphism

Let the homomorphism φ : G 7−→ H be bijective. Then we call φ an isomorphism and we say
that G and H are isomorphic.

Isomorphisms can be thought of as the group theoretical analogue to congruence. If two groups
are isomorphic they are in every practicable sense the same.

Definition 8. Automophism

Let the homomorphism φ : G 7−→ G be bijective. Then we call φ an automorphism.

A general automorphism does not have a clear counterpart in ordinary functions, it is a
function whose domain and codomain are the same. An example of an automorphism is the
permutation of a set; it sends all the elements in the set to the set itself, but it changes the order
of the elements. We shall introduce two automorphisms right away to be used later on: Let
φ(g) = h−1gh be some automorphism. If h is an element in G, φ is called an inner automophism.
If h is an element in a larger group containing G, φ is called an outer automorphism.

We are now fit to define our first group through the following presentation2

Definition 9. The Weyl-Heisenberg group

Let GWH be a group with the following defining representation3

2The proper definition of a presentation is rather lengthy and not very enlightening, as such will omit its formal
definition. Rather we shall take the presentation of a group to be the set of generators along with some relation
that generate all elements of the group as products of powers of the generators subject to the relation and be
happy about it.

3This is a concept from the branch of mathematics called representation theory. We will not define it. In this
specific case we can think of it as a way of mimicking the group with non-unitary matrices.
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ω =

1 0 i
0 1 0
0 0 1


X =

1 0 0
0 1 j
0 0 1


Z =

1 k 0
0 1 0
0 0 1


for i, j, k ∈ ZN – the set of integers modulo N .

Also let GWH have the following presentation

GWH =

{
ZX = ωXZ
XN = ZN = ωN = 1

(2.6)

Then GWH forms the Weyl-Heisenberg group under matrix multiplication within ZN . GWH has
N3 group elements ωkXiZj called words.

The Weyl-Heisenberg group is instrumental to this thesis, the observant reader shall identify
it as a key background player throughout the rest of the text. We use the following essentially
unique unitary representation of the Weyl-Heisenberg group

Z|r〉 = ωr|r〉 (2.7)

X|r〉 = |r + 1〉 (2.8)

ω = e
2πi
N (2.9)

with r ∈ ZN .

Using this representation we can reconstruct all elements of the Weyl-Heisenberg group in
any given basis. Specifically, in an orthogonal N dimensional base

〈r|s〉 = δr,s (2.10)

Using the unitary representations 2.7 and 2.8 we find

〈r|Z|s〉 = ωsδr,s (2.11)

〈r|X|s〉 = δr,s+1 (2.12)

and a general element is written
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〈r|ωkXiZj |s〉 =

= 〈r|ωkXi(ωs)j |s〉
= 〈r|ωk+sjXi|s〉
= 〈r|ωk+sj |s+ i〉
= ωk+sj〈r|s+ i〉
= ωk+sjδr,s+i

(2.13)

We now define the displacement operators as [6]

Definition 10. Displacement Operators

Let τ = −e
iπ
N and let XiZj be a general element in the Weyl Heisenberg group.4 Then the

displacement operator is

Dij = τ ijXiZj = τ ij+2sjδr,s+i (2.14)

where i, j, r, s ∈ ZN

We note that

D†ij = D−i−j (2.15)

This gives us a nice way of writing a general element in the Weyl-Heisenberg group, where the
indices of D in a way labels the elements by their order in X and Z, e.g.

D01 = Z (2.16)

D10 = X (2.17)

Taking the product of two general elements in the Weyl Heisenberg group we find

DklDkj = ωkj−ilDkjDkl (2.18)

We assert that kj − il comes from an anti symmetric quadratic form, Ω, on a discrete phase
space, W . This is realised by introducing the matrix

Ω =

(
0 −1
1 0

)
(2.19)

and the vectors

p =

(
i
j

)
q =

(
k
l

)
(2.20)

Then

Ω(p, q) = piqjΩij = kj − il (2.21)

4The attentive reader will realise that τ = −e
iπ
N = −

√
ω . We introduce τ because the displacement operators

do not make sense in even dimensions without this notion. Even though we shall mostly concern ourselves with
prime dimensions in this thesis we introduce this formalism for completion.
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hence, Ωab is a quadratic form. Furthermore, it is a quadratic form on a discrete space since the
vectors p1 and p2 are defined for integer i, j, k, l. Also we note that it is anti-symmetric

Ω(p, q) = −Ω(q,p) (2.22)

Having identified the indices of equation 2.18 with the vectors 2.20 we reformulate the displace-
ment operators in accordance with current conventions [6]

DpDq = ωΩ(q,p)DqDp (2.23)

One should be restrained towards introducing new notation without good reason. But it shall
soon be clear why this is a superior notation.

Figure 2.1: The quadratic form on the discrete phase space spanned by i and j.

There is a real analogue of equation 2.21 such that

x =

(
x1

x2

)
y =

(
y1

y2

)
xi, yi ∈ R (2.24)

Ω(x,y) = xiΩijy
j = x2y1 − x1y2 (2.25)

This is the (oriented) area in a R2-plane spanned by the vectors x and y. In just the same way,
equation 2.21 is really the area spanned by the vectors p and q as shown in Figure 2.1.

Before we can proceed from this point we need to define two additional abstract algebraic
constructions.

Define a subgroup as

Definition 11. Subgroup

Let (G,?) be a group. Then H is said to be a subgroup of G if and only if

I H is closed under ?.

II The identity element, e, of G is also in H.

III Every element in H has an inverse in H.
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Now define the normaliser of a group to be

Definition 12. Normaliser

Let G be a group and let S be a subset of group elements. The normaliser of S with respect
to G is again a set of group elements such that

NG(S) = {g ∈ G | gSg−1 = S} (2.26)

If S is chosen such that it is a subgroup of G then the normaliser is also a subgroup of G
containing S, in symbols S ⊆ NG(S) ⊆ G.

Now define the Clifford group as the normaliser of the Weyl-Heisenberg group within the
group of unitary matrices

Definition 13. The Clifford Group

Let U be the group of unitary matrices under matrix multiplication and call the group elements
U and let GWH be the Weyl-Heisenberg group. Then the Clifford group is the normaliser of GWH

with respect to U

GC = {U ∈ U | U†GWHU = GWH} (2.27)

From here on we shall apply the convention that whenever we write U we mean an element
in the Clifford group rather than any unitary matrix.

Since we have chosen a unitary representation of the Weyl-Heisenberg group it is a subgroup
of U . It follows from the definition of the normaliser and the subgroup that the Weyl-Heisenberg
group is also a subgroup of the Clifford group.

Regard the following outer automorphism of an arbitrary element in the Weyl-Heisenberg
group

U†DpU = Dp′ (2.28)

The product of two general elements in the Weyl-Heisenberg group can be written

DpDq = ωΩ(q,p)DqDp (2.29)

By means of 2.28 we can write the left hand side as

UDpDqU† = U†DpUU†DqU = Dp′Dq′ (2.30)

whereas the right hand side can be written

UωΩ(q,p)DqDpU† = ωΩ(q,p)UDqDpU† = ωΩ(q,p)Dq′Dp′ (2.31)

thus,

Dp′Dq′ = ωΩ(q,p)Dq′Dp′ (2.32)

It is also trivially true from equation 2.29 that

Dp′Dq′ = ωΩ(q′,p′)Dq′Dp′ (2.33)
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why it had better be true that

Ω(q,p) = Ω(q′,p′) (2.34)

let’s assume that the transformation p 7−→ p′ is linear and that it is mediated by(
p′1
p′2

)
=

(
α β
γ δ

)
︸ ︷︷ ︸

=G j
k

(
p1

p2

)
(2.35)

whereG is an arbitrary element in the group of general linear 2×2 matrices moduloN , GL(2,ZN ).
This is plausible and can be proved [6]. We require that Ω(q,p) is invariant under GL(2,ZN ),
hence

G k
i G

l
j Ωkl = Ωij (2.36)

If we solve this equation we find that G is subject to

αδ − βγ = 1 (2.37)

or equivalently that G has unit determinant. This constraint further restricts G to the special
linear group of 2×2 matrices SL(2,ZN ) which incidentally is isomorphic to the symplectic group
SP (2,ZN ) for 2× 2 matrices.

We introduce the following unitary representation of the special linear group [6],

Definition 14. Unitary representation of SL(2,ZN )(
U(α β

γ δ

))
rs

=
eıθ√
N
τ

1
β (δr2−2rs+αs2) (2.38)

where α, β, γ, δ, r, s ∈ ZN , θ is a phase, αδ−βγ = 1 modulo N and β−1 is the inverse of β within
ZN .

If β is non-invertible we need to tweak this equation somewhat. Using 2.38 it is straight
forward to show that

U(α 0
γ δ

) ≡ U( 0 −1
1 0

)U( γ δ
−α −β

) (2.39)

Using this definition a unitary representation of any 2× 2 matrix in equation 2.35 can be found.

Putting subsequent definitions together we find the following: A general transformation of p
into p′ is given by 2.35. This transformation is mediated by the group SL(2,ZN ). Furthermore
there is a set of unitary matrices that take the displacement operator of p into the displacement
operator of p′, equation 2.28. But the SL(2,ZN ) in 2.35 has a unitary representation by equation
2.38. It follows that the unitary operators in 2.28 are the unitary representation of the SL(2,ZN )
element in 2.35, hence these two equations are very much related and can even be seen as the
same equation written in two different representations. If we recall the definition of a normaliser
it follows from this argument that SL(2,ZN ) is a subgroup of the Clifford group.
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An alternative definition of the Clifford group arises from this argument. We could equally
well have defined the Clifford group (modulo phases) as the semi-direct product5 SL(2,ZN ) o
GWH [6].

2.2 Orbits under the Weyl-Heisenberg group

We shall start out this section by wrapping up some missing group theoretical definitions. How-
ever, in order to make powerful definitions we shall first indulge the concepts of equivalence
relations and equivalence classes. These are two very general algebraic structures; a lot of funda-
mental concepts in mathematics can be understood within the context of equivalence relations
and classes. Furthermore, we shall see that physical structure can also be realised within this
framework.

Definition 15. Equivalence Relations and Equivalence Classes

Let ∼ be a binary relation on a set X, we call ∼ an equivalence relation if it satisfies

I Reflexivity
a ∼ a ∀ a ∈ X (2.40)

II Symmetry
a ∼ b ⇐⇒ b ∼ a ∀ a, b ∈ X (2.41)

III Transitivity
a ∼ b ∧ b ∼ c =⇒ a ∼ c ∀ a, b, c ∈ X (2.42)

We define an equivalence class of an element, a, as the set of elements such that

[a] = {x ∈ X | a ∼ x} (2.43)

A powerful consequence of the definition of an equivalence class is that

x ∼ y ⇐⇒ [x] = [y] (2.44)

thus any two equivalence classes are either disjoint or equal, consequently the set of equivalence
classes form a partition6 of X.

We will now introduce the quotient group and as a prerequisite to that the cosets of a group.
These might seem remote abstract concept at first glance, but we shall shortly relate them to
what we did in last section.

Definition 16. Coset

5We will not bother to give a formal definition of the semi-direct product as it relies on several group theoretical
definitions which we have not introduced. Also one ought to be careful not do digress for too long amongst the
beautiful subject of group theory lest one intends to stay. Think of the semi-direct product as the composition
rule (a1, b1) o (a2, b2) = (a1a2, b1 + a1b2).

6A division of a set into non overlapping subsets such that every element in the set is found in one and only
one subset.
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Let H be a subgroup of G and let ∼ be the equivalence relation such that gi ∼ gj if and only if
gih = gj for some h ∈ H, then the left coset of H is the equivalence classes under ∼, in symbols7

giH = {gj ∈ G | gi ∼ gj} (2.45)

We could of course, analogously, have defined the right coset. Finally we define the quotient
group as follows

Definition 17. Quotient Group

Let N be a normal subgroup8 of G. The quotient group, G/N is the set of left (or right)
cosets of N , written

G/N = {S ∈ G|S = gN, g ∈ G} (2.46)

with the binary operation

(giN)(gjN) = (gigj)N (2.47)

We now return to the statement that p and q are vectors in a discrete phase space, Figure
2.1. Recall that the coordinates of a point in this plane can written as the components of a
vector pointing at that point. Furthermore, recall that these components are the indices of the
displacement operators which in turn corresponds to different elements in the Weyl-Heisenberg
group. Doing this identification each point in the discrete phase space corresponds to an element
in the Weyl-Heisenberg group. However only elements on the form XiZj are being indexed in
this way. To describe this properly we introduce the centraliser of a group

Definition 18. Centraliser

Let H be a subgroup of G then the centraliser of H is the set of elements in G that commute
with every element in H,

C(H) = {x ∈ G|xh = hx ∀ h ∈ H} (2.48)

Note that we can likewise define the centraliser of an element by trading H for h.

The elements of the form XiZj indeed forms a group, it forms the quotient group of the
Weyl-Heisenberg group and the centraliser of the Weyl-Heisenberg group within the group of
unitary matrices, GWH/C(GWH). This is the Weyl-Heisenberg group modulo phases; which
serves us just fine since we are ultimately interested in applying this framework to physical
systems where we regard a state and a state with an attached phase to be equivalent, cf.
equation 1.20. Note however, that this is not a subgroup of the Weyl-Heisenberg group since
XiZjXkZl = ωXi+kZj+l, which is not in this quotient group. Actually, for the reminder of the
thesis, whenever we refer to the Weyl-Heisenberg group it will be this group we refer to rather
than the Weyl-Heisenberg group with phases. This group is sometimes called the collineation
group9.

In terms of equivalence classes we define the orbit to be
7Usually the left coset is defined as xH = {xh|h ∈ H} but it is nice to think of the cosets as equivalence

classes, so we make this slightly more unorthodox definition. For one part, with this definition it is obvious that
the set of cosets is a partition of G. Both definitions are in every practical sense equivalent.

8A normal subgroup is a subgroup with the additional criteria that xHx−1 = H ∀ x ∈ G. For a normal
subgroup the right and left cosets coincide.

9The collineation group is the set of all transformations which conserves the collineation of points.
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Definition 19. Orbit

Let g and h be elements in some group G, and let X be some set. Let ∼ be the equivalence
relation such that g ∼ h if and only if there exists an x in X such that x ? g = h, in symbols

g ∼ h ⇐⇒ ∃ x ∈ X | x ? g = h (2.49)

We define the orbits as the equivalence classes under this equivalence relation. In symbols,

[g] = {h ∈ G | g ∼ h} (2.50)

The set of orbits forms a partition of G.

Notice that this definition allows for orbits within a group under different sets. We shall
mostly look at orbits under SL(2,ZN ) within the Weyl-Heisenberg group. In this case the orbits
are given by consecutively applying the following operation until the original element is returned

U(α β
γ δ

)D( i
j

)U†(α β
γ δ

) = D( iα+jβ
iγ+jδ

) ⇐⇒ (
α β
γ δ

)(
i
j

)
=

(
iα+ jβ
iγ + jδ

)
(2.51)

This explains how equation 2.28 from previous section works.

The set of elements in the Weyl-Heisenberg group that can be generated by consecutively
acting on some element with an element in SL(2,Zn) forms an orbit under that element. The
size of the orbit will be the same as the order of the matrix chosen. Also it follows from the
definition of an orbit that all elements in the Weyl-Heisenberg group will be in some (but only
one!) orbit. E.g. if we choose the order five matrix

(
2 1
−1 0

)
we calculate an orbit as presented in

equation 2.52 and illustrated in Figure 2.2

Figure 2.2: An orbit in the Weyl-Heisenberg group under an element in SL(2,ZN )
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(
2 1
−1 0

)(
1
0

)
=

(
2
−1

)
=

(
2
4

)
(

2 1
−1 0

)(
2
4

)
=

(
8
−2

)
=

(
3
3

)
. . .(

2 1
−1 0

)(
0
1

)
=

(
1
0

)
(2.52)

Another useful partition of the Weyl-Heisenberg group is the decomposition of the group into
cyclic subgroups10 generated by powers of the elements in the group. Since the Weyl-Heisenberg
group is taken modulo N , we are sure to obtain cyclic subgroups as(

i
j

)(
i
j

)
=

(
2i
2j

)
(
i
j

)(
2i
2j

)
=

(
3i
3j

)
. . .

(2.53)

where
(
i
j

)
corresponds to the element XiZj in the Weyl-Heisenberg group.

This concludes the group theoretical background needed for this thesis.

2.3 A note on calculating MUBs

Having introduced all group theory necessary for this thesis, we shall at once put it to good
use in discussing how to explicitly calculate the MUBs introduced in Chapter 1. MUBs are in
themselves an intriguing subject of great importance for e.g. quantum computing [18] (though
in quantum computing they are commonly recognised as stabiliser states) and there are several
ways available for calculating them. We will here present two ways; the standard way, which one
ought to know as a reference, and an elegant way [13].

The standard way of calculating the MUBs is to find the eigenbases of the elements of the
Weyl-Heisenberg group. There are N2 elements in the Weyl-Heisenberg group but only N + 1
MUBs. Excluding the identity matrix given by X0Z0 we are left with N2−1 elements – calculat-
ing the eigenbases of these we find that the group elements arranges themselves into N + 1 cyclic
groups with N − 1 elements, where all elements in the same cyclic groups generate the same
eigenbasis (MUB). These cyclic groups are exactly the once introduced in the end of last section,
generated by equation 2.53. Hence we only need to calculate the eigenbase of one element from
each cyclic subgroup in order to obtain all the MUBs. The grouping is illustrated in Figure 2.3
for N = 5.

Be aware that there is some ambiguity going on here. When calculating the eigenbases—or
rather when calculating the eigenvectors to form the eigenbases, the ordering of the eigenvectors
depend on the ordering with which we index our eigenvalues. This will not be a problem though;

10A cyclic group is a group where all elements can be generated by successively taking powers of any one
element. All cyclic groups are abelian, which is what a group where all elements commute is called in honour of
the Norwegian mathematician Niels Abel.
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Figure 2.3: Illustrating which elements XiZj that corresponds to the same MUB when calcu-
lating the eigenbases.

since all MUBs are, per definition, bases, the specific order of the basis vectors is irrelevant. Each
time we use the MUBs in a calculation we will sum over all the basis vectors.

The elegant way of calculating the MUBs is to find an SL(2,ZN ) element of order N under
which the MUBs form an orbit and adding the computational basis (the standard base) to these.
Apart from the computational basis, the so called Fourier basis is the MUB that is most easily
calculated. It is written, by equation 2.38, as

UF = U( 0 1
−1 0

) =
1√
N
ωijδij (2.54)

The element that we use to cycle through the MUBs is the following [13]

US = U( 1 0
1 1

) =
1√
N
ω
i2

2 δij (2.55)

Acting with US N − 1 times on UF we obtain all the MUBs.



Chapter 3

Getting to Know the SIC-POVM

In this last background chapter we will define the SIC and survey the task ahead of trying to find
SICs. We will start out by defining the SIC and tie it to concepts introduced in previous chapters.
Next we will introduce a brute force, but exhaustive, way of searching for SICs. Finally we will
state the main conjectures on SICs as of today, which will guide us on our quest to find SICs. We
shall also prove a theorem of paramount importance for the later parts of this thesis concerning
SICs and MUSs.

Parts of this chapter might seem abstract at first glance to a physicist, but there are good
physics to be found within the framework of SICs and while it require us to think in terms of
groups, the rewards of linking abstract algebra to physics are great.

3.1 Mathematical definition

Preceding chapters have been dedicated to formulating the physical and mathematical framework
necessary to study the SIC-problem to some extent. Now we may finally formulate the definition
of the SIC [19]; the protagonist of this thesis

Definition 20. Symmetric Informationally Complete Positive Operator Valued Measure (SIC-
POVM)

Let {ψ} be a set of N -dimensional unit vectors, we say that {ψ} constitutes a Symmetric
Informationally Complete Positive Operator Valued Measure (SIC-POVM; commonly just SIC)
if, for any two vectors ψµ and ψν in {ψ}

N2−1∑
µ=0

1

N
|ψµ〉〈ψµ| = 1 (3.1)

and

|〈ψν |ψµ〉|2 =

{
1 if ν = µ

1
N+1 if ν 6= µ

(3.2)

Take heed that while the formulation of a SIC is deviously simple, the SIC-problem has
eluded physicists and mathematicians since the early 90’s. This is indeed both the charm and

24
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the nuisance of the SIC-problem!

Equation 3.1 in the SIC-POVM definition corresponds to the POVM part. We verify this for
self-consistency

I Completeness
This follows directly from equation 3.1 by setting Ek = |ψµ〉〈ψµ|.

II Hermiticity
ρ = |ψµ〉〈ψµ| is a density matrix, as such it is Hermitian by definition.

III Non negative real eigenvalues
Being a density matrix this requirement is also met by construction.

We have scaled the left hand side of equation 3.1 with a factor 1
N in order to ensure that it sums

to identity. This is realised by taking the trace of both sides and noting that since |ψµ〉〈ψµ| is a
density matrix, it has unit trace.

Likewise equation 3.2 in the definition corresponds to the SIC part. Symmetric means that
the inner products are all the same, whereas informationally complete means that making mea-
surements in all the basis vectors completely determines the density matrix. The symmetry part
follows directly from the equation 3.2. As for the informational completeness there are N2 − 1
elements in a density matrix and there are a total of N2 inner products. Acknowledging that
the probabilities of these inner products sum to unity, we are left with N2−1 parameters, which
are just as many we need to determine the density matrix.

As of today, every SIC found except one1 is formed as the complete set of orbits under the
Weyl-Heisenberg group of any one vector in that SIC [6][30]. That is to say, given any vector in a
SIC, |ψ0〉, the full SIC is found by consecutively acting with all elements of the Weyl-Heisenberg
group on this vector, Dij |ψ0〉. We call such a vector a SIC-fiducial vector. There are no proof
ensuring that we can always find a SIC in any finite dimension, but numerical searches strongly
suggests so [30].

We therefore formulate the following conjecture

Conjecture 1. Fiducial Vector Existence

In every dimension there exists at least one vector |ψ0〉 such that {Dij |ψ0〉} forms a SIC.

Take notice that there may be – and are usually – more than one SIC in any given dimension.
Thus we need to straighten out our terminology. While it is true that any vector in a SIC
generate the other vectors as orbits under the Weyl-Heisenberg group we shall see that when we
search for SICs we will always (except in two dimensions) find one and only one vector from each
SIC. Hence we reserve the term ’SIC-fiducial vector’ (from here on only ’fiducial vector’) for the
vectors associated with different SICs.

1In N = 8 there is a SIC formed as the group GWH(2)×GWH(2)×GWH(2) which is slightly different from
the ordinary GWH(8) [25]
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3.2 The SICness function

The remainder of this text will be about finding SICs in one way or an other. Conjecture
1 strongly suggests that a good way of finding SICs is to search for fiducial vectors, why we
introduce the following function [10][11]

Definition 21. The SICness function

Let |ψ〉 be any normalised vector and let |ψij〉 = Dij |ψ〉, then we define the SICness function
as

fSIC(|ψ〉) =
1

2

N−1∑
i=0

N−1∑
j=0

(
|〈ψ|ψij〉|2 −

1

1 +N

)2

(3.3)

where we require that (i, j) 6= (0, 0).

Spelled out this is a function which is zero if and only if |ψ〉 is a vector that forms a SIC under
orbits in the Weyl-Heisenberg group; i.e. a fiducial vector |ψ0〉. Conjecture 1 states that there
exists such a vector in every dimension. Hence we may use equation 3.3 to search for fiducial
vectors and we name it appropriately as the SICness function since it quantifies how much of a
SIC fiducial vector any given state is.

It is possible to rewrite 3.3 in a more computation friendly way by introducing the frame
potential [10][11]

Ft =

K∑
I=1

K∑
J=1

|〈ψI |ψJ〉|2t (3.4)

Relabelling the indices of equation 3.3

fSIC =
1

2

N2−1∑
I=0
J=0
I 6=J

(
|〈ψI |ψJ〉|2 −

1

N + 1

)2

=
1

2

N2−1∑
I=0
J=0

(
|〈ψI |ψJ〉|2 −

1

N + 1

)2

− 1

2

N2−1∑
I=J

|〈ψI |ψJ〉|2︸ ︷︷ ︸
=1

− 1

N + 1

2

=
1

2

N2−1∑
I=0
J=0

|〈ψI |ψJ〉|4 −
1

N + 1

N2−1∑
I=0
J=0

|〈ψI |ψJ〉|2 +
N4

2(N + 1)2
− N4

2(N + 1)2

=
1

2

N2−1∑
I=0
J=0

|〈ψI |ψJ〉|4 −
1

N + 1

N2−1∑
I=0
J=0

|〈ψI |ψJ〉|2

=
1

2
F2 −

1

N + 1
F1

(3.5)

Here we have played the trick of trading
∑
ij |〈ψ|ψij〉|2 for

∑
ij |〈ψi|ψj〉|2. Be aware that we

are well within our rights to do so since we can always find some Dij such that
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∑
ij

|〈ψi|ψj〉|2 =
∑
ij

|〈DklDiD
†
klψi|DklDjD

†
klψj〉|

2 =
∑
ij

|〈ψ|ψij〉|2 (3.6)

It is required by the definition of a SIC that |ψI〉 is a unit vector. We let

K∑
I=1

|ψI〉〈ψI | =
K

N
1 (3.7)

be an equally weighted POVM. Taking the trace of the left hand side we find

Tr

K∑
I=1

|ψI〉〈ψI | =
K∑
I=1

Tr |ψI〉〈ψI | =
K∑
I=1

|〈ψI |ψI〉| =
K∑
I=1

1 = K (3.8)

the second equality is true because we have restricted ourselves to unit vectors.

While for the right hand side

Tr
K

N
1 = K (3.9)

Having concluded 3.8 and 3.9 we play the following trick; taking the trace of two such sums,
we find that

Tr

K∑
I=1

|ψI〉〈ψI |
K∑
J=1

|ψJ〉〈ψJ | = Tr
K

N
1
K

N
1 =

K2

N
(3.10)

But it is also true that

Tr

K∑
I=1

|ψI〉〈ψI |
K∑
J=1

|ψJ〉〈ψJ | =
K∑
I=1

K∑
J=1

Tr |ψI〉〈ψI |ψJ〉〈ψJ | =
K∑
I=1

K∑
J=1

|〈ψI |ψJ〉|2 = F1 (3.11)

Finally, our POVM has N2 elements thus

F1 = N3 (3.12)

and we find

fSIC =
1

2
F2 −

N3

N + 1
(3.13)

Written out

f(ψ) =
1

2

N−1∑
i=0

N−1∑
j=0

|〈ψ|ψij〉|4 −
N3

N + 1
(3.14)

Even though this expression is computationally more desirable than its original form 3.3 we
will stick to the original form in the text since it is more intuitive to look upon.

Note that while the SICness function is minimised when all the inner products are 1
N+1 it is

maximised when all inner products are equal to one. This happens exactly for the MUB-basis
vectors [21]. This is realised by noting that the unitary representation of the Weyl-Heisenberg



CHAPTER 3. GETTING TO KNOW THE SIC-POVM 28

d 1 ei
2π
3 ei

4π
3

3m m+1 m m-1

3m+ 1 m+1 m m

3m+ 2 m+1 m+1 m

Table 3.1: The dimensions of the Zauner subspaces of any given dimension can be found using
this table. E.g. d = 5 is on the form 3m+ 2 for m = 1 why 5-dimensional Hilbert space is split
into two 2-dimensional and one 1-dimensional subspace.

group elements (equation 2.13) are monomials with roots of unity in some pattern. Taking the
modulus inner product of a vector on the form (1, 0, . . . , 0) and such matrices always result in
one.

3.3 Zauner subspaces

All fiducial vectors found sit in very special (and small!) subspaces of Hilbert space [6][30].
This is not at all to be expected and it further adds to the mystery shrouding the SIC-problem.
Specifically, all fiducial vectors sit in a subspace which is spanned by the eigenvectors of a unitary
representation of an element in SL(2,ZN ) of order 3 and with negative unit trace. We call such
a subspace a Zauner subspace and we call the unitary operator a Zauner operator [6][35], named
after Gerhard Zauner who pioneered the study of SICs.

The Zauner operator always have the following eigenvalues 1, ω1, ω2 where ω is the third root
of unity [35]. Technically the Zauner operator splits Hilbert space into three subspaces, each
with the same dimension as the degeneracy of the associated eigenvalue. These eigenspaces then
form the Zauner subspaces. The dimensionality of the Zauner subspaces are given given in table
3.1
We conjecture that

Conjecture 2. Fiducial Vector Confinement

Every fiducial vector is an eigenvector of an order 3 element, U , in the Clifford group with
TrU = −1 and that is the unitary representation of an element in SL(2,ZN ). Additionally, in
prime dimensions, all fiducial vectors sit in the largest of the subspaces generated by this operator.

Together Conjecture 1 and 2 make up Zauner’s original conjecture from 1991 [35].

In a 2-dimensional space we can search exhaustively for fiducial vectors by choosing |ψ〉
according to

|ψ〉 =

(
cos θ2 |ei〉

sin θ
2e
iφ|ej〉

)
(3.15)

and calculate the SICness function for all θ and φ to some sufficient numerical precision. But
this is precisely the parametrisation of the Bloch sphere. Hence, plotting the contours of the
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SICness-function for this choice of |ψ〉 we can map the SIC-function onto the Bloch sphere. How-
ever, 3-dimensional objects – such as a sphere – are not very apt for printing on paper, therefore
we do the mapping presented in Figure 3.1.

Figure 3.1: Schematic description of how the surface of S2 is transformed into a plane with
the vertical sides topologically identified. Note that this transformation will distort the image,
especially close to the poles.

At times we shall want to search for fiducial vectors in spaces of dimension larger than two,
we shall then construct 2-dimensional subspaces from the basis vectors according to

|ψ〉 =
cos θ

2
|ei〉+

sin θ

2
eıφ|ej〉 (3.16)

3.4 The MUS connection

In this section we shall prove a very important result for this thesis; we shall prove that all
fiducial vectors are MUS. Note that the converse is not true—all MUS are not fiducial vectors!
This is a known result, but it is of such decisive importance to this thesis that we shall formulate
it as a theorem and provide a proof. The original proof can be found here [8].

Theorem 2. SIC-MUS relation

A state which is a SIC is also a MUS.

Proof.

Let |ψ〉 be a general state,

|ψ〉 =


z0

z2

...
zN−1

 (3.17)

with za =
√
pa e

iµa

We use the following matrix representation of an element in the Weyl-Heisenberg group

XiZj = ωbjδa,b+i (3.18)
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For a general |ψ〉 the following is true

〈ψ|XiZj |ψ〉 =

N−1∑
a,b=0

z∗aω
bjδa,b+izb =

N−1∑
a=0

ω(a−i)jz∗aza−i (3.19)

and as usual with (a, b) 6= (0, 0).

Thus,

|〈ψ|XiZj |ψ〉|2 =

N−1∑
a,b=0

ω(a−b)jz∗aza−iz
∗
b−izb (3.20)

Keep i fixed and take the discrete Fourier transform

N−1∑
j=0

ωkj |〈ψ|XiZj |ψ〉|2 =

N−1∑
j,a,b=0

ω(k+a−b)jz∗aza−iz
∗
b−izb =

N

N−1∑
a,b=0

δb,k+az
∗
aza−iz

∗
b−izb =

N

N−1∑
a=0

z∗aza−iz
∗
a+k−iza+k

(3.21)

Assume that |ψ〉 = |ψ0〉 which is a fiducial vector and set i = 0. This is all in order since all
cyclic subgroups of the Weyl-Heisenberg group are all equivalent in this calculation.

N−1∑
j=0

ωkj |〈ψ0|Zj |ψ0〉|2 = N

N−1∑
a=0

papa+k (3.22)

We are left with two cases, if k=0 the left hand side of equation 3.22 becomes

N−1∑
j=0

|〈ψ0|Zj |ψ0〉|2 = 1 +
N − 1

N + 1
=

2N

N + 1
(3.23)

and the right hand side becomes

N

N−1∑
a=0

papa (3.24)

such that

N−1∑
a=0

p2
a =

2

N + 1
(3.25)

If k 6= 0, the left hand side of equation 3.22 becomes,

|〈ψ|ψ〉|2 +

N−2∑
j=0

ωkj |〈ψ0|Zj |ψ0〉|2 = 1 +
1

N + 1

N−2∑
j=1

ωkj = 1− 1

N + 1
=

N

N + 1
(3.26)
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such that

N−1∑
a=0

papa+k =
1

N + 1
(3.27)

Notice that equations 3.25 and 3.27 together define a simplex with size corresponding to a MUS
and with correct scalar products. Hence all SICs spans simplices and furthermore the fiducial
vectors are MUSs.

This completes the proof.

�

We shall conclude the background part of this thesis by taking a quick detour to do a curious
remark about finding SICs. The problem of finding SICs can equivalently be reformulated as a
geometrical optimisation problem rather than a numerical minimisation problem.

Figure 3.2: The submanifold of pure states.

We have already declared that all fiducial vectors are pure states, as such they sit in CPN−1,
we have also just shown that complete sets of fiducial vectors spans regular simplices. Recalling
that CPN−1 forms a submanifold on SN2−2 (equation 1.40) we can conclude that the simplices
(SICs) must be inscribed in this sphere. This is known since the requirement that fiducial vectors
are pure states places them on the surface of the sphere, and in order to have the correct inner
products (equation 3.27) they must span simplices in RN

2−1. Hence the SIC-existence problem
may equally well be formulated as fitting regular simplices into a certain (known!) submanifold
of a higher dimensional sphere. This is illustrated in Figure 3.2.
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Chapter 4

SICs in Low Dimensions

For the remainder of the text we will either be presenting, or commenting on, our own results.
It is our ambition that the reader shall be able to follow our line of reasoning after having un-
derstood the first part of this thesis.

The main goal of this chapter is to work out some intuition about the SICness function; equa-
tion 3.3. We shall go about this by dissecting the SICness function in the low dimensions 2, 3, 4
and 5. Like before we shall put some extra effort into dimension 2 as it is an excellent dimension
to be thorough in due to its simplicity.

That said we encourage the reader to pay close attention to the attached plots as they most
likely are more illuminating than trying to decipher the SICness function or the fiducial vectors
by themselves. It will be evident that finding fiducial vectors is, even numerically, a formidable
task already in low dimensions.

4.1 Two dimensions

As stated before, the 2-dimensional case is an extraordinary case in that we can actually view
the full space since everything interesting collapses to a 2-sphere embedded in R3 (cf. section
1.3 “Mutually Unbiased Bases”). Hence we will investigate the 2-dimensional case a bit further
in order to build some intuition.

In two dimensions we may write out fSIC(ψ) explicitly—this is not possible, or rather, not at
all convenient, in dimensions higher than two since the number of terms in the SICness function
increase very rapidly with increasing dimension. The SICness function is given by equation 3.3

fSIC(ψ) =
1

96
(31 + 12 cos 2θ + 21 cos 4θ + 24 cos 4φ sin4 θ) (4.1)

The contour plot of fSIC(ψ) is given in Figure 4.1.

There is a lot to be learnt from this map and we shall dwell on it for a while to make some
remarks. Firstly we note that there are eight minima (black dots). Probing the minima with
Mathematica we find that they are actually zeroes of fSIC(ψ) and thus fiducial vectors. We know
that these eight vectors constitute two SICs since the definition of a SIC requires that each SIC

33
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Figure 4.1: The map of fSIC(ψ) in two dimensions. Dark areas represent low function values
whilst light ones represent high values. Minima are given as black dots and maxima as magenta
dots. The yellow contour is the contour consisting of all saddle points for the function. On the
φ-axis we have the azimuthal angle and on the θ-axis we have the polar angle

be made of N2 = 4 vectors. Accounting for a total of eight zeroes.

As per our deliberations on the geometry of SICs from last chapter, we expect the vectors of
the SICs to arrange themselves into regular polytopes. We note that the minima come with a
period of π2 in ψ for two separate θ, which is exactly what we would expect for two tetrahedra,
and indeed, extracting the coordinates of the minima we recover the two tetrahedra, see Figure
4.2.

Another, slightly more technical, argument arriving at the same number of SICs stems from
the fact that acting on a fiducial vector with an element in the Clifford group will again result
in a fiducial vector – this is shown in the end of this chapter in lemma 1. In dimensions two
through six all fiducial vectors line up nicely as an orbit under an order 3 element of the Clifford
group [30]. Noting that the Clifford group has cardinality

|GC |︸︷︷︸
24

= |SL(2,Z2)|︸ ︷︷ ︸
6

× |GWH |︸ ︷︷ ︸
4

(4.2)

using the requirement of an order 3 element we find that the size of the orbit is 24
3 = 8. Since

the SICs spans tetrahedra, we have 8
4 = 2 SICs in two dimensions. We emphasise, however, that

this is not true in general.

We have also found six maxima1 (magenta dots), these correspond to the six basis vectors
of the three MUBs in two dimensions, cf. MUBs on the Bloch sphere, Figure 1.5, and note
that the coordinates of the MUBs are identical. Given the existences of minima and maxima we
anticipate some kind of distribution of saddle points. These lie exactly on the yellow contour in

1Two maxima sit at the poles, in this crude projection these points are maximally distorted to lines.
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Figure 4.2: The SICs in the Bloch sphere.

the map conspicuously given by fSIC(ψ) = 1
6 . It so happens that the Alltop MUB vectors2 lie in

the self intersections of this curve [4][13]. As a curious remark we note that this contour makes
four great circles on the sphere.

The preceding results are summed up in table 4.1. For the sake of intuition we also include
a snapshot of the function as seen on an actual sphere, Figure 4.3.

Lastly, one might inquire as to the total number of distinct inner products |〈ψ|ψij〉|2 that
occur in fSIC(ψ). In Figure 4.4 we give the contours |〈ψ|ψij〉|2 = 1

1+d for the three distinct inner
products on the background of fSIC(ψ). We know that they must all intersect at the minima.
This is realised by noting that at these coordinates all three distinct inner products are zero, since
these are the zeroes of the SICness function. Note that this is by no means a trivial statement.
Picking three random one dimensional curves representated by three equations in two variables
we would not expect a simultanious solution to the given system of equation, and hence we would
not expect them to intersect in the same point. This observation shall be important in the next
chapter.

2Alltop MUBs are a different sets of MUBs that can be constructed. They are however not however within
the scope of this thesis, and we shall not do more with them then note that they are present.
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Figure 4.3: The map of fSIC(ψ) in two dimensions. The yellow lines are great circles made up
of saddle points.
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Table 4.1: Extrema for f(φ, θ) in two dimensions
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Figure 4.4: In two dimensions fSIC(ψ) has three distinct inner products. For each of these we
give the contour |〈ψ|ψij〉|2 = 1

1+d on the background of the SICness function.

4.2 Three dimensions

As per our discussion about the space of pure states, CPN−1, in Chapter 1, it is now no longer
possible to plot the whole space due to the dimensionality. Rather, we shall have to be content
with looking at subspaces spanning Bloch spheres. This is achieved according to the decompo-
sition presented in Chapter 3, equation 3.16. In the Zauner case we have conjectured that all
SIC fiducial vectors sit in the largest Zauner subspace. If this subspace is 2-dimensional we may
use the basis vectors to form a Bloch sphere using the same trick as before. This only works
for dimensions three through five though, after dimension five the largest Zauner subspace is of
dimension three or greater.

In three dimensions the level curves of the SICness function in all the subspaces of C3 and the
Zauner subspace are almost the same, hence we will only study the Zauner subspace and merely
make a note on the difference to the picture in C3. In three dimensions we find the following
basis vectors to the Zauner subspace [35]

ψ1 =
1√
6

 2
−α2

−α2

 ψ2 =
1√
2

 0
1
−1

 (4.3)

Taking ψ to be a general vector in this subspace we find the contour plot of the SICness function
to be as in Figure 4.5.

There are no isolated zeroes in this plot, rather there is a straight line of zeroes for θ = π
2 .

The only difference in C3 is that this line is not zero, otherwise the plots are very much similar.
Hence, we have a one parameter family of SICs in one dimension. This one parameter solution
can be written [35]

ψx = cosxψ1 + α2 sinxψ2 (4.4)

for x ∈ R [35]. Such that any vector, ψx, written on that form is a fiducial vector.
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Figure 4.5: The map of fSIC(ψ) in three dimensions. The dark line in the middle is a line of
zeroes.

Since there is a one parameter solution of SICs in this dimension we expect that there should
only be one distinct inner product of the form |〈ψ|ψij〉|2 = 1

1+d . It is the sole inner product
that makes up the line in the plot. Compare this situation to the one in two dimensions. In two
dimensions we had several distinct inner products and we concluded that the fiducial vectors
must lay in the intersection of these curves, this generated a set of distinct fiducial vectors. In
three dimensions we only have one equation which generate a one dimensional family of SICs.
Thus, we are left with a single distinct inner product which is given in Figure 4.6.

Figure 4.6: The single distinct inner product in three dimensions.
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4.3 Four dimensions

4.3.1 The standard base
In four dimensions, we can construct six different subspaces spanned by the basis vectors of the
standard base. In these we find two kinds of contour plots. The subspaces e1 − e2, e1 − e4,
e2 − e3 and e3 − e4 generate a plot which is just like the one in C3, so we omit this plot.

On the other hand, in the subspaces e1− e3 and e2− e4 the SICness function exhibits some
more intriguing structure and is given in Figure 4.7.

Figure 4.7: The map of fSIC(ψ) in the subspaces e2 − e3 and e3 − e4 in four dimensions. On
the φ-axis we have the azimuthal angle and on the θ-axis we have the polar angle.

We observe that this plot is suspiciously like its 2-dimensional counterpart. The same distri-
bution of extrema is evident and we can easily spot the same curve of saddle points. In fact, this
map is just a scaled version of the map in two dimensions given by

f4D(ψ) = 16/15 + 2f2D(ψ) (4.5)

There are three distinct inner products in the subspaces e1−e2, e1−e4, e2−e3 and e3−e4
while there are five distinct inner products in subspace e1 − e3 and e2 − e4. Accounting for a
total of eight inner products. None of them are very interesting though since we have found no
fiducial vectors in these subspaces. Most of the distinct inner products generate no plot at all,
and the ones who do generate two straight lines equally separated from the equator.

4.3.2 The Zauner subspace
Guided by Conjecture 2 and table 3.1, we construct the basis vectors for the Zauner subspace by
finding the eigenvectors corresponding to the degenerate eigenvalue 1 of a Zauner unitary. The
following will suffice

U(−1 −1
1 0

) =


1
2e

iπ
4 − i

2 − 1
2e

iπ
4 − i

2

1
2e

iπ
4

1
2

1
2e

iπ
4 − 1

2

1
2e

iπ
4

i
2 − 1

2e
iπ
4

i
2

1
2e

iπ
4 − 1

2
1
2e

iπ
4

1
2

 (4.6)
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we find the basis vectors [35]

ψa =
1√
6


ρ+ 1
i

ρ− 1
i

 ψb =
1√
2


0
1
0
−1

 (4.7)

where ρ = e
iπ
4 .

The contour plot of fSIC(ψ) in the Zauner subspace is shown in 4.8.

Figure 4.8: The map of fSIC(ψ) in the Zauner subspace of C4.

As mentioned in the beginning of this chapter the complexity of the SICness function increases
rapidly. In four dimensions we are starting to see the effects of this. The contour plot is looking
less ordered than the one in two dimensions. We can make out four minima just below the
equator and four maxima just above, however their θ-coordinate is no longer obvious. There also
seems to be something going on with large respectively small values at the poles. The curve of
saddle points is still present, though it does not have any self intersections. Probing the points
of interest we find that the minima near the equator are zeroes to the SICness function and that
the south pole is a global maximum. Hence we have found four fiducial vectors and consequently
four SICs. The fiducial vectors are [35]:

ψk = Xψa + ρkY ψb (4.8)

for

X =
1

2

√
3− 3√

5
Y =

1

2

√
1 +

3√
5

(4.9)

with k = 1, 3, 5, 7 and ρ as above.

Note that we cannot vouch for the fact that the south pole corresponds to a MUB vector,
since this is just a global maxima in the Zauner subspace. Recall that in two dimensions we were
actually looking at the full space, that is why we could determine that the global maxima were
MUB vectors. We also observe that the SICness function has an overall periodicity of π2 .
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Figure 4.9: The map of fSIC(ψ) in the Zauner subspace of C4 plotted on the surface of a sphere.

We also include fSIC(ψ) as plotted on a sphere to remind ourselves that this is actually the
case (Figure 4.9).

In the Zauner subspace we find three distinct inner products. These are shown on the back-
ground of the SICness function in 4.10. Note that all the contours of the distinct inner products
converge at the minima, in agreence with our observations in dimension two.

Figure 4.10: The distinct inner products of fSIC(ψ) in the Zauner subspace in four dimensions.
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Minima Maxima

(φ, θ) f(φ, θ) (φ, θ) f(φ, θ)(π
4
,∼ 1.74

)
0 (0,∼ 1.33 ) ∼ 0.40(

3π

4
,∼ 1.74

)
0

(π
2
,∼ 1.33

)
∼ 0.40(

5π

4
,∼ 1.74

)
0 (π,∼ 1.33 ) ∼ 0.40(

7π

4
,∼ 1.74

)
0

(
3π

2
,∼ 1.33

)
∼ 0.40

(−, 0)
4

135
(−, π)

12

5

Table 4.2: Local maxima and global minima for f(φ, θ) in the Zauner subspace of four dimensions.
The global maximum sits at the south pole. One could probably, with the right amount of
determination and patience, find closed forms of the approximate values above.

4.4 Five dimensions

4.4.1 The standard base
In five dimensions all 2-dimensional subspaces that can be constructed by taking pairs of the
standard basis vectors result in the same contour plot. This plot is independent of ψ and only
consists of constant lines for different θ; just like the 3-dimensional plot but without the zeroes,
hence we omit the plot. For this choice of subspaces we find five distinct inner products, only two
of which yield contours in the SICness function, though they are just as the those described in
the 4-dimensional case (two separate constant lines equally spaced from the equator), so we omit
these plots too in favour for more interesting results and without further ado we fast forward to
the Zauner subspace.

4.4.2 The Zauner subspace
We introduce the basis vectors of the Zauner subspace as the two eigenvectors corresponding to
the eigenvalue one of the unitary matrix

U(−1 −1
1 0

) =



eiθ√
5

− e
iπ
5

+iθ
√

5
e
4iπ
5

+iθ
√

5
− e

− iπ
5

+iθ
√

5
e−

4iπ
5

+iθ
√

5

eiθ√
5
− e

3iπ
5

+iθ
√

5
e−

2iπ
5

+iθ
√

5
eiθ√

5
e
4iπ
5

+iθ
√

5

eiθ√
5

eiθ√
5

e
2iπ
5

+iθ
√

5
− e

iπ
5

+iθ
√

5
e
2iπ
5

+iθ
√

5

eiθ√
5
− e

− 3iπ
5

+iθ
√

5
e−

4iπ
5

+iθ
√

5
− e

− 3iπ
5

+iθ
√

5
eiθ√

5

eiθ√
5
− e

− iπ
5

+iθ
√

5
eiθ√

5
− e

3iπ
5

+iθ
√

5
e−

2iπ
5

+iθ
√

5


(4.10)

with the eigenvectors [35]
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ψa =
e
iπ
10

2
√

30



2
√

2
(
5 +
√

5
)(√

15 +
√

5− 2
√

5
)
ε(

−
√

15 +
√

5− 2
√

5
)
ε4(

−
√

15 +
√

5− 2
√

5
)
ε4(√

15 +
√

5− 2
√

5
)
ε


ψb =

1

2
√

15



0√
15 +

√
15
(
5 + 2

√
5
)

−
√

15−
√

15
(
5 + 2

√
5
)
ε3√

15−
√

15
(
5 + 2

√
5
)
ε3

−
√

15 +
√

15
(
5 + 2

√
5
)


(4.11)

where ε = e
2π
5

The curious reader might inquire as to why the chosen unitary matrices in dimensions four
and five both are representations of the same element in respective SL(2,ZN ) group. Note that
there is nothing special about this particular element. In accordance with Conjecture 2, any
order 3 element in SL(2,ZN ) with negative unit determinant will suffice. In this chapter we are,
for historical reasons, using the Zauner convention (U(−1 −1

1 0

)), though for the rest of the thesis

we will use the Appleby convention (U( 0 −1
1 −1

)).
The contour plot of the SICness function is given in Figure 4.11. This plot is losing even more

structure as compared to its four and 2-dimensional counterparts. By inspection we can now no
longer identify neither the φ nor the θ coordinate of the extrema. There is some structure to the
minima though; they come as two mirrored pairs separated in θ by π.

Figure 4.11: The map of fSIC(ψ) in the Zauner subspace of C5. On the φ-axis we have azimuthal
angle and on the θ-axis we have the polar angle.

The fiducial vectors are given by [35]

ψk,l = Xψa + kβlY ψb k, l = ±1 (4.12)

with
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Figure 4.12: The map of fSIC(ψ) in the Zauner subspace in five dimensions on the surface of a
sphere.

X =
1

2

√
3−
√

3 Y =
1

2

√
3 +
√

3 β =

√
1

10
(5 +

√
5 ) + i

√
1

10
(5−

√
5 ) (4.13)

Once again we include a table of the maxima and minima as well as a spherical plot of the
SICness function, these are given in table 4.3 and Figure 4.12.

There are four distinct inner products in five dimensions. These are given in Figure 4.13.

Figure 4.13: The distinct inner products of fSIC(ψ) in the Zauner subspace in five dimensions.
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Minima Maxima

(φ, θ) f(φ, θ) (φ, θ) f(φ, θ)

(∼ 0.55,∼ 1.95) 0
(π

2
,∼ 1.45

)
∼ 0.84

(∼ 3.70,∼ 1.95) 0
(

3π

2
,∼ 1.45

)
∼ 0.84

(∼ 2.59,∼ 1.95) 0 (−, π)
5

6

(∼ 5.73,∼ 1.95) 0

(−, 0)
5

54

Table 4.3: Local maxima and global minima for f(φ, θ) in the Zauner subspace in five dimensions.
One could probably, with the right amount of determination and patience, find closed forms of
the approximate values above.

4.5 A note on the number of distinct inner products

In this section we shall wrap up the loose ends on the number of distinct inner products. Chapter
2 supplies all the information needed to understand how many distinct inner products there are
in a Zauner subspace. We formulate the following two lemmas to answer that question.

Lemma 1. Closure of the set of SICs under the Clifford group

Let |ψ〉 be a vector in a SIC and let U be an element in the Clifford group. Then

U−1|ψ〉U = |ψ′0〉 (4.14)

where |ψ′0〉 is some vector in the SIC.

Proof.

Suppose that we have a fiducial vector |ψ〉, such that

|〈ψ|ψij〉|2 = c ∀ i, j (4.15)

with i 6= j where c is some constant.

Let U ∈ GC such that,

|ψ′0〉 = U|ψ〉 (4.16)

Then,

|〈ψ′0|ψ′ij〉|2 = |〈Uψ|DijU|ψ〉|2 = |〈ψ|U−1DijU|ψ〉|2 (4.17)

But by equation 2.51 and 4.15
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|〈ψ|U−1DijU|ψ〉|2 = |〈ψ|Dnm|ψ〉|2 = c (4.18)

Thus, the set of vectors in a SIC is taken to the same set under Clifford group3. And the
proof is done.

�

This lemma proves the statement in the beginning of this chapter when we argued the number
of SICs in two dimensions. We can now formulate the lemma relating certain inner products in
the Zauner subspace.

Lemma 2. Orbits within the Zauner subspace under the Clifford group

Let |ψ〉 be a vector in a SIC and choose the Zauner operator UZ = U( 0 −1
1 −1

) then the following

equivalence holds true

|〈ψ|D( k
l

)|ψ〉|2 = |〈ψ|D( −l
k−l

)|ψ〉|2 (4.19)

Proof.

By equation 2.51 it follows that

U†ZD( k
l

)UZ = D( 0 −1
1 −1

)(
k
l

) = D( −l
k−l

) (4.20)

thus

|〈ψ|D( k
l

)|ψ〉|2 = |〈ψ|U†ZUZD( k
l

)U†ZUZ |ψ〉|2 = |〈ψ|D( −l
k−l

)|ψ〉|2 (4.21)

and conversely

|〈ψ|D( −l
k−l

)|ψ〉|2 = |〈ψ|U†ZD( −l
k−l

)UZ |ψ〉|2 = |〈ψ|D( k
l

)|ψ〉|2 (4.22)

�

Note that a direct consequence of this lemma is that the inner products in the Zauner sub-
space will divide into orbits under the Zauner operator4, cf. Figure 2.2.

We will actually use a slightly modified version of this lemma to argue the specific amount of
inner products, since our inner products are subject to both a Zauner operator and complex con-
jugation. Complex conjugation can be realised within the framework of displacement operators
as

C =

(
−1 0
0 −1

)
(4.23)

3The set of vectors in a SIC is partitioned into permutation groups by the Clifford group. It is not probable
that all vectors in the SIC end up in the same permutation group. Hence, the set of vectors in a SIC is generically
not given as an orbit under the Clifford group.

4This lemma holds for any Zauner operator, although which elements that are in the same orbit varies with
the choice of Zauner operator.
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(a) Orbit of six inner
products

(b) Orbit of six inner
products

(c) Orbit of three inner
products

Figure 4.14: The inner products in four dimensions arranged into a lattice. The orbits corre-
sponding to inner products being equal as per lemma 2. Each of these orbits corresponds to an
inner product in Figure 4.10. The orbits is calculated as done in equation 2.52.

Hence we are actually looking at the combined order 2 × 3 = 6 Zauner and complex
conjugation operator

U( 0 1
−1 1

) = U(−1 0
0 −1

)U( 0 −1
1 −1

) (4.24)

We call this type of operators anti-unitary and introduce an apt terminology

A( 0 −1
1 −1

) = C × U( 0 −1
1 −1

) (4.25)

Inner products within the same orbits will be equated through lemma 2. Hence the number
of unique inner products will decrease. We also know that the size of the orbits is 6.5 From
this information it’s possible to calculate the unique number of inner products in low dimensions,
since there exists a unique way of combining N2−1 (the number of inner products) elements into
orbits of this given size. E.g. in dimension four we find 42 = 15 = 6 + 6 + 3 (the ’3’ is explained
in the footnote below), why we expect three inner products. Comparing with Figure 4.10 we
find that this is the case. To be thorough we include a figure of the orbits in four dimensions,
see Figure 4.14.

5The attentive reader might object that this argument only holds for dimensions that are zero modulo 6. While
this is true there is a loophole hidden in the technicalities; in these cases we will find that there is a set of three
inner products that are equal and real. Hence they are unaffected by the complex conjugation and remain order
3, and we can add an order 3 orbit.



Chapter 5

MUSs and SICs in Seven
Dimensions

We previously stated that for dimensions larger than five we cannot use the trick from last chapter
to look for fiducial vectors since the Zauner subspace is no longer represented by a Bloch sphere.
However, we shall see that there is another special 2-dimensional subset in seven dimensions
where there actually sit fiducial vectors. We shall implement a new method of finding all fiducial
vectors in this subspace by relating to their apparent relationship to MUSs as is stated in Theorem
2.

5.1 Setting the scene

So far our approach to finding fiducial vectors has been to plot the SICness function and by
guided numerical searches trying to locate the minima. This proved successful in dimensions
2, 3, 4 and 5. However, in dimensions higher than five the Zauner subspaces are no longer 2-
dimensional, hence we can no longer plot the subspaces to look for fiducial vectors in a practical
way [35]. In more general terms, the SICness function is getting too complicated for brute force
numerical searches to be a viable option. We could of course apply some intelligent numerical
search algorithm, but most likely it would converge at some local minimum instead of a global
one. We shall, however, duly note that successful numerical searches have been conducted for
N ≤ 67, though these are of very sophisticated nature [30].

In this chapter we shall look at the case N = 7. The methods used in both this chapter and
the next relies heavily on the fact that all fiducial vectors are minimum uncertainty states [8] as
proved in Chapter 4, see Theorem 2.

In 2005 it was shown showed that the following vector is a fiducial vector [6]

|ψ0〉 = a0|e0〉+

6∑
k=1

a1e
ilkθ|ek〉 (5.1)

with

a0 =

√
2 + 3 +

√
2

14
a1 =

√
4−
√

2

28
θ = cos−1

(
−
√√

2 − 1

2

)
(5.2)

48
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and where lk is the Legendre symbol1 which is,

lk =

{
1 if k = 1, 2, 4

−1 if k = 3, 5, 6
(5.3)

Writing out this fiducial vector we note that it is of a very special form

|ψ〉 ∼



x0

z
z
z∗

z
z∗

z∗


(5.4)

where x0 is real and z is complex.
We note that any vector of this form is characterised by three real parameters. Hence these

vectors are restricted to a very small region of H7, namely a real 3-dimensional subspace. How-
ever, we shall soon discover that this space can even be made into a 2-dimensional manifold. We
now inquire as to whether any other fiducial vectors reside in this extraordinary corner of Hilbert
space. Our strategy shall be to find all MUSs in this space and check whether they are fiducial
vectors or not.

We remind ourselves that the MUS criterion is (equation 1.37)

N∑
k=1

|〈ψ|e(l)
k 〉|

4 =
2

N + 1
∀ l (5.5)

also recall that there are N + 1 MUBs.

5.2 The special case

Let us start out by surveying the task of finding the MUSs. We regard a vector |ψ〉 on the form
presented in equation 5.4, plugging this vector into the MUS criterion we obtain eight equations∑7
k=1 |〈ψ|e

(l)
k 〉|4 = 1

4 . Solving these equations simultaneously we find all MUS. Without provid-
ing any additional information this indeed seems like a fool’s errand. We would certainly not
expect a system of eight equations in three variables to have any unique solution since it is (very)
overdetermined.

The key is that we indeed are investigating a very special subspace. But in order to understand
how special we must make some additional remarks about the elements of the Clifford group.
Acting with these matrices on the set of MUBs will merely permute them. That is to say, acting
with U on the set of basis vectors of one MUB takes that set of basis vectors to the set of basis
vectors of some other MUB. Note that we use other in a very mathematical sense here and that
this operation can take some MUBs to themselves. E.g. acting with U( 4 0

0 2

) on the set of basis

vectors of the first MUB in 7D will just permute the basis vectors within the MUB, hence it
1The Legendre symbol is 1 if k is a quadratic residue, else it is 0. If we regard the equation q = x2 mod p

over the integers with x < 0 < p, then q are the quadratic residues of p
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takes the first MUB to itself. However, acting with the same matrix on the third MUB takes
the set of basis vectors to the set of basis vectors of fourth MUB; thus it takes the third MUB
to the fourth MUB. Continuing this we get the grouping of MUBs shown in Figure 5.1.

Figure 5.1: An example of how U can permute the the sets of MUBs in seven dimensions
using U( 4 0

0 2

).
It is no coincidence that we chose the specific U unitary above. Let us investigate the problem

of finding fiducial vectors in seven dimensions from a more general point of view.

Conjecture 2 tells us that given any order 3 unitary representation of an SL(2,Z7)-element
with negative unit trace, that unitary matrix is a Zauner operator and the eigenvectors of that
operator span subspaces where fiducial vectors are found. We are of course keen to choose as
simple a unitary as possible since it is getting increasingly difficult to find the eigenvectors with
the increasing dimension cf. the eigenvectors we used in five dimensions. Looking at the formula
for actually calculating the unitary matrix from Chapter 2 (equation 2.38)(

U(α β
γ δ

))
rs

=
eiθ√
d
τ

1
β (δr2−2rs+αs2) (5.6)

with the additional special case if no inverse to β exists

U(α 0
γ δ

) ≡ U( 0 −1
1 0

)U( γ δ
−α −β

) (5.7)

we note that setting β = γ = 0 we obtain a monomial unitary matrix which is exceedingly simple
to handle. Thus we look for an order 3 element in SL(2,Z7) on the form(

α 0
0 δ

)
(5.8)

Guided by the fact that the sought matrix must have negative unit trace and unit determinant
we try the following

M =

(
α 0
0 −(1 + α)

)
(5.9)

Since we are in the SL group

detM = 1 ⇐⇒ α(1 + α) = −1 (5.10)

Solving this equation for in Z7 we find the solutions α = 2 and α = 4. Checking that it cubes to
the identity matrix we find (

4 0
0 2

)3

=

(
36 0
0 8

)
≡
(

1 0
0 1

)
(5.11)
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thus we have shown that U( 4 0
0 2

) is a monomial matrix that complies with Conjecture 2. Using

equation 5.6 we can give the unitary matrix explicitly

U( 4 0
0 2

) =



1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0


(5.12)

Acting with this matrix on a general state |ψ〉 we find

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0





x0

z1

z2

z3

z4

z5

z6


=



x0

z2

z4

z6

z1

z3

z5


(5.13)

this equality enables us to find an eigenvector of U( 4 0
0 2

) by subjecting |ψ〉 to
x0 =x0

z1 =z2 = z4

z3 =z5 = z6

(5.14)

such that

|ψ〉 =



x0

z1

z1

z2

z1

z2

z2


(5.15)

We note that this is almost of the same form as the form of the fiducial vector 5.4. Introducing
the anti unitary operator A(−2 0

0 −3

) and acting on the vector above we find

1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0


×C



x0

z1

z1

z2

z1

z2

z2


=



x0

z∗2
z∗2
z∗1
z∗2
z∗1
z∗1


(5.16)

where C denotes complex conjugation.

Which gives us a system of equations for finding an eigenvector of A with the solution
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
x0 =x0

z1 =z∗2

z2 =z∗1

(5.17)

such that

|ψ〉 =



x0

z
z
z∗

z
z∗

z∗


(5.18)

which is a vector of the form given in equation 5.4. Thus we find that the fiducial vector 5.1 sits
in the same subspace as this eigenvector to the anti unitary operator A(−2 0

0 −3

). Writing the

complex components in Cartesian form we obtain the vector

|ψ〉 =



x0

x1 + ix2

x1 + ix2

x1 − ix2

x1 + ix2

x1 − ix2

x1 − ix2


= x0



1
0
0
0
0
0
0


+ x1



0
1
1
1
1
1
1


+ x2



0
i
i
−i
i
−i
−i


(5.19)

with the normalisation

x2
0 + 6x2

1 + 6x2
2 = 1 (5.20)

This renders the subspace a real 3-dimensional subspace of C7 – and a real 3-dimensional sub-
space where we know that there sits at least one fiducial vector nonetheless!

Summarising we have three different spaces hanging around here. There are the space of all
quantum states in seven dimensions (C7) which has seven complex dimensions; the Zauner sub-
space (equation 5.15) which has three complex dimensions; and the real subspace of the Zauner
subspace (equation 5.18) which has three real dimensions.

Now, acting with A(−2 0
0 −3

) on the MUBs permutes the MUBs in almost the same way as

U( 4 0
0 2

) as shown in Figure 5.2.

Having declared that 5.4 is an eigenvector of A(−2 0
0 −3

) and that as far as A(−2 0
0 −3

) is con-

cerned there are but three MUBs, we have shown that there will only be three independent
equations in 5.5. Thus we are left with three polynomials in three variables. The situation would
seem to be convoluted by the fact that Theorem 1 from Chapter 1 adds one unique equation,
making the system overdetermined. But it turns out enforcing this theorem is equivalent with
imposing normalisation. This is realised by recalling that normalisation is a prerequisite of The-
orem 1.
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Figure 5.2: Schematic overview of how A(−2 0
0 −3

) permutes the MUBs in seven dimensions.

Glancing at equation 5.5 we realise that solving these equations is no easy task. Each sum
contributes seven quartic inner products of 7-dimensional vectors, the problem is possibly huge.
Simplifying the three unique equations given by the MUS-criterion we find


p1 =x4

0 + 6(x2
1 + x2

2)2

p2 =
1

7
(x4

0 + 36x2
0x

2
1 + 120x0x

3
1 + 186x4

1 + 36(x0 − x1)2x2
2 + 42x4

2)

p3 =
1

7
(x4

0 + 46x4
1 + 148x2

1x
2
2 + 70x4

2 + 22x2
0(x2

1 + x2
2) + 4x0x1(−5x2

1 + 3x2
2))

(5.21)

We solve the resulting equations (eq. 5.22) by using Mathematica’s command Reduce. This
is a generalisation of the more widely known command Solve. It operates by reworking the
polynomial in a specified way rather than trying to solve it right away. This allows for a more
sophisticated approach to work with polynomials than the often quite blunt Solve algorithm.
By inspection we gather that the polynomial system 5.21 is probably best solved in terms of
x2. This variable comes into many of the terms and moreover it always comes in even powers.
Asking Mathematica to eliminate all x0’s and x1’s in the system

p1 =
1

4

p2 =
1

4

p3 =
1

4

(5.22)

under the normalisation given in equation 5.20 we find 12 exact solutions being minimum uncer-
tainty states. The solutions are, however, not very enlightening to look upon so we will not give
them here explicitly. As a reference we present them in Appendix C.

Before we comment on the MUSs found, we shall visualise the MUSs using the tricks from
last chapter. In order to make a contour plot we are required find a parametrisation of the
submanifold. Firstly we recognise that we are solely interested in pure states, hence we are really
only regarding the submanifold of pure states of the real subspace 5.18 (or 5.19). However, is
just the real counterpart of CP2, called the real projective space2, RP2, which is what we get if
we subject the real subspace 5.19 to the normalisation 5.20. The parametrisation for RP2 is

2The real projective plane is a 2-dimensional manifold that consists of all lines in R3 passing through the
origin. This space is topologically equivalent to the standard sphere, S2, with antipodal points identified.
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
x0 = cos θ

x1 = cosφ sin θ

x2 = sinφ sin θ

(5.23)

such that a general, correctly normalised, vector is written

cos θ
1√
6

(cosφ sin θ + i sinφ sin θ)
1√
6

(cosφ sin θ + i sinφ sin θ)
1√
6

(cosφ sin θ − i sinφ sin θ)
1√
6

(cosφ sin θ + i sinφ sin θ)
1√
6

(cosφ sin θ − i sinφ sin θ)
1√
6

(cosφ sin θ − i sinφ sin θ)


(5.24)

Figure 5.3 shows where in RP2 the MUSs sit.

Figure 5.3: The SICness function in the submanifold where the fiducial vector 5.1 sits. The
coloured lines are the unique MUS equations. The orange dots sitting in the intersections of
these lines are the MUSs and the magenta dots are the Alltop-MUBs.

This figure provides nice means of giving some intuition to the MUSs we just derived. We see
that there is an apparent mirroring of the MUSs in both the θ-plane and the φ-plane. We write
“apparent” because this is a plot in RP2, thus antipodal points are identified. Hence antipodal
points not mirror images, but the same physical state. Apart from this identification there is
a mirroring in the φ axis. This is inherited from the complex conjugation of the anti unitary
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operator.

In the end, we have essentially found three interesting MUSs and a complex conjugated rel-
ative to each of these, making up a total of 3 × 2 = 6 MUSs. Checking whether these are
fiducial vectors or not we find that one of the primordial MUSs is indeed a fiducial vector, this
is precisely the fiducial vector found by D. M. Appleby presented in the beginning of this chap-
ter. The complex conjugate of this state is also a fiducial vector, although not being as interesting.

Our next step is to investigate whether we can make a slight generalisation to this situation
or not.

5.3 The general case

Having found all MUS in the real subspace (eq. 5.4) we ask whether it is possible to find all
MUS in the full complex Zauner subspace (eq. 5.15).

|ψ〉 ≡



z0

z1

z1

z2

z1

z2

z2


(5.25)

This situation is considerably more complex. While the system of equations we need to solve
now consists of four equations (cf. Figure 5.1) we have also added two real variables to a total
of five real variables. Thus we are naively looking for a one parameter family of solutions.

Even simplifying the polynomials in this case is a great ordeal. Simplifying the polynomials
with Mathematica’s FullSimplify we generate our adversities
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
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(5.26)
Looking at the general solution for a quartic equation one realises that solving quartic equa-

tions is no easy endeavour – and solving systems of quartic equations much less so. Thus we have
good reason to device a strategy before engaging in any serious attempt at solving the system
above. We note that the third and fourth polynomials are quite alike; there are many terms
of shared order between the polynomials with alternating sign. Using this property while fine
tuning the coefficients to eliminate as many terms as possible, and in particular the terms with
root coefficients, we end up with the following polynomial system
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
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(5.27)
This equation is significantly more easy to handle. We see that the collected order of each

term is even, this opens for some interesting substitutions and reveals that the polynomials are
not totally general. It turns out that trying to solve this polynomial system by ordinary means,
such as the brute force method of solving the polynomials one at a time, while consecutively
plugging the roots into the next polynomial, does not work due to the complexity of the roots.
Similarly substitutions does not do the trick, we can introduce variables yi = xkxl and gain a
large system of quadratic equations instead, but in the end we run into the same problem. Failing
to solve the system by conventional means we turn to the mathematical field of Ring Theory3

for inspiration.

5.3.1 Gröbner bases
Solving non linear multivariate systems of polynomials is no simple task and it generally requires
the introduction of Gröbner4 bases. Given some set of polynomials a Gröbner base is another
set of polynomials with the same ideals as the original set [31]. We will not put a lot of work
into actually defining ideals, or into defining Gröbner bases for that matter, rather we will try to
explain how Gröbner bases work and why they are desirable. An excellent review for the reader
who wishes to know more about Gröbner bases, or who would like a more formal treatment of
subject, can be found here [15].

Given some set of polynomials, P , the fundamental idea behind the Gröbner bases is to find
another simpler set of polynomials, G, with the same roots as the original set. By “simpler” we
mean that it is given on the following form

g1(x1) = 0

g2(x1, x2) = 0

g3(x1, x2, x3) = 0

...

This system can be solved bottom-up by consecutively plugging the solutions for each poly-
nomial into the next. In this way we essentially transform the multivariate system into a single
variable system.

3All polynomials are formally part of the ring of polynomials in mathematics. A ring is an Abelian group
under addition and a monoid under multiplication.

4Named after the Austrian mathematician Wolfgang Gröbner.
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Constructing Gröbner bases is today mostly analogous with running the Buchberger algo-
rithm5, which is an algorithm designed to find the Gröbner base for any given set of polynomials
[14] 1970. The Buchberger algorithm is a generalisation of three well-known algorithms: Gaus-
sian elimination, Euclid’s algorithm for finding the greatest common divisor for polynomials and
the simplex algorithm. A more formal overview of the procedure can be found here [16].

We shall briefly argue why these algorithms are relevant when solving non linear multivariate
polynomial systems.

Gaussian Elimination
When solving a linear system of polynomials Gaussian elimination gives the solutions.
Hence, by applying the Buchberger algorithm to a set of linear polynomials, we will by ne-
cessity retrieve Gaussian elimination. Now, think of Gaussian elimination as a procedure
that rephrases sets of polynomials in easier forms; this is the desirable property of Gaussian
elimination that is carried over to the Buchberger algorithm. E.g. feeding Gaussian elimi-
nation the set {3x+2y+2z−5, 2x−2y−5z+1} will return the set {x− 1

5 (4+3z), y+ 19
10z−

13
10}

which is a set of polynomials that contains the same combined information as the first set
but in a more condensed way.

Euclid’s Algorithm
Usually we think of Euclid’s algorithm as an algorithm for finding the GCD of two poly-
nomials. But, more importantly for the procedure for finding a Gröbner basis, the output
polynomial of Euclid’s algorithm is also a polynomial with the same roots as the common
roots of the input polynomials. E.g. The GCD of the polynomials −3+3x+7x2 +7x3 +2x4

and −2− x+ 12x2 + 5x3 is (x2 + 2x− 1), which has the roots x = −1±
√

2 . Thus, these
are the common roots of the input polynomials. In this way the new polynomial contains
all information that the original system does. We can think of it as though the two in-
put polynomials are just a clumsy way to write the output polynomial. The Buchberger
algorithm for non linear equations in one variable is Euclid’s algorithm.

Simplex Algorithm
The simplex algorithm is probably less known to physicists than the preceding algorithms
as it is an algorithm used in linear programming. But it is nontheless a vital part of the
Buchberger algorithm. While it is intuitive that the mixture of an algorithm that solves
linear multivariate systems and an algorithm that solves non linear single variable equations
produces an algorithm for solving non linear multivariate systems by picking the best of the
two algorithms, this just almost true. We also need the simplex algorithm for the algorithm
to run iteratively and to ensure that it always terminates. We will not outline the simplex
algorithm here, it is presented in the references, but think of it as an algorithm that makes
substitutions according to some predefined rules.

The Buchberger algorithm is a very powerful algorithm in that it, in principle, has a success
rate of 100% [16]. Also Hilbert’s Basis Theorem6 ensures that every polynomial system has a
Gröbner base [14][15]. Calculating a Gröbner base can however be practically impossible as it
requires vast amounts of computing power for complicated sets.

Even using Gröbner bases we were unable to find a solution to the polynomial system (equa-
tion 5.27).

5Named after the Austrian mathematician Bruno Buchberger.
6This is a theorem from commutative algebra about properties of rings. We will not state it here but it is

given in the references.



Chapter 6

Connecting the MUSness and the
SICness

In this final chapter we formulate the main result of this thesis. We more closely than before
establish the link between the SICness and the MUSness of a state. Most of the results presented
have been verified in prime dimensions N ≤ 23. Note that a lot of computing power comes into
deriving these results; this is further discussed in appendices A and B.

The reader already familiar with SICs and MUSs can probably read this chapter stand-alone as
a review on our research on the matter. Also the results presented below and further research on
the subject will be presented in a paper to appear by D. Andersson, D. M. Appleby, I. Bengtsson
and H. Dang.

6.1 Preamble

In Chapter 3 we prove that all fiducial vectors are in fact MUSs (Theorem 2), why we are led
to believe that there, perhaps, exists some deeper relationship between the SICness and the
MUSness of a state. We have already defined the SICness of a state to be reversely proportional
to the SICness function (equation 3.3). Similarly we use the following function, derived from
equation 1.37, to quantify the MUSness of a state.

fMUS =

N+1∑
l=1

(
N∑
k=1

|〈e(k)
l |ψ〉|

4 − 2

(N + 1)

)2

(6.1)

where e(k)
l is the k’th basis vector of the l’th MUB.

Note that this function is just like the SICness function but it is constructed to be zero for
MUSs instead of fiducial vectors.

A naive way of investigating this proposed relationship is to make a scatter plot of the MUS-
ness versus the SICness for a large enough set of random states. If there exists some relation
between the two, some structure should arise from this.

59
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This raises the issue of how one goes about picking random quantum states. We know from
Chapter 1 that all pure states sit in the complex projective (N −1)-space, CPN−1. Furthermore,
recalling the contour plots from Chapter 4 we realise that it will not do to pick angles θ and
φ randomly from a uniform probability distribution, because the plots become increasingly dis-
torted as we move towards the poles. However, note that there is no change in distortion when
we change the longitude but keep the latitude constant. This may, or may not, seem intuitive
but it is a fundamental result from non-Euclidean geometry. This observation tells us that we
must treat the generation of random θ and φ coordinates separately. Specifically it tells us that
the φ coordinate actually is given by a uniform probability distribution while the probability
distribution for θ must be biased to compensate for the distortion.

Guided by this reasoning we construct the general N -dimensional state vector as [12]

|ψ〉 = (x1, x2, · · · , xN ) (6.2)

using the permutation of CPN−1

x1 = cos θ1 sin θ2 · · · sin θN−2 sin θN−1

x2 = sin θ1 sin θ2 · · · sin θN−2 sin θN−1e
iφ1

...

xN−1 = cos θN−2 sin θN−1e
iφN−2

xd = cos θN−1e
iφN−1

(6.3)

with the probability distributions

φk ∈ [0, 2π] (6.4)

and

θk = sin−1 ξ
1
2k

k ξk ∈ [0, 1] (6.5)

where ψk and ξk are uniformly distributed.

This concludes the preamble.

6.2 The naive approach

We are now armed with all the tools we need to address the matter at hand of making scatter
plots. An example of such a plot can be seen in Figure 6.1. It turns out that the general outline
of these plots is the same regardless of prime dimension, with the exception of dimension two
and three; which we shall comment on later.

The procedure for making these scatter plots is quite straight forward, the algorithm runs as
follows

1. Generate N − 1 random φ-coordinates according to 6.4 and N − 1 random θ-coordinates
according to 6.5.

2. Calculate the resulting random vector from 6.3
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3. Calculate the fSIC value from 3.3

4. Calculate the fMUS value from 6.1

5. Plot the result as a point with coordinates (fSIC , fMUS)

The calculations if fSIC and fMUS are the most computationally heavy operations involving
quatring inner products in dimension N . Needless to say, the time complexity1 of this algorithm
is far from linear, hence a lot of computing power is required to achieve a plot within reasonable
time frames. We discuss this further in appendices A and B.

Plotting the result from having generated many random states as a scatter plot with SICness
(fSIC) on the x-axis and MUSness (fMUS) on the y-axis, we find plots resembling the one below
in Figure 6.1. This plot is also schematically presented in Figure 6.2.

Even from just a quick glance there is obvious structure to this plot, as such we conclude that
our naive approach has actually revealed some connection between the SICness and the MUSness
of a state. We shall dwell on some of the features of this plot to make some brief comments.

Figure 6.1: Plotting SICness versus MUSness in 5 dimensions with 105 points.

The bulk of points
The vast majority of points in the parameter space will end up inside the boundaries of this plot.
We acknowledge that the parameter space is immense as compared to the codomain2 and that
only extraordinary states with fine tuned parameters will correspond to points on the boundary.
This leads us to the conclusion that most configurations of parameters will not end up on the
boundary, rather most configurations will correspond to about the same state. This effect will

1Time complexity is the term used in computer science for how the evaluation time scales with increasing data
set.

2The parameter space is CPN−1 which is 2(N − 1) dimensional while the codomain is 2 dimensional, hence
the dimension of the parameter space is N − 1 times as large as the dimension of the codomain.
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be stronger with increasing dimension. This is analogous to the argument used in statistical
mechanics about the unlikeness of all air molecules ending up in one corner of a box.

Figure 6.2: A schematic drawing of the borders of the plot. This drawing seems to be valid in
all prime dimensions.

The straight line
There is no bijection between fSIC and fMUS , contrary, there exists many states of the same
MUSness for any given SICness and vice versa. However, for any given SICness there seems to
be a corresponding maximum MUSness3. We conjecture the following

Conjecture 3. Maximum MUSness theorem

In any prime dimension, the MUSness of a state is related to the SICness, subject to the
following inequality

fMUS ≤
2(N − 1)

N4
fSIC (6.6)

To prove analytically that this indeed the case should, in principle, be a fairly straight forward
optimisation problem, though we have yet to attempt at a solution4. Numerically we may for
instance apply Mathematica’s NMaximize to the expression fMUS

fSIC
. However, the time complexity

of the native NMaximize command is high and the argument is complicated, furthermore it is
not parallelisable. Hence, Mathematica does not provide a numerical proof within a reasonable
time frame for dimensions greater than 7. There is a much more efficient way of obtaining the
slope of the maximum MUSness line in higher dimensions discussed further on.

The flat line
Theorem 2 states that all fiducial vectors are MUSs—but all MUSs are not fiducial vectors.
Hence we expect some flat line along the fSIC-axis corresponding to these MUSs. This line is

3Verified numerically in dimensions 2 ,3 ,5 ,7, 19 and 23.
4A footnote from the future: This has since been proven and will be presented in a paper to appear by D.

Andersson, D.M. Appleby, H. Dang, I.Bengtsson and K. Blanchfield.
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somewhat visible in the plot, we can see points (states) which are close to zero for the MUSness
function while being no way near zeroes for the SICness function. The end points of this line are
of certain interest to us. We know that at the origin of this plot sits states that are zero for both
the SICness and MUsness function i.e. fiducial vectors. The other end point remains something
of a mystery but we will comment on it further on.

The curved line
Using Mathematica’s Manipulate command we may discern that the curved line coming from
the top actually correspond to states of the form

|ψ〉 =
1√
2



0
0
...
0

sin θN−1

cos θN−1e
iφN−1


(6.7)

or any such similar state having all parameters but two θk zero. These are states being confined to
a 2-dimensional plane spanned by two standard basis vectors. At the very top of the distribution
we find the standard basis vectors (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0) etc. In fact, we may use this
knowledge to calculate the slope of the maximum MUSness line in higher dimensions. Making a
linear regression to this point and the origin we always seems to find a slope that concurs with
Conjecture 3.

The unknown curve
Having noticed that a lot of interesting things seem to be happening at the boundary of this
distribution, we naturally inquire as to the last piece of the border (dotted in Figure 6.2).
However, this curve remains, as of today, something of a mystery. We know onne of the end
points already from equation 6.7, this is the super position of two basis vectors

1√
2

(|ei〉+ |ej〉) (6.8)

We will comment on the other end point below.

6.3 Further analysis

The above discussion has been verified for prime dimensions 5 through 23, and there seems to
be no reason to believe that the pattern will break after that. As the dimension increases more
points in the scatter plots will end up in the bulk, as per our previous reasoning, this is shown in
Figure 6.3 where we give scatter plots for dimensions 7 and 19 using the same amount of points.

In high dimensions we do not have the economy of choosing points from the whole parameter
space, rather we chose one point in the scatter plot with known parameters and study the vicinity
of this point by making a sufficiently small perturbation about this point. For most points it is
virtually impossible to calculate the corresponding parameter values, however, we shall soon see
that some points of special interest have known parameters and we can apply this perturbation
procedure to these points right away. We have already noted that the topmost point corresponds
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(a) Dimension 7 (b) Dimension 19

Figure 6.3: Comparison of the the scatter plots of fMUSfSIC
for 100k points in dimensions 7 and 19.

to the standard basis vectors, hence we can make a perturbation about this point as a proof
of concept. Regard the scatter plot in N = 19 as an example with 105 points the scatter plot
reduces to a bulk of points centred as shown in Figure 6.3b. We make a perturbation about
(1, 0, 0, . . . , 0) we find that the boundary looks as we had anticipated, cf. figures 6.2 and 6.4.

Figure 6.4: Zooming in on the region around (1, 0, . . . , 0) in N=19.

In the spirit of curiosity and with a fair amount of by intuition, we calculate where some
special points end up in dimensions five and seven. Specifically we calculate where the Alltop
MUB fiducial vectors5 and the MUB cycling vectors6 sit in dimensions five and seven. The
results are summarised in table 6.1 and figures 6.5a and 6.5b.

We note that the Alltop fiducial vector ends up on the straight line corresponding to the
maximum MUSness for a given SICness, this is true for any choice of Alltop fiducial vector and
have been verified in prime dimensions up to 19 and we may take a qualified guess that this is
the case in all prime dimensions.

5Once again we will not formally define the Alltop MUBs, but rather just note that they are different sets of
MUBs generated by some vectors called Alltop fiducial vectors. More on Alltop MUBs can be found for example
here: [4] [13]

6As the name suggests, a vector used to cycle through MUBs. See Appleby et al [7].
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(a) Dimension 5. The upper point is the
MUS cycler, the lower is the Alltop fidu-
cial.

(b) Dimension 7. The upper point is the
Alltop fiducial, the lower is the MUB-
cycler.

Figure 6.5: The scatter plot of fMUSfSIC
with selected points marked.

N=5 N=7

Alltop fid. MUB-cycler Maximum Alltop fid. MUB-cycler Maximum

( 5
3 ,

8
375 ) ( 8

135 ,
125
27 ) ( 125

3 , 8
15 ) ( 9

686 ,
21
8 ) ( 343

16 , 0) ( 1029
8 , 9

14 )

Table 6.1: Coordinates in the fSIC-fMUS plane for chosen vectors.

The MUB-cycler is also on the maximum MUSness boundary in five dimensions, albeit a bit
further up the slope. However, in 7D sits it sits in a rather more interesting spot; it is sitting as
far out on the line of minimum uncertainty states as possible. We have proved this numerically
using Mathematica’s NMaximize to maximise fSIC while enforcing the constraint fMUS = 0.
Within our terminology this means that the MUB-cycler in seven dimensions is the MUS that
is the least of a SIC. Further investigation shows that the MUB-cycler seems to move around in
different dimensions, e.g. in N = 13 it sits in the bulk of points, however, doing perturbations
in dimensions 19 and 23 shows some promising hints that the MUB-cycler might again be the
outermost MUS.

Finally, we note that all the interesting points given in table 6.1 actually look surprisingly nice
given the complexity of the functions whose quotient we are studying. One may easily construct
symbolic representations of all the numbers given in terms of the dimension. This further adds
to the intrigue between the SICness, and the MUSness of a state.

We have left out prime dimensions two and three up until this point. In these dimensions
there is an evident bijection between the SICness and the MUSness of a state, this manifests as
a straight line in the plot. The slope of this line is in agreement with previous results. The plot
in three dimensions is given in Figure 6.6.

It can most certainly be analytically shown that this is bound to be a straight line, but that
– ladies and gentlemen – is a story for an other time.
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Figure 6.6: Plotting SICness versus MUSness in 3 dimensions.



Chapter 7

Epilogue

7.1 Concluding remarks

In this thesis we have explored the concept of SICs from the very beginning in their mathematical
– and physical – formulation. We have also discussed the related concepts of MUBs and MUSs
at some length. It is our hope that the thesis has proved rewarding for the reader new to these
concepts as well as for the reader already familiar with them.

Summarising, the main contributions of this thesis are

Illustrating SICs and the SICness function in low dimensions
Chapter 4 focused on exploring the already known SICness function in a new fashion using
contour plots. While this provided an illustrative description of the SICness function it
also revealed something about the structure of the related quantum states. In particular
we gained a complete image of the two dimensional space including MUBs, Alltop MUBs,
and SICs while in four dimensions we saw that certain subspaces corresponded to a scaled
version of the two dimensional plot.

An exhaustive search for MUS in the real Zauner subspace of 7D.
In chapter 5 we put a lot of work into finding all MUSs in a small portion of a Zauner
subspace in 7D. In a simplified formulation we succeeded in this endeavour and all MUS
were found. However, in the more general formulation we did not succeed in finding the
MUS, though that told us something important about the complexity of finding MUSs.

Exploring the link between the SICness and MUSness of a state.
Finally in chapter 6 we propose and investigate the relationship between the SICness and
the MUSness of a state. Among other things we conjecture an upper bound for the MUSness
for any given the SICNess and we examine where some interesting states sits in SICness-
MUSness plane.

The proposed linkage between SICness and MUSness was formulated – and has been investi-
gated – purely on grounds of curiosity. As such the work done on this relationship has been very
exploratory in nature. Being thrilled about this unexpected relationship we have somewhat aim-
lessly thrown in some tests to see what comes out. The results however have been staggering and
we strongly advise further investigation into this relationship, perhaps with a more systematic
approach.

Apart from these results it is our hope that this thesis have advocated the use of group theory
in general in physics and specifically the use of the Weyl-Heisenberg and Clifford groups for the
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study of SICs. It is our firm belief that much structure found in physics can be understood
through the introduction of groups.

7.2 Open questions

We leave the community with the following open questions to ponder; may anyone who feels
obliged try to answer them!

• “What features of the SICness-MUSness plot is inherent to specific dimensions? Which
features are found regardless of dimension?”

• “Can we prove conjecture 3?”

• “What is the meaning of a MUS being the least a SIC fiducial vector?”

• “In what dimensions is the outermost MUS a MUB cycler?”

• “What does the dashed line in figure 6.2 correspond to?”

• “Can we anticipate how the parameters vary as we move around in the plane?”

• “Is it possible to simplify the function fSIC/fMUS?”
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Appendix A – Supplementary Code

A lot of work throughout this Master’s thesis has been allocated to develop the Mathematica1

code necessary to answer the questions we have posed. Some of the code is banal, some of it is
quite clever and some of it is just downright ugly. In this appendix we will present selected parts
of the codes for the reader who wishes to reproduce the results in this thesis; the reader who
wishes to further investigate SICs/MUSs; or the reader who happens to be in need of similar
code. This thesis is founded upon many lines of Mathematica code, which we, of course, can not
include in this appendix, rather we will focus on bits of code which are either non-trivial, can
save a lot of time or which is, by our highly subjective standards, generally nice.

Our top advices for the reader who have limited experience working with Mathematica is the
following

• In Mathematica we do not rely on iterative programming where we recognise classic func-
tions such as for, do and the likes of these. Rather we implement functional programming
with functions such as Map and Table.

• Make sure you understand how to utilise pure functions ’#’ in Mathematica.

• Use Esc where it is possible. Typing Esc alpha Esc in Mathematica results in α. We
can access a variety of symbols and operators in this way, e.g. Esc ct Esc for complex
transpose—or rather, in physics terminology, Hermitian conjugate.

• Apply short hand notation. This includes using Esc as suggested in the last item, but
there are lots of more tricks, for example @ will work as a pair of brackets for a command
having only one argument, e.g. Flaten@table, Chop@number, etc. This way you may
significantly reduce the number of brackets in an expression.

• Use the reference. Mathematica’s reference is thorough and well indexed. For any given
command it contains summaries and in depth descriptions, basic examples and advanced
examples. Hitting F1 while marking a command will take you to the reference for that
command.

But above all, the first rule of learning to write good code (this applies regardless of language
and skill) is illustrated by the saying:

It is a truth universally acknowledged, that a single man in possession of good code must be
in want of sharing it.

1For the record, we are using Mathematica 8.0.1 and 9.0.1.
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This idiom is of such paramount importance to programming that it ought to be a theorem.
The point being that there are a great many places on the internet to gain inspiration for, and
to ask questions about, writing good code. We list some good sources for Mathematica below

• An introductory course to functional programming in Mathematica can be found here
http://www.wolfram.com/training/courses/dev001.html

• A more comprehensive introduction to Mathematica can be found here http://library.
wolfram.com/infocenter/MathSource/5216.

• An active community of Mathematica coders sharing code and answering questions can be
found here http://mathematica.stackexchange.com/.

Other than that there is of course the all-knowing Google to turn to for in times of need.

Calculating the unitary representation of the Weyl-Heisenberg group
This serves as a good example of how Table replaces for in Mathematica. Using Table we would
write

1

2 (∗ Cal cu l a t ing the WH−e lements us ing Table ∗)
3

4 CliffordUnitaries=
5 Table [
6 Table [ tau^(i j + 2 s j ) KroneckerDelta [ r , Mod[ s + i , n ] ]
7 , {r , 0 , n − 1} , {s , 0 , n − 1} ]
8 ,{i , 0 , n − 1} , {j , 0 , n − 1 } ] ;

as opposed to the more tortuous implementation using the For

1

2 (∗ Cal cu l a t ing the WH−e lements us ing For ∗)
3

4 A = Array [ 0 &, {n , n } ] ;
5 CliffordUnitaries = ConstantArray [ 0 , n ^2 ] ;
6 Cliffindex = 1 ; r = 0 ; s = 0 ;
7 For [ i = 0 , i <= n − 1 , i++, {
8 r = 0 , s = 0 ,
9 For [ j = 0 , j <= n − 1 , j++, {

10 r = 0 , s = 0 ,
11 For [ k = 1 , k <= n^2 , k++,
12 {A [ [ r + 1 ,
13 s + 1 ] ] = \ [ Tau ]^ ( i j + 2 s j ) KroneckerDelta [Mod[ r , n ] ,
14 Mod[ s + i , n ] ] ,
15 I f [Mod[ r + 1 , n ] == 0 , {r = 0 , s++}, r++]}] ,
16 CliffordUnitaries [ [ Cliffindex ] ] = A , Cliffindex++}]}]

Both codes generate the same thing; a matrix where all elements are in themselves matrices.
In Mathematica this is the same as a table of tables—or really as nested lists. We will generally
stick in a Flatten command to access the elements in the table of Weyl-Heisenberg group
elements. Note that a very similar piece of code is used to generate the unitary representation
of an element in SL(2).

http://www.wolfram.com/training/courses/dev001.html
http://library.wolfram.com/infocenter/MathSource/5216
http://library.wolfram.com/infocenter/MathSource/5216
http://mathematica.stackexchange.com/
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Simplifying Complex Numbers
Let exp be some complex expression which is given in polar form. Then the FullSimplify can
be used to simplify exp and takes it to Cartesian form. The simplification routine in Mathematica
roughly work in the following way:

When given an expression FullSimplify makes an assumption as to some possible simplifi-
cation. After carrying out the suggested simplification Mathematica runs a decision algorithm
to determine if the new expression is simpler than the present one. If it is simpler, the new
expression is saved and the old is discarded, this protocol is then repeated until there are no
more assumptions remaining.

The decision algorithm works by assigning each function in an expression a predefined com-
plexity, it then calculates the total complexity of the expression. The transition to Cartesian
form is made by defining a rule which assigns a high complexity to the exponential function e^x

1

2 (∗Going from po la r to Cartet ian form ∗)
3

4 (∗ Def ine the ru l e ∗)
5

6 prio [ e_ ] := 100 Count [ e , _Abs , {0 , I n f i n i t y } ] + LeafCount [ e ]
7

8 (∗Carry out the s imp l i f i c a t i o n ∗)
9

10 Fu l l S imp l i f y [ exp , ComplexityFunction −> prio ]

Specifying a Field for a Variable.
By default Mathematica assumes that all variables are complex. Sometimes we want to specify
that some relation, for example a simplification, is to be taken over some other field, such as the
real numbers. This is specified by adding the following option to the end of your command.

1

2 (∗ S imp l i f y i ng in the r e a l s ∗)
3

4 SomeCommand [ SomeArgument , Element [ { x0 , x1 , x2 , x3 , x4 } , Reals ] ]

we could also write it using conventional set notation2

1

2 (∗ S imp l i f y i ng in the r e a l s ∗)
3

4 SomeCommand [ SomeArgument , { x0 , x1 , x2 , x3 , x4} Esc el Esc Reals ]

Parallelising the MUSness - SICness Plotting
The vast majority of the commands in Mathematica are not parallelised, which is as it should be
since most commands do not require a lot of computational resources. However, many potentially

2When we write Esc we imply hitting Esc , in this case Esc el Est will result in ∈ in Mathematica.
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computationally heavy commands such as Table and Map have parallelised counterparts3 [3].
There are also some commands that were developed before parallelisation were a viable option
that is yet to be parallelised e.g. Simplify.

Below we present our code for making the plots in Chapter 6. A standard plot in Chapter 6
consists 100k points, which corresponds 100k randomly chosen vectors in CPN−1; that is to say
105×N uniformly random numbers and 105×N random numbers chosen from a specific distri-
bution. These vectors are then plugged into fSIC and fMUS , which are far from nice functions
being sums of quartic inner products. Needless to say, making those plots are computationally
heavy and we have therefore parallelised our code where it is possible.

Note that we at no point specify the number of cores to run the code on or any other machine
specific options. As such it is possible to migrate this code to any machine without changing the
code. Specifying what system resources is available to Mathematica is done by changing global
parameters in the Mathematica host process.

1

2 (∗Making fSIC−fMUS s c a t t e r p l o t s ∗)
3

4 (∗Preamble ∗)
5

6 n=dimension
7 samples = 10^5;
8 SICList = Li s t [ ] ;
9 MUSList = Li s t [ ] ;

10

11

12 (∗Choosing random po in t s ∗)
13

14 g [ x0_ , y0_ ] :=
15

16 Module [ { x = x0 , y = y0 } ,
17 {
18 rand = Para l l e lTab l e [
19 Table [ { ArcSin [ RandomReal [ { 0 , 10^(−16) } ]^(1/(2 j ) ) ] ,
20 RandomReal [ { 0 , 2 Pi } ] } , {j , y − 1} ]
21 , {i , x } ] ;
22

23 rand = Flatten [ rand , 1 ]
24

25 }
26 ]
27

28

29 (∗ Cal cu l a t ing the coo rd ina t e s ∗)
30

31 randomSeeds=Flatten [ g [ samples , n ] , 1 ] ;
32

33 SIClist=Para l l e lTab l e [
34 f_SIC [ Table [
35 randomSeeds [ [ j+(n−1) (i−1) ] ] [ [ 1 ] ] , randomSeeds [ [ j+(n−1) (i−1) ] ] [ [ 2 ] ] ,
36 ,{j , 1 , n−1}] ]
37 ,{i , samples } ] ;
38

39 MUSlist=Para l l e lTab l e [
40 f_MUS [ Table [
41 randomSeeds [ [ j+(n−1) (i−1) ] ] [ [ 1 ] ] , randomSeeds [ [ j+(n−1) (i−1) ] ] [ [ 2 ] ] ,

3Mathematica also has a library for support of CUDA and OpenCL programming which are used to run highly
parallelised computations using GPUs, but we will not digress on that here.
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42 ,{j , 1 , n−1}] ]
43 ,{i , samples } ] ;

Spherical Plots of the SIC-function
Sometimes we want to plot a 2D function on the surface of some object rather than making a
conventional plot. An example of such a plot is the fSIC plots in Chapter 4, these are actually
plots on the surface of a Bloch sphere, why it might be instructive to show the plots on an actual
sphere. The way to realise this is to use the a combination of the options ColorFunction and
Hue. Where the first command specifies that we want to colour the object according to some
function and the second one specifies which function. Below we supply the code to plot fSIC on
a sphere.

1

2 (∗ Plo t t i ng fSIC on a sphere ∗)
3

4 ParametricPlot3D [{ Cos [ u ] Sin [ v ] , Sin [ u ] Sin [ v ] , Cos [ v ] } ,
5 {u , 0 ,2 Pi } , {v , 0 , Pi } , P lotPo ints −> 200 , Mesh −> None ,
6 ColorFunction −> Function [ { x , y , z , u , v } , Hue [ f_SIC [ u , v ] ] ] ,
7 ColorFunct ionSca l ing −> True , AxesLabel −> {x , y , z } ]

Probing a Plot Using Manipulate
When we have some function which generates a distribution of points, we sometimes want to
explore which parameter values that correspond to which points. One such example is the
SICness-MUSness plots in Chapter 6. This is conceived by utilising the command Manipulate,
which is a really nice tool when we want to study the change in some system by some dynamic
variable or variables. For further information and an interactive introduction see theMathematica
reference.

We may use the Manipulate command to see where different points in the parameter space
ends up in the scatter plot. This is done by manipulating a function which plots a point at
the coordinates (fSIC [u1, v1, u2, v2, ...], fMUB [u1, v1, u2, v2, ...]) on the background of the fSIC −
fMUB scatter plot. Changing the values of the parameters will move the point around on the
background of the scatter plot.

1

2 (∗Probing the fSIC−fMUS plane . ∗)
3

4 (∗ In t h i s example ' SomePlot ' i s a p r ev i ou s l y generated p l o t ∗)
5

6 Manipulate [
7 Show [ SomePlot ,
8 Graphics [ {
9 Red , Po intS i ze [ 0 . 0 1 0 ] , Point [ { fSIC [ u1 , v1 , u2 , v2 , . . . ] , fMUB [ u1 , v1 , u2 , v2←↩

, . . . ] } ]
10 } ] ] ,
11 {ui , 0 , Pi } , {vi , 0 , 2 Pi } ]
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Making the θ-axis Descending
When making two dimensional plots we usually plot both axes as increasing. However, in the
contour plots of Chapter 4 the φ-axis is decreasing, this is to compensate for the fact that we
are actually looking at the surface of a sphere. The convention is to call the north pole of a
sphere φ = 0 and the south pole φ = π. The following code flips the direction of the φ-axis while
maintaining the correct values of the function.

1

2 (∗ Rede f in ing theta ∗)
3

4 (∗ In t h i s example theta i s c a l l e d v and phi i s c a l l e d u∗)
5

6 plots = ContourPlot [ fSIC [ u , −v ] ] ,
7 {u , 0 , 2 Pi } , {v , −Pi , 0} ,
8 FrameTicks −> {{0 , Pi /2 , Pi , 3 Pi /2 , 2 Pi } , Table [ { v , −v } , {v , 0 , −Pi , −Pi←↩

/2} ]} ,
9 AspectRatio −> 1/2 ] ;



Appendix B – Computing power

For comparison, all heavy calculations are run on the following system

Component Specification Performance

CPU Quad Core Intel i7-4770K Haswell 2.7/3.5/4.4 GHz4

Graphics Nvidia GTX670 1344 CUDA cores at 980 MHz /
2 GB GDDR5 at 6 GHz5

RAM Kingston 4×8 GB at 1.6 GHz

Drive Intel SSD 180 GB, 555/520 MB/s6

Motherboard MSI Z87 MPOWER (MS-7818) -

Operating system Windows 7 Ultimate SP1 -

With the introduction of x64 operating systems and multi-core processors during the last ten
years, there have been a paradigm shift in machine computation. The key to unlocking the full
computational power of a machine has shifted from choosing the Fortran loop which is being
optimally executed by the system to how good one is at parallelising code.

This stems from the fact that non-parallelised code (serial code) only runs on one CPU core
whereas parallelised code runs on any chosen amount of cores. A computer today typically have
2, 4 or 8 cores, while this does not correspond to the code running twice, four or eight times as
fast, it is a huge improvement in computational time7.

A great practical challenge in this Master’s thesis has been to overcome limitations in com-
puting resources. For future reference we will document some of the experiences we had trying
to push Mathematica running on the above machine to the maximum. It has already been stated
that the solving of the polynomial systems in the end of Chapter 5 is an example of shortage of
computing resources.

Our attempted solving method was to use Mathematica’s Reduce to find a solution, however,
this command is not parallelisable and can not utilise the full power of the computer. Typically
Mathematica tries to solve numerical systems of equations either by Buchberger’s algorithm or by

4Base / Turbo / Overclocked to
5GPU / Graphics memory
6Read / Write
7It is not possible to give an overall estimate on how much faster a generic program will run on multiple cores,

it depends on a lot of parameters such as in which language it is written and how it is written.
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the Jenkins-Traub algorithm[2]. These are both iterative algorithms in nature and relies heavily
on the memory available if the problem is complex. Our most ambitious attempt at solving the
before mentioned system of polynomials was to let the computer run for 250 hours at which
point we interrupted the computation.

When a serial algorithm in Mathematica encounters a hard problem it will generally occupy a
lot of memory8. Mathematica allocates memory in a classical hierarchy starting with the fastest
memory available according to

1. Cache

2. RAM

3. Drive

There are some point in keeping this hierarchy in mind when coding large Mathematica
applications. The speed of these memories is roughly decreasing with about a factor of 10 with
each level, provided that your drive is an SSD. Hence, make sure that you have enough RAM
available before running a large computation, since it will run exceedingly slow when it starts
allocate memory on the drive.

For the record, the attempted solving of the polynomial system in Chapter 5 allocated 120
GB of computer memory divided over all three levels and was showing no sign of the decreasing
allocation.

Another type of computationally heavy calculations that has been handled in this thesis is
the making of the scatter plots in chapter 6. As stated in appendix A this piece of code has
been parallelised in order to meet the demand on computational resources. This may serve as an
example of how much evaluation times might decrease when a program in parallelised. Before the
parallelisation of this code making scatter plots within tolerable evaluation times was possible
up to dimension seven where we experienced evaluation times of about two minutes. However,
making plots in dimensions 11 and 13 was painfully slow and there was no reason to try making
plots in dimensions higher than 17. After parallelisation however this code has produced plots
up to dimension 31(!). The program has a run time of less than two minutes for dimensions
lower than 17 and it completed 31 in about 30 minutes. During a large calculation, Mathematica
typically allocated about 20 GB of RAM and utilised all cores at 70-95%.

When Mathematica is running a calculation we can not use the kernel for any other jobs for
the duration of the calculation. A nice work-around for this limitation is to run several instances
of Mathematica. For instance, if I want to make scatter plots for an hour, I of course want to
be able to use Mathematica for other calculations meanwhile. If I then start a new instance of
Mathematica that instance will launch its own kernels that will be free to use.

8This of course depends on the command used, but this is generally the case. This is certainly the case when
simplifying or solving complex systems of equations. The reason for this is quite technical and at any rate not in
the scope of this thesis for a degree in theoretical physics.



Appendix C – Exact Solutions to
MUS in 7 Dimensions

For reference we here present all MUSs in the real subspace of 7D as defined in Chapter 5. First
we give the expressions numerically, then we give the exact and fully simplified expressions. Note
that the result is presented in a short hand notation using boolean algebra.

Numerical Solutions
It is strongly recommended to use the numerical representation for any practical purposes since
it is a lot more straight forward than the exact representation.

(x2 == −0.295254 ∧ ((x0 == −0.66776 ∧ x1 == −0.0719342) ∨ (x0 == 0.66776 ∧ x1 == 0.0719342)))∨
(x2 == −0.270598 ∧ ((x0 == −0.66776 ∧ x1 == −0.138298) ∨ (x0 == 0.66776 ∧ x1 == 0.138298)))∨
(x2 == −0.191342 ∧ ((x0 == −0.66776 ∧ x1 == 0.236089) ∨ (x0 == 0.66776 ∧ x1 == −0.236089)))∨
(x2 == 0.191342 ∧ ((x0 == −0.66776 ∧ x1 == 0.236089) ∨ (x0 == 0.66776 ∧ x1 == −0.236089)))∨
(x2 == 0.270598 ∧ ((x0 == −0.66776 ∧ x1 == −0.138298) ∨ (x0 == 0.66776 ∧ x1 == 0.138298)))∨
(x2 == 0.295254 ∧ ((x0 == −0.66776 ∧ x1 == −0.0719342) ∨ (x0 == 0.66776 ∧ x1 == 0.0719342)))

(7.1)
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Exact Solutions
These exact solutions are not terribly useful. They are mostly supplied as a reference and as a
proof of concept. It is probably easier to calculate them from scratch using the methods supplied
in this thesis than making any sense out of these.
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