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Abstract

SIC-POVMs or Symmetric Informationally Complete-Positive Operator Valued

Measures are special types of POVMs consisting of d2 symmetrically placed pro-

jectors acting on the d-dimensional Hilbert space, hence making them informa-

tionally complete. Their significance is seen in Quantum Cryptography, Quantum

State Tomography and various other areas of physics, mathematics and signal pro-

cessing. Though there are numerous dimensions in which SICs have been found,

convincingly suggesting they exist in every finite dimension, there is yet to be a

proof of their existence. Moreover, it is difficult to find these SIC solutions. Thus,

the search for SICs in higher dimensions and the search for a proof of existence

are topics of extensive and dynamic research in the field.

In this work we provide the background for getting familiar with SIC-POVMs,

focusing on the role of the Weyl-Heisenberg Group. We explore the connection

between SIC-POVMs in lower dimensions to those in certain higher dimensions,

creating a pathway between them using Equiangular Tight Frames (ETFs), a

topic crucial to this thesis. We create new ETFs from existing SIC-POVMs, the

final goal being the construction of a SIC-POVM in a higher dimension. An open

question concerning ETFs that can be embedded in the higher dimensional SIC-

POVM is settled.

Keywords: SIC-POVMs, ETFs, Weyl-Heisenberg Group, Clifford Group, Naimark

Theorem
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Chapter 1

Introduction

Quantum Information Theory has taken an important position in Information Sci-

ence after the vast advances in experimental physics, most notably in Quantum

Optics. As quantum information science deals with the information contained

in a quantum system, it is necessary to study quantum measurements. A gen-

eral measurement in quantum mechanics can be described by a set of positive

operators called a Positive Operator-Valued Measure or a POVM, which act on

the quantum state in order to extract information from it. For physical quantum

systems, this action of the operators on the quantum state corresponds to an

action taken during an experiment. The most well known example of a POVM is

given by a set of operators Pi = |i〉 〈i|, where the vectors |i〉 form an orthonormal

basis in dimension d. The operators satisfy the relations

d−1∑
i=0

Pi = 1

PiPj = δijPi

In this thesis, we will focus on another special class of POVMs, called the Symmet-

ric Informationally Complete-POVMs or the SIC1-POVMs, which will be defined

below.

In general, an informationally complete POVM consists of d2 operators using

which we can completely determine the quantum state by repeated measurements

on a large number of identically prepared systems. This process of determining

the quantum state is known as quantum state tomography. An informationally

complete-POVM consisting of a symmetric set of operators is known as a SIC-

POVM. It is in a precise sense theoretically optimal for the purpose of quantum

1Pronounced seek.
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state tomography [1]. SIC-POVMs also come into the picture in quantum cryp-

tography [2] and in a branch of mathematics known as frame theory, as maximal

equiangular lines. SIC-POVMs have also found usage in Number Theory [3], with

their structure offering insights into many unanswered questions.

SIC-POVMs, generally known as SICs, can be given by a set of d2 unit vectors

{|ψI〉}d
2

I=0, which obey

1

d

d2∑
i=1

|ψI〉 〈ψI | = 1 (1.1)

| 〈ψI |ψJ〉 |2 =
1

d+ 1
where I 6= J (1.2)

with the elements of the POVM given by |ψI〉 〈ψI | /d. The vectors {|ψI〉}d
2

I=0 are

known as SIC vectors. Even with its simple definition, as we will also see further

in the text, it is extremely difficult to find these SICs in higher dimensions. In-

deed, a pressing problem in the study of SICs is to prove their existence in every

finite dimension. With these challenges and its wide range of applications, it is

highly appealing to study SICs and a proof of existence or a technique for the

construction of a SIC in any dimension would be highly beneficial.

Our current knowledge of SICs derives from the exact and numerical solutions

found in numerous dimensions. As of now, exact solutions have been published in

dimensions up to 21 [4] and a few others with the highest being 323 [5]. Numeri-

cal solutions have been published in dimensions up to 121 by Scott (2017) [6], up

to 151 by Fuchs et al. (2017) [7] using the code given by Scott, and sporadically

up to 2208. Many more exact and numerical solutions have been found in an

unpublished work by Grassl [8]. Even though a mathematical proof is yet to be

found, because of the large number of dimensions SICs have been found in till

now, it is widely believed that they exist in every dimension.

Many aspects of quantum information theory are amalgamated with classi-

cal information theory in numerous applications in communications. One such

example is the Heisenberg Group, which originated in quantum mechanics and

now has usage in many engineering applications including signal processing [9],

Fourier analysis [10] and radar and communications [9][11]. It is also of funda-

mental significance in our study of SIC-POVMs and hence we will study this

group in detail. There are various versions of the group pertaining to different

applications, with the one we use in this work called the Weyl-Heisenberg Group

as a distinction. An important related group which comes into the picture is the

Chapter 1 2
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Clifford group, which we will use in our discussion to study the symmetries of

SIC-POVMs. The Clifford Group has applications in Quantum Computing, more

specifically in Error-Correcting Codes.

In this thesis, we focus on the connection between SICs in lower dimensions

and those in higher dimensions, specifically on the link between the dimensions d

and d(d−2). This special connection between the two dimensions comes from the

part Number Theory plays in the construction of SICs [3]. The aim of looking at

this particular case is to find a way to construct a SIC in dimension d(d−2) given

a SIC in dimension d. If such a formulation is found, SICs can be constructed

recursively in infinitely many dimensions, the only limiting factor being the com-

putational power available to us. The ultimate goal of this approach would be to

solve the existence problem by finding connections between SICs in other ways as

well and obtaining a method of constructing a SIC in any dimension. Given the

speed by which solutions in higher dimensions are being discovered, this highly

optimistic goal could be realized sooner than expected.

In Chapter 2 we will focus on gaining some background knowledge for the

study of SICs. We begin the chapter by giving a short introduction to Group

Theory and listing some frequently used terms. We then talk about modular

arithmetic and the Chinese Remainder Theorem which gives us a recipe to deal

with higher dimensional objects by splitting them into lower dimensional fac-

tors. The Chinese Remainder Theorem is essential when connecting SICs from

a lower dimension to SICs in a higher dimension. We then discuss the Weyl-

Heisenberg Group in detail and its representation pertaining to our work. The

Weyl-Heisenberg Group takes a central role in the study of SICs, its importance

illustrated by the fact that all but one solution of SICs that we have found till

date are orbits under the Weyl-Heisenberg group. In fact, the odd SIC forms an

orbit under a different version of the Heisenberg group. Lastly, we talk about the

Clifford group and look at its construction in detail.

In Chapter 3 we give the definition of SIC-POVMs and give some solutions in

lower dimensions, mainly in dimensions 2 and 3. These solutions are much sim-

pler compared to the exact solutions in higher dimensions and hence we can state

the fiducials and discuss their structure. We also talk about equiangular tight

frames (ETFs), which are symmetric POVMs, consisting of d ≤ N ≤ d2 vectors

in dimension d. We observe that a SIC is an equiangular tight frame consisting

of d2 vectors and is hence a maximal ETF. The property of a SIC being an ETF

will later help us to construct new ETFs from a given SIC using a method known

Chapter 1 3
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as the Naimark extension theorem. We also discuss t−designs here, a structure

which allows us to average over the Hilbert space easily by averaging over only

a finite number of vectors. We see that a SIC is a 2-design and look at some

properties regarding this that will come in use later.

In Chapter 4, we talk about the Number Theory aspect of SICs and how

number fields play a part in describing these solutions. We make the connection

between dimensions d and d(d− 2) clear in relation to the number fields pertain-

ing to their solutions. We also look at other empirical observations linking the

two dimensions and put forward ways to utilize these connections for furthering

our construction of SICs.

In Chapter 5, we first talk about the symmetries a SIC is found to have. Hav-

ing the knowledge about the symmetries of an object helps in understanding its

structure. In this case, we will talk about how various symmetries are linked to

different dimensions. We then look at special dimensions of the form d = 3k. The

SICs in these dimensions are known to have certain properties which we can use

to our advantage in further chapters. We look at the reduced density matrices

in dimension 3 of the quantum state created using these SICs and study their

structure.

We then dive into Chapter 6, where we will use our knowledge obtained in the

previous chapters to try to construct a SIC in dimension d(d − 2). We explain

the Naimark extension theorem in detail and give the procedure for the construc-

tion of new ETFs from SICs using a construction that Renes et al. (2004) [12]

gave in one of the two pioneering publications on SICs. (The other, independent,

pioneering publication was Zauner’s PhD thesis [13]). For this chapter, the repre-

sentations of the Weyl-Heisenberg Group are a key factor and we will investigate

in detail how the group works differently in even and odd dimensions.

In this work, the computational calculations are done using Wolfram Math-

ematica 12.0 Student Edition and some useful code snippets are presented in

Appendix A. We refrain from providing longer codes to avoid making the work

cumbersome.

Chapter 1 4



Chapter 2

Background

To study the basics of SIC-POVMs, we first need to get some mathematical

background for its fundamental concepts. As one of the central themes in the

study of SICs is the Weyl-Heisenberg Group, we start with a discussion of Groups

before moving on to modular arithmetic and the Chinese Remainder Theorem,

which are essential to understand the Weyl-Heisenberg group. We then talk about

the Clifford group which also has an important role in this work and as we will

explain below, is the normalizer of the Weyl-Heisenberg group.

2.1 Group Theory

Group Theory deals with the study of groups, a mathematical object first intro-

duced in the early nineteenth century for finding the solutions of higher degree

polynomial equations. Over the years there have been numerous developments of

the theory, and as it stands now it is essential to many applications in physics.

Group representation theory, in particular, is widely used in Quantum Mechanics,

as was first realized by Weyl [14]. It is important for the SIC problem as well, and

although we will not enter deeply into the aspect, it turns out that the original

use of group theory by Galois is also highly important for SICs [15]. Though

the subject area is vast and diverse, we will give some basic definitions and focus

mainly on topics pertaining to our study of SICs.

A group G is defined as a set of elements, which together with a binary op-

eration ◦, follow the group axioms –

Closure: The group elements are closed under the binary operation ◦, i.e., for

all elements a, b ∈ G
a ◦ b = c

5
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such that c is an element of G as well.

Associativity: The operation ◦ is associative, i.e., for all a, b, c ∈ G

(a ◦ b) ◦ c = a ◦ (b ◦ c)

Identity: There exists a unique element e in G such that for any element a ∈ G,

a ◦ e = a = e ◦ a

e is called the identity element of the group G.

Invertibility: For all elements a ∈ G, there exists an element a′ belonging

to G which acts as its inverse

a ◦ a′ = e = a′ ◦ a

Given a set of elements and a corresponding binary operation, we can easily check

if the elements form a group by verifying that they follow the group axioms above.

An example of a group is the set of all real numbers R, which forms a group under

addition. The identity element e for the group is 0 and the inverse of an element

g is given by −g. We can call this group as (R,+).

A subgroup, as is evident from the name, is a subset of the original set of el-

ements of G, which forms a group under the operation ◦ as well. For a subset

H to be a subgroup of G, it must follow the group axioms. As an example, a

subgroup of (R,+) is the set of all integers Z forming a group under addition,

(Z,+).

With this we can define the concept of a normalizer of a group. Given a group

G and its subgroup H, let NG(H) be the set of all elements n ∈ G such that

nHn−1 = H

Then, the group NG(H) is called the normalizer of H.

A group (G, ◦) is called abelian if a ◦ b = b ◦ a for all elements a, b ∈ G. The

group operation ◦ thus becomes commutative. The group created by the set of

real numbers R under addition is an abelian group. An example of a non-abelian

group is the rotation group SO(3), which consists of orthogonal 3-dimensional

matrices with determinant 1 as group elements, under the operation of matrix

Chapter 2 6
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multiplication. As we will see later, the Weyl-Heisenberg group is a non-abelian

group as well.

There are some special notations given to specific mappings in group theory.

A function which maps the group (G, ◦) to (H, �) is known as a group homomor-

phism if it preserves the group operations.

f : G→ H

f(g1 ◦ g2) = f(g1) � f(g2)

for elements g1 and g2 in group G. If a homomorphism is bijective, i.e., a one-

to-one and onto map, it is known as a group isomorphism. The two groups G

and H are then isomorphic to each other. As there is a unique correspondence

between the elements gk and hk, the groups G and H are essentially the same, in

the sense that the element hk acts as a label for gk.

2.1.1 Group Representation

Given a group G, the group elements g can be represented as matrices Γ(g) such

that

Γ(g1) · Γ(g2) = Γ(g1 ◦ g2) (2.1)

Here, (·) represents matrix multiplication and (◦) is the binary operation cor-

responding to the group G. The representations are non-unique and hence we

can have different matrix representations for G with the representations Γ(g) and

Γ̃(g) being equivalent if there exists a transformation such that

Γ̃(g) = S−1 Γ(g)S

An illustration of a matrix representation of the additive group of real numbers

(R,+) can be given by the group of lower triangular 2−dimensional matrices with

matrix multiplication as their operation.

Γ(u) =

(
1 0

u 1

)
(2.2)

such that

Γ(u).Γ(v) =

(
1 0

u+ v 1

)
(2.3)

Chapter 2 7
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and

e = Γ(0) =

(
1 0

0 1

)
(2.4)

We will mainly deal with the matrix representations of the two groups, the Weyl-

Heisenberg group and the Clifford group, in this work. In the case of the Weyl-

Heisenberg group, the different representations a particular group can take is of

significance and will come in use later.

A representation Γ(g) is said to be reducible if there exists an equivalent rep-

resentation of Γ(g) which takes the form(
D1 A1

0 D2

)

where the elements of the matrix are themselves matrices of varying sizes. A

completely reducible representation is given by a matrix(
D1 0

0 D2

)

Here, the diagonal elements D1 and D2 are square matrices of varying sizes and

the rest of the elements are zero matrices. Such a matrix is called a block diag-

onal matrix. In general, a block diagonal matrix can have many blocks on the

diagonal depending on the dimension of the matrix. For a finite group (a group

containing a finite number of elements), which are the kind of groups we will be

working with in this thesis, the reducible and completely reducible representa-

tions are equivalent. If a matrix representation cannot take this form, it is called

an irreducible representation.

2.1.2 Special Linear Group

The special linear group SL(n, F ) is the set of n−dimensional matrices with

determinant 1, over the ring F with matrix multiplication as the group operation.

A ring is an abelian group under addition, and is closed under multiplication. An

example of a ring is the set of integers Z. If a ring is also closed under division,

it is called a field. R and C, the sets of real numbers and complex numbers

respectively, are hence fields. For example, the group SL(2,Z) is the set of

2−dimensional matrices (
α β

γ δ

)

Chapter 2 8



SICs, ETFs and their Connections

such that

α, β, γ, δ ∈ Z and αδ − βγ = 1

Similarly, we can encounter other special linear groups SL(2,R), SL(2,C), SL(2,Zn),

etc. with a similar construction. The group SL(2,Zn) will be of importance to us

when we define the Clifford group, the normalizer of the Weyl-Heisenberg group.

To understand the set Zn, which is the set of all integers taken modulo n, we will

discuss the concept of modulo and modular arithmetic at length below. As we

will later see, modular arithmetic will be of great importance to us in the study

of the Weyl-Heisenberg Group as well.

2.2 Modular Arithmetic

The concept of modulo can easily be understood by the most probable cause of

its conception: keeping track of astronomical events. As a simple example, the

time of day resets every 24 hours. So any calculation done can be reset to 0 when

the counter reaches 24. This arithmetic is said to be modulo 24. As astronomical

events are mostly cyclic, the position of a body being equivalent after a complete

revolution, the calendric calculations can be done modulo the period of revolu-

tion of the astronomical body. As a consequence, modular arithmetic was being

used in India to do such calculations, possibly as early as 700 BC [16]. It was

also being used by the Ancient Greeks, Arabs and Chinese, evidence suggesting

independent creation.

In modular arithmetic, two integers a and b are called equivalent with respect to

a positive integer n if n is a factor of a− b. The arithmetic is then modulo n and

the relation is given by

a ≡ b (mod n)

Hence, it follows that any number a is equivalent to . . . a − n, a + n, a + 2n, . . .

(mod n). We are dividing the set of integers into n different equivalence classes

with n called the modulus. An easy way to think of it is to say that a number is

equivalent to the remainder we obtain while dividing it by the modulus, keeping

the quotient an integer. An everyday application of modular arithmetic is the

classification of integers into odd or even. An integer is defined as even if it is 0

mod 2 and odd if it is 1 mod 2.

Being an equivalence relation, modulo follows the properties

• a ≡ a (mod n) (reflexivity)

Chapter 2 9
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• a ≡ b (mod n) ⇒ b ≡ a (mod n) (symmetry)

• a ≡ b (mod n) and b ≡ c (mod n)⇒ a ≡ c (mod n) (transitivity)

The set of integers modulo n is denoted by Zn. This set is a ring as it is closed

under the operations addition and multiplication. We should get familiar with

how addition and multiplication operates in modular arithmetic. Some properties

that integers modulo n follow are –

• a− bn = a (mod n), b ∈ Z

• a (mod n) + b (mod n) = (a+ b) (mod n)

• if a = b (mod n) then a+ k = b+ k (mod n) for any k ∈ Z

• a (mod n) . b (mod n) = (a.b) (mod n)

• if a = b (mod n) then ak = bk (mod n) for any k ∈ Z

After talking about the operations addition and multiplication, we would like to

know how division comes into the picture in modular arithmetic. Let us start with

two numbers a and b which are co-prime, i.e. they have no common factors other

than 1. Co-prime numbers are denoted by (a, b) = 1. The inverse of a number a

modulo n has an existence only if the numbers a and n are co-prime. The inverse

then is given by a−1 where aa−1 = 1 (mod n). For example, 3−1 (mod 5) = 2 as

3 · 2 (mod 5) = 6 (mod 5) = 1 (mod 5). This puts forward the notion that for

division to be a part of the operations possible to perform, all non-zero integers

should have an inverse modulo n. Thus, the set Zn is a field only if n is prime

and otherwise it is only a ring.

An important concept that will come in use later is the quadratic residue. An

integer x is called a quadratic residue modulo n if there exists an integer y such

that y2 = x (mod n). As an example, −1 is a quadratic residue when taken

modulo 5 or modulo 13 as

32 (mod 5) = 9 (mod 5) = −1 (mod 5)

52 (mod 13) = 25 (mod 13) = −1 (mod 13)

However, for modulo 3, 7, 9, 11 there is no such number whose square is equivalent

to −1. The concept of a quadratic residue is analogous to classifying real numbers

into positive or negative. One particular definition states that a real number is

positive if it is found to be the square of another real number, i.e., it is a quadratic

residue for real numbers. Otherwise, it is defined as a negative real number.

Chapter 2 10
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2.3 Chinese Remainder Theorem

Now that we have understood modular arithmetic and know its properties, we

should ask ourselves how to solve equations which are given modulo different num-

bers. Even though the calculations would be easy for smaller numbers, modular

arithmetic becomes extremely difficult to deal with if the moduli we’re dealing

with is larger. There are many algorithms [16] which tell us how to attack this

problem, one of the oldest being the Chinese Remainder Theorem.

From one point of view, the Chinese Remainder Theorem is a method of solving

problems involving many equations modulo a large range of numbers. The theo-

rem is stated as follows –

A system of linear equations

x ≡ b1 (mod n1)

x ≡ b2 (mod n2)

...

x ≡ b3 (mod nr)

where n1, n2, . . . nr are pairwise co-prime positive integers, has a unique solution

modulo n1n2 . . . nr.

As an example let’s take the equations

x = 2 (mod 3)

x = 1 (mod 5)

x can be 11, 26, 41 etc. but the solutions are equivalent modulo 15. Although

algorithms to solve this system of equations were being used in China and India

to solve problems in astronomy around the 3rd century [16], Qin Jiushao gave the

complete proof of the Chinese Remainder Theorem in 1247 [17].

We can go in the reverse direction and observe that if we have a problem modulo

a large number, we can split it into its pairwise co-prime factors and solve the

problem modulo smaller numbers. Then, there is a unique way to reconstruct

the solution modulo the larger number. The quality to break a larger problem

into smaller blocks to solve individually is highly desirable as solving problems
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modulo smaller numbers is generally much easier and hence reduces calculation

time as well as complexity issues.

For d = d1d2 where (d1, d2) = 1,

r = r1 (mod d1) (2.5)

r = r2 (mod d2) (2.6)

where r is computed modulo d, the unique solution is given by[18]

r = r1d2d
−1
2 + r2d1d

−1
1 (2.7)

Here d−1
1 is calculated modulo d2 and d−1

2 is calculated modulo d1.

To prove this is the solution one can assume (3) and then easily see

r (mod d1) = (r1d2d
−1
2 + r2d1d

−1
1 ) (mod d1) = r1 (2.8)

Similarly,

r (mod d2) = r2 (2.9)

Using the symmetry of modular arithmetic, we see that (4) and (5) are equivalent

to (1) and (2). Hence, (3) is a solution. However, we still need to prove that it is

the only solution.

Let there be two solutions R1 and R2 modulo d. Then,

R1 = r1 (mod d1)

R2 = r1 (mod d1)

R1 −R2 = 0 (mod d1)

So, R1 −R2 is a multiple of d1. Similarly, R1 −R2 is a multiple of d2. As d1 and

d2 are co-prime, d1d2 is a factor of R1 −R2.

R1 −R2 = 0 (mod d)

R1 = R2 (mod d)

So, we see that equation (3) is a unique solution modulo d.

We now have a brief but informative background on groups, modular arithmetic

and the Chinese Remainder Theorem. These are essential to understanding the
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next and one of the most important concepts in our study, the Weyl-Heisenberg

Group.

2.4 Weyl-Heisenberg Group

The Weyl-Heisenberg Group is central to our work and hence we shall look at it

in detail. As mentioned in Section 2.1, a group is a set of elements which together

with a binary operation follow the group axioms. The Weyl-Heisenberg Group is

defined by the generators of its group, ω,X and Z which follow the conditions

ωd = Xd = Zd = 1 (2.10)

ZX = ωXZ (2.11)

and ω commutes with everything. The group is then created by going through

all combinations of these generators, i.e., the generators are used as “letters” to

create a “word” which is an element in the group. Two words are considered the

same if they can be transformed into each other using the given relations. The

general group element can then be brought to the form

ωlXmZn (2.12)

We thus have a total of d3 elements in the group.

We will now look at the group representations for the Weyl-Heisenberg group.

For ω to commute with every element in an irreducible representation, it must

be proportional to the unit matrix. We also insist that ωd = 1, hence the factor

is a dth root of unity. For a faithful representation we insist that ω = (e
2πi
d )n 6= 1

for any n < d and so it is a primitive root of unity, i.e., a number which is not

the root of unity for any integer less than d. We now make a choice to put n = 1.

And so,

ω = e
2πi
d 1 (2.13)

We now introduce the eigenvalue basis for Z and let

Z |e0〉 = |e0〉 (2.14)

Then, according to 2.11

ZX |e0〉 = ωXZ |e0〉 = ωX |e0〉 (2.15)
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We define |e1〉 such that

X |e0〉 = |e1〉 (2.16)

⇒ Z |e1〉 = ω |e1〉 (2.17)

Similarly, defining |e2〉

X |e1〉 = |e2〉 (2.18)

⇒ Z |e2〉 = ω2 |e2〉 (2.19)

Doing this repeatedly gives

X |er〉 = |er+1〉 & (2.20)

Z |er〉 = ωr |er〉 (2.21)

where the indices are modulo d. We see that no degenerate eigenvalues occur

in Z. Also, as Z is of order d, its eigenvalues have to be powers of ω which is

consistent with our outcome. The above equations give us [14]

X =
d−1∑
r=0

|r + 1〉 〈r| (2.22)

and

Z =
d−1∑
r=0

ωr |r〉 〈r| (2.23)

and in the matrix form

X =


0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


d×d

(2.24)

Z =


1 0 · · · 0

0 ω · · · 0
...

...
. . .

...

0 0 · · · ωd−1


d×d

(2.25)

We now have a unitary irreducible representation of the group which is “essen-

tially” unique as we made a choice for ω and used the eigenvector basis for Z.
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Looking at the matrix forms, it is also quite simple to create these generators and

hence the group elements in any dimension. X turns out to be a permutation

matrix, i.e., a matrix with a single 1 in each row and column and 0’s elsewhere.

We only need to calculate ω and its powers in the particular dimension d for

creating Z and henceforth the group elements.

We now define the Displacement Operators as [19],

Di,j = τ ijX iZj (2.26)

where

τ = −e
iπ
d . (2.27)

We note that here we are not using ω, which we had defined earlier, in the

definition of the operators. It might look peculiar to introduce τ instead of using

ω, since τ is the 2dth root of unity when d is even and a power of ω when d is odd,

we will see later that it was introduced by Appleby [19] for convenience. Clearly,

τ has a relation to ω given by

τ 2 = ω (2.28)

This difference in odd and even dimensions led Appleby to introduce the notation

[19],

d̄ =

{
d d is odd

2d d is even
(2.29)

This notation will come into use in several places ahead, specially in the topic of

Clifford Groups.

Let us now define (i, j) as a vector p.

p =

(
i

j

)
(2.30)

to rewrite the displacement operator as Dp. As i and j take values from 0 to

d − 1, we get d2 displacement operators. These operators are a selection made

out of the d3 elements of the Weyl-Heisenberg group by ignoring the phase factors.

The displacement vectors have the following properties [19]

D†p = D−p (2.31)

DpDq = τ 〈p,q〉Dp+q (2.32)
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〈p,q〉 = p2q1 − p1q2 (2.33)

Here, 〈p,q〉 is called the symplectic form. We see that the introduction of τ has

made eq 2.32 take a nice form.

As we can see from equations 2.22 and 2.23, the Displacement Operators obey

TrDp = 0, for p 6= (0, 0) (2.34)

It follows that the trace inner product of the displacement operators is [20]

TrD†pDq = 0, for p 6= q (2.35)

These d2 operators are hence orthogonal to each other and as the set of all oper-

ators has dimension d2, they form a basis in this space. As these operators are

unitary, they form a Unitary Operator Basis [21]. This is an important property

of the group and one we will use later.

An important instance of the group can be found looking at the operators X

and Z in d = 2. We get

D1,0 = X =

(
0 1

1 0

)

D0,1 = Z =

(
1 0

0 −1

)
which are easily recognizable as the Pauli matrices σx and σz respectively. Also,

−D1,1 =

(
0 −i
i 0

)
= σy (2.36)

We again see the significance of introducing τ as for d = 2, τ = −i and so we see

the Pauli Matrices represented by the displacement operators. This connection

with the Pauli matrices is the reason why the generators of the Weyl-Heisenberg

group were named X and Z and why the group is sometimes also known as the

Generalized Pauli Group.
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2.5 Chinese Remainder Theorem for the Weyl-

Heisenberg Group

We have now seen the Weyl-Heisenberg Group and its generators,

ω = e
2πi
d 1

X |er〉 = |er+1〉

Z |er〉 = ωr |er〉

where the indices on the vectors are modulo d. Also, the generator matrices

themselves are of order d. With this we can say that the Weyl-Heisenberg Group

can be characterized by operations modulo d. Because of the direct dependence

of the group on the dimension, it can be inferred that higher dimensions might

bring more complexity issues. Recalling that the Chinese Remainder Theorem

can be applied in situations concerning modulo expressions, we use it to split the

displacement operator D
(d)
i,j into a tensor product of Di,j’s in smaller dimensions.

Let d = d1d2 and (d1, d2) = 1. Then, d−1
1 is the inverse of d1 modulo d2 and

similarly d−1
2 is the inverse of d2 modulo d1. Then, [18]

ωd = e
2πi
d = e

2πi
d1d2

.1
= e

2πi
d1d2

(d1d
−1
1 +d2d

−1
2 )

= e
2πi
d1
d−1
2 e

2πi
d2
d−1
1

ωd = ω
d−1
2
d1
ω
d−1
1
d2

Looking first at the relation,

Zd |er〉d = ωrd |er〉d (2.37)

= (ω
d−1
2
d1
ω
d−1
1
d2

)r(|er1〉d1 ⊗ |er2〉d2) (2.38)

= Z
d−1
2
d1
|er1〉d1 ⊗ Z

d−1
1
d2
|er2〉d2 (2.39)

Doing a similar calculation for X, we get the following relations

Zd = Z
d−1
2
d1
⊗ Zd−1

1
d2

(2.40)

Xd = Xd1 ⊗Xd2 (2.41)

Now, we can see that the Chinese remaindering on the Displacement Operators

gives

D
(d)
i,j = D

(d1)

i,d−1
2 j
⊗D(d2)

i,d−1
1 j
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Or, if we have the matrices

H1 =

(
1 0

0 d−1
2

)
H2 =

(
1 0

0 d−1
1

)
(2.42)

D(d)
p = D

(d1)
H1p
⊗D(d2)

H2p

If instead we had taken ω
d−1
2
d1

as the new primitive root of unity in dimension d1

and similarly ω
d−1
1
d2

in d2, the Chinese remaindering relation becomes much sim-

pler. However, we prefer not to do this since we want eq 2.11 to hold in any

dimension.

We can now have problems in a higher dimension which we can solve in the

lower dimensional co-prime factors and uniquely rebuild a solution in the higher

dimension. This not only simplifies the calculation but as we’ll later see, Chinese

remaindering of the Weyl-Heisenberg Group has a significance in connecting the

SICs from a lower dimension to a higher dimension.

After discussing the Weyl-Heisenberg Group and its Chinese Remaindering, the

next step is to study another important group to be used in this work, the Clif-

ford Group. Before diving into this topic, we will give a little background on

Anti-Unitary Operators, which are useful in the discussion of the Clifford Group.

2.6 Anti-Unitary Operators

An Anti-Unitary operator A is defined as [22]

〈Aφ|Aψ〉 = 〈φ|ψ〉∗ = 〈ψ|φ〉 (2.43)

In quantum mechanics, anti-unitary operators are used to define the time-reversal

symmetry. These operators preserve the value |〈ψ|φ〉|2, and come in use in the

study of SICs while investigating the symmetries in different dimensions. Just as

a Unitary operator is linear

U(a |φ〉+ b |ψ〉) = a(U |φ〉) + b(U |ψ〉), a, b ∈ C, (2.44)

anti-unitary operations are anti-linear, i.e.

A(a |φ〉+ b |ψ〉) = a∗(A |φ〉) + b∗(A |ψ〉) a, b ∈ C (2.45)
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For an anti-unitary operator A, A2 is a unitary by definition.〈
A2φ

∣∣A2ψ
〉

= 〈Aψ|Aφ〉 = 〈φ|ψ〉 (2.46)

Furthermore, any anti-unitary operator can be decomposed as A = UK where

U is a unitary operator and K is the operation of complex conjugation in the

computational basis.

K |ψ〉 = |ψ〉∗ (2.47)

K−1 = K; K2 = 1 (2.48)

KU = U∗K (2.49)

With the basic properties of anti-unitary operators understood, we shall proceed

to the second significant group that occurs in this work, the Clifford Group.

2.7 Clifford Group

The normalizer of the Weyl-Heisenberg Group within the unitary group is called

the Clifford Group, denoted by C(d) in dimension d. It is the set of all unitary

operators such that

UDpU
† .

= Dp′ (2.50)

where
.

= means equivalent up to a phase factor.

For the construction of such unitaries, we look towards Lemma 2 in Appleby

(2005) [19], where it is proved that for a matrix F ∈ SL(2,Zd̄),

F =

(
α β

γ δ

)
(2.51)

α, β, γ, δ ∈ Zd̄ and αδ − βγ = 1 (mod d̄) (2.52)

we can construct a unitary VF using the matrix elements of F as

VF =
1√
d

d−1∑
r,s=0

τβ
−1(αs2−2rs+δr2) |er〉 〈es| (2.53)

Here, d̄ follows the notation defined in eq. 2.29. These unitaries then act on the

displacement operators following the relation

VFDpV
†
F = DFp (2.54)
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Clearly, this construction of a unitary works only if β has an inverse mod d̄, i.e.,

if β 6= 0 and (β, d̄) = 1. If either of the two conditions are not satisfied, we are

also given a roundabout. We can split the matrix F in a way

F = F1F2 (2.55)

F1 =

(
0 −1

1 x

)
(2.56)

F2 =

(
γ + xα δ + xβ

−α −β

)
(2.57)

such that (δ + xβ, d̄) = 1. Then the construction becomes

VF = VF1VF2 (2.58)

If β = 0, δ is non-zero to fulfill the condition αδ − βγ = 1 (mod d̄) and hence

x can be taken as 0. This particular case of β = 0 gives rise to a simple nature

of the unitary formed. Such a matrix F , acting on the Z operator, transforms it

into a power of Z. As Z is a diagonal matrix with eigenvalues 1, ω, ω2, . . . ωd−1,

a power of Z is just a permutation transformation reordering the eigenvalues in

the diagonal matrix. Hence, a unitary created by the matrix F having β = 0 is

a permutation matrix.

F =

(
α 0

β γ

)
(2.59)

Fp =

(
α 0

β γ

)(
0

j

)
=

(
0

γj

)
(2.60)

U(
α 0

β γ

)D(
0

j

)U †(
α 0

β γ

) = D(
0

γj

) (2.61)

Chinese Remaindering can be applied to the Clifford Group as well, following the

same logic as in the case of the Weyl-Heisenberg Group. Using matrices H1 and

H2 from 2.42, we find that [18]

U
(d)
F = U

(d1)

H1FH
−1
1

⊗ U (d2)

H2FH
−1
2

(2.62)

2.7.1 Extended Clifford Group

We can now define the Extended Clifford Group, EC(d), which adds the set of

anti-unitary operators A’s to the unitaries of the Clifford Group, such that the
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following holds.

ADpA
† .

= Dp′ (2.63)

While a unitary operator in C(d) is characterized by SL(2, Zd̄), the anti-unitaries

are characterized by the Extended Special Linear group, ESL(2, Zd̄), which mod-

ifies the former such that

αδ − βγ = ±1 (mod d̄) (2.64)

As A = UK,(
α β

γ δ

)
(det −1)

=

(
α −β
γ −δ

)
(det 1)

(
1 0

0 −1

)
(det −1)

(2.65)

A(
α β

γ δ

) |ψ〉 = U(
α −β
γ −δ

) |ψ〉∗ (2.66)

Here, the matrix
(

1 0

0 −1

)
is represented by complex conjugation [19]. Given

the matrix F , we can construct the Unitary matrix

U(
α −β
γ −δ

) (2.67)

using the normal construction method of eq. 2.53 and hence we have the action

of the anti-unitary operator given a fixed basis.
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SIC-POVMs

3.1 Quantum Measurements

For the purpose of gaining information from any system, a measurement is neces-

sary. A measurement corresponds to an interaction with the system in a way that

we can determine some properties of the system experimentally. For quantum

systems, we look towards Quantum Measurements for this task. Though there

are ideological differences about the effect of a measurement on the quantum

state, everybody agrees that the desired outcome of any measurement is to gain

some knowledge of the system. In the POVM formalism, measurements can be

described using a set of operators which act on the quantum state in order to

give information about it.

3.1.1 Quantum States

Physical quantum systems can be described completely using density matrices.

A density matrix ρ is a d-dimensional matrix acting on the state space of the

system which follows

ρ† = ρ

ρ ≥ 0

Trρ = 1

The condition ρ ≥ 0 means that ρ has non-negative eigenvalues. In general, a

density matrix can be written as

ρ =
∑
i

pi |ψi〉 〈ψi|
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and is known as a mixed state. If the state of the system can be completely

described by a single state vector |ψ〉, the density operator is given by

ρ = |ψ〉 〈ψ|

and is called a pure state. As ρ |ψ〉 = |ψ〉, 1 is an eigenvalue of ρ. As Trρ = 1,

the rest of the eigenvalues are zero. So the eigenvalues of a pure state are always

(1, 0, . . . , 0). Quantum measurements deal with obtaining information about the

density matrix of the system. As ρ is Hermitian, we only need to know the upper

triangular elements of the matrix to completely determine ρ. Also, the d diagonal

elements are real and are restricted by the condition of Trρ = 1. The non-diagonal

elements are taken to be complex and hence contain two real parameters. Thus,

we have in total

(d− 1) +
2(d2 − d)

2
= d2 − 1

unknown parameters in the density matrix.

3.1.2 Partial Trace

For a physical system in a composite dimension d = d1d2, the system is described

by the density matrix ρ12 and the Hilbert space in Cd can be written as a tensor

product of the composite dimensions.

H12 = H1 ⊗H2 (3.1)

This can be extended to larger systems consisting of many component systems.

Given the density matrix in d, we can find the state of the system in the compo-

nent dimensions. Let the basis in d1 be given by {|ei〉}d1−1
i=0 and in d2 by {|fj〉}d2−1

j=0 .

Then the reduced density matrices ρ1 and ρ2 in dimensions d1 and d2 respectively

are given by

ρ1 = Tr2ρ12 =

d1−1∑
i=0

〈ei| ρ |ei〉

ρ2 = Tr1ρ12 =

d2−1∑
j=0

〈fj| ρ |fj〉

where ρ1 gives a complete description of the system in the component dimension

d1 when acted on with operators of the form A⊗1 and similarly ρ2 describes the

system in d2.
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3.1.3 POVMs

A general measurement in quantum mechanics can be represented by a positive-

operator valued measure (POVM), which is a set of m operators Ei’s obeying

Ei = E†i (3.2)

Ei ≥ 0 (3.3)

m∑
i=1

Ei = 1 (3.4)

The operators act on the density matrix with the probability that outcome i

occurs given by

pi = Tr(Eiρ)

Clearly, ∑
i

pi =
∑
i

Tr(Eiρ)

= Tr

(∑
i

Eiρ

)
= Tr(1ρ)

= 1

Also, as ρ and Ei are positive operators,

Tr(Eiρ) ≥ 0 =⇒ pi ≥ 0

The two conditions

pi ≥ 0 and
∑
i

pi = 1

signify that the pi’s form a probability distribution for the m possible outcomes

of the experiment.

A special case of POVM is the Projection-Valued Measure (PVM) where the

POVM effects Ei’s are given by orthogonal projectors Pi’s such that

PiPj = δijPi

and hence the number of operators m = d. This is also known as a von Neumann

measurement.
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As the density matrix has d2 − 1 unknown parameters, an informationally com-

plete POVM will require d2 operators. If these operators are symmetric in their

trace inner product, we get a POVM which is optimal in a sense relating to

quantum state tomography [12][1]. This POVM is hence called a Symmetric

Informationally Complete-POVM.

3.2 SIC-POVMs

A POVM consisting of d2 unit vectors |ψI〉 which obey

1

d

d2∑
I=1

|ψI〉 〈ψI | = 1 (3.5)

gives us d2 operators with one constraint on them, where the elements of the

POVM are given by

Ei =
1

d
|ψi〉 〈ψi| (3.6)

With these operators acting on our state, we can extract the d2 − 1 independent

probabilities pi’s from the density matrix. Recalling that our density matrix has

only d2 − 1 unknown parameters, we have obtained the complete information

needed to construct the density matrix. Such a POVM is hence called informa-

tionally complete. If the vectors also follow

| 〈ψI |ψJ〉 |2 =
1

d+ 1
where I 6= J (3.7)

the vectors are equiangular and the measure is said to be a symmetric informa-

tionally complete POVM or a SIC-POVM.

The d2 vectors {|ψI〉}d
2

I=0 which obey the equations eq. 3.5 and 3.7, are called

SIC vectors. Though the equations look simple and harmless, it is extremely

difficult to find these d2 vectors in higher dimensions. For the exact solutions

already found, the components of the vectors are complicated in nature, usually

taking numerous pages to write out. There is, however, an interesting property

of SIC vectors that makes the task of finding them look less daunting. Most of

the SIC solutions already found form an orbit under the Weyl-Heisenberg Group,

i.e., given we have an initial vector |ψ0〉, the other vectors constituting the POVM

are generated by the action of the group elements on the initial vector.

|ψi,j〉 = Di,j |ψ0〉 (3.8)
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For brevity and clarity, a SIC-POVM is simply called a SIC and the vector |ψ0〉
generating it a SIC fiducial. As stated earlier, there are d2 displacement operators

in dimension d, D0,0 being the identity, so we will obtain the d2 unit vectors us-

ing the above construction. The SIC-POVMs which are generated by the action

of the Weyl-Heisenberg group on the SIC fiducial vector, are known as Weyl-

Heisenberg SIC-POVMs.

Zauner conjectured that such a fiducial and hence a SIC exists in every finite

dimension [13]. This has not been proven yet but is considered true in order to

search for SICs in higher dimensions. In fact, every but one solution known till

date has been a Weyl-Heisenberg SIC. The oddity is a SIC in dimension 8 found

by Hoggar in 1981 [23] which instead of being generated by the Weyl-Heisenberg

Group in dimension 8, H(8), is generated by H(2) × H(2) × H(2). These two

groups are not isomorphic as the factors in H(8) are not co-prime and hence

Chinese remaindering cannot be applied here.

Even though the solutions in higher dimensions are complicated in nature, the

SIC solutions in d = 2, 3 can be figured our analytically without much effort. We

will look at these two cases where it is easy to find a SIC given only the relation

of completeness and symmetry of inner product.

3.2.1 d=2

The easiest case is of course, d = 2. Here, one can find a SIC fiducial by simple

calculation using eq. 3.5, eq. 3.7 and the action of the displacement operators

D
(2)
i,j on the SIC fiducial generating the complete set of vectors. We get the SIC

fiducial

|ψ0〉 =
1√
6

( √
3 +
√

3

e
iπ
4

√
3−
√

3

)
(3.9)

and the rest of the vectors in the set

|ψ1〉 =
1√
6

(
e
iπ
4

√
3−
√

3√
3 +
√

3

)
(3.10)

|ψ2〉 =
1√
6

( √
3 +
√

3

−e iπ4
√

3−
√

3

)
(3.11)

|ψ3〉 =
i√
6

(
e
iπ
4

√
3−
√

3

−
√

3 +
√

3

)
(3.12)
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(a) SIC1 (b) SIC2

Figure 3.1: Representation of the SIC vectors on the Bloch Sphere forming the
vertices of dual tetrahedra inscribed within a cube

These vectors are represented by the points on the vertices of a regular tetrahe-

dron inscribed within the Bloch Sphere. In fact, there exists only one other set

of SIC vectors in dimension 2, generated by the SIC fiducial,

|ψ′0〉 =
1√
6

(
−
√

3−
√

3

e
iπ
4

√
3 +
√

3

)
(3.13)

The set of SIC vectors which are generated by this fiducial form the vertices of

a tetrahedron dual relative to the first. Inscribing these tetrahedra within the

Bloch Sphere, we get figure 3.1.

3.2.2 d=3

We can now take a look at the next easiest dimension, d = 3, where a one-

parameter family of fiducials is given by [13] [19]

|ψ0〉 =
1√
2

 0

1

eiφ

 (3.14)

Dimension 3 is unique in this sense that we get a family of solutions instead of

a few distinct solutions. The SICs in dimensions greater than 3 don’t take such

simple forms and hence we abstain from listing the exact solutions here. For

such cases, we will usually use the numerical solutions in our calculations [24][6].

There are a few exceptions to this rule, particularly in dimension 4 and 7, and

we will state these solutions later.
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We have now defined SIC-POVMs and looked at some of the solutions in lower di-

mensions. We can continue the discussion by defining some additional structures

which will be useful in our work.

3.3 Equiangular Tight Frames

An Equiangular Tight Frame (ETF) is defined as a set of N unit vectors |ΨI〉,
where d ≤ N ≤ d2, that follow the condition of being equiangular [25]

| 〈ΨI |ΨJ〉 |2 =
N − d
d(N − 1)

, where I 6= J (3.15)

and form a tight frame,
N−1∑
I=0

|ΨI〉 〈ΨI | =
N

d
1 (3.16)

Clearly, an ETF is a symmetric POVM which forms a SIC-POVM in the maximal

case of having d2 vectors. We can also see that for the extreme case of N = d,

the vectors become orthogonal and the ETF forms an orthonormal basis.

An important property of tight frames can be seen by putting the vectors {|ΨI〉}N−1
I=0

as the columns of a matrix M . Then,

MM † =
(
|Ψ0〉 . . . |ΨN−1〉

) 〈Ψ0|
...

〈ΨN−1|

 (3.17)

=
N−1∑
I=0

|ΨI〉 〈ΨI | (3.18)

Now, let the rows of the matrix be denoted by {〈ΦJ |}d−1
J=0.

MM † =

 〈Φ0|
...

〈Φd−1|

( |Φ0〉 . . . |Φd−1〉
)

(3.19)

=

 〈Φ0|Φ0〉 . . . 〈Φ0|Φd−1〉
...

. . .
...

〈Φd−1|Φ0〉 . . . 〈Φd−1|Φd−1〉

 (3.20)
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Using eq. 3.16 and rescaling the vectors |Φ′J〉 =
√
d/N |ΦJ〉

〈Φ′I |Φ′J〉 = δIJ (3.21)

So, we see that the rows of the matrix become orthogonal. This property is of

utmost importance to this work and one we will use exhaustively in Chapter 6.

ETFs come in use in signal processing [26], communications [26] and coding [27].

In this work, we will use ETFs with suitable choices of N as intermediaries to

gain information about SICs in higher dimensions from SICs in lower dimensions.

3.4 t-designs

We will now define another structure, t-designs, without getting into much detail.

We start with a function f which is homogeneous of degree t in both the com-

ponents of a Hilbert space vector and the complex conjugate of its components;

f ∈ Hom(t, t). Then, a finite set of vectors is said to make a t-design if the

average of the function over the vectors gives the same value as the average over

all of Hilbert space. Although it is not obvious at all, there is a theorem which

states that a given set of K unit vectors |ΨI〉 form a t−design if they follow the

following condition [28] –

1

K2

K∑
I,J=1

| 〈ΨI |ΨJ〉 |2t =
t!(d− 1)!

(d− 1 + t)!
(3.22)

Putting t = 1, we find that the vectors now follow the condition

1

K2

K∑
I,J=1

| 〈ΨI |ΨJ〉 |2 =
1

d
(3.23)

Squaring eq. 3.16 and then taking the trace we will reach the same equation as

above, concluding that a POVM is a 1-design. Similarly, for a SIC we square eq.

3.7 and take the sum over the d2 vectors giving us

d2∑
I,J=1

| 〈ΨI |ΨJ〉 |4 =
d4 − d2

(d+ 1)2
+ d2 =

2d3

d+ 1
(3.24)
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Substituting t = 2 in eq. 3.22 we can check that a SIC is a 2-design. A conse-

quence of this property of SICs is that we can write

Trρ2 = 〈Trρ2〉SIC = 〈Trρ2〉FS (3.25)

Picking a pure state in the composite dimension d = mn, we can take a partial

trace to get a reduced density matrix in Cm, ρ. The purity is defined by Trρ2 and

taking an average over all such pure states in d, we get the Fubini-Study average

given by [28]

〈Trρ2〉FS =
m+ n

mn+ 1
(3.26)

This is an important property of density matrices which will come in use later in

Chapter 5.
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Special case of dimensions d(d-2)

Given an exact solution for a SIC, there have been investigations of the number

fields that make up these SIC fiducials. We observe that the Weyl-Heisenberg

group elements in the representation we have chosen contain only the primitive

roots of unity and their powers. Thus, the number field created by the primitive

roots of unity, a cyclotomic field, is important in finding the exact solutions of

SICs. Another number field which plays a role in the components of the fiducial

is the quadratic field [15]. A quadratic field Q(
√
D), where D is an integer, is the

set of all the numbers of the form x + y
√
D. Here x and y are rational numbers

whereas
√
D is irrational. This field is analogous to the complex numbers given

by a + ib, with the difference that we will insist that a and b are rational. For

SICs in dimension d > 3, the number field that plays a role is given by Q(
√
D),

where

D is the square free part of (d+ 1)(d− 3)

For example, for d = 7,√
(7 + 1)(7− 3) = 4

√
2, so

√
D =

√
2

It should be noted that while the quadratic field Q(
√
D) is important, it is not

enough for the construction of a fiducial. We actually need an extension of the

quadratic field in order to write the fiducial components. This extension is in

particular difficult for number theorists to understand if D is positive, which is

the case here for any d > 3, compared to when D is negative.
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Let us look at a particular fiducial in dimension 7, with Zauner

(
2 0

0 4

)

|ψ0〉7 =



1
1
2
(−1−

√
2 +

√
−1 + 2

√
2)

1
2
(−1−

√
2 +

√
−1 + 2

√
2)

1
2
(−1−

√
2−

√
−1 + 2

√
2)

1
2
(−1−

√
2 +

√
−1 + 2

√
2)

1
2
(−1−

√
2−

√
−1 + 2

√
2)

1
2
(−1−

√
2−

√
−1 + 2

√
2)


(4.1)

Here, we have ignored an overall normalization factor. We chose this fiducial as

its exact solution is relatively simple to write, being one of the rare few fiducials

in dimensions greater than 3 which can be written in such an easy way. From

this fiducial we observe that while the quadratic field created by
√

2 is important,

another number which plays a role here is
√
−1 + 2

√
2, which obviously belongs

to an extension of Q(
√

2). We can also observe from the simple structure of the

fiducial that our previous argument in Section 2.7 considering the Zauner unitary

being simpler in the case of β = 0 is correct. The solution given by Scott and

Grassl (2010) [24] uses the standard form of the Zauner, and is therefore more

complicated.

Now that we have established to a degree that number theory makes an im-

portant contribution, we would like to use it to our advantage in our search for

SICs. Regarding the quadratic field Q(
√
D), we find that there is a special con-

nection between the quadratic field in dimension d and in dimension d(d − 2).

Looking at the field for d(d− 2)

D = the square free part of (d(d− 2) + 1)(d(d− 2)− 3)

= the square free part of (d− 1)2(d+ 1)(d− 3)

= the square free part of (d+ 1)(d− 3)

So, the quadratic field which is used while writing the fiducial is the same in di-

mension d and d(d− 2), giving rise to similarities in the SICs in these particular

dimensions. There is more to the connection between the number fields in these

two dimensions, but for that we refer to Appleby et al. (2017) [3]

Even though the SICs might be similar in construction, we would like to know

if there is an explicit connection between the SICs in the two dimensions. This
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connection comes in the form of an argument concerning overlap phases.

We define the overlap phase factors in dimension d as θi,j where

eiθi,j =

{
1 i = j = 0
√
d+ 1 〈ψ0|Di,j |ψ0〉 otherwise

(4.2)

Given a SIC fiducial, we can calculate these d2 phase factors. As a result of the

symmetries of the fiducials, we generally have less than d2 independent phase

factors. We will investigate the effect of symmetries on SIC fiducials and pursue

the restrictions in more detail in Chapter 5. Now, looking at the overlap phases

for a SIC fiducial |Ψ0〉 in dimension d(d− 2) as well,

eiΘi,j =

{
1 i = j = 0√
d(d− 2) + 1 〈Ψ0|Di,j |Ψ0〉 otherwise

(4.3)

Appleby et al. (2017) [18] give the following relation

eiΘi,j = ± e2iθi′,j′ (4.4)

where (i′, j′) is linearly related to (i, j), which is verified empirically for the cases

looked at in the paper. One of the main aims of this thesis is to be able to get

this relation as a natural outcome of the connection. Another observation given

in the paper for when d is odd is√
d(d− 2) + 1 〈Ψ0|Ddi,dj |Ψ0〉 = +1 (4.5)

This connection for odd d is verified in Chapter 6.

This interconnection goes further from d(d − 2) to d(d − 2)(d(d − 2) − 2) and

so on. For example, the following SIC fiducials are connected in such a manner,

5a→ 15d→ 195d (4.6)

These connected fiducials are called aligned. Here, and henceforth in the text, the

SIC fiducials are taken from and labelled according to Scott and Grassl (2010)

[24] and Scott (2017) [6]. This progression in dimensions is called “laddering” by

Appleby et al. (2017) and has been observed in many dimensions greater than 3.

There also exist fiducials 195a, 195b and 195c which are aligned to the fiducials

15a, 15b and 15c respectively.
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While on the topic of laddering, we observe that given a dimension d, it takes a

maximum of two ‘steps’ to reach a dimension divisible by 3.

d = 0 mod 3 → 0 mod 3 → 0 mod 3 (4.7)

d = 1 mod 3 → 2 mod 3 → 0 mod 3 (4.8)

d = 2 mod 3 → 0 mod 3 → 0 mod 3 (4.9)

This suggests that dimensions divisible by 3 deserve special attention and we will

look at some particular dimensions of the form d = 3k in the next chapter.
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Dimensions of the form d=3k

5.1 Symmetries

Having discussed the preliminaries of SICs, it is useful to talk about the symme-

tries present in different dimensions. The knowledge of symmetries is fundamental

to understanding the different SIC solutions and the connection symmetries have

with the dimension. We will make use of the Clifford Group discussed earlier

in Section 2.7. The importance of the Clifford Group in the study of SICs will

become abundantly clear in the course of this section.

5.1.1 Zauner Symmetry

We can start the discussion by stating Zauner’s conjecture [19] which states that

in every finite dimension there exists a SIC fiducial, which is an eigenvector of

an order 3 Clifford unitary. One such example of this is constructed from the

symplectic matrix

Z =

(
0 −1

1 −1

)
(5.1)

Using equation 2.53 we can now construct the unitary matrix in any dimension

d such that

UZ |ψ0〉 = |ψ0〉 (5.2)

We call this unitary a Zauner. Appleby (2005) further conjectured that every

Weyl-Heisenberg SIC fiducial is an eigenvector of a canonical order 3 unitary

[19]. He defines a canonical order 3 unitary by an operation DpUF if

1. Tr(F) = −1 (mod d)

2. F is not the identity matrix
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The second condition exists only to exclude the identity matrix in the unique case

of d = 3 as Tr(1) = −1 (mod 3). As is the case, for prime dimensions excluding

3, any symplectic matrix F with trace −1 is conjugate to the Zauner, i.e. there

exists a matrix C ∈ SL(2,Zd) such that

CZC−1 = F (5.3)

Clearly, the trace remains the same and we get a canonical order 3 unitary. In

fact, for prime d, the trace uniquely labels the conjugacy class unless Tr = ±2

(mod d).

This in turn inspires us to find a basis in which the fiducial looks simpler. We only

allow coordinate changes that retain the representation of the Weyl-Heisenberg

Group. Recalling that the unitary is simpler when β = 0, we can try to find cases

when in prime d, there exists such a matrix conjugate to Z.

F =

(
α 0

γ −1− α

)
(5.4)

−α− α2 = 1 (mod d) (5.5)

α2 + α + 1 = 0 (mod d) (5.6)

(α + 2−1)2 = 2−2 − 1 (mod d) (5.7)

So, this is possible only when 2−2−1 is a quadratic residue (mod d). In particular,

this happens when d = 1 mod 3. One such example can be given in dimension 7,

where (
2 0

0 4

)
is conjugate to

(
0 −1

1 −1

)
(5.8)

Making the change of basis such that the fiducial is an eigenvector of the unitary

constructed from the former matrix, we get a much simpler form of the fiducial,

as can be seen in eq. 4.1.

The Zauner symmetry given by eq. 5.1 occurs in every dimension for the known

SICs with some exceptions occuring in dimensions of the form d = 3(3k + 1),

where the symmetry is given by [24]

Fa =

(
1 d+ 3

d+ 3k d− 2

)
(5.9)
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These matrices are order-3 unitaries known as Zauner matrices type Fa. Chinese

Remaindering on Fa gives us an identity matrix in the dimension 3 factor tensor

product with an order-3 matrix in dimension 3k + 1.

5.1.2 Additional Symmetries

In addition to the Zauner symmetry, there are other symmetries present for some

dimensions. As we focus on dimensions of the form

d(d− 2) = (d− 1)2 − 1 (5.10)

in this thesis, we look at a particular order-2 symmetry present in dimensions of

the type N = k2 − 1, given by the symplectic matrix [24]

Fb =

(
−k N

N N − k

)
(5.11)

For odd dimensions, d and d− 2 are relatively prime and hence we can apply the

Chinese Remainder Theorem on Fb using eq. 2.62.(
1− d 0

0 1− d

)
d(d−2)

=

(
−1 0

0 −1

)
d−2

⊗
(

1 0

0 1

)
d

(5.12)

The symplectic matrix for (d − 2) gives the unitary matrix UP which is called

the parity operator. For odd dimensions, UP has spectrum ((d+ 1)/2, (d− 1)/2).

Thus, a SIC in dimension d(d− 2) has a symmetry of the form

U
(d−2)
P ⊗ 1(d) (5.13)

5.1.3 Centered Fiducials

A SIC fiducial is said to be centered if it is an eigenvector of a pure symplectic,

i.e., UF |ψ〉 = |ψ〉 instead of an ordinary canonical order 3 unitary

DpUF |ψ0〉 = |ψ0〉 (5.14)

Though centered SIC fiducials can be found in numerous dimensions, it is still

an unanswered question if every individual SIC has a centered fiducial. Given a

fiducial which follows eq. 5.14, we want a shifted fiducial |ψq〉 = Dq |ψ0〉 such

that

UF |ψq〉 = |ψq〉 (5.15)
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UFDq |ψ0〉 = UFDqU
†
FUF |ψ0〉 = DFqUF |ψ0〉 (5.16)

DFqUF |ψ0〉 = Dq |ψ0〉 (5.17)

UF |ψ0〉 = D(1−F )q |ψ0〉 (5.18)

DpUF |ψ0〉 = |ψ0〉 = DpD(1−F )q |ψ0〉 (5.19)

⇒ D−p |ψ0〉 = D(1−F )q |ψ0〉 (5.20)

This condition simply gives us that given F and p, q should satisfy

p = (F − 1)q (5.21)

When examining this equation, one finds that it can be solved for q given p and F

if the dimension is not divisible by 3. This shows that in dimensions not divisible

by 3 every SIC contains a centered fiducial. The case of dimensions divisible by

3, however, remain open by this argument.

5.2 Dimensions d = 3k

We have established that the laddering of dimensions eventually leads us to di-

mensions which are divisible by 3. We look at some specific examples in the

ladder to find out their properties. For dimensions of the form d = 3k, we can

take a partial trace to get a reduced density matrix.

ρ3 = Trkρ

For example, taking the numerical SIC fiducial |ψ15〉 = 15d [24], we take the

partial trace on the density matrix formed.

ρ = |ψ15〉 〈ψ15| (5.22)

ρ3 = Tr5ρ (5.23)

We get the following reduced density matrix in dimension 3

ρ3 =


1
2

0 0

0 1
4

1
4

0 1
4

1
4

 (5.24)
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Similarly, we can get a reduced density matrix in dimension 3 given any SIC

vector in a higher dimension d = 3k. In fact, for dimensions of the form d = 3k

with the standard Zauner symmetry FZ (eq. 5.1), the reduced density matrix in

dimension 3 can always be brought to a simpler form by a change of basis

ρ3 =

 a11 0 0

0 a22 a23

0 a32 a33

 (5.25)

For some exceptional cases when d = 3(3k + 1) and the Zauner symmetry is Fa
(eq. 5.9), it is unclear how to bring the reduced density matrix to this form. Let

the eigenvalues of this reduced matrix be λ1, λ2, λ3. For some special cases of the

laddering dimensions, 15d, 48g and 195d [24][6] the eigenvalues follow

λ2 = λ3

⇒ λ1 + 2λ2 = 1 as Trρ3 = 1

Recalling the property of SICs in eq 3.26 and putting d = 3k these eigenvalues

also follow,

λ2
1 + 2λ2

2 =
k + 3

3k + 1
(5.26)

This gives us the value for λ1 and λ2 as

λ2 =

√
d+ 1± 2

3
√
d+ 1

(5.27)

λ1 = 1− 2λ2 (5.28)

We can see that as eq. 5.26 is quadratic, we get two sets of eigenvalues. This

calculation doesn’t provide further information as to which solution should be

chosen. There is, however, certainly a choice to be made as can be seen from

the reduced density matrices in dimension 3 given the SIC in dimensions 15d, 48g

and 195d which are of the form

ρ3 =

 1− 2a 0 0

0 a 1− 3a

0 1− 3a a

 (5.29)
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SIC a

15d 1
4

48g 2
7

195d 5
14

Table 5.1: Values of a for Reduced Density Matrices

SIC Eigenvalues

15d 0, 1
2
, 1

2

48g 1
7
, 3

7
, 3

7

195d 3
7
, 2

7
, 2

7

Table 5.2: Eigenvalues of Reduced Density Matrices

For the given SICs, 15d and 48g take the greater value of λ2, i.e., the positive

sign is chosen in the equation 5.27. 195d however, takes smaller value of λ2 given

by the negative sign. We can see that the reduced matrices formed using the

SICs above are not pure states as, for a pure state the eigenvalues should be

(1, 0, 0, . . . , 0). We can however create a set of special density matrices using the

reduced matrix we have,

ρ(x) = xρ3 +
(1− x)

3
13 (5.30)

where x is a variable bounded by the condition that ρ(x) has positive eigenvalues.

The matrices created by such a construction can be thought to lie on a line with

x as their dependent variable. For x = 1, we get our reduced density matrix back

and for x = 0, we have the identity matrix in dimension 3 with trace 1. We can

check that the matrix in 5.30 has trace 1 and so forms a density matrix. To find

the points where the line hits the boundary of the set of density matrices, we can

vary x till the determinant reaches 0. As x can take positive as well as negative

values, we have an upper as well as a lower bound. If for one of the boundary

matrices, we get a pure state, we know that it is a SIC. Looking specifically at
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the cases for SICs 15d, 48g and 195d, we find that for the density matrix ρ(x)

det ρ(x) =
1

27

(
1− 12x2

(
√
d+ 1)2

± 16x3

(
√
d+ 1)3

)
(5.31)

Here again, 195d behaves differently from the other two as it takes the positive

sign at the end of the expression whereas 15d and 48g take the negative.

If we now look at the solutions to

det ρ(x) = 0

we can find the bound on x. For the 3 cases we have taken to look into detail,

this happens for

SIC x

15d -2, -2, 1

48g -7
2
, -7

2
, -7

4

195d -7
2
, 7, 7

Table 5.3: Values of x for determinant 0

Incidentally, we get three solutions for x as eq 5.31 is cubic. To get the density

matrix, we put the value of x in eq 5.30. We find that for the above examples,

we get a pure state for the repeated roots of x. 195d is the oddity again as the

value of x for which we get a pure state is positive, i.e., 7. In cases 15d and 48g,

x is -2 and -3.5 respectively for ρ(x) to have eigenvalues (1, 0, 0).

Looking at the reduced density matrix in dimension 3 for SICs in 15d, 48g and

195d again (eq. 5.29), the line

ρ(x) = xρ3 +
(1− x)

3
13 (5.32)
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ends on the boundary as a special pure state |ψ〉 〈ψ| where

|ψ〉 =
1√
2

 0

1

−1

 (5.33)

which is a SIC in dimension 3 for the value of x

x =
−1

2(1− 3a)
(5.34)

We see that this will work as long as a 6= 1/3 and the values of x for SICs 15d, 48g

and 195d correspond to the ones we got before.

SIC x

15d -2

48g -7
2

195d 7

Table 5.4: Values of x for a SIC in dimension 3
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Constructing ETFs from SICs

We have now looked at the connection between SICs in dimensions d and d(d−
2) and observed some satisfactory relations. The ultimate goal, however, is to

construct a SIC in dimension d(d−2) given only the SIC in dimension d. As noted

before, a construction performing this would allow us to recursively create SICs

in higher dimensions, thus coming one step closer to finding a proof of existence

for SICs. We give the procedure in an elaborate series of steps which mainly

consist of first creating an ETF from a known SIC using a construction given by

Renes et al. (2004) [12], and secondly creating new ETFs from this constructed

ETF in particular dimensions using a method known as the Naimark Extension

Theorem.

6.1 Naimark Theorem

The Naimark Theorem states that given an ETF in dimension d with N vectors,

there exists an ETF in dimension N − d with N vectors, given N > d [29]. From

here on, we shall denote an ETF by its dimension followed by its size. So, the

construction gives

ETF(d,N) ⇒ ETF(N−d,N) (6.1)

Let us look at the exact way to do this. Given an ETF(d,N), if we put the vectors

of the ETF as a column in a matrix, the rows are orthogonal to each other

(eq 3.21) and can be normalized up to a common factor. As these d vectors

are orthogonal, there must exist N − d vectors in dimension N which complete

the basis. Completing the basis forms a (N − d) × N matrix which is called

the Naimark Complement. Putting the complete basis vectors as the rows of a
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matrix, we get a unitary matrix of dimension N .

U =



〈x1|
...

〈xd|
〈xd+1|

...

〈xN |


N×N

=

(
|u1〉 . . . |uN〉

|v1〉 . . . |vN〉

)
N×N

(6.2)

Here, the ETF vectors are given by {|uI〉}NI=1. As the columns of a unitary matrix

are also orthogonal,

〈uI |uJ〉+ 〈vI |vJ〉 = 0 for I 6= J (6.3)

〈vI |vJ〉 = −〈uI |uJ〉 (6.4)

With this, we get that the vectors {|vI〉}NI=1 are equiangular. As the rows of the

lower matrix are orthogonal, it also satisfies the condition of being a tight frame.

Hence, the vectors |vI〉 form an ETF in dimension N − d of size N .

U =


. . . ETF(d,N) . . .

. . . ETF(N−d,N) . . .


N×N

(6.5)

We should keep in mind that given a set of orthonormal vectors, there is no unique

way to complete the basis. Hence, there are various different ways to create the

Naimark Complement. However, we will look at certain desirable properties of

the Complement later to get a favourable solution.

6.2 Naimark Complement of a SIC

Let us look at the construction of the Naimark Complement of a SIC as an exercise

into understanding more about the properties of the Complement. We know how

to get the complete set of SIC vectors from the SIC fiducial vector. If we have

the SIC fiducial |ψ0〉 in dimension d, we act on it with Di,j where 0 ≤ i, j ≤ d−1.
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Putting these vectors in a matrix as columns we get

M1 =

 ψ0 D0,1ψ0 . . . Dd−1,d−1ψ0


d×d2

(6.6)

A SIC is an ETF in dimension d of size d2, so we can apply the Naimark Theorem

to create another ETF in dimension d2 − d with d2 vectors from the matrix M1.

As there is no unique way of creating such a complement matrix, we can now

require the vectors to be generated by the Weyl-Heisenberg group.

Let us denote the fiducial of the ETF(d,d2) as |x1〉d.

ETF1 =
(
|x1〉 D0,1 |x1〉 . . . Dd−1,d−1 |x1〉

)
d × d2

(6.7)

We now choose d− 1 vectors, |x2〉d . . . |xd〉d, and construct the column matrix,
|x2〉d
|x3〉d

...

|xd〉d

 (6.8)

We act on this column vector with 1(d−1) ⊗D(d)
p to get

ETF2 =

 |x2〉 D0,1 |x2〉 . . . Dd−1,d−1 |x2〉
...

...
...

|xd〉 D0,1 |xd〉 . . . Dd−1,d−1 |xd〉


d2−d × d2

(6.9)

The square matrix thus formed is

S =


|x1〉 D0,1 |x1〉 . . . Dd−1,d−1 |x1〉

|x2〉 D0,1 |x2〉 . . . Dd−1,d−1 |x2〉
...

...
...

|xd〉 D0,1 |xd〉 . . . Dd−1,d−1 |xd〉


d2 × d2

(6.10)
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Computing SS†

SS† =
∑
p

Dpxix
†
jD
†
p (6.11)

= d 〈xi|xj〉 1d (6.12)

as the Weyl-Heisenberg Group forms a unitary operator basis [21]. For S to be a

unitary matrix, we require

〈xi|xj〉 =
1

d
δij (6.13)

So, by constructing vectors |x2〉d . . . |xd〉d in such a way that they obey 6.13, we

can create the Naimark complement of the SIC generator matrix. In order for the

two matrix blocks to be considered as ETFs, the vectors will have to be rescaled

accordingly. The ETF(d2−d,d2) constructed from a SIC(d,d2) is called a dual SIC.

Let us now look at some examples of this construction. We are skipping the

case for d = 2 as it is self-dual, i.e., the dual SIC we get is the SIC itself.

6.2.1 Dual SIC in dimension 3

We take the case of d = 3 as an easy example as the fiducial has a simple form.

The generator matrix for the SIC is given by taking the SIC fiducial and acting

on it by D
(3)
p

x1 =
1√
2

 0

1

eiφ



ETF(3,9) =
1√
2

 0 eiφ 1 0 ωeiφ ω2 0 ω2eiφ ω

1 0 eiφ ω 0 eiφ ω2 0 eiφ

eiφ 1 0 ω2eiφ 1 0 ωeiφ 1 0


where

ω = e
2iπ
3 for d = 3

We find vectors x2 and x3 such that x1, x2 and x3 form an orthonormal basis

x2 =
1

2


√

2

−1

eiφ

 ; x3 =
1

2

 −
√

2

−1

eiφ


Now, putting these together to form a vector and rescaling accordingly, we get
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1

2
√

2



√
2

−1

eiφ

−
√

2

−1

eiφ


To get the Naimark Complement, we act on this vector with

1(2) ⊗D(3)
p =

(
D

(3)
p 0

0 D
(3)
p

)

We then get the Dual-SIC, ETF(6,9)

ETF(6,9) =

1

2
√

3



√
2 eiφ −1

√
2 ωeiφ −ω2

√
2 ω2eiφ −ω

−1
√

2 eiφ −ω
√

2ω2 eiφ −ω2
√

2ω eiφ

eiφ −1
√

2 ω2eiφ −1
√

2ω ωeiφ −1
√

2ω2

−
√

2 eiφ −1 −
√

2 ωeiφ −ω2 −
√

2 ω2eiφ −ω
−1 −

√
2 eiφ −ω −

√
2ω2 eiφ −ω2 −

√
2ω eiφ

eiφ −1 −
√

2 ω2eiφ −1 −
√

2ω ωeiφ −1 −
√

2ω2


We can check that the column vectors of the above matrix satisfy the equations

3.15 and 3.16 and hence form an ETF.

Constructing Dual SICs in higher dimensions becomes a bit cumbersome but

it follows the same form and hence we can always get an ETF(d2−d,d2) from a

SIC(d,d2).

6.3 Constructing ETF
(
d(d+1)

2 ,d2)
from SIC

Coming back to the problem of constructing SICs in dimension d(d− 2) using a

SIC in dimension d, we look at the steps to be taken towards this goal. We will

construct new intermediate ETFs using a given SIC fiducial in dimension d and

finally connect them to the SIC in dimension d(d− 2).

The first step is to construct an ETF in dimension d(d + 1)/2 having d2 vec-

tors, from a SIC in dimension d, the construction for which was first given by

Renes et al. (2004) [12] and more recently by Ostrovskyi and Yakymenko (2019)
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[30].

Theorem 1. The vectors {|ψi〉}d
2

i=0 ∈ Cd form a SIC iff

i) {|ψi〉}d
2

i=0 form a tight frame in Cd

ii) {|ψi〉 ⊗ |ψi〉}d
2

i=0 form a tight frame in Cd ⊗S Cd

Proof. The proof of this theorem follows from Proposition 2 and 3 in Ostrovskyi

and Yakymenko (2019) [30].

Instead of the cumbersome subscript in ETF
(
d(d+1)

2
,d2)

, we will simply call this

ETF1 from now. The dimension d will be apparent according to the discussion

and will be stated clearly in case it is needed to avoid confusion.

Given a SIC fiducial |ψ0〉 in dimension d, the product vector |ψ0〉 ⊗ |ψ0〉 sits

in a symmetric subspace of dimension d(d + 1)/2. For example, for a fiducial

vector in d = 3

|ψ0〉 =

 a

b

c

 = a |e0〉+ b |e1〉+ c |e2〉 (6.14)

|ψ0〉 ⊗ |ψ0〉 =

 a2 ab ac

ab b2 bc

ac bc c2

 (6.15)

The symmetric subspace is spanned by the basis

|e0〉 |e0〉
|e1〉 |e1〉
|e2〉 |e2〉

1√
2

(|e0〉 |e1〉+ |e1〉 |e0〉)

1√
2

(|e1〉 |e2〉+ |e2〉 |e1〉)

1√
2

(|e0〉 |e2〉+ |e2〉 |e0〉)
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The anti-symmetric subspace is spanned by the d(d− 1)/2 vectors

1√
2

(|e0〉 |e1〉 − |e1〉 |e0〉)

1√
2

(|e1〉 |e2〉 − |e2〉 |e1〉)

1√
2

(|e0〉 |e2〉 − |e2〉 |e0〉)

So the product vector written in this basis is

Sym(|ψ0〉 ⊗ |ψ0〉) = Vs =



a2

b2

c2

√
2ab√
2bc√
2ac


(6.16)

Vs sits in the symmetric subspace of dimension

d(d+ 1)

2
= 6 for d = 3 (6.17)

We call this vector Vs the ETF fiducial. The action of an unusual reducible repre-

sentation of the Weyl-Heisenberg group on Vs will create an ETF(6,9). Similarly,

we can perform this construction in any dimension d using a SIC fiducial to get

an ETF1. The group works differently for even and odd dimensions, so we’ll look

at odd dimensions first.

6.3.1 For odd d

The action of the Weyl-Heisenberg group on the tensor product can be taken as

X = X ⊗X (6.18)

Z = Z ⊗ Z (6.19)

From 2.11, where ω = e
2πi
d

ZX = ω2XZ (6.20)

For odd d, ω2 is a dth root of unity. However, for even d, ω2 is the d
2

th
root of

unity and is no longer a primitive dth root of unity. Hence, we will discuss the

case for even dimensions separately.
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If we want X and Z to follow the same relation as eq 2.11, we can choose a

different set of generators for the group.

X = X ⊗X (6.21)

Z = Z
d+1
2 ⊗ Z

d+1
2 (6.22)

Note that (d+ 1)/2 is an integer as d is odd. This gives us

ZX = ωXZ (6.23)

We will stick to this definition of X and Z from here on. Let us now introduce

some symbols for concise writing

|i, i〉 = |i〉 |i〉 (6.24)

|(i, j)〉 =
1√
2

(|i〉 |j〉+ |j〉 |i〉) (6.25)

|[i, j]〉 =
1√
2

(|i〉 |j〉 − |j〉 |i〉) (6.26)

The action of the tensor product Weyl-Heisenberg group on the symmetric sub-

space is

X |i, i〉 = |i+ 1, i+ 1〉 (6.27)

Z |i, i〉 = ωi |i, i〉 (6.28)

X |(i, i+ n)〉 = |(i+ 1, i+ n+ 1)〉 (6.29)

Z |(i, i+ n)〉 = ωi+( d+1
2

)n |(i, i+ n)〉 (6.30)

Looking at dimension 3 again, the symmetric tensor product formed by (X ⊗
X)(|ψ0〉 ⊗ |ψ0〉) and (Z ⊗ Z)(|ψ0〉 ⊗ |ψ0〉) is equivalent to the action(

X3 0

0 X3

)
Vs and

(
Z2

3 0

0 ω3Z
2
3

)
Vs respectively. (6.31)

where Vs is the vector defined in eq. 6.16. We can see that the representation is

reducible consisting of (d + 1)/2 blocks of d dimensional matrices. Another way

to come to this conclusion is looking at the repeated action of X on |i, i〉

|i, i〉 → |i+ 1, i+ 1〉 → . . . |i+ d− 1, i+ d− 1〉 → |i, i〉 (6.32)
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resulting in groups of d vectors. We want to rearrange the basis such that the

representation becomes

1( d+1
2

) ⊗D(d)
p =


Dp

Dp

.

.

Dp


d(d+1)

2
× d(d+1)

2

(6.33)

We choose the starting vector of the first block such that

Z |i, i〉 = |i, i〉 ⇒ i = 0 (6.34)

and act on the vector (d− 1) times with X to get the complete block. Similarly,

for the next blocks

Z |(i, i+ n)〉 = |(i, i+ n)〉 ⇒ i = d−
(
d+ 1

2

)
n (6.35)

For getting (d + 1)/2 blocks, n goes from 1 to (d − 1)/2 in order. For example,

for d = 3, the components are choosen to align with the basis

|0, 0〉 , |1, 1〉 , |2, 2〉 , |(1, 2)〉 , |(2, 0)〉 , |(0, 1)〉 (6.36)

The vector Vs is redefined to be

Vs =



a2

b2

c2

√
2bc√
2ac√
2ab


(6.37)

By construction, such a change of basis creates a vector which is of the form

|u〉 =


x1

x2

...

x d+1
2

 (6.38)

where xk ∈ Cd and

〈xi|xj〉 =
2

d+ 1
δij (6.39)
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To see that such a fiducial forms an ETF for the given representation of the

Weyl-Heisenberg Group in 6.33, we prove the following theorem.

Theorem 2. For a vector

|u〉 =


x1

x2

...

xm

 (6.40)

where xk ∈ Cn, the n2 vectors

|φp〉 = 1(m) ⊗D(n)
p |u〉 (6.41)

form a tight frame iff

〈xi|xj〉 =
1

m
δij (6.42)

Proof. Construct the matrix S with vectors 1(m) ⊗D(n)
p |u〉 as columns

S =


|x1〉 D0,1 |x1〉 . . . Dn−1,n−1 |x1〉
|x2〉 D0,1 |x2〉 . . . Dn−1,n−1 |x2〉

...
...

...

|xm〉 D0,1 |xm〉 . . . Dn−1,n−1 |xm〉


mn × n2

(6.43)

Computing SS†

SS†ij =
∑
p

Dpxix
†
jD
†
p (6.44)

= n 〈xi|xj〉 1n (6.45)

as the Weyl-Heisenberg Group forms a unitary operator basis and hence∑
p

DpAD
−1
p = nTr(A)1n (6.46)
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For the vectors {|φi〉}n
2

i=1 to form a tight frame,

SS† =
(
|φ1〉 . . . |φn2〉

) 〈φ1|
...

〈φn2|

 (6.47)

=
n2∑
i=1

|φi〉 〈φi| (6.48)

=
n

m
1mn (6.49)

We can see that this is possible if and only if

〈xi|xj〉 =
1

m
δij (6.50)

Generalized Parity Operator

Given that we have an ETF fiducial |u〉 constructed from a SIC (eq. 6.38), we can

construct an operator Pθ, which was originally defined by Appleby et al. (2017)

[18] as the generalized parity operator and played a significant role in the paper.

We will now state a theorem due to Ostrovskyi and Yakymenko (2019) [30].

Theorem 3. For the vectors xk in eq. 6.38, we can construct the generalized

parity operator from the projector
∑

k |xk〉 〈xk| such that

d+1
2∑

k=1

|xk〉 〈xk| =
1

2
(1 + Pθ) (6.51)

where

Pθ =
1

d

∑
i,j

e2iθi,2−1jD(−i,−j) (6.52)

Proof. We defined the Weyl-Heisenberg Group in the tensor product space by

X = X ⊗X (6.53)

Z = Z
d+1
2 ⊗ Z

d+1
2 (6.54)

such that the displacement operators are

D̃i,j = τ ijXiZj = Di,2−1j ⊗Di,2−1j (6.55)
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We can rewrite this as

D̃p = DHp ⊗DHp (6.56)

where

H =

(
1 0

0 2−1

)
(6.57)

As we saw earlier, the displacement operator D̃p has an equivalent representation

as

D̃p = 1(d) ⊗D(d)
p (6.58)

or

D̃p = 1( d+1
2

) ⊗D(d)
p (6.59)

if we are looking at the symmetric subspace. Recalling the overlap phase factors

from eq. 4.2, we see that

〈ψ0| 〈ψ0| D̃p |ψ0〉 |ψ0〉 = (〈ψ0|DHp |ψ0〉)2 (6.60)

=

{
1 p = 0

1
d+1

e2iθHp otherwise
(6.61)

Normalizing |u〉 from eq. 6.38,

〈u| D̃p |u〉 = 〈u| 1( d+1
2

) ⊗D(d)
p |u〉 (6.62)

=

d+1
2∑

k=1

〈xk|Dp |xk〉 (6.63)

=

{
d+1

2
p = 0

1
2
e2iθHp otherwise

(6.64)

Now, expanding the projector

d+1
2∑

k=1

|xk〉 〈xk| =
1

d

∑
p

∑
k

〈xk|Dp |xk〉D−p (6.65)

=
1

d

d+ 1

2
1 +

1

2d

∑
p6=0

e2iθHpD−p (6.66)

=
1

d

d+ 1

2
1− 1

2d
1 +

1

2d

∑
p

e2iθHpD−p (6.67)

=
1

2
(1 + Pθ) (6.68)
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It follows that

Pθ =
1

d

∑
p

e2iθHpD−p (6.69)

6.3.2 For even d

We will now take a modified approach to create these ETFs in even dimen-

sions. For even dimensions, the representation is given by Andersson and Du-

mitru (2019) [31] and Ostrovskyi and Yakymenko (2019) [30]. For example, for

d = 4 the operator consists of (d + 1) blocks of d/2 dimensional displacement

operators with a phase factor.

D̃i,j = (−1)ij


D

(d/2)
i,j

ωiD
(d/2)
i,j

ωjD
(d/2)
i,j

ωi+jD
(d/2)
i,j

D
(d/2)
i,j


d(d+1)

2
× d(d+1)

2

6.3.3 ETF(10,16) from SIC in d = 4

The case of even dimensions is a lot more complicated than in odd dimensions.

For this, we take an example of d = 4 and explain the construction on the basis of

the calculations. We want to construct an ETF1 given a SIC fiducial in dimension

4. We will use the exact solution for the fiducial [24]

|ψ0〉 =


a1

a2

a3

a4

 =
1

c1


8

−4 + 4
√

2 + c2 + i
(
c3

√
1 +
√

5− 4
)

i
(
8
√

2− 8
)

4− 4
√

2 + c2 + i
(
c3

√
1 +
√

5 + 4
)


where

c1 = 8

√
(2−

√
2)(5 +

√
5) (6.70)

c2 =

√
1 +
√

5 (
√

2 +
√

10) (6.71)

c3 = (−2 +
√

2− 2
√

5 +
√

10) (6.72)
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After taking the tensor product, |ψ0〉⊗ |ψ0〉, we get 16 components in the normal

basis. To get the symmetric subspace and to choose a basis such that we can use

the representation of the Weyl-Heisenberg group as given in eq. 6.3.2, we select

the eigenbasis following Section 4.2 in Ostrovskyi and Yakymenko (2019) [30],

|0, 0〉+ |2, 2〉

|1, 1〉+ |3, 3〉

|0, 0〉 − |2, 2〉

−i(|1, 1〉 − |3, 3〉)

|(0, 1)〉+ |(2, 3)〉

|(1, 2)〉+ |(3, 0)〉

|(0, 1)〉 − |(2, 3)〉

−i(|(1, 2)〉 − |(3, 0)〉)

|(1, 3)〉

|(0, 2)〉

In this basis, we get the vector which forms our ETF fiducial.

1
2

(a2
1 + a2

3)

1
2

(a2
2 + a2

4)

1
2

(a2
1 − a2

3)

− i
2

(a2
2 − a2

4)

1√
2
(a1a2 + a3a4)

1√
2
(a1a4 + a2a3)

1√
2
(a1a2 − a3a4)

− i√
2
(a2a3 − a1a4)

a2a4

a1a3



(6.73)
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Now, acting on this vector with the matrix

D̃i,j = (−1)ij


D

(2)
i,j

ωiD
(2)
i,j

ωjD
(2)
i,j

ωi+jD
(2)
i,j

D
(2)
i,j


10×10

(6.74)

where 0 ≤ i, j ≤ 3, we get the 16 vectors which form the ETF(10,16). Here

ω = e
2πi
4 . The matrix we get is complicated but it can easily be checked that it

forms an ETF. We can see that the rows are orthogonal to each other. Also, the

16 unit vectors which sit in d(d+ 1)/2 = 10 follow

| 〈Ψi|Ψj〉 | =
1

5
where i 6= j (6.75)

6.4 Constructing ETF
(
d(d−1)

2 ,d2)
from ETF

(
d(d+1)

2 ,d2)

We now know how to create an ETF1 given a SIC fiducial in dimension d. We

move on to the next step towards our goal, that is to create a Naimark Comple-

ment for our ETF1. As

d2 − d(d+ 1)

2
=
d(d− 1)

2
(6.76)

the ETF can be constructed easily using the Naimark Theorem. Again, for

simplicity, we want to call the ETF
(
d(d−1)

2
,d2)

as ETF2. A proof of the existence

of an ETF2, given a SIC in dimension d has also been given by Appleby et al.

(2019) [32], which works at the level of Gram matrices.

6.4.1 For odd d

Given that we have an ETF1, the ETF fiducial is given by

|u〉 =


x1

x2

...

x d+1
2

 (6.77)
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In order to find the Naimark Complement, we use Theorem 2 to find an ETF2

fiducial

|v〉 =


y1

y2

...

y d−1
2

 (6.78)

such that yk ∈ Cd,

〈yi|yj〉 =
2

d− 1
δij (6.79)

and

〈xi|yj〉 = 0 (6.80)

Then, the ETF is formed by the action of the group

1( d−1
2

) ⊗D(d)
p (6.81)

on |v〉. As the process of finding the complement involves completing the basis

of the vectors xk, there is no unique way of finding this complement.

Theorem 4. The ETF2 constructed using the fiducial |v〉 has squared overlap

phases ±e2iθp.

Proof. As ETF1 created using |u〉 as the fiducial has squared overlap phases by

construction (eq. 6.62), the proof follows from eq. 6.4.

6.4.2 For even d

We will again look at the case of d = 4 for even dimensions for constructing the

Naimark Complement. As we have already constructed the ETF(10,16) given in

Section 6.3.3, we can work with it to show the construction of ETF2. Here, the

ETF can also be called ETF(6,16). Let the fiducial of its Naimark complement be

given by a vector whose components are unknown.

ETF2 fiducial =



x1

x2

x3

x4

x5

x6


(6.82)

We act on this vector with
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D̃i,j = (−1)ij

 ωiD
(2)
i,j

ωjD
(2)
i,j

ωi+jD
(2)
i,j


6×6

(6.83)

where 0 ≤ i, j ≤ 3, and hence get 16 vectors. We chose this representation of the

displacement operators in 6 dimensions as it completes the block diagonal matrix

of eq. 6.74. Putting these vectors as the columns of a matrix of size (6 × 16),

we create what should be an ETF(6,16). As these ETFs together should form a

unitary matrix, UU † = 1.

U =


. . . ETF(10,16) . . .

. . . ETF(6,16) . . .


16×16

(6.84)

Then, the displacement operator which acts on the unitary matrix U is given by

D̃
(16)
i,j = (−1)ij



D
(2)
i,j

ωiD
(2)
i,j

ωjD
(2)
i,j

ωi+jD
(2)
i,j

D
(2)
i,j

ωiD
(2)
i,j

ωjD
(2)
i,j

ωi+jD
(2)
i,j


Now, putting UU † = 1, we get 6 unique conditions to determine the vector.

Solving for the 6 unknown components in our initial ETF2 fiducial, we get the

vector as

|φ〉6 =



a1

a2

a3e
iθ1

a4e
iθ1

a5e
iθ2

a6e
iθ2


(6.85)
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where

a1 =
1

4

√
1

2
(1 +

√
5) a2 =

1

2(1 +
√

5)
(6.86)

a3 =
1

4
a4 =

1

8
(1−

√
5− i

√
2(−1 +

√
5)) (6.87)

a5 =
1

8

√
4 +

√
2(1 +

√
5)−

√
10(1 +

√
5) (6.88)

a6 =
−i
16

(1 +
√

5 +

√
2(1 +

√
5))

√
4 +

√
2(1 +

√
5)−

√
10(1 +

√
5) (6.89)

We can see that the vector is not uniquely determined and is unknown in up to

2 phase factors. It is interesting to note that all the constraints on the unknowns

happen in pairs, due to the nature of the Weyl-Heisenberg group representa-

tion in even dimensions where for d = 4 we have 3 copies of the 2-dimensional

displacement operators D
(2)
p .

6.5 Constructing ETF2 from SIC(d(d−2),d2(d−2)2)

We now know how to create an ETF1 and ETF2 given only a SIC fiducial in

dimension d. Interestingly, there is another way to create the ETF2 in dimension

d(d− 1)/2 from an aligned SIC in dimension d(d− 2). With this, we finally have

a way to connect the SIC in d and one in d(d− 2).

SICd → ETF1 → ETF2 → SICd(d−2)

We would like to know if an ETF2 can be constructed from a SICd(d−2). Using

the equiangular condition (eq. 3.15) for an ETF
(
d(d−1)

2
,d2)

,

| 〈ψI |ψJ〉 |2 =
1

d(d− 2) + 1
(6.90)

which says that the ETF can sit inside the SICd(d−2).

The connection between ETF2 and the SICd(d−2) comes from the special nature of

dimension d(d− 2) discussed in Chapter 4. We will use the discussion on overlap

phases in our discussion and later in our calculations.
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Let the overlap phases for a SICd be given by eiθp . Due to the tensor prod-

uct nature in the construction, the overlap phases for ETF1 are e2iθp . Using eq.

6.4, we find that the overlap phase factors for ETF2 are given by

〈vI |vJ〉 = −e2iθp (6.91)

Referring to eq. 4.4, the overlap phases of the SICd(d−2) are also given by

eiΘp′ = ± e2iθp (6.92)

for selected values of p′. With this relation in mind, we can try to construct an

ETF2 from a SICd(d−2) such that it is a Naimark Complement to the ETF1 we

created from SICd. We shall look at the exact steps to do this below.

6.5.1 For odd d

For a SIC in dimension d(d− 2) where d is odd, recall that there exists an extra

symmetry (eq. 5.13) [18]

U
(d−2)
P ⊗ 1(d) (6.93)

where P is the parity operator given by

P =

(
−1 0

0 −1

)
; U2

P = 1 (6.94)

As the spectrum of the unitary was given by ((d+ 1)/2, (d− 1)/2), diagonalizing

UP and making this change of basis for the SICd(d−2), we get a vector containing

only d(d − 1)/2 non-zero components. We would like to check if this vector can

act as a fiducial for ETF2. Removing the zero components and acting on it with

1( d−1
2

) ⊗D(d)
p , we get a d(d−1)

2
× d2 matrix. For this to be our ETF2, we need it

to be the Naimark complement of the ETF1 created from SICd.(
|u1〉 |u2〉 . . . |ud2〉

|v′1〉 |v′2〉 . . .
∣∣v′d2〉

)
d2 × d2

(6.95)

such that it follows

〈ui|uj〉+ 〈vi|vj〉 = 0 i 6= j (6.96)

We check the above procedure for a few aligned SICs by acting on |v′1〉 with

1( d−1
2

) ⊗ D
(d)
Cp, where C is determined individually in order to align the vectors

correctly. A few results are given below.
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d d(d-2) C

5a 15d

 −1 0

0 −1


7a 35i

 1 4

4 3


9a 63b

 0 1

−1 0


Table 6.1: Aligning SICs in dimensions d and d(d-2)

The above alignment does create for us an ETF which is the Naimark Com-

plement of ETF1 in these dimensions. The goal now would be to create a SIC in

d(d− 2) starting only from the SIC in dimension d.

Consider the Naimark Complement given in eq. 6.78 which was created solely

from the SICd by taking the Naimark Complement of the fiducial of ETF1. We

can now lift it up to dimension d(d − 2) using the inverse of the procedure we

used above.

|v〉 =


y1

y2

...

y d−1
2

 (6.97)

Then, the SIC in d(d− 2) would have another d(d− 3)/2 components as 0.

Let |Ψ′〉 =
1√
d−1

2



y1

...

y d−1
2

01

...

0 d−3
2


(6.98)
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Let T be a matrix which diagonalizes UP . We can make the change of basis in

reverse to get a vector with d(d− 2) components, which can be non-zero.

|Ψ〉 = (T (d−2) ⊗ 1(d))† |Ψ′〉 (6.99)

Then this new vector |Ψ〉 should be our SIC fiducial in dimension d(d− 2).

Theorem 5. For a SIC fiducial vector |Ψ〉d(d−2) formed using an ETF2 fiducial

|v〉,
(d− 1) 〈Ψ| (1(d−2) ⊗D(d)

p ) |Ψ〉 = ±e2iθp (6.100)

Proof. We know from Theorem 4 that the ETF2 fiducial |v〉 has squared overlap

phases

±e2iθp = 〈v| (1( d−1
2

) ⊗D(d)
p ) |v〉 (6.101)

= (d− 1) 〈Ψ′| (1(d−2) ⊗D(d)
p ) |Ψ′〉 (6.102)

= (d− 1) 〈Ψ| (T (d−2) ⊗ 1(d))†(1(d−2) ⊗D(d)
p )(T (d−2) ⊗ 1(d)) |Ψ〉 (6.103)

= (d− 1) 〈Ψ| (1(d−2) ⊗D(d)
p ) |Ψ〉 (6.104)

Theorem 6. For a SIC fiducial vector |Ψ〉d(d−2) formed using an ETF2 fiducial

|v〉,
(d− 1) 〈Ψ| (D(d−2)

p ⊗ 1(d)) |Ψ〉 = 1 (6.105)

Proof.

〈Ψ| (D(d−2)
p ⊗ 1(d)) |Ψ〉 (6.106)

= 〈Ψ′| (T (d−2) ⊗ 1(d))(D(d−2)
p ⊗ 1(d))(T (d−2) ⊗ 1(d))† |Ψ′〉 (6.107)

= 〈Ψ′| (TDpT
† ⊗ 1) |Ψ′〉 (6.108)

= 〈Ψ′| (TDpT
† ⊗R†R) |Ψ′〉 (6.109)

where R is the matrix which diagonalizes Pθ. As the vectors yk are eigenvectors

of Pθ, we get

|Ψ′′〉 =
(
1(d−2) ⊗R(d)

)
|Ψ′〉 =

1√
d−1

2



e1

...

e d−1
2

01

...

0 d−3
2


(6.110)
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〈Ψ| (D(d−2)
p ⊗ 1(d)) |Ψ〉 = 〈Ψ′′| (TDpT

† ⊗ 1) |Ψ′′〉 (6.111)

The matrix T (d−2) has the form

1
1√
2

1√
2

1√
2

1√
2

. . . ...
... . . .

1√
2

−1√
2

1√
2

−1√
2


(6.112)

Now, as T † = T ,

(T ⊗ 1) |Ψ′′〉 = (T ⊗ 1)
1√
d−1

2



e1

...

e d−1
2

01

...

0 d−3
2


=

1√
d−1

2



e1

e2/
√

2

e3/
√

2
...

e d−1
2
/
√

2

e d−1
2
/
√

2
...

e3/
√

2

e2/
√

2


(6.113)

|Ψ̃〉 =
1√
d− 1



√
2e1

e2

...

e d−1
2

e d−1
2
...

e2


(6.114)

where

〈Ψ| (D(d−2)
p ⊗ 1(d)) |Ψ〉 = 〈Ψ̃|(D(d−2)

p ⊗ 1(d))|Ψ̃〉 (6.115)
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So now,

(Zj ⊗ 1)|Ψ̃〉 =
1√
d− 1



√
2e1

ωje2

...

ω(d−3)j/2e d−1
2

ω(d−1)j/2e d−1
2

...

ω(d−3)je2


(6.116)

〈Ψ̃|(Zj ⊗ 1)|Ψ̃〉 =
1

d− 1
(2 + ωj + ω2j + · · ·ω(d−3)j) =

1

d− 1
(6.117)

Here,

ω = e
2πi

(d−2) (6.118)

⇒ (d− 1)〈Ψ̃|(Zj ⊗ 1)|Ψ̃〉 = 1 (6.119)

Also,

(X ⊗ 1)|Ψ̃〉 =
1√
d− 1



e2√
2e1

e2

...

e d−1
2

e d−1
2
...

e3


(6.120)

(X2 ⊗ 1)|Ψ̃〉 =
1√
d− 1



e3

e2√
2e1

e2

...

e d−1
2

e d−1
2
...

e4


(6.121)

and so on. Thus,

(d− 1)〈Ψ̃|(X i ⊗ 1)|Ψ̃〉 = 1 (6.122)
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Acting on the vector with (X i ⊗ 1) rotates the elements ek, i times. Looking

specifically at D(1,j)

(d− 1)〈Ψ̃|(τ jXZj ⊗ 1)|Ψ̃〉 = ω(d−3)j/2τ j = 1 (6.123)

and at D(2,j)

(d− 1)〈Ψ̃|(τ 2jX2Zj ⊗ 1)|Ψ̃〉 = ω(d−3)jτ 2j = 1 (6.124)

So, for a general D
(d−2)
(i,j) ,

If i is odd : (d− 1)〈Ψ̃|(D(i,j) ⊗ 1)|Ψ̃〉 = ω(d−2−i)j/2τ ij = 1 (6.125)

(6.126)

If i is even : (d− 1)〈Ψ̃|(D(i,j) ⊗ 1)|Ψ̃〉 = ω(d−2− i
2

)jτ ij = 1 (6.127)

Hence,

(d− 1) 〈Ψ| (D(d−2)
p ⊗ 1(d)) |Ψ〉 = 1 (6.128)
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Chapter 7

Conclusion

In this thesis, we have provided the mathematical background necessary for un-

derstanding the basics of SIC-POVMs. A special focus was put on the Weyl-

Heisenberg Group and its representations, which turned out to be an integral

part of the thesis. We then explored the connection between SICs in dimensions

d and d(d− 2), laying the groundwork for the motivation behind looking specifi-

cally at dimensions of these forms.

Further in the work, we provide the method for creating a special kind of

Equiangular Tight Frame from an existing SIC, which we call an ETF1. This is

done using the construction given by Renes et al. (2004) [12]. We further create

its Naimark complement, which we call an ETF2, using the Naimark extension

theorem. We then make the connection from ETF2 to a SIC in the higher dimen-

sion of d(d− 2).

Throughout the work, we have divided the results into odd and even dimen-

sions. Though we focus mainly on the odd dimensions as they work out to be

relatively simpler, we looked at the case of d = 4 and calculated the Naimark

complement exactly up to 2 phase factors.

Finally, we give the construction of the generalized parity operator and settle

an open question which arises from the two types of ETFs which can be em-

bedded into the higher dimensional SIC. For now, the method to find a unique

ETF2, Naimark complement to ETF1, which corresponds to the SIC in the higher

dimension remains to be found, though the argument is supported by our obser-

vation that there is an ETF embedded in the higher dimensional SIC which acts
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as a Naimark complement to ETF1.

SIC1
(d,d2)

−→ ETF1

( d(d+1)
2

, d2)
−→ ETF2

( d(d−1)
2

, d2)
−→• SIC2

(d(d−2), d2(d−2)2)
(7.1)

A logical next step could be to find a connection between an ETF2 and the

SIC2 for even dimensions. It is our hope that given a method to distinguish be-

tween the different solutions of the Naimark extension theorem, one can construct

a SIC2 in the higher dimension given only SIC1.
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Appendix A

Mathematica Codes

The calculations in this thesis are done using Wolfram Mathematica 12.0 Student

Edition. We give the most used code snippets below –

Function to generate the Displacement Operators

1 DijFunc[i_ , j_ , d_] :=

2 (Tau = -Exp[I*\[Pi]/d];

3 Dij = ConstantArray [0, {d, d}];

4 For[r = 0, r < d, r++,

5 For[s = 0, s < d, s++,

6 Dij[[r + 1, s + 1]] = Tau^(i*j + 2*s*j)*KroneckerDelta[r,

Mod[s + i, d]];

7 ]

8 ];

9 Dij)
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Creating the ETF
(d(d+1)

2 ,d2)
fiducial given a SIC(d,d2) when d is

odd

1 (* sic_fiducial is the sic fiducial given in dimension d*)

2 sic_tensor = KroneckerProduct[sic_fiducial , sic_fiducial ];

3

4 (* Multiplying non -diagonal elements with sqrt (2)*)

5 For[k = 1, k < n2 + 1, k++,

6 For[m = 1, m < n2 + 1, m++,

7 If[k != m,

8 sic_tensor [[k, m]] = sic_tensor [[k, m]]* Sqrt [2]]

9 ]

10 ]

11

12 (* Choosing the vectors in order of the eigenbasis *)

13 etf_fiducial = {};

14 For[n = 0, n < (n2 + 1)/2, n++,

15 For[l = 0, l < n2 , l++,

16 etf_fiducial = AppendTo[etf_fiducial ,

17 sic_tensor [[Mod[(-n*(n2 + 1)/2) + l, n2] + 1,

18 Mod[(-n*(n2 + 1)/2) + n + l, n2] + 1]]]

19 ]

20 ]
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Creating the Clifford Group Unitaries

We have to input the dimension d, as well as α, β, γ and δ.

1 If[Mod[d, 2] == 0, db = 2*d, db = d];

2 F = Mod [{{\[ Alpha], \[Beta]}, {\[ Gamma], \[Delta ]}}, db];

3 Tau = -Exp[I*\[Pi]/d];

4

5 checkcondition = CoprimeQ [\[ Beta], db];

6 If[\[ Beta] != 0 && checkcondition == True , switch = 0, switch =

1];

7 If[checkcondition == True , \[Beta]I =

8 PowerMod [\[ Beta], -1, db], \[Beta]I =

9 Null]; (*\[Beta]I is \[Beta] inverse *)

10

11 ket[i_] := KroneckerProduct[UnitVector[d, i + 1], {1}]

12 bra[i_] := KroneckerProduct[UnitVector[d, i + 1], {1}] //

Transpose

13

14 If[switch == 0,

15 (V = Table[

16 Tau^Mod [((\[ Beta]I)*(F[[1, 1]]*(s^2) - 2*r*s + F[[2, 2]]*(r

^2))),

17 db] ket[r].bra[s], {r, 0, d - 1}, {s, 0, d - 1}]/ Sqrt[d

];

18 UF = Total[Total[V]];

19 ),

20 (

21 F1 = {{0, -1}, {1, 0}};

22 F2 = {{\[ Gamma], \[ Delta]}, {-\[ Alpha], -\[Beta ]}};

23 V1 = Table[

24 Tau^Mod [(( PowerMod[F1[[1, 2]], -1, db])*(F1[[1, 1]]*(s^2) -

25 2*r*s + F1[[2, 2]]*(r^2))), db] ket[r].bra[s], {r, 0,

26 d - 1}, {s, 0, d - 1}]/ Sqrt[d];

27 V2 = Table[

28 Tau^Mod [(( PowerMod[F2[[1, 2]], -1, db])*(F2[[1, 1]]*(s^2) -

29 2*r*s + F2[[2, 2]]*(r^2))), db] ket[r].bra[s], {r, 0,

30 d - 1}, {s, 0, d - 1}]/ Sqrt[d];

31 VF1 = Total[Total[V1]];

32 VF2 = Total[Total[V2]];

33 UF = VF1.VF2;

34 )]

35 UF // MatrixForm
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