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Abstract

This essay is focused on identifying conditions for the presence of negative spe-
cific heat in some special models of self-gravitating systems and similar systems
of attracting particles.

An introduction to elementary non-relativistic gravitation and to statistical
physics is given. A distinction between long- and short-range forces is defined.
The Virial theorem is explained. An introduction to statistical physics applied
to non-relativistic gravitation is given. Calculations on a couple of special mod-
els of self-gravitating systems are presented, especially of the specific heat in
those systems. Conclusions are drawn about the cause of negative specific heat
in self-gravitating systems. This is done in a chapter that mainly presents an
article written on the subject. This chapter contains the most relevant informa-
tion to understand the conclusions, and can be read without reading the other
chapters before.

The tool used in this essay to investigate the cause of negative specific heat
in self-gravitating systems, is to analyse four different models of systems of
attracting particles, and to map the sign of the specific heat for different com-
binations of the number of spatial dimensions of the system, D(> 3), and the
exponent, v(# 0), in the force potential, ¢ = Cr”. Negative specific heat in such
systems is found to be present exactly for v = —1. For many combinations of D
and v representing long-range forces, the specific heat is positive or zero, for all
four models. The impression given by the literature is, however, that negative
specific heat in self-gravitating systems arises because of the long-range nature
of the gravitational force. This description is here challenged.
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Chapter 1

Introduction

A self-gravitating system is a system that is defined by the gravitational inter-
action between its parts. This essay is an introduction to the area of statistical
physics of self-gravitating systems in internal equilibrium, and a presentation of
the research made in that area by the author.

The basic equations of non-relativistic gravitation as well as introductory
statistical physics is presented for those who want to refresh their knowledge, as
well as to learn about gravitation in different number of dimensions (> 2). This
is covered within chapter 2 and chapter 3. For a broader course in statistical
physics, see Goodstein [6]. There are a lot of conceptual difficulties related to
the foundations of statistical physics. Some of them are about the irreversibility
of time. This subject is covered, from different points of view, in Davies [5].

The physics of gravitating systems is presented in Saslaw [16] and Bin-
ney/Tremaine [3]. When trying to apply statistical physics to gravitating sys-
tems, one encounters difficulties related to the non-extensivity of these systems.
An overview of different approaches to this matter is presented in Padmanab-
han [15], and in chapter 6. Non-extensivity occurs because of the long-range
nature of the gravitational force. A definition of long- and short-range forces is
given in chapter 4.

A powerful tool for analysing different kind of systems is the Virial theorem.
An advanced course in the application of this theorem to astrophysical systems
is given in Collins [4]. A pedagogical introduction to the theorem is given in
chapter 5.

To overcome difficulties with analysing realistic self-gravitating systems,
some ”toy models” of such systems have been invented, models where some
of the properties of the realistic system have been changed, to simplify mathe-
matical analyses. One fundamental such model is the ”isothermal sphere”. The
stability and instability of this system has first been analysed by Antonov [1],
and in other ways by several others, see Meylan/Heggie [13, page 93-96]. This
model is covered in chapter 6.8 and chapter 7.1. A model that contains many
particles but whose geometry makes it easy to analyse, was constructed by
Lynden-Bell/Lynden-Bell [11], and is analysed also in higher dimensions in chap-
ter 7.5. A variation on the isothermal sphere, with a dramatic phase-transition,
was constructed by Aronson/Hansen [2], and is covered in chapter 7.7. A model
with a non-gravitational potential, was constructed by Thirring [17], to show
that also other non-extensive systems than gravitating ones possess negative



specific heat. The model is covered in chapter 7.6. Hertel/Thirring [7] extends
the analysis of this kind of model. The ”binary star model” presented in Pad-
manabhan [15], and also in higher dimensions in chapter 7.4, contains only two
particles, and is easy to analyse. In chapter 7.2 the ”Virial model”, and in
chapter 7.3 the ”Circular orbit model”, in arbitrary dimensions, are presented.

Negative specific heat in self-gravitating systems has been investigated, among
others, by Hertel/Thirring [7], Hut [8], Lynden-Bell [10], Lynden-Bell/Lynden-
Bell [11], Lynden-Bell/Wood [12], Padmanabhan [15] and Thirring [17].

Since this essay is focused on the specific heat of self-gravitating systems,
where there is a temperature defined for the complete system, only systems
in internal equilibrium are considered in this essay. The very extensive area
of relaxation, describing the evolution of a system that is not yet in internal
equilibrium, is not covered in this essay. For a short glimpse into relaxation, see
chapter 6.2.

The scope of the research presented in this essay, is to analyse under what
circumstances systems of attracting particles possess negative specific heat. The
tool to do that here, is to analyse some of the special models of such systems
in arbitrary dimensions (> 3), and with arbitrary exponent (# 0) in the force
potential. The interesting conclusions of this analysis is presented in chapter 8.

All analyses in higher dimensions in this essay, have been made by the author.
The Circular orbit model has been invented by the author, but may have been
presented by others in sources not known by the author.

To let the interested reader explore related areas of statistical physics and
gravitation, we here present some additional sources. Oppenheim [14] makes
an attempt to create a theoretical frame and notation to handle non-extensive
systems, especially in general relativity. The related area of black hole thermo-
dynamics is reviewed in Wald [19]. Tsallis [18] considers other, more general,
ways of defining entropy, that may be useful when studying certain kinds of
systems.



Chapter 2

Non-relativistic gravitation

The potential energy of a particle with mass m in a gravitational potential ¢ is
Ep(fa t) = m‘b(fa t) (21)

where T is the position vector for the particle and ¢ the time parameter. The
potential ¢ is also called a ”gravitational field”. The force on the particle due
to that field is

F(Z,t) = —mV(&,1) (2.2)

The most general equation describing a non-relativistic gravitational field ¢ is
a differential equation called ”Poisson’s equation”. It relates the gravitational
field to the mass density, p, by

V2p = 4nGp (2.3)

where G is the gravitational constant. p is a function of the position coordinates
and possibly also of the time parameter. Since the KAvi operator only depends
on the space parameters, there will, for each point in time, exist a solution, ¢,
to (2.3) that emerges only from the space dependence of p at that particular
time. The time dependence of ¢ will emerge from the time dependence inherent
in p.

Of particular interest is the solution to (2.3) when

p =M — o) (2.4)

where § is the ”Dirac delta-function”. This represents the situation when the
field ¢(%) emerges from a point mass M at the location Zy. We will now investi-
gate the form of ¢ for this particular case. The properties of the delta-function
give two demands on ¢. At first

V2h(&) =0 Z# % (2.5)
This is valid for
C
)= —— T+ 7 2.6
o(Z) 770l # o (26)



as easily can be seen by evaluating the left-hand side of (2.5):
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In spherical coordinates, with origo at #o, the same calculation, (2.7), can be
expressed in an even easier way, with

o(r) = = r#0 (2.8)

and, since ¢ does not depend on the angular coordinates
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The second criterion that ¢ has to fulfil comes from (2.4) and integrating the

equation (2.3) over a volume of space containing .

V2 =V2¢p = —C)=0 r#0  (2.9)

4rGM = / AV, 4rGMS(Z — o) =
= /dViO V3¢ = /dvfo V-Vo=¢dSVe (2.10)

where the last step comes from Gauss’ theorem. dS is an infinitesimal surface
element on the closed surface S, surrounding the point Z5. The value of the
integral is independent of the choice of S, as long as S is closed and surrounds
Zo. Let us choose S as a sphere with centre at Zy and with radius r. We also
use (2.6) that gives

- C C
— - _ 747 75 2.11
Vo = 7 2] 2 T+ % r#£0 ( )

We can then write (2.10) as
e, C
4rGM = 4 (~ ) (2.12)

(2.12) is satisfied if C' = —GM. We obtain the result that a point mass M at
Zo results in a gravitational field

GM
|Z — Zo|

(F) = - @ # o (2.13)
It is relevant to remark that (2.13) is the only possible solution for Poisson’s
equation (2.3) in the point mass case. There is no other function than (2.13)
that fulfils both (2.7) and (2.10). To describe this kind of matter in an elegant
way applicable to any linear differential equation, it is convenient to use the
concept of ”Green’s functions”. Let L(F) be a linear differential operator, and

L(Z)u(Z) = f(Z) (2.14)



Let us assume that there exists an inverse to L(£), and that it has the following
form

u(@) = L@ (@) = / AV 6@ 7) () (2.15)

It is possible to show that this inverse exists. The operator G(Z,Z') works in
analogy to a matrix that transforms a vector (here: a function) to another
vector. G is called a Green’s function. We have

- / AV (L@)G(E, 7)) (&) (2.16)
This identity holds for all f if
L(@)G(F,7) =6(& -7 (2.17)
In our case GM
7,7) = ———— 2.1
G(&,1') ERET (2.18)
An important property of (2.3) is its linearity. That means, that if
V2¢; = 4nGp; i=1,2,...,N (2.19)
then
N N
V2 z Cz(ﬁ, =47G z Cz'pz' (2.20)
=1 =1

where the C;:s are constants.
If we combine (2.2) and (2.8), we get

(2.21)

which is known as "Newton’s law of gravitation”.

In this essay, we will be interested in models of self-gravitating systems in
different number of dimensions. Therefore, we have to look at the implications
of this when considering the form of the solutions to Poisson’s equation (2.3).
In three dimensions we got (2.13). In D dimensions it is correct to use the

following expression for V:

D
Vp =) i 9 (2.22)

i=1 az',
(2.3) becomes, in D dimensions
Vpé(Fp) = 4nGp(Zp) (2:23)

where

D
-‘D = Z i'i:c,- (2.24)

i=

[



We are interested in solutions, ¢, in the case of a point charge at Zpg. For
Zp # Zpo this is in analogy to (2.7). We suppose that the solution is of the
form

(ﬁ(fD) = CD|fD — fD0|V = CDTV

r#0 v#0 (2.25)
For D = 3 and v = —1 we have the three-dimensional case. It is possible to
show that the radial component of the nabla operator in D dimensions is
- 1 0 0
2 D-1
= — — 2.2
Dr= D-1g,"  or (2.26)

In D dimensions we have

0=V%e(r) =V, Cpr’ =

=Cp 7.D1—1 %(erl %ru) _ CDV,,.D—I %TD+V72 _
=Cpv(D +v—2)r"? r20 v#0 (2.27)
In order for this to be true for all r # 0, v # 0 there is
v=2-D (2.28)
But this also implies D # 2. For D = 2, we use
(&) = Co2In [Tz — Tz (2.29)

This potential satisfies Poisson’s equation, (2.23), in the two-dimensional case,
for #y # Z20. To determine the constant Cp in (2.25) and C3 in (2.29), we
calculate, in analogy with (2.10), with use of (2.23)

4rGM = / AV, , ATGMS(Zp — Epo) = / AV, V26 =
= / AV, V- Vpo = j{ dSpVpé (2.30)

where the integration is performed over a closed surface surrounding the point
Zpo- Let Sp be the area of a hypersphere with unit radius in a D-dimensional
space. From (2.30), (2.25) and (2.28), we have for D > 3

4rGM = 7{ dSp Cpvr'~'¢ = CpySprP=1rv—1 =

Cp(2—-D)Sp D>3 (2.31)
From (2.30) and (2.29), we have for D = 2
AGM = ]{ dSp Cor 7 = Co2arr™! = Cy2r (2.32)
(2.31) and (2.32) give
4nGM D>3
— (Q—D)SD -
Cp { 2GM D=2 (2.33)

10



Observe that a C'p that varies with D, is based on a convention that Poisson’s

equation always has the same constant, independent of D. The opposite, a
constant Cp and a varying constant in Poisson’s equation, would also be quite
possible as a convention. For Sp, we have

[V

2

Sp = =~ (2.34)
I'(%)
or, in another form
2t 25
us D odd
Sp = 2(:%_2)” (235)
@D D even

11



Chapter 3
Statistical physics

The evolution of a classical system with N particles in a D-dimensional space is
in principle determined by the laws of mechanics together with initial conditions
for 2D N phase-space coordinates. But, we have no possibility to know the initial
conditions for all particles in, for instance, a gas. To calculate the position
of all particles, equations for 2DN coordinates have to be solved, which for
systems with many particles is practically impossible. And small disturbances,
or errors in the premises, will make the results less accurate as the time evolves.
Both theoretical and experimental experience has shown that it is possible to
use statistical methods to investigate the properties of such systems. Even
though there are still some very important questions regarding the theoretical
foundation of statistical physics, for instance the assumption of ergodicity, the
methods work in a satisfactory manner for many systems.

For a course in statistical physics, for instance look at Goodstein [6].

In statistical physics there is an important distinction between ”macro-
states” and "micro-states”. Different macro-states are states distinguishable
by macroscopic measurements, such as measurements of energy, temperature or
the number of particles of a system. A micro-state is defined by the combination
of the states of all particles in the system, and usually there is no possibility
to determine this kind of state by measurement. But it is often possible by
theory to relate any micro-state to the constraints on the macro-state, for in-
stance a certain energy. There are usually many micro-states consistent with
one magcro-state, and especially with some of the macro-states. Therefore sta-
tistical treatment of the micro-states often result in deterministic macroscopic
descriptions.

It is common to organize the theory in accordance to the constraints of the
system. The simplest set of constraints is that the system has constant energy,
E, constant number of particles, N, and occupies a constant volume in space,
V. This kind of system is said to be part of a ”"micro-canonical ensemble”. An
ensemble is an imagined collection of a very huge number of systems that do not
interact with each other. The ensemble then acts as a huge statistical material
from which conclusions about single systems can be made. If we change the
condition of constant energy to a condition of constant temperature, T', we get
a system in the ”canonical ensemble”, with parameters T', N and V. If we also
change the condition of constant number of particles, to a condition of constant
chemical potential, u, we get a system in the ”grand canonical ensemble”. We

12



will discuss the micro-canonical and the canonical ensembles, and investigate
some parameters of interest. Observe that the canonical ensemble can not be
applied to systems with negative specific heat without some modifications, see
chapter 6.4.

One of the most important concepts in statistical physics and thermodynam-
ics is "entropy”. That is, because it is one of the principles of thermodynamics
that the entropy of a completely isolated system (a system in the micro-canonical
ensemble) increases, until it reaches its maximum value possible under the con-
straints on the system. The constraints may be a certain energy, number of
particles or volume. Even when considering systems that are not in the micro-
canonical ensemble, the properties of entropy are crucial to build the theory.
Entropy is a macroscopic parameter, and was originally in terms of thermo-
dynamics discovered by Clausius, and later formulated in statistical terms by
Boltzmann (and statistically for black-body radiation by Planck). Boltzmann’s
definition is

S=klnQ (3.1)

where k is Boltzmann’s constant, and 2 the number of micro-states correspond-
ing to the system’s macro-state. The micro-states in this definition are presumed
to occur with equal probability. This is valid for isolated systems. It is, how-
ever, from Boltzmann’s formula, possible to derive a formula for the entropy
where each micro-state is assigned a specific probability to occur. This formula
is more generally applicable, and is regarded as the general definition of entropy.
It reads

S=-k Zp,- In p; (3.2)

where p; is the probability of micro-state ¢, provided all micro-states counted for
are compatible with the constraints on the macro-state. To derive the formula,
we use the concept ”ensemble”. Suppose we have n number of identical systems,
with the same macroscopic properties, but whose micro-states are independent
of each other, and let n be huge. If system j’s micro-state, ¢;, occurs with
probability p;, then, since n is huge

where n; is the number of systems in the ensemble that is in micro-state i. We
let the macroscopic state of the ensemble be defined by the ordered set of these
n;:s. Let us also look at the ordered sequence of micro-state numbers, 4;, for
system one, system two, and so on. A micro-state of the ensemble can be defined
by a unique sequence of these numbers. The number of different micro-states
possible for a certain macro-state of the ensemble, Q.,,, can be calculated by
considering the number of ways to order these numbers in a distinguishable way,
with conserved n;:s.

n!

Qens = (3.4)

nilnal...ny,!
Since all the micro-states of the ensemble occur with equal probability once the
probabilities p; are given, we may use Boltzmann’s entropy definition, (3.1), on
the ensemble.

Sens = k1n Qeps (3.5)

13



Using (3.5) with Stirling’s formula
Inz!~zlnz (3.6)

which is valid for huge z, the formula for total probability, > p; = 1, (3.4) and
(3.3), we get

Sens = k(lnn! — Zlnm!) =k(nlonn — Zni Inn;) =

=k(nlnn — anilnnpi) = k(nlnn—n(Zpi)lnn—anilnpi) =

2

= —knzpi lnpz- (37)

The systems in the ensemble are by definition independent of each other, which
makes it possible to relate Q.,s in a simple manner to the number of equal
probability micro-states of one of the systems, 2. This is an imagined parameter,
since the system does not necessarily have such states. One possible way to

relate the p;:s to Q is by
i

bi = ) (3.8)

where > A; = Q. That means, we allow different imagined equal probability
micro-states to represent the same true micro-state of the system. The relation
between (., and  is

Qeons = Q7 (3.9)

which, according to (3.5), gives for the ensemble’s entropy, Sens, in relation to
a system’s entropy, S
Sens = nS (3.10)

(3.10) together with (3.7) give our general expression for the entropy, (3.2). In
the case of equal probabilities, we set

1
;= — 11
p 0 (3.11)

and we get Boltzmann’s definition of entropy, (3.1).

In the micro-canonical ensemble, the energy is one of the constants of the
system. The theory of this ensemble is applicable, even though this constant
may vary, but in such a slow way that the system is in internal equilibrium all
the time. In the canonical ensemble, the temperature is one of the constants
of the system. Also here it may vary, slowly enough to keep the equilibrium.
To study the properties of systems in this ensemble, we use the concept of
a total system at temperature T, isolated from its surrounding. The system
has constant energy E and has entropy S. A system under observation called
”system 1”7 is part of the total system, and has energy E; and entropy S;. Let
the part of the total system that is not included in system 1, be called ”system
2”  and let it have energy E, and entropy S2. The only interaction between
system 1 and system 2 is supposed to be the exchange of thermal energy. Then
there is

E=F +Es (312)

S=51+5> (3.13)

14



We are interested in E; and S, since these parameters characterize system
1. Since the total system is isolated and in equilibrium it will be in a state
that represents a maximum in entropy when varying internal parameters of the
system. This implies that F; and S; will take values that maximize this entropy.
We have from (3.12) and (3.13) and the statement about maximum entropy

0= 6—E,1|E,V,N,V1,N1 =
_ 08 055 dE, 95 055
- 6—]51|V1’N1 + 6—.E2|V2,N2d—.E1 - 8—.E1|V1’N1 - 6—E2|V2’N2 (
where the entities at the vertical bar are held constant under differentiation.
We see that the quantity gf;’ |vi.nv; is equal between systems that is in thermal
equilibrium to each other. This may remind us about the parameter ”temper-
ature”, that also has this property. As a matter of fact, it is a convention to
define the temperature of a system as
T = (S_ZW’N)A (3.15)
The exact form of (3.15) is consistent with a formula for the entropy of a perfect
gas, derived from thermodynamic relations, and where the temperature is a
parameter. Observe that also systems in the micro-canonical ensemble have
temperature, since (3.15) can be applied on these systems too. Now, let the
system 1 be much smaller (in energy) than system 2. In relation to system
1, system 2 is called a "heat bath”. This concept is often used to analyse
some properties of the canonical ensemble, because in this situation fluctuations
in thermal energy of system 1 do not significantly change the temperature of
system 2. The total system is isolated. We also, approximately, regard system
2 as isolated, since the exchange of heat with system 1 (due to fluctuations) is
small compared to the total heat energy of system 2. We can then assume that
system 2 has a number of equal probability micro-states, (22, corresponding to
its energy, E>. We can then use (3.1) as the expression for the entropy. We also
use (3.12) for the energy, the definition of temperature (3.15), and look at the
situation when system 1 is in micro-state ¢, with an energy denoted E;.

kln Qe (E2) = Sa(Es) = S2(E — E;) =

3.14)

_ 085, Ef 3252(E) _
—SQ(E)_Eza—E|V, +7 B2 |V,N+ =

The last step is valid, because system 2 does not change temperature signifi-
cantly when exchanging energy of the order of E;, according to the definition
of "heat bath”. We have then, for the probability of micro-state 4:

1
Pi X Q2(E0 - E,) = €exp (Eklnﬂz) ~

~ exp(SZI(CE))eXp (_F%) = exp(SZI(CE))eXp (-BE;) (3.17)

where we have used the definition

== (3.18)



We normalize the probability in (3.17).

S2(E)

exp(2E) exp (<BE) _ exp(-PE) _ exp(~BE)
> exp( (E))exp(—ﬂEi) >_iexp (—BE;) Z

The formula for p; is called a ”Boltzmann probability distribution”. In (3.19),
we used the definition

(3.19)

’l.:

01?r

Z= Zexp (—BE;) (3.20)

The function Z is called the ”partition function” of the system. In (3.19) and
(3.20), we have summed over every micro-state. We may state a corresponding
formula, but where we sum over all energies, once per energy level. If we let
g(E;) denote the number of micro-states with energy E;, and pg, the probability
of the energy level E;, we get

9(E;) exp (—BE;)
Z

PE; = (3.21)

where

Z = Zg )exp (—BE;) (3.22)

For a system in the canonical ensemble, the energy will fluctuate, even though
the temperature is constant. The mean energy can be calculated by use of the

partition function, Z.
O0lnZ

WW’N

where ” <>" expresses a time average. It is easy to see that this derivative results
in a weighted average of the energies of all micro-states. For a system in the
micro-canonical ensemble, i.e. an isolated system, (3.1) gives the entropy. For
a system in the canonical ensemble, i.e. a system in contact with a heat bath,
we use the general definition of entropy, (3.2), together with the Boltzmann
probability distribution, (3.19).

S(T,V,N) = _kzpi Inp; = -k Z(exp (=8E:) In AP (_ﬂEi)) =

<E>=- (3.23)

1 1 Z Z

i (=BE)exp(=BE;) InZ}  exp(-BEi), _

—y . > ) =
:<g>+kan (3.24)

In the micro-canonical ensemble, equilibrium implied a maximum in the entropy.
It can, with some effort, be derived that in the canonical ensemble, equilibrium
implies a minimum in a quantity called the ”Helmholtz free energy”. It is defined
as

F=—-kTinZ (3.25)

By combining (3.24) and (3.25), we get the relation
F=<E>-TS (3.26)

We will now look at a general formula that can be applied to the kind of
systems we have been discussing. As mentioned before, the grand canonical

16



ensemble involves fluctuating energy and fluctuating number of particles. This
ensemble is more general than the canonical ensemble where only the energy
may fluctuate. Therefore, we will here give a formula for the grand canonical
ensemble that relates the parameters of this ensemble to each other.

dE = TdS — PdV + pdN (3.27)

1 is the chemical potential and N the number of particles. Here, we have also
included a term with the pressure, P, and the volume, V. This term can also
be present in the canonical ensemble, but in this essay we are mostly interested
in systems with constant volume, where this term vanish. The formula (3.27) is
obtained by regarding S to be a function of E, V and N, and by differentiation
of S in regard to these parameters. Also the definitions of temperature, pressure
and chemical potential are used.

When studying the thermodynamical properties of systems, it is often useful
to look at the relation between energy, E, and temperature, 7. This relation
can say some things about the behaviour of these systems. The most natural
parameter to study in this sense is the ”specific heat” of the system. The specific
heat is defined as

2 O0< E >
lv = —kpB R lv (3.28)
This is for constant volume. There is also a specific heat for constant pressure,
Cp, but we will not be interested in this, in this essay. When considering systems
with constant particle number, (3.28) can be written

O E>
=g

0< E > 0< E >
Cv =7 v = k8" =55 =l (5.29)
and we have
0< E > 0< E > as oS
Cv=""p Ivw=""5 Ivwgplvw=Faplw (30

where we have used the definition of temperature, (3.15). For systems where S
is a function of < E >, it is easier to define
1
5<BS VN

where we also have used the definition of temperature, (3.15). We then have,
by combining (3.28) and (3.31)

Of(< E >)
O< E >

It is possible to calculate the specific heat, Cy, from the partition function,
Z, of a system in the canonical ensemble. Earlier, in (3.23), we expressed the
mean energy, < E >, in terms of the partition function, Z. Together with
the expression for the specific heat restricted to systems with constant particle
number, (3.29), we get for Cy

Cy = ( |V)71 (3.32)

2z

Cy = k528—ﬁ2|v,1v

(3.33)
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From this expression, it is possible to derive a relation between the specific heat
and the variance of the energy fluctuations of the system.

2621nZ| zkﬂQ(aalggle,N_(WlV,N)Q):
op VN Z Z
=kB(<E*>—-<E>*) =k < (E-<E>)?> (3.34)

olnZ

Cy =kp

Observe that (3.34) implies that the specific heat of a system in the canonical
ensemble is positive.

Let us now investigate formulas to apply the theory to a system of N particles
with energy E, in the micro-canonical ensemble. The system is assumed to have
a phase-space of volume g(E). To apply statistical physics to this kind of system,
it is a standard assumption that g(E) is proportional to Q (the number of micro-
states of the system). To know the constant of proportionality one uses an
assumption that each quantum-state is one micro-state, and Planck’s constant
appears in the equations. It is however not necessary to know this constant of
proportionality, and we will here omit it. Let us call the Hamiltonian of the
system H. Then the phase-space volume can be calculated by

9(E) = dE / (I, der ) (I, dpips) 6(E — H (2t ppi)) (3.35)

where we assume the system to have n, space degrees of freedom and n,, mo-
mentum degrees of freedom. The delta-function ensures that only the parts
of the phase-space that is consistent with the constraint on the energy of the
system contributes to the volume. For those systems that we will investigate in
this essay, the Hamiltonian can be written on the following form.

™ Phi

H = Ep +Ek = Ep(.’L'Di) + - zmz

1=

(3.36)

where E, is the potential energy, Ej the kinetic energy, and m; the mass of
paricle 4. (3.35) can, with use of (3.36), be written

Nm 9
9(B) = dE [ (W2, dops) (032 dppi) 8B — By(ons) = > 521 (33)
i=1 ¢
When integrating over the momentum parameters, we integrate over all com-
binations of the those parameters that satisfy that the sum in the argument of
the delta-function equals £ — E,. These combinations constitutes a surface of
a sphere (or to be correct: an ellipsoid, see below) with radius (E — Ep)% in a
space with n,,, dimensions. The area of this surface is C; (E — E,)"3* !, where
(1 is a constant depending only of n,,,. We also have to correct the surface area
with the m;:s, because they scale the area (and deforms the sphere to be an
ellipsoid). We can then write (3.37)

n

9(B) x dE / (T2, da ) (Tmym?) (B — By (wpi) % (3.38)

where we have dropped all unnecessary constants. We keep the m;:s, because
for one of our models we will study, mathematically a spatial coordinate can
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be included in them. So they are not necessarily masses, but represent some
function appearing in the denominator of the sum in the expression for the
kinetic energy. Often, E,, is a function of one radial coordinate, and (3.38) can
be written

o(B) < dE [ (@2, dapy) (Tmymd) (B~ E,m)F 1 (339)

This radial coordinate does not necessarily be radial in relation to all the other
space coordinates. Some of the other coordinates may be, for instance, Carte-
sian. Let us call the number of coordinates that are the angle coordinates
associated to r, ng-. Then (3.39) can be written

9(E) x dE / dr e (0, ) (B — Ey(r) 1 (3.40)

where we have omitted multiplicative constants, for instance the volume due to
integration in the x; degrees of freedom not being angle coordinates in relation
to r. (3.40), we will use when we calculate on the special models in chapter 7.

It is possible to calculate the expectation value of any function of the phase-
space coordinates by using (3.40) with the function in consideration within the
integral. It is also possible to calculate the partition function, Z, for the case
of a system in the canonical ensemble by using (3.40) in (3.22), if the sum in
(3.22) is replaced by an integral.

We want to know how to calculate the specific heat at constant volume, Cy/,
for a system in the micro-canonical ensemble with phase-space volume g(E).
With use of (3.1), (3.31) and (3.32), we obtain

(3.41)
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Chapter 4

Long- and short-range
forces

We will here investigate a simple way to define a distinction between long- and
short-range forces. In this essay we make most of our investigations on potentials
of the form

¢(@p) = C|&p — Tpol” (4.1)

In this general case it is possible to investigate, for any number of dimensions
D, the consequence of forces with different ». We will especially be interested in
gravitation where, according to (2.28), v depends on D like v = 2 — D. Also for
other forces than gravitation, there may be relations between v and D, but we
do not look specifically on those forces. We just look at different combinations
of v and D. We will only consider situations with only one type of charge, like
with gravitation or the van der Waals force. In other cases we will get shielding
between the different kinds of charges, and the situation is different. The deriva-
tion is valid for non-gravitational forces if ”"mass” is interpreted as the relevant
charge in consideration, p as the corresponding density, and the constant C' as
the constant applicable. The easiest way to distinguish between long-range and
short-range forces is by looking at a continuous medium with constant density,
and investigate from which areas the potential energy of a particle embedded in
the media at the point £p comes. If only regarding contributions from spherical
shells of radius A (and with the particle in the centre), and where ¢ < A < R,
the potential energy of the particle with mass m is

R
=— [ dVpoC'|Zp — Fpo|" p(Fpo)m / drory ~'rf =
Va €
R
- / drg rP¥7 L o [FDTVIR = RD4Y _ (Db (4.2)
€

where D + v # 0. We assume € < 1 and R > 1, giving a strong dependence of
€ for negative D + v, and a strong dependence of R for positive D + v. With
this method, short-range forces are characterized by

D+v<0 (4.3)
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and long-range forces by
D+v>0 (4.4)

For gravitational forces we use (2.28), and we can conclude that gravitation, in
any number of dimensions, is a long-range force according to the criteria under
consideration.
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Chapter 5

The Virial theorem

The ”Virial theorem” relates time averages of some entities of a system to each
other. In order to be valid, some premises have to be true, and we will discuss
that later. In its most general form the theorem reads

1 2o
<K>:—§<Xi:Fi-n~> (5.1)

where K is the kinetic energy of the system, F; the force acting on particle 4,
and 7; the position of that particle. ”<>” denotes a time average. The right-
hand side of (5.1) is called ”the Virial of Clausius”. It can be applied to many
different kinds of systems, and depending on the nature of the forces in the
system of consideration, it results in a variety of formulas, describing different
systems. See Collins [4] for a deep insight into the application of the Virial
theorem to astrophysical systems. We will now deduce (5.1). To do that, we
will look at the entity

B=) i (5-2)
i

where pj; is the linear momentum of particle . We take the total time derivative
of B.

dri - i o _
_ar Pt g
K3 K3

a AR e
=2 mig g v =

K2 K2
=Y mv} + Y Fi-wi=2K+) Fi-; (5-3)

dB _ 7,
dt

—

where m; is the mass, and v; the velocity of particle ;. We take the time average
of this expression over a period .
1 1 [7dB dB -
=(B(r) — B(0)) = = —dt=< —>=2< K>+< F;-7;> (54
(B - BO) = | Far=< SAn> G
The derivation of the theorem is dependent on the possibility of setting < % >
to zero. There are two such possibilities. The first is that if the motion of
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all particles are periodic, then if 7 is taken to be the period of the complete
system (if this period exists), the left-hand side of (5.4) will vanish. The second
possibility is that if positions and velocities of all particles are finite, that means
|B| has an upper bound, then when making 7 large enough, the left-hand side
of (5.4) will be arbitrarily small. So, if we limit our considerations to systems
which are periodic, or systems where the positions and velocities are finite, the
Virial theorem, (5.1), is true. The theorem has many important applications,
for instance in the kinetic theory of gases, or in stellar astrophysics. Since a
stable system has finite positions and finite velocities, the Virial theorem can
also be used to predict which system is stable, and which is not.

To make it possible to understand what the theorem implies, we take an
example: a derivation of Boyle’s law, also known as the equation of state for
a perfect gas. First, we look at the left-hand side of (5.1). It is known from
the equipartition theorem in statistical mechanics (see Goodstein [6]) that the
time-averaged kinetic energy of a particle in a gas in a D-dimensional space is
%kT, where k is Boltzmann’s constant, and T the temperature. So, the time
averaged kinetic energy of the system is

D
<K >= ZNkT (5.5)

where N is the number of particles in the system. Now, we look at the right-
hand side of (5.1). The forces on the particles in the system may be forces
between particles, for instance at collisions, and forces due to an externally
applied potential. The forces on the particles in this system mainly comes from
collisions with the walls. Let P be the pressure on the wall, dA a surface element
of the wall, and 7 an outward-pointing normal to dA. We then have

<) F}-F,->:—P/dAﬁ-F (5.6)
- A
K3
and by use of Gauss’ theorem on (5.6), we obtain

<ZF’F >:—P/VdV€-F:—DPV (5.7)

where D is the number of spatial dimensions, and V' the volume of the system.
By combining (5.1), (5.5) and (5.7), we get
PV = NkT (5.8)

We see that the equation of state for a perfect gas is independent of the number
of dimensions. We may regard the case where we also have point-wise collisions
between particles in the gas. At such a collision between some particles labelled
i we have, according to the law of action and reaction

Y Fefi=0Q F)-F
i i

When calculating the Virial of Clausius for only this kind of force, we get

0 (5.9)

1 L
-5 < ZF S >=0 (5.10)
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This means, since the Virial of Clausius is linear in I?’Z - 7, that a gas can be
regarded as perfect even when the particles, except for collisions with the wall,
also have point-wise interactions with each other.

Now, we will examine the application of the Virial theorem to a system of
particles, interacting in pairs by a central force potential, and where particle i
has mass m;. We regard a potential due to particle j acting on particle 7, on
the form

Vij = Cmim]‘T% (511)

That is, V;; is a homogeneous function in r;;. This may be a gravitational
potential in D = 2—v (D > 3) dimensions, see chapter 2. The force on particle
i due to particle j is

v—2

ﬁij = Cmymjur]”=(7j — 75) (5.12)

where 7 and 7 is the position vector of particle ¢ and j respectively. We see
that

Fyj = —Fyi (5.13)

Using (5.1), (5.12) and (5.13), we get for two particles with labels 7 and j
respectively

<K >= =3 (Fy i+ B =
Zi(ﬁjﬁ—ﬁz]ﬁﬁ-ﬁ}zﬁ—ﬁ}zﬂ):
= 3By =R+ B (=) = 2 2B (75— ) =
= %Cmimjl/r;’j = gV (5.14)

where V is the potential energy of the two particles due to their interaction.
Each pair of particles in the system contributes in the same way to the Virial
of Clausius, and the potential energy due to their interaction will add to V.
So, (5.14) is valid for the complete system, where V' is the potential energy of
the system. Observe that (5.14) is valid because the interaction between two
particles has the form (5.11). The effective potential, arising from the system’s
density distribution, may be another one, but (5.14) is still valid. The total
energy of the system is

E=V+K (5.15)
(5.14) and (5.15) gives
<E>:VT+2<K> (5.16)
and
<E>:VT+2<V> (5.17)

Observe that an eventual dependence of the number of dimensions, D, only
appears through v, and only if there is a dependence between v and D.

We will also investigate what happens if the system is restricted to the
interior of a spherical box with centre in the central force potential’s centre.
This is a situation that appears when studying self-gravitating systems. The
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contribution to the Virial of Clausius due to the force on the particles from this
wall is, in analogy to (5.6) and (5.7)

1 - 1 1 - 1
_1 F-7>==[ dAPi-7= =P .#=-DPV  (5.18
2<§izr,>2/Ad nrz/VdVVrz (5.18)
Adding this contribution to (5.14) gives

1
<K >= g <V >+5DPV (5.19)

Here, we have a direct dependence of D. (5.15) and (5.19) gives

2 D
<B>=""2 k> _Zpy (5.20)
14 14
and 42 1
<E>= VT <V >+5DPV (5.21)
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Chapter 6

Non-relativistic gravitation
and statistical physics

A self-gravitating system is a system that is defined by its internal gravitational
interaction between its parts.

6.1 Non-extensivity

A self-gravitating system exhibits some properties that make it difficult to use
statistical methods from, for instance, the theory of gases. Gravitation is a long-
range force, see chapter 4. This makes the energy of the system become a non-
extensive parameter. That means, if we have two self- gravitating systems with
energy F; and Fs respectively, we have for the combined system in equilibrium

E 75 E, + E, (61)

In a system with only short-range forces, the energy of the system due to in-
teractions between subsystems depends on the area of the subsystems’ surface,
while the energy due to internal interactions in the subsystems scales as the
volume of the subsystems. So, except for very small subsystems, the energy due
to interactions between subsystems is negligible for short-range forces. In this
case the energy is an extensive parameter. In the case of long-range forces the
interaction energy scales as the volume of the subsystems. Then the interaction
energy will remain important even for big subsystems. Hut [8] gives another
view of the same phenomena. He takes an example with a self-gravitating sys-
tem where the density (total mass per total volume) and temperature are held
constant, and the mass (or number of particles), M, of the system is varied.
Then M « R3, where R is the radius of a limiting sphere. For the kinetic and
potential energy we have Ey o« M and E, x %2 o M3. An extensive param-
eter growes linearly with the amount of substance in the system, in this case
linearly with M. The total energy here has a component that grows faster than
linearly, and is therefore a ”superextensive” parameter. In an extensive system
we have a ”thermodynamic limit”, that means, the value on the extensive ob-
servables divided by the amount of substance in the system is finite. Here, %
goes to infinity, and we have no thermodynamic limit.
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An expression of the non-extensivity of these systems, is their inhomogeneity.
That is, the density as well as the gravitational field varies over the system at
internal equilibrium, and the energy of a subsystem depends on where in the
system the subsystem resides.

6.2 Relaxation

To make a system come in internal thermodynamical equilibrium, there has to
be some mechanism that relies on the gravitational interaction between objects.
This mechanism is called ”relaxation”. There are two kinds of relaxations.
Early in the life of star clusters, ”violent relaxation” appears. This involves
gravitational interaction between different groups of stars in the phase-space
of the cluster. During this interaction, individual objects are scattered mainly
by groups of objects, rather than by other individual objects. The groups are
continuously reforming and objects change group. But the statistical distribu-
tion in phase-space lasts longer. In the end of this process, the system is no
longer divided into groups. When the violent relaxation has faded, the ” gentle
relaxation” dominates. This process involves interaction between pairs of stars.
At short distances the interaction is strong, resulting in large deflection and ve-
locity change. But since there are more stars at large distances, the effect of the
distant stars is bigger. The final state of gentle relaxation includes segregation
of stars with different mass. The more massive objects accumulate at the center
of the cluster. The time scale for the occurence of a nearly relaxed system is
much shorter for violent relaxation than for gentle relaxation. For an insight to
relaxation, for instance read Saslaw [16].

6.3 Astrophysical objects

There are two kinds of astronomical systems that can be described by statistical
methods in combination with non-relativistic gravitation: systems where the
”particles” are macroscopic objects like stars or galaxies, and systems where
the ”particles” are elementary particles. Examples of systems with macroscopic
objects, and where relaxation may have occured, are globular clusters (~ 10°
stars), galactic or open clusters (=~ 10% stars), galactic nuclei (~ 10® stars)
and clusters of galaxies (~ 10° galaxies). Examples of systems of elementary
particles are the halos of dark matter particles that exist around galaxies.
Thirring [17] speculates about if the instability of a system with negative
specific heat in contact with a heat bath (see chapter 6.4) can be used to describe
formation of red giants, supernovae and the dense center of a galaxy.
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6.4 Ensembles, negative specific heat and phase-
transitions

From the different models of self-gravitating systems in chapter 7, we can con-
clude that often self-gravitating systems in three dimensions have negative spe-
cific heat. In any of these models, there are approximations, modifications or
certain assumptions that more or less leaves the model with properties similar
to real systems. The models are complements to each other, since they differ in
different ways from real systems.

As will be discussed below, systems in the micro-canonical ensemble can
have negative specific heat. Systems in the canonical ensemble can not have
negative specific heat, as can be seen by (3.34).

Fig. 1 shows a system that has negative specific heat in one region of energy,
B.

Energy — Temperature, Micro—canonical ensemble, Positive and negative specific heat
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Fig. 1: Positive and negative specific heat. The curve is typical for 3-dimensional
selfgravitating systems with inner and outer cutoff. This specific curve results from
the binary star model, see chapter 7.4. The axes are rescaled to dimensionless units.

In region A, the system is affected by the pressure from a wall prohibiting
the particles from coming close to the gravitating centre. In this region, energy
supplied mainly increases the kinetic energy of the particle, and only to some
extent their potential energy, and the temperature increases. In region B, the
pressure on the walls is not significant, the energy supplied results in an increase
of the potential energy that is bigger than the supplied energy, and the kinetic
energy as well as the temperature decreases. In region C, the pressure from the
outer wall prohibiting particles to escape from the system, is significant, and
energy supplied can not increase the potential energy considerably, while the
kinetic energy and so the temperature increases. The properties of the curve
in fig. 1 is typical for three-dimensional self-gravitating systems in the micro-
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canonical ensemble, even though the exact form of the curve may differ between
different systems.

The canonical ensemble is a little bit troublesome to understand in the case
of self-gravitating systems. It is possible to use the partition function, (3.20),
on self-gravitating systems without asking any questions about its applicability.
But, it may be interesting to investigate how this ensemble can be interpreted
in physical terms in the case of a self-gravitating system. At first, let us look at
two properties of systems with negative specific heat that are easy to derive and
are listed for instance in Lynden-Bell [10]: 1. T'wo negative specific heat systems
in thermal contact can not attain thermal equilibrium. 2. A negative specific
heat system can attain thermal equilibrium with a positive specific heat system
only if their total specific heat is negative. From these two properties we can
conclude that a negative specific heat system can not be in thermal equilibrium
with a heat bath (for a definition of heat bath see chapter 3), no matter if
the heat bath has negative or positive specific heat. This makes systems in the
canonical ensemble (with negative specific heat if studied in the micro-canonical
ensemble) a hypothetical construction that is not theoretically consistent and
can not exist in reality, if the system is not modified in some sense. We will
discuss this below.

To understand systems in the canonical ensemble we must look at a phe-
nomenon called ”phase-transition”. If the properties (for instance the density
distribution or specific heat) of a system change dramatically under a very
small change in for instance temperature, there is a ”phase-transition”. In this
essay we study phase transitions that are associated with a specific heat that
is very high in the region of temperature where the transition occurs. This
means, the system undergoes a change in energy, with corresponding changes
in configuration, while the change in temperature is very small. The phase-
transition is associated with a discontinuity in the free energy of the system.
The old ”Ehrenfest scheme” is now regarded as inaccurate. The modern scheme
says that in a first-order phase transition, there is ”latent heat” in the system.
Second-order phase-transistions, also called continuous phase-transitions, do not
involve latent heat. At a first-order phase-transition the energy as a function of
temperature is discontinous, i.e. there is a jump in energy at the temperature
of the transition, (fig. 2). In a phase transition of the second kind, the corre-
sponding function is continuous, (fig. 3). In the case of a phase transition of the
first kind, the function (the dashed part is included) is multiple-valued before
considering the Helmholtz free energy of the system, (3.26). Where there are
multiple possibilities, it occurs the one that minimizes this quantity. The dis-
continuity occurs where the Helmholtz free energy of the two branches are equal.
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Energy — Temperature, Canonical ensemble, Phase—transition of the first kind
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Fig. 2: Phase-transition of the first kind. The axes are rescaled to dimensionless units.
The dashed curve represents the same system in the micro-canonical ensemble. The
two curves have different temperature scales.

Energy — Temperature, Canonical ensemble, Phase-transition of the second kind
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Fig. 3: Phase-transition of the second kind. The axes are rescaled to dimensionless
units. The dashed curve represents the same system in the micro-canonical ensemble.
The two curves have different temperature scales.

We will see in chapter 7, that it is characteristic for some simple models of

self-gravitating systems to have negative specific heat in some region of energy
in the micro- canonical ensemble, and a phase-transition with a huge amount of
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positive specific heat in the corresponding region when studied in the canonical
ensemble. See fig. 1, fig. 2 and fig. 3. This difference between the two ensem-
bles is quite reasonable, as can be seen by (3.34). The fluctuation in energy
for a system in the canonical ensemble goes to zero when the specific heat goes
to zero, and the system behaves as it is in the micro-canonical ensemble. For
high specific heat, the fluctuations are big, and the two ensembles behave very
differently.

Often the same diagram over the relation between energy and temperature
for a system can be used in both the micro-canonical and the canonical ensemble,
if it is complemented with information about the Helmholtz free energy.

There is a way to make systems of negative specific heat stable in thermal
contact with the surrounding. That is to introduce an inner and an outer cutoff
that limits the potential energy of the system (for cutoffs, see chapter 6.6). In
fig. 4 wee see the relation between energy and temperature for a system with
negative specific heat in the micro-canonical ensemble (the system is isolated)
with cutoffs. We then connect it very weakly to a heat bath so that there can
be an energy flow from the hotter to the colder part, but with small energy fluc-
tuations, so that the system still behaves like in the micro-canonical ensemble.
The temperature of the heat bath is marked by a dotted line. A system initially
at A gets energy from the heat bath during its trip along the curve. First, be-
fore the system reaches B, this increases the energy and lowers the temperature
(because the specific heat is negative). Then, during the trip to C, the system
still gains energy, but the temperature increases (because the specific heat is
positive due to the outer cutoff). At C the system is in equilibrium with the
heat bath. In principle the same process occurs if the system is initially at D.
Then the sign of the specific heat changes at E, and stability is obtained at F
due to the inner cutoff.

Energy — Temperature, Micro—canonical ensemble, Cutoffs and stability
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Fig. 4: A system in the micro-canonical ensemble with a (weak) thermal contact with
the surrounding, can be made stable by introducing cutoffs. A system initially at A
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becomes stable at C. A system initially at D becomes stable at F. The temperature of
the surrounding heat bath is marked by a dotted line.

Sometimes it is useful to study a part of a self-gravitating system, a fixed
volume that contains a fluctuating number of particles, N, and a fluctuating
amount of energy, E. Since the surrounding part of the system serves as both a
particle reservoir and a heat bath, the results for the grand canonical ensemble
can be applied to this subsystem.

6.5 Local entropy maxima

A closed system adapts itself so that it attains maximum entropy under the con-
straints applied. This may result in, for instance, a specific density distribution,
compatible with the constraints. If we let the different free (unconstrained)
parameters in the system constitute a space, and there exists a point in this
space where the entropy is higher than in any neighbouring points, then this
point represents a ”local maximum” for the entropy. The system will fluctu-
ate around this point, when the system is in internal equilibrium. If we vary
some constrained parameter of the system continously, the point with a local
entropy maximum will move through the space. There may be some regions
of the constrained parameters where no local maximum for the entropy exists
in the space defined by the unconstrained parameters. That means, that it is
then possible for the system to move through this space, and it will not reach a
maximum in entropy while some unconstrained parameter goes to infinity. The
system is then not stable. This phenomenon occurs, for instance, in the theory
of ”the gravo-thermal catastrophe”. The latter phenomenon will be discussed
in chapter 7.1.

6.6 Cutoffs

Let us look at an isolated system with energy E, where N particles, each with
mass m, gravitate each other in a D-dimensional space. We look at the contribu-
tion to the entropy from the parts of the phase-space where particles are spatially
close to each other. Our system has, according to (3.39), (with m; = constant,
ns = DN and n,, = DN), the phase-space volume

1
9(E) x /dmgl dzB, ...dzBy (B + 3 Z Cpm?|Zp; — :E’Dj|”)%—1 (6.2)

i#]
We change integration variable
Sp = &p1 — Zpo (6.3)
(6.2) and (6.3) give
9(E) x / dzB, dzB, ... deB N I(Zpa, - .., ZDN) (6.4)
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where
I(Zps2,...,ZpN) =

N
=/dSD (E+Cpm2|§p|u+ZCDm2|§D+fD2 —.i"Dj|V‘|‘

=3
| X
S NG -1
+5 > Cpm?|Ep; — Zp;|*) = (6.5)
i,j=2
This integral is divergent in some regions of D, v and N. Near |Sp| = 0 it
behaves as
I :/ ds P~ (Cpm?s¥) ™% '  lime_oe & TP~ (6.6)
0

For gravitation we have, according to (2.28), that v = 2 — D (D > 3). From
(6.6) we then have for gravitation

Io o lime_yo eNPU—3)+2(D-1) (6.7)

which is convergent only for

v < AD-1)

S m (6.8)

This implies that the phase-space of the system is infinite for V > Ny, where
Ny = 2 in three dimensions, Ny = 1 in four or five dimensions, and Ny = 0 for
six dimensions or more. This results for N > Ny in no local maxima for the
entropy, and at least for 3 < D < 5 some particles will come closer and closer
to each other, without limit. Mathematically, this gives an infinite phase-space
volume for the system. The solution to this, is to introduce a limiting sphere
around every particle, that prohibits other particles from coming close. Another
solution is to limit the potential at small distances. The common method is the
former one. In models where there is no gravitation between the particles, but
there is a centre of gravitation acting on all the particles, a sphere stopping
particles to come close to the centre is sufficient. We call this kind of sphere,
an inner limiting wall. Let us now look at the contribution to the phase-space
volume of a system from one particle moving to infinity in spatial space. We
assume that the system either (I) has spheres prohibiting particles from coming
close to each other, or (IT) a sphere that prohibits particles from coming close
to a gravitating centre. The criteria for the possibility of a particle moving
to infinity in space, is that the system’s total energy, Ex, is related to the
potential energy of the system when N — 1 particles have the lowest possible
kinetic energy (which means that in a system of type (I), N — 1 particles are
closely packed, or in a system of type (II), N —1 particles resides on the limiting
sphere), Eq(N — 1), and the kinetic energy of the system, Ey, by

En > EO(N—l) (6.9)

This represents the situation when there is at least so much energy in the system
so that there is a possibility that N — 1 number of particles have the minimum
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potential energy available, and the N:th particle can exist at infinity. Since the
spatial volume at infinity is infinitely large, a system fulfilling (6.9) will have
no local maximum in entropy. Physically, it means that particles will escape
from the system, and we may successively redefine the system by reducing N
and, eventually, E. The process will continue until (6.9) is no longer fulfilled.
Not until then there will be a local maximum in entropy that represents the
properties of a stable system. But then we may not have the kind of system
we expected to study. The solution to these problems is to introduce an outer
limiting sphere that restricts particles from going to infinity. Mathematically,
this corresponds to a restriction of the volume of integration when calculating
the phase-space volume.

6.7 Application of The Virial theorem

It is quite clear that there is a relation between the energy, potential energy and
the kinetic energy of a self-gravitating system, (5.15). The Virial theorem tells
there is a relation between the time averages of any two of these. Especially
simple, see (5.14), (5.16) and (5.17), the relations are when no limiting wall
(cutoff) affects the particles in the system. This occurs, for instance, when the
energy of the system is not so high that the outer wall feels a significant pressure
from the particles, and not so low that the inner wall feels a significant pressure.
If the pressure on some wall is significant, we may use the form of the Virial
theorem where there is a term containing the pressure and the volume of the
system, see (5.19), (5.20) and (5.21).

We will now try to relate a spherical-symmetric, continuous and stable mass
distribution with mass M (r) inside spherical shells with radius r, to the time
averaged total energy of the system, < E >. The time averaged potential
energy, < V >, can be expressed without use of the Virial theorem.

1
27rG M(r )

/d / dr’ D1 (6.10)
where ¢ is the gravitational field, and we have used the following expression for
¢:

T F I 4 I
—/ ap £ _ 4rG / dr’ (6.11)
oo m

where we have used a formula similar to (2.30) for a spherical-symmetric mass
distribution. F(r') is the gravitational force on a particle with mass m at radial
position r'. Now, we will calculate the time averaged kinetic energy, < K >.
Let us call the mass of a particle m, the force on a particle F', and the particle’s
position 7. Let us call the mass density p(r). (6.11) gives

SprP=F = —4rG M (r)m (6.12)
and from this, we have for one term in the Virial of Clausius

fr)=F.-7= —747;?)%‘{ g” (6.13)



The Virial theorem, (6.12), (6.13) and SprP~'p(r) = 44") give

. dM dv
<K>:—%<;Fi-ﬁ~ >= —%/—f(r):—%/ip(r)f(r):

m

SprP=tdrp(r) , 4rGmM(r), / _
— (- SyrD2 )=2nG [ drrp(r)M(r) =
_ 227G 1 dM(r)
= g dr ’I'D_2 dr M(T) (614)

(6.10) and (6.14) give for the time averaged total energy

2rG dM(r " M@
<E>=<K>+<V>="—" /dr D(f2)+/ dr'%) (6.15)

Observe that the mass distribution M(r) can not be chosen arbitrarily, since
the application of the Virial theorem demands a stable system, and this is true
only for some M (r), for instance those which are associated with an isothermal
system, see chapter 6.8.

Let us now try to represent the Virial theorem in another form, for particles
interacting with each other with an ordinary gravitational (or Coloumb) force.
Let us denote the force on_’particle 1 with F‘i, the force on pagticle 1 due to the
field from particle j with Fj;, the position of particle ¢ with R;, the position of
particle i relative to particle j with 75;, the angle between Rj and 7; with 8;;,
the potential energy of particle ¢ due to the field from particle j with V;;, the
charge (positive or negative) of particle i with m;, and the force constant with
G. Then we have

<K>———<ZF R; >_——<22Fm (75 + By) >=
i jFi

= < (T ot Ry cos(8) >=

2 i i
e RD D IEEE T ) ST e

i j#i i jFL
=—<V>—‘ZZ<V“ - cos(fy) > (6.16)
i JF

For the case of two particles, with origin at the centre of mass, where lel =9
Ro

(0 < v < 1), we have o= =1—vand 033 = 012 = 7, and since < V >=
L(Via+Va1) and Va; = Vi, we obtain (5.14). Even for cases with more particles
than two, there are symmetries so that, despite the complicated form of the

expression in the summation signs, the system agrees with (5.14).

Thirring [17] makes a discussion about negative specific heat of matter.
Thirring discusses whether the Virial theorem, in the form (5.14), can be used
to prove that all condensed matter have negative specific heat, but he finds
reasons, for instance the need of cutoffs, for that this is not true.
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6.8 The mean field approximation

Here, we will derive the so called mean field limit of a self-gravitating system in
three dimensions, in which we ignore the granularity and the fluctuations present
in an N-particle system. The approximation is widely used. This derivation
is presented in Padmanabhan [15]. The spherical- symmetric case under this
approximation is called ”the isothermal sphere”.

We start with a system of N particles confined in a volume, V', and interact-
ing through the two-body potential U(Z;, ;). In the micro-canonical ensemble,
there is for the entropy, S

expS =g(E) = i/dsj\[a:dyvp(S(E—H) =

N'/dw E——ZU )% (6.17)

i#]

where A is a constant, and we have approximated % — 1 with % We divide
V in M cells of equal size, large enough to contain many particles but small
enough for the potential to be approximately constant within the cell. There is
a standard result that

d3N

N T 2 i 2w 2

Using (6.18) on (6.17), approximating the factorials with Stirling’s formula (3.6),
and omitting the unimportant constant A, give

exp S ~ Z Z Z 6(N—Zna)exp5({na}) (6.19)

SN =Y n) ()Y (618)

1
n!

’I’L1:1 ’ng:l nM:1
where
3 M
exp S({n.}) = Nln E— - Zna (Za, Tp)1p) Z"“ ln (6.20)
a;éb

Next, we approximate by keeping only the term in (6.19) that is the biggest
one. That is

> expS({na}) = exp S({na,maz}) (6.21)
{na}

where ng ez is the solution to the variational problem

M
(ﬁ)na:na,maz =0 Zna =N (6.22)

ong

(6.19) and (6.22) give

M
—) = constant (6.23)

1 -
T Z U(xa; xb)nb,maz + ln(na,maz Vv

=1
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where we defined the temperature, T', as

1 3 1
__NE__E Uz, 7 -1 .24

We see from (6.20) that T is the correct temperature, according to the definition,
(3.15). We go to the continuum limit by the replacements

p(Za)

{ M, maz ¥ (6.25)

Y,
Za:l - v

In this limit, the extremum solution, (6.23), becomes

p(¥) = C exp (—B(F))
{ o(Z) = [ By U(E, §)p(7) (6.26)

In the case of three-dimensional gravitation, we have

p() = Cexp (—B4(Z))
$(@) = -G [ d*y 50

Y
F—7

(6.27)

In the derivation of (6.27), we searched for an extremum of the system’s entropy.
This does not ensure a maximum of the entropy. In some regions of the parame-
ters of the system, this extremum corresponds to a saddle point for the entropy.
Only in some regions, there is a maximum. This will be discussed in chapter 7.1,
and is related to a phenomena called ”the gravo-thermal catastrophe”.
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Chapter 7

Special models of
self-gravitating systems

The models presented here have been constructed to shed light on properties of
real self-gravitating systems. These models rely on approximations or modifi-
cations of real systems. This is to allow mathematical analysis, which is very
hard to do on the exact real system. The different models complement each
other, since the approximations and modifications are different in the different
models.

7.1 The isothermal sphere

This is one of the the most widely used models to analyse properties of real
astrophysical systems. Details about this model and the associated phenomena
"the gravo-thermal catastrophe” can be found in Lynden-Bell/Wood [12] and
Padmanabhan [15]. Antonov [1] showed that, under the mean field approxima-
tion, the spherical- symmetric case is the case with highest entropy. This case is
called the ”isothermal sphere”. Antonov [1] also studied exact criterias for the
stability of such a system. The system has mass M and energy E (negative),
and is confined within a spherical shell of radius R. Let us call the density in
the centre of the sphere pg, and the density at the distance R from the centre
with pr. The system is stable (has a local entropy maxima) if % > —0.335
and £= < 709. If % > —0.335 and £= > 709 the system is in a metastable
state where the entropy extremum is a saddle point. The system is isothermal,
but evolves towards higher and higher temperature and po. If % < —0.335
the entropy has no extremum, and the system is not isothermal. In the two
latter cases, a central nucleus with higher and higher temperature evolves. This
is what is ment with ”the gravo-thermal catastrophe”.

7.2 The Virial model

Let us look at the possibility of using the Virial theorem to investigate the
specific heat of a system. We regard the case where the pressure on an eventual
limiting wall not is significant, and they attract each other with potentials on
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the form ¢ = Cpr”, where Cp and v have the same sign. (5.16) reads

2
<E>:%<K> (7.1)
(3.29) and (7.1) give
v+2d< K >
- =22 2
Cv ” aT (7.2)

For many systems, < K > is a monotonely increasing function of the tempera-
ture. To show that this is the case for any self-gravitating system may not be
easy, but we investigate the case where the relation is assumed to hold. Then,

we have
d< K >

dT

(7.2) and (7.3) implies that Cy is negative exactly when v = —1. For gravitation
we have (2.28), and we get

>0 (7.3)

4—-D d< K >

&v=9"D ar

D>3 (7.4)
We then have from (7.4) and (7.3) that Cy is negative in three dimensions, zero
in four dimensions, and positive in five dimensions or more.

7.3 The circular orbit model

Let us now study a model that gives similar results, but is based on assumptions
that hold for a single particle in a circular orbit in a central force potential on
the form ¢ = Cpr” (v # 0), where Cp and v have the same sign. Below, we will
see that the particle has to be confined between two spherical walls. This model
lacks a physical mechanism that makes the system ergodic. The ergodicity has
to be assumed explicitly. It may also be possible to add a mechanism that
makes the system ergodic. We call this model the ”circular orbit model”. In
this calculation, we use the sign ”o” in the sense ”proportional to”. (The two
expressions only differ by a multiplicative constant independent of E, r and p).
First, we formulate the equations that define the properties of the system. The
potential energy of the particle, V, is

V =mCpr” (7.5)

where r is the radius of the orbit, and m the mass of the particle. It is easy to
derive that the kinetic energy of the particle, K, is

K= %mC’Dr” (7.6)
The total energy of the particle, E, is
E:V+K:mC’D(1+g)r"ocr” (7.7

We assume that the particle is confined spatially within a distance r to r + dr’
from the centre, which gives for the spatial volume of the system

V. o rP=1dr! (7.8)
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where D (D > 3) is the number of dimensions of the space. We assume the
length of the linear momentum of the particle to be in the interval |p] to |p]+d|p].
p is directed perpendicular to the central force potential’s radius, so that the
particle moves at the surface of a sphere in a D-dimensional space. This surface
has D—1 dimensions. Except for a length in an interval of size d|p], the direction
of p'is arbitrary as long as it is a tangent to the (D — 1)-dimensional surface.
The change of direction of §'is then performed in D — 2 dimensions, and |p] is
the radius defining the size of this (D — 2)-dimensional space. For the size of
the momentum-space, V},, we then have

d
V, o [p|P 2 gdr' (7.9)

Provided that the particle is in V; and in V,, and dr' is infinitesimal, the spatial
coordinates and the phase coordinates are uncorrelated, which can be expressed

erp = VYTVp (710)

where V;, is the volume of the system’s phase-space. Using some common
relations from classical physics and (7.6), we get

151> = 2mK = m*vCpr” o r” (7.11)
From (7.11) we get
% ocrz! (7.12)

(7.8), (7.9), (7.10), (7.11) and (7.12) give
Vip PP+ g1 g2 (7.13)

We need to express dr’ in terms of the coordinate r. The properties of a system
can, often, be formulated as a function of a dimensionless parameter on for
instance the form f_ﬂ’,{’g, where G is the gravitational constant, M and m masses,
a a distance, and E the energy of the system. The relevant aspect of this is
here that when distances appear in statistical models of self-gravitating systems,
they are raised to an integer and multiplied by the energy of the system. This
means, that if we scale the energy of the system, we can keep the properties
of the system by a compensating scaling of the space coordinates in the model.
(In a Hamiltonian, also the time would be scaled.) In Landau/Lifshitz [9], the
concept of ”mechanical similarity” is defined, which considers relations between
scalings of parameters in a Lagrangian. Let us, in this essay, call scalings that
leaves the phase-space volume the same (except for a multiplicative constant)
for ”statisical similarity” For instance some of the ”special models” in chapter 7
possesses statistical similarity. This clearly regards the ”binary star” model, see
chapter 7.4. We may think of our present model as having two walls confinig
the particle: one wall at radius r, and one at radius r + dr’. If our model shall
possess statistical similarity, it is natural to think that dr’ has to be proportional
to r. So, we have

dr’ <7 (7.14)
By use of (7.14), we can rewrite (7.13) as

Dv
2

Vip o P14 3 (7.15)
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We get the temperature of the system by using (3.15), (3.1), (7.15) and (7.7).

T=-— (7.16)
FET 2]
(3.28) and (7.16) give
D-1 D 1
=kh(E—— = -2 1
Cy =k ” + 5 2) (7.17)
We see that the specific heat is negative exactly when v = —1. Gravitation
obeys (2.28), which together with (7.17) give
D—-1 D 1
Cy=kl——+—=—12) (7.18)

2-D 2 2

We see that the specific heat of the system is negative in three dimensions,
zero in four dimensions, and positive in five dimensions or more. This result is
similar to that obtained by using the Virial theorem and the assumption that
K(T) is a monotonely increasing function, see chapter (7.2). In our circular
orbit model, the most doubtful assumption is the one of statistical similarity
and its application to this problem. But without this assumption, we would
not get reasonable results for the specific heat in different dimensions. If we for
instance would set dr’ o constant, then we get Cyy = 0 in three dimensions.
Statistical similarity is an important property of self-gravitating systems. The
things in real systems that may differ from the premises in the circular orbit
model and may limit the applicability of the results of this model, is that in
other models the particles may be allowed to not move in circular orbits, they
may distribute the energy between each other, and they may interact with each
other.

7.4 The binary star model

The binary star model is rather easy to analyse, since it contains only two
particles, each with mass m, that attract each other. The model is presented
for instance in Padmanabhan [15]. In this essay, we generalise the model to D
dimensions (D > 3) and a potential, ¢ = Cpr”, with arbitrary v (v # 0), where
Cp and v have the same sign. The Hamiltonian is
Hio. a5 = P P Cpr” 7.19
(Pos Go, 1, q1) = 2me %4‘771 DT (7.19)
where my is the two particle’s total mass (= 2m), m; their reduced mass (= %),
Po the conjugate linear momentum of their centre of mass, pj their relative
conjugate linear momentum, and r the distance between the two particles (= ¢1).
Go is the position of the centre of mass. The particles are restricted to the
volume of a sphere with much larger diameter than the maximum distance
between the particles (because the distance between the particles we want to
be limited by the energy of the system only, see below). This sphere serves to
make the system ergodic.Since the system has momentum degrees of freedom
corresponding to two particles, the volume of the phase-space is, according to
(3.40), (with m; = constant, ns, = D — 1 and n,, = 2D)

dON(E) = C/ " arep (E —mCpr”)P~1 (7.20)

41



where we, for convenience, have included dE within the constant C. We have
in (7.20) introduced cutoffs, limits on 7: an inner sphere with radius a, and an
outer sphere with radius R. The outer sphere affects the system if £ > mCpR”.
Then re, = R. If E < mCpRY, then rp,4, = (mLCD)%, which represents zero
kinetic energy (the expression in parenthesis in (7.20) is zero for r = rpe,). In
this case, the energy of the system sets the upper limit on r. For gravitation in
three dimensions, we have D = 3, (2.12) (Cp = —Gm) and (2.28) (v =2— D),
and then (7.20) gives

(Gm?)% (1+255)° _Gm? _Gm?
WOE) =] ¢ B o 1 an o <E<="% (721
3 C«(Gm2)3 (1+Gm2) (1+Gm2) _Gm2 < E < oo
3 E R

We use (3.15) and (3.1) on (7.21) to calculate the temperature, T', as a function
of the energy, E. This function is caracteristic for self-gravitating systems in
three dimensions and with cutoff, see fig. 5.

Energy — Temperature, Binary star, Micro—canonical ensemble
0.25 T T

0.2 b

0 |
-1 -05 0 0.5
g

aF
Gm?2

and T' = g’;nE , where k is Boltzmann’s constant. The cutoffs are set to % =5-10°.

Fig. 5: Binary star model. The axes are rescaled to dimensionless units, E' =

Now, we calculate the specific heat, Cy, in the general case. To calculate
the specific heat according to (3.41), we need to know g!")(E)(= ¢'(E)) and
9?(E)(= ¢"(E)) as well as g (E) (= g(E)).

¢M(B) = C(D - 1) / " dr D=1 (B — mCpr*)P-2 (7.22)

¢ (E) = C(D - 1)(D - 2) / T AP UE = mCprt)PE (1.23)

To solve the integrals, we use partial integration.

Tmaz 1
/ drrP? Y (E — mCpr*)" = E[TD(E —mCpr?)"i|ime= 4
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njvmCp
D(D +v)
nj(n; — 1)v*m2C?%
D(D +v)(D + 2v)

[rD+" (B - mCDr")"f*I]Z’“” +

+

PP (B — mCpr*)™s?Jmes + ..

nj(nj_l)'...-l-ynjmnjcgj A
o J maz .24
DO+)D+20) . (Danp)l (7.24)

where n; refers to the corresponding number in the formula for g&)(E). This
expression holds for cases where no denominator contains a zero factor, that is,
when

D+iv#0 i=0,1,...,n, (7.25)

We are interested in cases that may involve negative specific heat, that is, regions
corresponding to region B in fig. 1. This implies that the energy sets a limit on
r, that is rpes = (ng)%. (E has the same sign as v, since Cp has the same
sign as v.) All terms in (7.24) that contains r,,4,, except for the last one, then
becomes zero. Except for one r,,,, term, only terms containing powers of a
remains. The sign on the specific heat in a region like region B in fig. 1 do not
alter if we let a — 0, and since we are not interested in regions corresponding
to region A in fig. 1, where we always have positive specific heat, the condition
a — 0 can be used here. This simplifies the calculations. a — 0 can be regarded
as representing an inner cutoff that really exists, but whose radius can be chosen
arbitrarily close to zero.

We want to let a — 0 in our calculations, while E shall be regarded as finite.
To be able to do that, despite the fact that a together with other parameters
defines the system and that we shall be able to vary E, we have to regard the
definition of the system valid only for |E| < A, where A is some (eventually very
big) constant. When we have set this A, we can define our system by chosing
an a arbitralily close to zero, so that for any E fulfilling |E| < A, small changes
in a do not significantly affect the specific heat, that is, we have the limit a — 0
while FE is finite.

Since (3.41) reads

(7.26)

it is possible to multiplicate (") (E)? and ¢(® (E)g(® (E) with one and the same
factor without affecting Cy. More general, since n; = D — 2 (for g0)(E)),
ng = D —1 (for g(O(E)) and ny = D — 3 (for ¢'® (E)), multiplication of g(/)(E)
with a factor v72+7™ (v; arbitrary, but not dependent of j) do not change
Cy. Since a — 0, we can use this to simplify (7.24) by multiplying with a~!
where [ is the lowest power of a in the terms in (7.24). Then the terms with
a! is transformed to terms constant in a, and all other terms goes to zero when
a—0.

First, we consider D +n;v > 0 for all j. We call this case A. Then the lowest
power of a in (7.24) is 0. It appears in the last term, a term containing rTDnj{wn v
The term in (7.24) that remain when a — 0, is this term. We also multiply with
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D(D+v)-....(D+(D=3)v) _—(D+n;v)

CD=1)(D=3)-~2(vmCp)™ "maz . We then have

(0) 1
9~ DD ) (DD -_1)v)
9 ~ 5= (7.27)
g? ~1
where the ”~” sign stands for equality after multiplication with an allowed
factor and after taking the limit of a. For the specific heat, we have

D+ (D-1)v

v

Cy =k D+njv>0 (7.28)
This expression is positive for positive v, and for negative v negative in the
complete interval where it is valid, namely for v = —1.

We then consider D +n;v < 0 for all j. We call this case B. The terms that
remain in (7.24) after multiplication with a~(P+*") and when a — 0 are the
ones that contained a”1¥"i | that is, one term from every integration bracket.
We also multiply with C~'(mCp)~"™. From (7.20), (7.22), (7.23) (7.24) and
(7.26) we then have

D—1)v D—1)(D—2)v> D—1)(D—2)-....1.vP 71
99~ 5+ l()(D+)u) + 1()(D+)1/()(D+)21/) +...t DE(D+3/()~...~()D+(D—1)1/)
D—2)v D-2)(D—3)v? D—2)(D—-3)-...1.vP~2
—3)v —3)(D—-4)v?
g ~ (D -2)(D - 1)(% + D(D+v) + D(D+v)(D+2v) LIRS
(D—3)(D—4)-....1-v°~3 )
-t D) (DF D=3

(7.29)

The formula (7.24) is valid for a certain j only for cases where (7.25) is
fulfilled for this j. The two cases that we calculated on above, demands that
(7.25) is fulfilled for all j. Now, we will calculate on the case where there is one
i (1 <14 < D — 3) for which (7.25) is not fulfilled for any j We call this case
C. Then, during the process of successive partial integrations, when the factor
D + (i — 1)v appears in the denominator of a term, the next integration will
result in a term on the form C Inr, where C is a constant in r. When all the
steps of integration have been performed, one term will be logarithmic, and this
term will have the form Cor*(" —% Inr, and will be the important one when we
let a — 0. When we have done all the allowed reductions of factors in the g¢):s,

we obtain
9@ ~1

gV ~D—i-1 (7.30)
g ~(D—-i-1)(D—-i-2)

For the specific heat, we have
Cy=k(D—-i-1) F:D+iv=0 1<i<D-3 (7.31)

This expression is positive for all cases where it is valid.

Above, we have defined three categories to which the ¢(¥):s can belong. Now,
we investigate the cases for which all the ¢¥):s do not belong to the same
category. We call this case D. When a — 0, the most important terms in (7.24)
are the ones with a logarithmic behavior in a, that means one term in every
9% belonging to category C. The next most important kind of term is the one
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with a polynomial dependence of a and with a negative exponent, that means
terms in g\ :s belonging to category B. The least important kind of term is a
one that is constant in a, namely the term remaining in ¢ when a — 0 and
9 belongs to category A. From this information we can conclude what g(/):s
that dominates in (7.26) when calculating the specific heat. We then also use
the following scheme, that is derived from (7.26):

,

9 most important = Cy =0

g most important = Cy =k

9@ most important = Cy =0

9@ and ¢ most important = Cy =k

9@ and ¢® most important = Cy =0

g™ and ¢g® most important = Cy =k

9@ and g™ and ¢® equally important =

= Cy can be calculated according to cases A, B or C above

(7.32)

\

In the table below, numerical values on C'y in terms of units of Boltzmann’s
constant, k, are presented. The type of case is also given.

v D
3 4 5 6 7 8 9 10
3 3.0 (A) 4.3 (A) 5.7 (A) 7.0 (A) 8.3 (A) 9.7 (A) 11 (A) 12 (A)
2 3.5 (A) 5.0 (A) 6.5 (A) 8.0 (A) 9.5 (A) 11 (A) 12 (A) 14 (A)
I[ 50 (A)[ 70(@A)] 90(A)| 11 (A)| 13(A)] 15(A)| 17 (A)] 19 (A)
0 X X X X X X X X
-1 —-1(A) —-1(A) -1 (A) -1 (A) —-1(A) -1 (A) —1(A) —1(A)
-2 0 (D) 1 (D) 1 (D) 2 (C) 2.5 (B) 3 (C) 3.5 (B) 4 (C)
-3 1 (D) 1 (D) 2.3 (B) 3 (C) 3.7 (B) 4.3 (B) 5 (C) 5.7 (B)
—4 1 (D) 2(C)| 27 (B)| 35 ([B)| 42 (B) 5(C)| 58 (B)| 65 (B)
-5 1 (D) 2.3 (B) 3 (C) 3.8 (B) 4.6 (B) 5.4 (B) 6.2 (B) 7 (C)
—6 1MD)| 24 @) 32(B) 4(C)| 48 (B)| 5.7 (B)| 65 B)| 7.3(B)

7.5 The Lynden-Bell/Lynden-Bell model

D. Lynden-Bell and R.M. Lynden-Bell, see [11], have constructed a model of
a self-gravitating system that includes a large amount of particles, but can be
exactly analysed. The particles are, in three dimensions, confined to a spherical
surface of radius r. When it comes to the gravitational interaction, the mass
of the particles is assumed to be uniformly distributed over the surface. The
radius of the sphere is fluctuating as a result of fluctuations in the distribution
between potential and kinetic energy in the system. The model is, in this essay,
generalised to any number of dimensions, D (> 3), by assuming the sphere to
have one dimension less than the space has. We will also let the parameter v in
the potential, ¢ = CprY, be arbitrary (# 0). Cp and v have the same sign. Let
us study a particle that moves on the sphere. In three dimensions the particle’s
spherical coordinates, r, #; and - is related to the cartesian coordinates 1, z2
and z3 by

x1 = rcos by sin 6

To = rsin 8 sin 8 (7.33)

T3 = rcosbq
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First, we suppose r constant, and study the case of time-dependent 6;:s. The
kinetic energy of the particle is

m Az, mdzy
2 ) )

o 2 o 2
m dzz ., _ Cir’ + C2r%6,

Eip = 2w ) =3 2

(7.34)

where the Cj:s are constants, independent of r, 7 and the 6;:s, but dependent
of the 6;:s. In four dimensions we have

1 = r cos 61 sin 6 sin O3
T9 = rsin #y sin 65 sin 63
T3 = r cosfy sin 3

T4 = rCOSb3

(7.35)

In this way it is possible to add more and more parameters, to express the
relation in any number of dimensions, D (> 3). In analogy to (7.34), we have
for particle j

D-1_2 42 o 2
T Azgz
Biyp=)_ JTJ (7.36)
i=1

where the Aj;:s are constants, independent of r, 7 and the 6;:s, but dependent

of the 6;:s. The kinetic energy due to the (collective) motion in radial direction

is

Mr?
2

where M is the total mass of the particles. The potential energy of the particles
is

Ey, = (7.37)

Cp, .
2

where Cp is the constant that appears in (2.25). The constant ”2” appears
because of that the gravitational potential emerges from the particles themselfs.
The Lagrangian then becomes

E, = (7.38)

® D122
2 rA Cb

N
+) - M= (7.39)

j=1 i=1

where N is the number of particles. For the canonical momenta, we have

OL

Pii = 5o = r? A%,0; (7.40)
ji
and
OL .
Dr = W = Mr (741)
We construct the Hamiltonian
2 N D-1
5 CD v
H = + 2A‘2”,r2 77" (742)
7j=1 i=1
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According to (3.40) (with m; = r?, ny, = const (because the Hamiltonian
formulation takes care of the spatial-volume dependence of r) and n.,,, = N(D —
1)), the phase-space volume for the system, at energy FE, is

gB) o [ ar (B ML) AN (ray

where the ”o” sign denotes that the two expressions differ by a multiplicative
constant, independent of E and r. We have introduced an inner limiting sphere
with radius a. We want to regard the cases where the energy, not a cutoff, sets
an upper limit on r, that is, the cases where there may be negative specific heat.
The kinetic energy, (E — M <2r”), in (7.43) has to be positive for the complete
interval of integration, from r = a to the value on r for which the kinetic energy
is zero, T'maz- Since Cp has the same sign as v, we can conclude that E has the
same sign as v. We can rewrite (7.43) as

Tmaz Cp, r ND=1_ 1, T  N(D—1) =2+ N(D—1)— 1
o dr(1- 22(=)") "z 2 (=p)NP-VEZNID--34p =
J A (e

— AR EENO-D-1+} /” ar' (1 = S22 by (D)
, 2
a

(7.44)

where we have changed integration variable to r' = rE~+. For r!

o T ez, W€ have
D ! — . : . 12 . . . !
— P27 e = 0, which implies that r,,,, is a constant in £. When using a

(= aE~+), the situation is more complicated.

We want to let a — 0 in our calculations, while E shall be regarded as finite.
To be able to do that, despite the fact that a together with other parameters
defines the system and that we shall be able to vary E, we have to regard the
definition of the system valid only for |E| < A, where A is some (eventually very
big) constant. When we have set this A, we can define our system by chosing
an a arbitralily close to zero, so that for any F fulfilling |E| < A, small changes
in a do not significantly affect the specific heat, that is, we have the limit ¢ — 0
while F is finite.

The integrand in (7.44) goes strongly to zero when v > —1 and r — 0. For
v = —2 the integrand goes like 7/ when r — 0. We then have

€T

g(E) x dEE=FND-D+52 5 9 (7.45)

With use of (3.31) and (3.32), we get

24v 2—v
N(D -1 > -2 4
ZEND-D+ 0 (7.46)

Oy = k(

We see that the specific heat is negative for v = —1 for any D (D > 3). There
is also a very small amount of negative specific heat, Cy = —k, for v = —2 for
any D (D > 3). Gravitation obeys (2.28), and we have

4-D D
Cv = k(5= N(D—1) + 3

52 D) m) v> -2 (7.47)
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For v < —3, the integrand can be approximated with
N(D-1 v v
(-<p) 5 -3 32 N(D-1)=% when r — 0. This implies that

9(E) x dEE"(D; + %(—C—ZD)—N(’?“ “1am)  y< -3 (7.48)
or
D:- _
9(E) < dE E"(D; + V—;(—CQ—D)—N“% LR ETY p< -3 (7.49)

where v = ZE2N(D — 1) + 232, and D; and D, are constants in E, r, a and
N. This implies that v is positive and huge, and that D; and D, are finite. We
want to use (3.41), which reads

12
= g (750
From (7.49), we have
g (E) x dE DyyE" 1 (7.51)
and
g"(E) < dE Dyy(y—1)E"2 (7.52)
(7.50), (7.49), (7.51), and (7.52) give
Oy =k— %%(_C_DTW%E_MW (7.53)
When a — 0 this expression goes to zero. That is
Cy =0 v< -3 (7.54)

7.6 The Hertel/Thirring model

This model was first presented in Thirring [17]. In Hertel/Thirring [7], the model
was generalised. Here, we present the former one. N particles with total energy
E are confined inside a volume V. When two particles both are inside a certain
part of V', V4, they interact with each other, and feel a constant potential. This
can be written

U(&s, %) = —2C0v, (Z;)0v, (L) (7.55)

where U(Z;, Z;) is the potential energy due to interaction between particle ¢ and
Jj, C a constant, and the function 6y, is unity when the parameter is within Vj,
otherwise zero. We denote the entropy of the system with S, and each particle’s
mass with m. We denote the number of particles in V with Ny, the total energy
of these particles Ey, and their entropy with Syo. We denote V' — V4 with V7,
N — Ny with N7, E — Eg with E;, and S — Sy with S;. We have

No pg
By=)_ DT CN? (7.56)
i=1
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and
N 2
— i
E, = | > - (7.57)
i=No+1
For the phase-space volumes, we have

No

_ 1 3Ny 3Ny _ pl2 2
go(Eo) = Mol /d zd*°pd(Eq 2 o + CN{) (7.58)
and
1 N p?
_ 3N1 3N1 _ [
9(B) = / &N N p3(Ey - NZ+1 2 (7.59)
2=INg

Integrating (7.58) and (7.59), and using (3.1), we get for the entropy of the two
subsystems

S()(Eo) = NO lIlVE) - gNO IHNO + gNO IH(EO + CNg) (760)

and
Sl(El) = N1 11’1% - gNl 11’1N1 + gNl lnE1 (761)

where we have omitted terms containing only m and N. The system is in
the micro-canonical ensemble, and the entropy S is maximized subject to the
constraints Ng + Ny = N and FEy + E; = E. If we denote 2L = ¢ and

B 2NC
1+W=€,Wehave

t=€—20+a?
€=2a—a%+ G- (7.62)

\% —a
In(gh43%)

In Thirring [17], the following diagram is presented.

0.64
0.48
3725
'E
0 0,32+ 15
3=1.0
0.16 |-

o] 1 1 1 1 i
0.00 0.30 0.60 0.90 1.20 1.50
€

Fig. 6: This diagram is taken from Thirring [17]. Higher € corresponds to higher en-
ergy, and 6 is proportional to the temperature. The energy depends on N”. v equals
one corresponds to an extensive system. For higher «y, the energy is a superextensive
(see chapter 6.1) parameter. In the model described above, v equals two.

We see that this system has negative specific heat for those values on ~ that
make the energy become a non-extensive parameter.
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7.7 The Aronson/Hansen model

In this model, first presented in Aronson/Hansen [2], we consider a system in
the canonical ensemble consisting of NV particles enclosed in a spherical shell
with radius R. Each particle is a sphere with volume V5 and mass m. The sys-
tem is in internal equilibrium. That means, we have the same temperature, T,
and local chemical potential, pocqi, (se€ below) for any subsystem. The density
distribution, p, is then spherically symmetric, depending only on the radial co-
ordinate, . We regard subsystems in the grand canonical ensemble (fluctuating
energy and particle number) that are so small that the gravitational potential
does not vary over the subsystem, but so large that it contains very many par-
ticles. This model, we consider only in three dimensions, since it would involve
a lot of complicated numerical computations to perform the corresponding cal-
culations as the authors of [2] has performed for three-dimensional gravity. The
gravitational potential energy of a particle is

_mG 7

Ep(r) =
T Jo

R
dr' 4 p(r') — mG/ dr'dnr' p(r') (7.63)
T
The chemical potential, that is, the mean energy required to add a particle to
a subsystem at location r, is

= iocal(p(r), T) + Ep(r) = constant (7.64)

where pi,0q; is the part of the chemical potential arising from kinetic energy
and short-range forces between particles. g is a constant, because we have
equilibrium between subsystems. There is a thermodynamic relation that relates
the pressure, P, and pyocqr-

oP p

8/‘Llocal |V’T - E (765)

where we hold the volume of the subsystem and the temperature constant. For
convenience, we skip the bar sign in the rest of the calculation. (7.65) can be

written
1 8_P _ l 6ﬂlocal

por m or (7.66)
From (7.66), we can construct
10 7’2 oP . 1 0 Qallllocal
2o o) T e o ) (7.67)
(7.67), (7.64) and (7.63) give
10 0P

To write P in terms of p, we use a part of van der Waals equation of state, which
resembles the equation of state of a perfect gas. In van der Waal’s equation,
repulsive forces between particles is represented by a correction of the volume
of the system, so that the volume regarded as occupied by the particles is
subtracted from the total volume. There is also a second correction, which we
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will not use here. The part of van der Waal’s equation of state that we are
interested in, reads

PV(1 - %b) = NokT (7.69)

where b = 4V}, V is the volume of the subsystem, Ny the number of particles
in the subsystem, and k Boltzmann’s constant. (7.69) can be written

pb pkT
Pl-—)=— .
1-2)=L2 (7.70)
Combining (7.68) and (7.70) give
190 ,0 bp p _

With this non-linear differential equation, we can, by numerical computation,
determine the density distribution, p(r). The boundary conditions are

op _
oy /r=0 =0 (7.72)
and
Mm — _% _ 6Nlocal _ lg bp p
G R2 - or |7‘:R - ar |r:R = ﬂ 6r(m _ bp+1n m— bp)lr:R (773)

where we have used a relation between force and field and some of the formulas
above. (7.73) can also be regarded as an insurance that the total mass described
by p(r) is the same as the total mass, M (= Nm). In Aronson/Hansen [2] the
result of a numerical computation is presented, with R = 60 km, N = 10%7,
m =neutron mass= 1,67-10724 g and b = 1,072- 1073 cm~2. The diagram in
fig. 7 is taken from [2].

B8=0.082 Mev™'

0.8l pc =3.6x102 gscm3

——B=0.0825 MeV~!
Pe=1.3x10'% gscm3

L 1 { 1
0 0.t 02 03 04 05 06 07 038 0.9 1.0

r/R

Fig. 7: This diagram is taken from Aronson/Hansen [2]. The density, p, in units of
the central density, p., is plotted as a function of the distance from the centre, r, in
units of the radius, R, of the outer limiting sphere. Two different temperatures are
considered. The difference between the two curves represents a phase-transition.

We see a very dramatic change of the density distribution under a small change

of the temperature, at a critical temperature. This is an illustration of a typi-
cal phenomena in self-gravitating systems in the canonical ensemble, namely a
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phase-transition. This use to occur at a temperature where the same system
in the micro- canonical ensemble has negative specific heat. The diagram in
fig. 8, taken from [2], shows the relation between energy and temperature for
the system.

E (UNITS OF 10%8 MeV)
A
T

- I i ] | 1 1 ! | {

10 ' k
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 O.il 0.2 0.3

B (Mev™!)

Fig. 8: This diagram is taken from Aronson/Hansen [2]. The energy, E, of the system
is plotted as a function of the temperature parameter 3 (= kiT) for three different radii
of the outer limiting sphere.

If the energy is taken as the independent parameter (which is quite possible
to do), we have a system in the micro-canonical ensemble, and as can be seen
in the diagram, we have negative specific heat in some region of energy for the
R =30 km and R = 60 km case. If we take the temperature as the independent
parameter, we have a system in the canonical ensemble (as was our original per-
spective on this system). Then, the energy as a function of the temperature is
a multiple-valued function. The system follows a bransch of the function until
the Helmholtz free energy (see chapter 3) is lower for another branch. Then
the system jumps to the latter branch. This involves a huge positive value on
the specific heat. As can be seen by (3.34), this is associated with large energy
fluctuations, which can be interpreted as a necessary condition for the ability
to jump in energy.
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Chapter 8

Conclusions

This chapter mainly presents an article written on the subject ”On the cause
of negative specific heat in self-gravitating systems”. (The title on the article
may be another one.) The chapter is intended to contain the most important
information for the reader to understand the conclusions, and information from
other chapters is included here. If a little more comprehensive text is wanted,
the reader may read previous chapters. If the reader has read the previous
chapters, and understands the content, the reader may optionally read only the
sections ”Summary” and ”Results” here. Fig. 9 represents a very good overview
of the results achieved.

Summary

In the area of self-gravitating systems, the literature often gives the impression
that long-range forces are the cause of negative specific heat in such systems.
See, for instance, the very good review by Padmanabhan [15] and references
given there. Here, we will show that this assumption is not quite satisfactory,
since only some systems affected by long-range forces exhibit negative specific
heat. Instead, we find that negative specific heat, for four models of systems
with attracting particles, where the particles feel potentials on the form Cr”,
exhibit negative specific heat only for v = —1.

It is, however, as often suggested, reasonable to believe that long-range forces
in a system is the cause of non-extensivity of the system. With non-extensivity,
we mean that if two originally separated subsystems with energy F; and E» are
combined, their total energy will not be E; + E,. For systems defined by short-
range forces, the interaction energy between subsystems becomes negligible for
large enough subsystems, since the interaction energy scales as the area of the
subsystems, and then we have an extensive system. For subsystems interact-
ing by long-range forces, the interaction energy remains significant, since the
interaction energy scales as the volume of the subsystems, and we then have a
non-extensive system.
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Long- and short-range forces

Before investigating negative specific heat, we will define the concept of long-
range and short-range forces. We limit our investigations to potentials on the
form

o(r) =Cr"” (8.1)

where r is the radial coordinate in a space with D dimensions (D > 3), v an
integer (v # 0), and C a constant (only depending on D and v). For D = 3,
C = —GM and v = —1 we have the conventional non-relativistic gravitational
potential from a point charge with mass M at r = 0. Let us regard a continuous
medium with constant density, p, and investigate from which areas the potential
energy of a particle embedded in the media at the point r = 0 comes. If only
regarding contributions from spherical shells of radius A (and with the particle
in the centre), and where ¢ < A < R, the potential energy of the particle with
mass m is

R
U=—-[ dVapmC'r” x / drrP=tr" « RPYY — Pt D4uv £0 (8.2)
Va €

where we have omitted multiplicative constants (independent of 7). Observe
that (8.2) is valid for other forces than gravitation if "mass” is interpreted as
the relevant charge in consideration, and p as the corresponding density. We
assume € < 1 and R > 1, giving a strong dependence of € for negative D + v,
and a strong dependence of R for positive D +v. With this method, short-range
forces are caracterised by

D+v<0 (8.3)

and long-range forces by
D+v>0 (8.4)

Results

We can use spaces with D > 3 and v # 0 as our theoretical "testbench” to
investigate the cause of negative specific heat. There is, for instance, no reason
why long-range forces should result in negative specific heat in three dimensions,
but not in higher dimensions. If the relation is true only in three dimensions,
there is probably another mechanism laying behind, that is more relevant to
explain negative specific heat.

The definition of specific heat at constant volume is

_O0<E>
=35

lv (8.5)
where ” <>” expresses a time average. We here use four models of self-gravitating
systems, and we calculate in what regions of D and v that the systems have
negative specific heat. The models are ”The Virial model”, ” The binary star
model”, ”The Lynden-Bell model” and ”The circular orbit model”. The result
is mapped in fig. 9. Long-range forces are defined by D + v > 0. Gravitation
obeys v = 2 — D, and is therefore a long-range force. Only for v = —1 we have
significant negative specific heat in our models.

54



As can be seen in fig. 9, there is a large region where long-range forces define
the system, and where the system has positive specific heat. Therefore, it seems
to be something more than the long-range nature of forces that is necessary
for negative specific heat. For the Virial model and the Circular orbit model,
the region of negative specific heat coincides with the region of negative total
energy of the system. For the Binary star model and the Lynden-Bell model,
it is possible to chose to study negative or positive energy of the system. We
chose to study the case where there may be negative specific heat, that is, the
case where no outer cutoff affects the system, and the energy has to be chosen
negative for negative v. In these cases, where all combinations of D and negative
v are studied with negative energy, negative specific heat is still present only
for v = —1. In the Binary star model, The Lynden-Bell model and the Circular
orbit model, the effective potential felt by a particle due to all the other particles,
is on the form ¢ = Cr¥, where r is the radial coordinate of the particle relative
some fixed point, or centre of mass of the system. It would then be possible to
suggest, that if the long-range nature of a force is sufficient to result in negative
specific heat, this arises from emerging density distributions in the system that
arise because of the long-range nature of the force, and which give an effective
potential on another form than the one investigated here. These three models
would then not be suitable for this kind of analyse. But, the Virial model,
relying on the derivation of the Virial theorem for systems where the mutual
interaction between pairs of particles is on the form Cr”, is valid independently
of any emerging density distribution. This then becomes an argument that
there has to be something more than the long-range nature of the force to give
negative specific heat.

As mentioned before, long-range forces give rise to non-extensivity. In
Thirring [17], a model with a potential on a quite another form than the one
studied here is presented. In his model it is possible to change a parameter to
vary the degree of non-extensivity of the energy of the system. Thirring’s anal-
yse shows that negative specific heat enters near to the point where the system
becomes non-extensive.

The definition of long- and short-range forces used here is not certainly the
relevant one. Since the systems studied are not homogeneous, other definitions
not relying on a matter distribution with constant density may be more accurate.

All together, there is still no good explanation why the D and v dependence
of the sign of the specific heat is like our analysis shows it to be. Maybe there
is a cause to negative specific heat that has more specifically to do with the
parameter value v = —1.
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Gravitation

Negative specific heat (for all models)

Zero specific heat (for the Virial model and the Circular orbit model)
and approximately zero specific heat (for the Lynden—Bell model)

O ox[]

Zero specific heat (for the Binary star model)

All other cases involve positive specific heat
except for the Lynden—Bell model that involves zero specific heat for v less than or equal to -3

Fig. 9: Existence of negative specific heat as a function of D and v for four mod-
els. The models are: The Virial model, The circular orbit model, The Lynden-Bell
model and The Binary star model.
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The Virial model

This model assumes a system of particles, where any pair of particles interact
with a potential (8.1), where C' and v have the same sign. The Virial theorem
applied to this system reads

v+2

<E>:T<K> (8.6)
In the micro-canonical ensemble, the energy, E, is negative for v = —1 for any
D (D > 3). (8.5) and (8.6) give
v+20< K>
In the Virial model, we assume
< K >

which is valid for many systems. We then conclude that Cy is negative exactly
for v = —1. This coincides with negative total energy, E.

The binary star model

This model is presented for instance in Padmanabhan [15]. It contains two
particles, each with mass m, that attract each other. In this essay, we generalise
the model to D dimensions (D > 3) and a potential on the form (8.1), with
arbitrary v (v # 0), and where C and v have the same sign. The Hamiltonian
is
1 %,

H (Do, Go,01,q1) = =— + — Cr¥ 8.9

(Po, Go, P1, q1) 2mg + 9y +mC'r (8.9)

where my is the two particle’s total mass (= 2m), my their reduced mass (= %),
Po the conjugate linear momentum of their centre of mass, pj their relative
conjugate linear momentum, and r the distance between the two particles (= q1).
o is the position of the centre of mass. The particles are restricted to the volume
of a sphere with much larger diameter than the maximum distance between the
particles. The volume of the phase-space is

§O(E) = C' / " dr PN (B — mCrv)P-! (8.10)

We have in (8.10) introduced cutoffs, limits on 7: an inner sphere with radius
a, and an outer sphere with radius R. The outer sphere affects the system if
E > mCR”. Then rpe = R. If E < mCRY, then 74, = (-25)v, which
represents zero kinetic energy (the expression in parenthesis in (8.10) is zero for
T = Imae)- In this case, the energy of the system sets the upper limit on 7.

To calculate the specific heat according to

gV (E)?
9 (E)? — gO(E)g?)(E)

Cv=k (8.11)
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we need to know ¢V (E)(= ¢'(E)) and ¢®?(E)(= ¢"(E)) as well as ¢(O (E)(=
o(E)). T
gV (E)=C'"(D-1) / dr rP=1(E — mCr*)P—2 (8.12)

¢ (E)=C'(D - 1)(D - 2) / " e P (E — mCr)P- (8.13)

To solve the integrals, we use partial integration.

rmas 1
/ drrP=Y(E —mCr¥)" = B[rD(E — mCr¥)i]imas 4
a

n;ymC
D(D +v)
nj(n; — 1)v*m2C?
D(D +v)(D + 2v)

njn; —1)-...-1-vMm"C™
DD +v)D+2v)-...- (D +n;v)

[rPH(E — mCr¥)ri—1]imae 4

[rPH2Y(E — mCr¥ )W —2|mas 4

et [pPFnv|rmes (8.14)

where n; refers to the corresponding number in the formula for g()(E). This
expression holds for cases where no denominator contains a zero factor, that is,
when

D+iv#0 i=0,1,...,n; (8.15)

We are interested in cases that may involve negative specific heat. This implies
that the energy sets a limit on r, that is Tmee = (2 )¥. (E has the same sign
as v, since C' has the same sign as v.) All terms in (7.24) that contains 7,44,
except for the last one, then becomes zero. Except for one 7,4, term, only
terms containing powers of a remain. We let a — 0. This can be regarded as
representing an inner cutoff that really exists, but whose radius can be chosen
arbitrarily close to zero.

We want to let a — 0 in our calculations, while E shall be regarded as finite.
To be able to do that, despite the fact that a together with other parameters
defines the system and that we shall be able to vary E, we have to regard the
definition of the system valid only for |E| < A, where A is some (eventually very
big) constant. When we have set this A, we can define our system by chosing
an a arbitralily close to zero, so that for any E fulfilling |E| < A, small changes
in a do not significantly affect the specific heat, that is, we have the limit ¢ — 0
while F is finite.

It follows from the properties of the formula for the specific heat, (8.11),
that it is possible to multiplicate g(*) (E)? and ¢(®) (E)g® (E) with one and the
same factor without affecting Cy. More general, since ny =D —2,ng=D — 1
and ny = D — 3, multiplication of g() (E) with a factor v;*>7"*"™ (v; arbitrary,
but not dependent of j) do not change Cy. Since a — 0, we can use this to
simplify (8.14) by multiplying with a~! where [ is the lowest power of a in the
terms in (8.14). Then the terms with a’ is transformed to terms constant in a,
and all other terms goes to zero when a — 0.

First, we consider D +n;v > 0 for all j. We call this case A. Then the lowest
power of @ in (8.14) is 0. It appears in the last term, a term containing rﬁf{zn v
The term in (8.14) that remain when a — 0, is this term. We also multiply with
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D(D+v)-...(D+(D=3)v) _—(D+n;v)

T D=1)(D=2)....3(vmC)"7 'maz . We then have

©0) ~ 1

9(1) (D+(1Df2)u)(D+(D71)V)

9~ Drm—2)w (8.16)
9@ ~1

where the ”~” sign stands for equality after multiplication with an allowed

factor and after taking the limit of a. For the specific heat, we have

D+ (D -1

v

Cy =k D+njv>0 (8.17)
This expression is positive for positive v, and for negative v negative in the
complete interval where it is valid, namely for v = —1.

We then consider D +mn;v < 0 for all j. We call this case B. The terms that
remain in (8.14) after multiplication with a~(P+*") and when a — 0 are the
ones that contained a”+¥™ that is, one term from every integration bracket.
We also multiply with C'~!(mC)~™. From (8.10), (8.12), (8.13) (8.14) and
(8.11) we then have

D—1)v D—1)(D—2)v> D—1)(D—2)-....1.pP 1
99 ~ 5+ L()(D+)u) + 1()(D+)1/()(D+)21/) +...t D((D+3/()~...-(})+(D—1)u)
D-2)v D—2)(D—3)12 D—2)(D—3)-....1.vP~2
—3)v —3)(D—4)v?
g ~ (D -2)(D - 1)(% + D(D+v) + D(D+v)(D+2v) LIRS
(D—3)(D—4)-....1-v°~3 )
-1 D) (DF D=3

(8.18)
The formula (8.14) is valid for a certain j only for cases where (8.15) is
fulfilled for this j. The two cases that we calculated on above, demands that
(8.15) is fulfilled for all j. Now, we will calculate on the case where there is one
i (1 <14 < D — 3) for which (8.15) is not fulfilled for any j We call this case
C. Then, during the process of successive partial integrations, when the factor
D + (i — 1)v appears in the denominator of a term, the next integration will
result in a term on the form C Inr, where C is a constant in 7. When all the
steps of integration have been performed, one term will be logarithmic, and this
term will have the form Cor*(%—9 Inr, and will be the important one when we
let a — 0. When we have done all the allowed reductions of factors in the g¢/):s,
we obtain
g® ~1
gV ~D—-i-1 (8.19)
g ~(D-i-1)(D—-i-2)

For the specific heat, we have
Cy=k(D—i-1) H:D+iv=0 1<i<D-3 (8.20)

This expression is positive for all cases where it is valid.

Above, we have defined three categories to which the g(¥):s can belong. Now,
we investigate the cases for which all the ¢():s do not belong to the same
category. We call this case D. When a — 0, the most important terms in (7.24)
are the ones with a logarithmic behavior in a, that means one term in every
9% belonging to category C. The next most important kind of term is the one
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with a polynomial dependence of a and with a negative exponent, that means
terms in ¢¥):s belonging to category B. The least important kind of term is a
one that is constant in a, namely the term remaining in ¢¢) when a — 0 and
9 Dbelongs to category A. From this information we can conclude what ¢(/):s
that dominates in (7.26) when calculating the specific heat. We then also use
the following scheme, that is derived from (8.11):

( ¢(» most important = Cy =0
¢ most important = Cy =k
¢® most important = Cy =0
9@ and g™ most important = Cy =k
9@ and ¢® most important = Cy =0
¢ and ¢® most important = Cy =k
9@ and g™ and ¢® equally important =
L = Cy can be calculated according to cases A, B or C above

(8.21)

In the table below, numerical values on Cy in terms of units of Boltzmann’s
constant, k, are presented. The type of case is also given.

v D
3 4 5 6 7 8 9 10
3 3.0 (A) 4.3 (A) 5.7 (A) 7.0 (A) 8.3 (A) 9.7 (A) 11 (A) 12 (A)
2 3.5 (A) 5.0 (A) 6.5 (A) 8.0 (A) 9.5 (A) 11 (A) 12 (A) 14 (A)
1 5.0 (A) 7.0 (A) 9.0 (A) 11 (A) 13 (A) 15 (A) 17 (A) 19 (A)
0 X X X X X X X X
-1 -1 (A) -1 (A) -1 (A4) -1 (A) -1 (A) -1 (A) -1 (A) —1(A)
-2 0 (D) 1 (D) 1 (D) 2 (C) 2.5 (B) 3 (C) 3.5 (B) 4 (C)
-3 1 (D) 1 (D) 2.3 (B) 3(C) 3.7 (B) 4.3 (B) 5 (C) 5.7 (B)
—4 1 (D) 2 (C) 2.7 (B) 3.5 (B) 4.2 (B) 5 (C) 5.8 (B) 6.5 (B)
) 1 (D) 2.3 (B) 3 (C) 3.8 (B) 4.6 (B) 5.4 (B) 6.2 (B) 7 (C)
—6 1 (D) 2.4 (B) 3.2 (B) 4 (C) 4.8 (B) 5.7 (B) 6.5 (B) 7.3 (B)

The Lynden-Bell model

This model was first presented in Lynden-Bell/Lynden-Bell [11]. N particles
are, in three-dimensional space confined to a spherical surface of radius ». When
comes to the gravitational interaction, the total mass of the particles, M, is as-
sumed to be uniformly distributed over the surface. The radius, r, is fluctuating
as a result of fluctuations in the distribution between potential and kinetic en-
ergy in the system.

Here, we generalise the model to a space with D (D > 3) dimensions, assum-
ing the sphere to have one dimension less than the space has. We also generalise
the potential to be on the form (8.1), where C' and v have the same sign. The
Lagrangian of the system is

M2 L 2Ag ¢
L= Y Y R Mo (8.22)
2 e 2 2

where the 9ij:s are angular velocities of particle j, the A;;:s constants (indepen-
dent of r, 7 and the 6j;:s, but dependent of the 6;;:s). The constant ”2” in the
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last term appears because of that the gravitational potential emerges from the

particles themselfes. The Hamiltonian is

N D-1

p]z C’
243, r2

r" (8.23)

Jj=1 i=1
where we have introduced conjugate momentas. The phase-space volume is

Tmaz —
9(E) / dr (E - M%r")N(D2 2-3,N(D-D g (8.24)
a

where we have omitted constants (not dependent of r or E). We have introduced
an inner limiting sphere with radius a. We want to regard the cases where the
energy, not a cutoff, sets an upper limit on r, that is, the cases where there may
be negative specific heat. The kinetic energy, (E — M $r"), in (8.24) has to be
positive for the complete interval of integration, from r = a to the value on r
for which the kinetic energy is zero, r,,4,. Since C has the same sign as v, we
can conclude that E has the same sign as v. We can rewrite (8.24) as

Tmas c. r N(D-1) 240 1
dr(1- = 0 I NP-HpZND-1)-3(dF =
/a ( 2(E%) ) (Eu)

— dE EZAND-1)—3+3 / A (1- grly)%fér/N(Dfl)
(8.25)

where we have changed integration variable to r' = rE~+. For r!

_ Cr"’ = 0, which implies that r’

maz> W€ have

. - ,
mas is a constant in E. When using a

mazxr
(= aE~ ), the situation is more complicated.

We want to let a — 0 in our calculations, while E shall be regarded as finite.
To be able to do that, despite the fact that a together with other parameters
defines the system and that we shall be able to vary E, we have to regard the
definition of the system valid only for |E| < A, where A is some (eventually very
big) constant. When we have set this A, we can define our system by chosing
an a arbitralily close to zero, so that for any F fulfilling |E| < A, small changes
in a do not significantly affect the specific heat, that is, we have the limit a — 0
while F is finite.

The integrand in (8.25) goes strongly to zero when v > —1 and r — 0. For
v = —2 the integrand goes like 7/ when r — 0. We then have

24v

9(E) x dEE%:

v> -2 (8.26)

With use of the definition of temperature and (8.5), we get

24v 2—v

= N(D -1 > =2 2
Cv=h(END -1+ =) w2 (5:27)
We see that the specific heat is negative for v = —1 for any D (D > 3). There
is also a very small amount of negative specific heat, Cy = —k, for v = —2 for
any D (D > 3).
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For v < —3, the integrand in (8.25) can be approximated with
(—%)N(%_l)’%r'%_uN(D’l)’% when r — 0. This implies that
Dy, C N(D-1)

v 22, v
9(E) «x dE E"(D; + l/’)/(

5) “3g"E)  v<-3 (8.28)

where v = 22 N(D — 1) + 232, and D; and D, are constants in E, r, a and
N. This implies that v is positive and huge, and that Dy and D- are finite. We
want to use (8.11). From (8.28), we have

g'(E) x dE D;yE" ™1 (8.29)

and
g"(E) < dE Dyy(y — 1)E7 2 (8.30)

(8.11), (8.28), (8.29), and (8.30) give

v
Cyv =k — (8.31)
1— Bf 'yy—ryl(_%)w_%Ef,yau,y
When a — 0 this expression goes to zero. That is
Cy=0 v< -3 (8.32)

The circular orbit model

In this model, we assume one particle in a circular orbit in the potential (8.1),
where C' and v have the same sign. This model lacks a physical mechanism that
makes the system ergodic. The ergodicity has to be assumed explicitly. We
assume that the particle is confined spatially within a distance r to r +dr' from
the centre, which gives for the spatial volume of the system

V, oc rP1ar! (8.33)

where we have omitted multiplicative constants (independent of r, dr’ and the
total energy of the particle, E). We assume the length of the linear momentum
of the particle to be in the interval |p] to |p]+d|p]. Fis directed perpendicular to
the central force potential’s radius, so that the particle moves at the surface of
a sphere in a D-dimensional space. This surface has D — 1 dimensions. Except
for a length in an interval of size d|f], the direction of p'is arbitrary as long as
it is a tangent to the (D — 1)-dimensional surface. The change of direction of
p'is then performed in D — 2 dimensions, and |p] is the radius defining the size
of this (D — 2)-dimensional space. For the size of the momentum space, V},, we
then have
V, o [p1P 2 Mdr' (8.34)
dr
Provided that the particle is in V; and in V,, and dr' is infinitesimal, the spatial
coordinates and the momentum coordinates are uncorrelated, which can be
expressed
Vip = ViV (8.35)
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where V,p is the volume of the system’s phase-space. Using some common
relations from classical mechanics, we get

|7 o r® (8.36)
From (8.36), we get
A s
&7 (8.37)

(8.33), (8.34), (8.35), (8.36) and (8.37) give
Vip pD-1+ 552 g -1 g, (8.38)

We need to relate dr’ to r. The phase-space volume of a system, g(E), is
dimensionless. To obtain this, for any system, expressions on for instance the
form Cal_ﬁfg occurs in the expression for g(E), where C' is the gravitational
constant, M and m masses, a a distance, and E the total energy of the system.
The relevant aspect of this is here that when distances appear in models of
self-gravitating systems, they are multiplied by the energy of the system. This
means, that if we scale the energy of the system, we can keep the properties
of the system by the inverse scaling of the spatial coordinates in the model.
(This resembles "mechanical similarity”, see Landau/Lifshitz [9].) It is then
reasonable to think that dr’ has to be proportional to r. So, we have

dr’ < r (8.39)

By use of (8.39), we can rewrite (8.38) as

v(D

Vyp 0c PP71F =8 (8.40)

There is a relation between r and the total energy.
Exr’ (8.41)

(8.40) and (8.41) give the temperature.

T= 8.42
433 (542
The specific heat is
D-1 D 1
Cy = — - = 8.43
VST TR T (8.43)
We see that the specific heat is negative for v = —1 for any D (D > 3). Using

(8.42) and (8.43) give
E

Oy
Since the temperature of a self-gravitating system is positive, we can conclude
that this system always has the same sign on E and CYy .

T (8.44)
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