
Information geometries in black hole physics

Narit Pidokrajt





Thesis for the degree of Doctor of Philosophy in TheoreticalPhysics
Department of Physics
Stockholm University
Kingdom of Sweden

No copyright on all the chapters, but please give credit to the author.
c© All appended papers. Please consult publishers.

ISBN: 978-91-7155-916-6

Printed by Universitetsservice US AB, Stockholm

Cover by Isabella Malmnäs





Abstract

In this thesis we aim to develop new perspectives on the statistical mechanics of black holes
using an information geometric approach (Ruppeiner and Weinhold geometry). The Ruppeiner
metric is defined as a Hessian matrix on a Gibbs surface, and provides a geometric descrip-
tion of thermodynamic systems in equilibrium. This Ruppeiner geometry exhibits physically
suggestive features; a flat Ruppeiner metric for systems withno interactions i.e. the ideal gas,
and curvature singularities signaling critical behavior(s) of the system. We construct a flatness
theorem based on the scaling property of the black holes, which proves to be useful in many
cases. Another thermodynamic geometry known as the Weinhold geometry is defined as the
Hessian of internal energy and is conformally related to theRuppeiner metric with the system’s
temperature as a conformal factor.

We investigate a number of black hole families in various gravity theories. Our findings are
briefly summarized as follows: the Reissner-Nordström type,the Einstein-Maxwell-dilaton and
BTZ black holes have flat Ruppeiner metrics that can be represented by a unique state space
diagram. We conjecture that the state space diagram encodesextremality properties of the black
hole solution. The Kerr type black holes have curved Ruppeiner metrics whose curvature sin-
gularities are meaningful in five dimensions and higher, signifying the onset of thermodynamic
instabilities of the black hole in higher dimensions. All the three-parameter black hole families
in our study have non-flat Ruppeiner and Weinhold metrics and their associated curvature singu-
larities occur in the extremal limits. We also study two-dimensional black hole families whose
thermodynamic geometries are dependent on parameters thatdetermine the thermodynamics of
the black hole in question. The tidal charged black hole which arises in the braneworld gravity
is studied. Despite its similarity to the Reissner-Nordström type, its thermodynamic geometries
are distinctive.

KEYWORDS: Black holes, Thermodynamics, instability, Hessian, Entropy, Ruppeiner
geometry, Weinhold geometry, Information geometry.





To my family, all my physics teachers, and the gentle readers





Vi måste lära känna naturen bättre. Annars kan vi inte lura den.

–Mikael Rode





Abbreviations, conventions and notation

In this thesis we will use natural units whereG = ~ = c = 1 unless otherwise stated. The
spacetime dimension is denoted by D. The metric signature is(−,+, . . . ,+). The Einstein
summation convention is used throughout unless otherwise specified. Greek indices(α, β, . . .)
run from0 ton, wheren is the number of spatial dimensions. Abbreviations will be used where
appropriate.

Symbol Description
A(αβ) Symmetrization ofAαβ , i.e. 1

2 (Aαβ +Aβα)

A[αβ] Antisymmetrization ofAαβ , i.e. 1
2 (Aαβ −Aβα)

Ψ,α Partial derivative ofΨ, i.e.∂αΨ

Aα
;β Covariant derivative ofAα, i.e.∇βA

α

gαβ Metric on manifoldM
Γα

βγ Christoffel symbol
g Metric determinanti.e.det[gαβ ]

R δ
αβγ Riemann tensor

Rαβ Ricci tensor as constructed from fromRαβ = R β
αβγ

dΩ2 Line element on unit two-sphere,i.e.dθ2 + sin2 θdϕ2

(a)dS (anti) de Sitter
BH Black hole
BR Black ring
D Number of spacetime dimensions,i.e.D = 1 + n

GR General Relativity
KN Kerr-Newman
RN Reissner-Nordström
Pl Planck
QM Quantum Mechanics
BTZ Banãdos, Teitelboim and Zanelli (black hole)
Λ Cosmological constant
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Populärvetenskaplig sammanfattning—a brief summary in

Swedish

Denna avhandling behandlar frågan om svarta håls fysik på ett teoretiskt sätt. Den sammanfat-
tar mitt arbete under de senaste fem åren. De svarta hålens fysik baserar sig på den allmänna
relativitetsteorin som är den mest accepterade teorin för gravitationen. Svarta hål har verifier-
ats observationellt indirekt men det finns fortfarande många problem särskilt av teoretisk art
såsom vad de svarta hålens entropi kommer från eller var inomdet svarta hålet entropin finns.
Svarta håls termodynamik, grundades för cirka 40 år sedan avStephen W. Hawking med flera
och det blev en överraskning för de flesta fysiker att sådana klassiska objekt (enligt relativitet-
steorin vilken är en klassisk teori) kunde stråla termiskt där det förväntas bli helt kallt (noll
Kelvin). Denna strålning från det svarta hålet kallas "Hawkingstrålning" och denna strålning
är ointressant för de astrofysiska svarta hålen men det är avstor betydelse för de små svarta
hålen som kanske kommer upptäckas vid världens största partikelfysiklaboratorium (CERN) i
Schweiz/Frankrike. Om Hawkingstrålningen kommer att upptäckas då vi vet attkvantgravita-

tionär närmare att bli erkänd och det är mycket troligt att Hawking kommer mottaga Nobelpriset
i fysik i Stockholm.

Mitt arbete i denna avhandling behandlar inte kvantgravitationen direkt utan att öppna nya
perspektiv på samspelet mellan svarta håls termodynamik och svarta håls statistiska mekanik
som, om de förstås, möjligtvis kan bana väg till den rätta teorin för statistisk mekanik för svarta
hål vilket krävs för vi ska ha en fullständig teori för kvantgravitation. Häri använder vi en
geometrisk metod för att utforska svarta håls termodynamikoch har fått nya originella resultat,
dvs vi utnyttjarinformationsgeometri(i synnerhet Ruppeiner- och Weinholdgeometrier) för att
studera svarta håls termiska egenskaper. Vi har använt den geometriska metoden att utforska
svarta hål i olika gravitationsteorier t. ex. de svarta hålen enligt Reissner-Nordström och Kerr i
fyra dimensioner samt Myers-Perrys svarta hål som finns när man generaliserar den allmänna
relativitetsteorin till högre dimensioner. Vi har också studerat svarta hål i tre dimensioner som
kallas BTZ svarta hål, samt dilatoniska svarta hål vilka är intressanta från supersträngteoriernas
perspektiv.

Vi sammanfattar våra resultat på följande sätt: Ruppeinermetriken för Kerrs svarta hål är
krökt, medan det är platt för Reissner-Nordström i alla rumtidsdimensioner (de tillhör Myers-
Perrys klass). Det så kallade BTZ svarta hålet har en platt Ruppeinermetrik vilket är ett förvå-
nande faktum. Det dilatoniska svarta hålet har en platt Ruppeinermetrik men dess termody-
namiska egenskaper skiljer sig från Reissner-Nordströms svarta hål. Geometriska mönster kan
sammanfattas genom att rita ett diagram för tillståndsrummet. Det tillåter oss att dra slutsatser
om de svarta hålens extremalitetsegenskaper. Det dock mestrelevanta resultatet vi har fått är att
förutse dentermodynamiska instabiliteteni Myers-Perrys svarta hål från Ruppeinergeometrin.
Informationen om sådan instabilitet ärkodad ikrökningsskalären för Ruppeinermetriken.

Vi tror att de resultaten kommer att bli användbara i andra sammanhang av svarthåls-

v



fysiken eftersom svarta hål numera utforskas inte bara av gravitationsfysiker utan också av
kondenserade materiens fysiker och även av kvantinformationsfysiker. Förhoppningen är att de
geometriska mönster vi upptäckt kommer att bli betydande när kvantgravitationen är erkänd.

vi



Preface

I never see what has been done; I only see what remains to be done.

–Buddha

This is a PhD thesis1 and it contains what I have been doing in the past four and a half years.
It has been a rather long period of time given the human’s lifespan but in my mind those years
simply vanished. This is certainly due to many things that happened during these years. The
PhD program has profoundly influenced my perspectives, visions and thoughts about life as a
whole. It has also allowed me to be in new places and environments in which I could learn not
only physics but also cultures, peoples and various ways of life. I met many great thinkers2 who
motivated and inspired me in a number of ways. Half way through my PhD program several
things happened that made me pause and think about other things I could possibly do in my
life than physics but nothing was stronger than the gravitational pull of black holes so I stayed
on my trajectory and this manuscript is a result of my increasingly strong will to follow this
trajectory even farther.

As I always tell my friends and colleagues, black holes are certainly some of the most
exotic entities encountered in physics of the present time.I have always been astonished by
their existence. The verbal definition of the black hole is quite straightforward:it is a region

of spacetime surrounded by a boundary known as the event horizon inside which the force of

gravity is so strong that not even light can escape, hence it is invisible. The mathematical
definition is not as simple but straightforward as we expect mathematics to be so, and we will
discuss and develop mathematics of black holes as we carry onin this manuscript. The history of
black hole physics began in 1784 when John Michell, an English clergyman, discussed classical
bodies which have escape velocities greater than the speed of light. The first scientist who
discussed this problem was Pierre Laplace in 1795 when he derived the gravitational radius
using Newtonian gravity. However serious and systematic research in black hole physics might

1It is supposed to be advanced enough that lay people may not understand the main part of the thesis. So if you
do not know physics at a university level and only wish to knowthe summarized main ideas and outcomes, please
read only this section (you will actually learn a lot about history of black hole physics and this section will contain
only one single equation) and skip the rest or just browse as you like.

2One of them was Roy P. Kerr who I really had time to chat with. Hewas born on the same date as me but 45
years earlier.
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not have been as it is today had Karl Schwarzschild not been able solve the Einstein field
equation in a vacuum for uncharged spherically symmetric systems shortly after Albert Einstein
founded the subject of General Relativity in 1915.

An electro-vacuum solution was found later on by H. Reissner and G. Nordström in 1918
which is the solution of an electrically charged spherically symmetric black hole known as the
Reissner-Nordström black hole. In 1920 Jørg Tofte Jebsen3, an unknown Norwegian physicist
from Oslo was the first to discover that the Schwarzschild solution is the unique spherically
symmetric solution to the Einstein field equation in a vacuum. Later in 1923 George D. Birkhoff
established the same theorem (now known as Birkhoff’s theorem) which states that the static
Schwarzschild metric is the unique solution outside any mass distribution, even when this varies
with time as long as the spherical symmetry is maintained4. In 1939 the gravitational collapse
of a massive star which produces a black hole was first described by Oppenheimer and Snyder.

To give a bit more of history, Schwarzschild himself did not realize that his solution was a
black hole solution and this mathematical solution was lurking around in the mind of physicists
until 1960s when this topic picked greater attention by bothWestern and Soviet physicists. It
was the late John A. Wheeler who coined the term black hole5. Wheeler passed away in 2008
at age 96. The uncharged rotating solution was found in 1963 by Roy P. Kerr, a New Zealander
mathematician, which drove black hole physics into a serious research field. It can be said that
in the last 40 years or so the field of black hole physics has become a serious business and a
large number of physicists make their living on this. There are by now many subfields within
black hole physics ranging from gravitational waves research to numerical simulations to black
hole thermodynamics to pure mathematical studies of black hole solutions. Furthermore black
hole physics is a subject of interest not only to relativistsbut also cosmologists, astrophysicists,
string theorists, mathematicians and even some condensed matter physicists.

Like most areas of physics there remain puzzles and unsolved/open issues in black hole
physics. To list a few, the black hole information loss paradox6, the cosmic censorship conjec-
ture by Penrose and the one related to my research—the originof the black hole’s entropy. It
is still far from clear what it is like inside the black hole, let alone the statistical mechanics of
this object. We have thermodynamics7 of black holes thanks to Carter, Bardeen, Bekenstein and
Hawking who founded the subject. However it would not be considered valid to the full unless
one understands the microscopic pictures of them in a consistent manner. The lack of statistical

3Jebsen’s publication on the uniqueness proof was indeed thefirst publication in the field of GR from Sweden.
The examiner of his work was C. W. Oseen, a physics professor at Uppsala University who was the pioneer lecturer
in GR in Sweden.

4In astrophysics, the spherical collapse of the star cannot result in any emission of gravitational radiation.
5Black holes were known for some time as dead stars or frozen stars.
6which may not be a problem anymore if one takes Hawking’s confession in Dublin in 2004 to the full.
7Thermodynamics is a macroscopic theory which deals withe.g.how energy transfers for a given system. For

ordinary systems there are also microscopic pictures whichsubstantiate the thermodynamic pictures, namely the
subject known as statistical mechanics.
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mechanics of black holes is largely due to the lack of quantumphysics8 of black holes which is,
in my view, not going to be solidly established in the near future.

What I have been actively involved in during past five years is the study of black hole ther-
modynamics using a new approach, namelyinformation geometry. More specifically I employ
thermodynamic geometry known asRuppeiner geometry(let’s denote it bygR

ij) to investigate
certain thermal properties of the black holes. The Ruppeinergeometry has a counterpart known
as theWeinhold geometry, denoted bygW

ij . The two geometries are conformally related with a
conformal factor involving the black hole’s temperature,T , as follows

gR
ij =

1

T
gW

ij .

It has been shown by various groups of scientists that this geometry encodes certain pieces of in-
formation. For an ideal gas, the Ruppeiner/Weinhold geometry is flat under some conditions but
they are nonflat for systems with underlying statistical mechanical interactions. The curvature
singularites (where the curvatures diverge) signals critical phenomena such as phase transitions.
I have been studying black hole thermodynamics using this approach and have obtained satis-
factory outcomes including a prediction of thermodynamic stability of the Kerr black holes in
higher dimensions.

Readers who are not familiar with the concept of higher dimensional physics should not
panic as we only study physics in such dimensions theoretically. In short it is when the physical
space is higher than 3D which we are used to. Curiously I also godown to a lower-dimensional
world in which the physical space is less than three. It may beslightly easier to cope with lower
dimensions in terms of doing computations. Simply put, in the flatland (3D) and the lineland
(2D) we are able to do several things which cannot be done in the standard (3+1) dimensions.

Since quantum theory of gravity is still in murky water, we hope to test new ideas which may
give rise to some new insightful perspectives in black hole physics. Theinformation geometric

approachis one of the newest ideas in black hole physics.

Stockholm, Kingdom of Sweden
August 20, 2009

8This subject is believed to either emerge from string theoryor quantum gravity which is still under develop-
ment. Although attempts to reconcile quantum mechanics andGR began already in 1930s we are still far from a
complete framework that combines both theories. The task ofcombining GR and quantum mechanics remains one
of the outstanding problems of theoretical physics.
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Chapter 1

Black hole species—a brief review

It is sometimes said that if naked singularities do occur, then this would be disastrous for

physics. I do not share this view.

–R. Penrose

In this chapter we will discuss black hole families (solutions) concisely and it is anticipated
that our discussions will be a proper background for black hole thermodynamics to be discussed
in the next chapter. As promised in the preface we will define ablack hole in a more rigorous
manner, namely we must define the concept ofevent horizonwhich is the most important feature
of the black hole. An event horizon is a hypersurface separating the spacetime points that are
connected to infinity by a timelike path from those that are not. The event horizon constitutes
the boundary of the black hole which separates the black holefrom the outside universe. We
will develop an understanding of this concept as we proceed with black hole solutions in this
chapter.

1.1 Black hole solutions in General Relativity

The first and the most familiar black hole solution of the Einstein equation in vacuum is the
Schwarzschild solution [1] named after Karl Schwarzschildwho discovered it already in 1916.
This solution is static and spherically symmetric (for a good review seee.g.[3])

ds2 = −
(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)−1

dr2 + r2dΩ2
2 (1.1)

whereM denotes the asymptotic mass of the black hole,dΩ2
2 is the metric on the unit two-

sphere,viz. dΩ2
2 = dθ2 + sin2 θdϕ2 with the following coordinate ranges:t ∈ (−∞,∞),

r ∈ (0,∞), θ ∈ [0, π] andϕ ∈ [0, 2π]. At the origin r = 0 there is a curvature singularity
as may be verified by computing the Kretschmann scalarRµνρσR

µνρσ. The black hole’s event
horizon is located atr = 2M which is also a coordinate singularity (clearly not the black hole’s
singularity) of the metric but can be shifted away using a (global) coordinate systeme.g. the
Kruskal-Szekeres coordinates, which are coordinates that cover the entire spacetime manifold
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of the maximally extended Schwarzschild solution and are well-behaved everywhere outside
the physical singularity. The Schwarzschild black hole is often used as a model for spherical
gravitational collapse. By analyzing the radial light rays (θ andφ constant andds2 = 0) we find
that dr

dt
= ±

(

1 − 2M
r

)

tends to zero as it approaches the regionr = 2M , see Fig. (1.1). Inside
the event horizon, wherer < 2M the future light cones point inward, towardr = 0 which is
the black hole’s singularity described above. Since particles and photons propagate within or
on the light cones, they cannot escape from such a region. Forthe Earth to become a black hole
the collapse would have to reach its Schwarzschild radius ofapproximately 0.88 cm.

t

r

world line of photons

world line of particles

r = 2M

Figure 1.1:Future light cones in Schwarzschild coordinates outside, near and inside the region
r = 2M , the event horizon. In this diagram the light cones have slope±1 far from the event
horizon, but their slope approaches±∞ asr → 2M . It is easy to see from the Schwarzschild
metric that thet andr coordinates swap character in the regionr < 2M .

However the figure above does not capture what happens at infinity, namely in an asymptotic
region of the black hole, where the spacetime becomes Minkowskian. Studying the global
structure of spacetime—in particular the curved ones—can be very difficult. It is useful to
adopt the conformal diagram (often referred to asPenrose-Carteror justPenrosediagrams) in
which infinities are brought to a finite distance,viz. the boundary of the diagram, known asscri

(pronounced "scri" due to the fact that it is written as a script "I"). In the Penrose diagram light
rays travel at45◦. The Penrose diagram of the Minkowski space is depicted in Fig. 1.2, and
a few things can be read off as follows:I +(future null infinity) is where the light rays end,
andI −is thepast null infinity. All timelike geodesics in the Penrose-Carter diagram beginat
the pointi− (referred to aspast timelike infinity) and end ati+ which is calledfuture timelike

infinity. Nongeodesic timelike curves that end at null infinity are asymptotically null. The
symboli0 refers to thespatial infinityat which all the spacelike geodesics end.

Now that we have introduced the Penrose diagram, we can refinethe definition of the black
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i+

i−

r
=

0

i0

I +

I −

Figure 1.2:Minkowski space à la Penrose. Note the following symbols:I +is the future null
infinity, I −is the past null infinity,i+ is future timelike infinity,i− is the past timelike infinity
andi0 is the spatial infinity, and they are just points in the diagram.

hole as follows: A black hole in asymptotically flat spacetime is defined as a region such that
no causal signal1 from it can reachI +. In the Schwarzschild spacetime, the Killing2 vector
ξ = ∂t goes from being timelike to spacelike at the event horizon. If a Killing vector field is null
along some null hypersurfaceΣ, thenΣ is a Killing horizon ofξµ. Note that the Schwarzschild
solution is time translation invariant forr > 2M . The Schwarzchild black hole atr = ∞ has the
Minkowskian causal structure. The Schwarzschild solutionis a one-parameter family because
it is characterized only by its massM . There are several black hole solutions in GR which are
exact solutions (for a comprehensive review of exact solutions to Einstein’s equations, see [4]).

r = 0

I +

I −

i+

i−

i0b bb
b

rH

Figure 1.3:A Penrose diagram for the Schwarzschild black hole spacetime. Zigzag lines (r = 0)
are the black hole’s singularity,rH denotes the event horizon. Note that in the asymptotical limit
it has the same causal structure as the Minkowski spacetime.Note that in the Penrose diagram
each point corresponds to a two-sphere.

1i.e.a signal propagating at velocity not faster than the speed oflight.
2A vector field on a Riemannian manifold (or pseudo-Riemannian manifold) that preserves the metric is called

a Killing vector. Killing fields are the infinitesimal generators of isometries. In a nutshell, if you move along the
direction of a Killing vector, then the metric does not change. The Killing vectors satisfy∇(µξν) = 0 . For more
discussion, seee.g. [2].
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1.1.1 Black hole families in four dimensions

The solution of the Einstein equation in electro-vacuum spacetime with imposed spherical sym-
metry is the black hole solution known as theReissner-Nordströmblack hole solution [5]. It
comes about by solving the Einstein equations coupled to thesource-free Maxwell’s equations,
i.e.

Rµν −
1

2
gµνR = Tµν , (1.2)

where the energy-momentum tensor of the electromagnetic field is given by

Tµν = FµλF
λ
ν − 1

4
gµνFρλF

ρλ, (1.3)

with ∇µF
µν = 0 and∂[µFνλ] = 0. The RN black hole metric is given by

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
2, (1.4)

wheref(r) = 1 − 2M

r
+
Q2

r2
. M andQ are ADM mass and charge of the RN black hole

respectively. The RN metric has a curvature singularity atr = 0. Note that the Ricci scalar of
this spacetime is vanishing,i.e.R = gµνR

µν = 0. This is due to the fact thatTµν is traceless.
The electromagnetic fields associated with this solution are given by

Er = Frt =
Q

4πr2
, (1.5)

which comes from solving the Maxwell equations in vacuum. Itis obvious from (1.5) thatQ is
the ADM charge.3 We can verify it by showing that the integration of the electric field over the
two-sphere at infinity gives rise to an electric charge,i.e.

Q = − lim
r→∞

∫

S2

dθ dϕ r2 sin θ Er. (1.6)

The event horizon of the RN black hole is obtained by solving for r from the equationf(r) = 0

whose solution is given by the charge of the black hole.

r± = M ±
√

M2 −Q2 (1.7)

which is where the Killing vector becomes null. There are tworoots r+ which is the outer
horizon andr = r− which is a hypersurface known as the Cauchy horizon [7]. The function
f(r) might have one, two or no real zeroes depending on the relative values ofM andQ as
follows:

3It is worth pointing out that the ADM (Arnowitt-Deser-Misner) conserved charge [6] is a surface integral eva-
luted at spatial infinity, which is used when one considers asymptotically flat spacetime. In other words, the ADM
mass is a component of the four-momentum of asymptotically flat manifolds. The ADM energy is a component of
the ADM four-momentum. If the black hole is static, the ADM mass is identical to the ADM energy. The ADM
charge is also given by a surface integral.
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• M2 < Q2 This is when we have a naked singularity [8] which is unphysical from the
cosmic censorship conjecture [9]. The RN black hole in this case would not be formed
by any gravitational collapse.

• M2 = Q2 We have the so-called extremal RN black hole. For astrophysical or macro-
scopic black holes this seems to be an unlikely situation. However the extremal RN
solution is interesting because it has a supersymmetry.

• M2 > Q2 This is a case expected in realistic gravitational collapsebut the chargeQwould
be very small on an astrophysical scale. The surfaces definedby r± are null and they are
outer (r+) and inner (r−) horizons. However the singularity atr = 0 is timelike, not
spacelike surface as in the Schwarzschild solution.

Black holes can also rotate. The uncharged rotating black hole is known as theKerr black
hole [10]. The black hole that is electrically charged and rotating is named theKerr-Newman

black hole [11, 12]. The metrics describing the Kerr and Kerr-Newman black holes are more
complicated than the RN and Schwarzschild metrics. The gravitational field of the Kerr black
hole with nonzero angular momentum is described by an axisymmetric solution which, in
Boyer-Lindquist coordinates, takes the form

ds2 = −∆ − a2 sin2 θ

ρ2
dt2 − 2a

2Mr sin2 θ

ρ2
dt dϕ

+
(r2 + a2)2 − a2∆ sin2 θ

ρ2
sin2 θ dϕ2 +

ρ2

∆
dr2 + ρ2dθ2, (1.8)

wherea = J/M is angular momentum per unit mass and

∆ = r2 − 2Mr + a2, (1.9)

ρ2 = r2 + a2 cos2 θ. (1.10)

Its event horizons are (assuming thata2 < M2)

r± = M ±
√
M2 − a2. (1.11)

The Kerr metric or Kerr solution is stationary (but not static) and axially symmetric and has
two horizonsi.e. outer and inner horizons. In between the event horizon and the static limit4

lies the so-calledergosphereinside which nothing can remain stationary. The area of the event
horizon of the Kerr black hole is given byA = 4πr2

+. The Kerr black hole family is of most
relevance to the real world as it has been confirmed that thereare some black holese.g.in the
center of the Milky way which are near-extremal Kerr black holes. Note also that the Kerr black

4The static limit is the surface of the ergosphere whereξµ(t) becomes null.
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static limit surfaceergoregion

r+

r−r = 0

Figure 1.4:Horizon structure around the Kerr solution (side view). Note thatr = 0 is not a
point in space but a disk and it is sometimes calledring singularitybecause it spreads out over
the ring.

hole solution is meaningful whenJ 6 M2. The solution becomes extremal whenJ = M2 and
such a black hole solution is called an extremal Kerr black hole. It is readily seen that when
a = 0 we recover the Schwarzschild metric.

The black holes we have discussed so far are asymptotically flat black holes in GR (assuming
the cosmological constant,Λ, is zero). However they also exist in the background whereΛ 6= 0.
Black hole solutions in the background in whichΛ < 0 are calledAnti de Sitter(AdS) black
holes which are relevant to string theory5, whereas the black hole solutions in the background
in whichΛ > 0 are calledde Sitter(dS) black holes, which are relevant to cosmology.

1.1.2 Higher-dimensional black holes

The idea of higher dimensions dates back to the work of Kaluza[15] and Klein [16] in which the
tiny extra dimensions are compactified and can be probed onlywith very high energy. However
it was not until 1963 that black holes were studied in higher dimensions,i.e. when Tangher-
lini [17] was able to obtain a vacuum solution of the Einsteinequation in higher dimensions,
essentially the Schwarzschild black hole in arbitrary dimension. In 1986 Myers and Perry [18]
found asymptotically flat black hole solutions in an arbitrary number of spacetime dimensions
which we from now on refer to as theMyers-Perry black hole. In recent years the black hole
solutions have been studied extensively and some new discoveries were made, an important one
being theblack ringsolution. We can safely say that GR in more than four spacetime dimen-
sions has been the subject of constantly increasing attention. There are various reasons why

5The context in which the AdS space is very interesting to string theorists is known as theAdS/CFT correspon-

dence[14] (Anti-de-Sitter space/Conformal Field Theory correspondence),a.k.a. Maldacena duality. This is the
conjectured equivalence between a string theory defined on one space (5D gravity), and a quantum field theory
without gravity (say, supersymmetric Yang-Mills theory) defined on the conformal boundary of this space, whose
dimension is lower by one or more. This conjecture comes out of the holographic principle of string theory in that
the Yang-Mills theory can be thought of as a hologram on the boundary of the 5D space where gravity takes place.
and that the quantum field theory is a conformal field theory (CFT).
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we should study Einstein’s gravity theory in higher dimensions, and in particular its black hole
solutions. I would like to quote Emparan and Reall [20]:

1. String theory contains gravity and requires more than four dimensions. In fact, the first
successful statistical counting of black hole entropy in string theory was performed for
a five-dimensional black hole. This example provides the best laboratory for the micro-
scopic string theory of black holes.

2. The AdS/CFT correspondence relates the properties of ad-dimensional black hole with
those of a quantum field theory in(d− 1) dimensions.

3. The production of higher-dimensional black holes in future colliders becomes a conceiv-
able possibility in scenarios involving large extra dimensions and TeV-scale gravity6.

4. As mathematical objects, black hole spacetimes are amongthe most important Lorentzian
Ricci-flat manifolds in any dimension.

As a matter of fact the higher-dimensional black holes are richer than their counterparts in
4D due to more rotational dynamics and the appearance of extended black objects. It is also
worth mentioning that gravity is more difficult inD > 4 due to the larger number of degrees of
freedom, and there are issues of black hole instabilities which are absent for 4D black holes. In
brief, the physics of higher-dimensional black holes can beuniquely different and richer than
in four dimensions. A number of reviews on the subject are available, seee.g. [20–22]. The
electrically charged non-rotating black hole solution in arbitrary dimension in a background
with a generalized cosmological constant is obtained by solving for the field equation from the
Einstein-Maxwell action

S = − 1

16πG

∫

M

dDx
√−g

(

R− 2λ− F 2
)

, (1.12)

where we have defined

λ =
(D − 1)(D − 2)Λ

6
. (1.13)

G is Newton’s universal gravitational constant,g a determinant of the metric tensor and the
negative sign under the square root is there to prevent it from being imaginary due to the metric
signature.R is the Ricci scalar whereasF 2 represents the modulus of the Maxwell field-strength
tensorFµν = 2∂[µAν], whereAν is the electromagnetic vector potential. The field equation
derived from (1.12) gives the Einstein-Maxwell black hole solution with cosmological constant
in the following form

Gµν +
(D − 1)(D − 2)Λ

6
gµν = 8πTµν . (1.14)

6At the moment there is no experimental data available at the TeV scale but facilities are being set up at
CERN (European Organization for Nuclear Research). Updated and detailed information can be acquired from
www.cern.ch.
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The field equation for the Maxwell field takes the same form as (1.3). However in arbitrary
dimension the energy-momentum tensor is not traceless. Thecontraction ofTµν with the con-
travariant metric tensor gives

T = −(D − 4)F 2, (1.15)

which obviously vanishes in the ordinary spacetime dimensions. In this thesis we will only deal
with the higher-dimensional black holes in a background withoutΛ, in which the most general
static solution with spherical symmetry is given by

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
(D−2), (1.16)

wherer is a radial coordinate,dΩ2
(D−2) is the line element of a unit(D − 2)-sphere whose area

is given by

Ω(D−2) =
2π(D−1)/2

Γ((D − 1)/2)
, (1.17)

whereΓ is the Gamma function [19]. This solution is indeed the RN black hole solution in
higher dimensional spacetime. The functionf(r) is given by

f(r) = 1 − µ

rD−3
+

q2

r2(D−3)
. (1.18)

The mass parameterµ and the charge parameterq are the ADM mass and charge respectively.
They are related to the mass and electric charge of the RN blackhole as follows:

µ =
16πGM

(D − 2)Ω(D−2)

, (1.19)

q =

√

8πG

(D − 2)(D − 3)
Q. (1.20)

An event horizon of the RN black hole is wheref(r) = 0 which can be solved analytically in
any dimension.

r± =

(

µ

2
± µ

2

√

1 − 4q2

µ2

)1/(D−3)

. (1.21)

We useG = Ω2
(D−2)/16π in order to eliminate all theπ’s under the root in (1.19) for the sake

of simplicity in further calculations. Note thatr+ stands for the RN black hole’s outer horizon
whereasr− refers to the Cauchy horizon. It is worth noticing that

rD−3
+ + rD−3

− = µ and rD−3
+ rD−3

− = q2. (1.22)
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This equation can be expressed in terms of the ADM mass, charge and dimension as follows

rD−3
+ =

MΩ(D−2)

2(D − 2)

(

1 +

√

1 − D − 2

2(D − 3)

Q2

M2

)

. (1.23)

The RN black hole becomes extremal when

Q2

M2
=

2(D − 3)

D − 2
. (1.24)

We can readily see that inD = 4 the extremal limit isQ2 = M2 as we already know.

1.1.3 Kerr black holeà la Myers-Perry

Owing to the fact that there is the possibility of rotation inseveral independent rotation planes
[18], the spinning (Kerr) black hole in higher dimension hasmore than one rotation plane. We
refer to the Kerr black hole in higher dimensions with more than one angular momentum as the
multiple-spin Kerr black hole. The metric of this black hole in Boyer-Lindquist coordinates for
odd D is given by

ds2 = −dt̄2 + (r2 + a2
i )(dµ

2
i + µ2

i dφ̄
2
i ) +

µr2

ΠF
(dt̄+ aiµ

2
i dφ̄i)

2 +
ΠF

Π − µr2
dr2, (1.25)

where

dt̄ = dt− µr2

Π − µr2
dr, (1.26)

dφ̄i = dφi +
Π

Π − µr2

ai

r2 + a2
i

dr, (1.27)

with the constraint
µ2

i = 1. (1.28)

The functionsΠ andF are defined as follows:

Π =

(D−1)/2
∏

i=1

(r2 + a2
i ),

F = 1 − a2
iµ

2
i

r2 + a2
i

.

(1.29)

The metric is slightly modified for even D [18]. The event horizons in the Boyer-Linquist
coordinates will occur wheregrr = 1/grr vanishes. They are the largest roots of

Π − µr = 0 even D, (1.30)
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Π − µr2 = 0 odd D. (1.31)

For an arbitrary D the position of the horizonr cannot be solved analytically. Myers and Perry
showed that the properties of the Kerr black hole in D dimensions are similar to that in 4D. Note
that forD > 6, black holes can exist with arbitrary large angular momentum for a fixed mass.
This is owing to the fact that there is no Kerr bound inD > 6 in the same way as in 4D.

1.1.4 Black rings

S1

S2

Figure 1.5:Black ring in 5D with the horizon topologyS1 × S2

The 5D MP Kerr black hole has an event horizon withS3 topology. However we can also
have the so-called black ring solution [23–25] due to the fact that there is the possibility of
rotation in several independent rotation planes [18]. Discovered by Emparan and Reall in 2001
this solution is the asymptotically flat7 black hole solution with the event horizon’s topology of
S1 × S2. TheS1 describes a contractible circle, not stabilized by topology but by centrifugal
force due to rotation. The solution is regular on and outsidethe event horizon provided that
it has angular momentum along theS1 direction. This construction can also be, heuristically,
understood as: take a piece of black string, withS2 × R horizon, and curve it to form a black
ring with horizon topologyS2 × S1. Since the black string has a tension, then theS1, being
contractible, will tend to collapse. But we may try to set the ring into rotation and in this way
provide a centrifugal repulsion that balances the tension.This turns out to be possible in any
D > 5, so we expect that non-spherical horizon topologies are a generic feature of higher-
dimensional GR.

1.1.5 Dilaton black holes

The dilaton black hole solutions can be obtained from the low-energy action of string theory [27]
by dropping all the fields except the metricgµν , the dilaton8 scalar fieldφ and a Maxwell field

7Recently the black ring solution in AdS background has been found using approximate methods [26]
8It is a hypothetical elementary particle having zero mass and zero spin, which is introduced in constructing a

scale invariant theory involving massive particles. In string theory this particle arises naturally in the low-energy
spectrum. So far it has never been observationally verified.
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Fµν . The main results on the dilaton black hole are given in [28].The black hole solution
coupled to a massive dilaton was also obtained by Horne and Horowitz in the early 1990s [29].
Dilaton black hole solutions in dS and AdS spacetimes are studied in [30–32]. The rotating
dilaton black hole solution was found by Horne and Horowitz [33] in 1992, in which they
discussed how a small amount of angular momentum can qualitatively change the properties
of extremal charged black holes coupled to a dilaton. This was also further discussed in [34],
where explicit solutions were obtained when the coupling parameter took either of the special
solutionsa = 0 or a =

√
3. It was argued that these values correspond to minimal couplings of

the theory witha = 0 corresponding to no dilatonic coupling as in the RN solution,anda =
√

3

corresponding to the minimal coupling of a five-dimensionalsolution. Further evidence for the
special nature ofa =

√
3 also appeared in [35]. The more general case of dilaton blackholes in

higher spacetime dimensions is discussede.g.in [36,37].
The case ofa = 1 corresponds directly to a solution obtained from the low energy limit

of string theory coupled to an Abelian gauge field. This coupling arises when we transform
from the string frame to the Einstein frame via a conformal rescaling of the metric. The dilaton
arises naturally in this context as the zero mode of the closed string and uniquely determines the
string coupling through the relationgs = e〈φ〉, where〈φ〉 denotes the vacuum expectation value
of the field. The action for the 4D dilaton gravity is slightlymodified from that of pure Einstein-
Maxwell gravity in that it has an electromagnetic field coupled to the dilaton scalar, hence there
is an additional kinetic term to consider. It can be seen to take the following form in the Einstein
frame (see Appendix B for a transformation between Einsteinand string frames) [38]

S =

∫

d4x
√−g

[

R− 2(∇φ)2 − e−2aφF 2
]

(1.32)

with a being the dilaton coupling constant, andF 2 = FµνF
µν . We will also assume thata > 0

as there is aZ2 symmetry for the dilaton allowing us to exchangeφ → −φ. It should be noted
that the only known values ofa arising from supergravity theories area = 0, 1√

3
, 1 and

√
3, with

the second example arising from black string solutions. Interestingly it is known that when we
takea≫ 1 the corresponding extremal black hole solution can be interpreted as an elementary
particle [29].

The metric for the dilaton black hole is given by

ds2 = −f(r)dt2 +
dr2

f(r)
+R2(r)dΩ2

2, (1.33)

where we have defined

f(r) =
(r − r−)(r − r+)

R2
(1.34)

and

R(r) = r
(

1 − r−
r

)a2/(1+a2)

. (1.35)



12 Chapter 1. Black hole species—a brief review

The horizon is located atr = r+ and there is a singularity atr = r− for a 6= 0. The extremal
limit of this black hole occurs atr+ = r−. Note however that the extremal limit of the dilaton
black hole does not admit theAdS2×S2 geometry unlike its counterpart witha = 0, i.e. the RN
black hole. In fact the extremal limit of the dilaton black hole has a timelike naked singularity.
The ADM mass and charge of the solution are

M =
r+
2

+
1 − a2

1 + a2

r−
2
, (1.36)

Q =

√

r+r−
1 + a2

. (1.37)

Solving these expressions forr+ andr− we obtain the following

r+ = M +M

√

1 − (1 − a2)
Q2

M2
, (1.38)

r− =
(1 + a2)Q2

r+
. (1.39)

The conditionr+ = r− can be written in terms ofM andQ as

Q2

M2
= 1 + a2. (1.40)

1.2 Lower-dimensional black holes

1.2.1 BTZ black hole

When the cosmological constant is zero, a vacuum solution of (2+1)-dimensional gravity is nec-
essarily flat and one expects no black hole solutions. However black hole solutions were shown
to exist for a negative cosmological constant in 1992 by Bañados, Teitelboim, and Zanelli [39],
hence the name. The BTZ black hole is remarkably similar to the(3+1)-dimensional black
hole. Much like the Kerr black hole it contains an inner and anouter horizon. It has "no hairs"
and is fully characterized by ADM mass, angular momentum andcharge. However the BTZ
black hole is asymptotically adS whereas the 4D Kerr solution can be asymptotically flat. For
a comprehensive review on BTZ black holes, seee.g. [40, 41]. The line element of the BTZ
black hole can be written as

ds2 = −N2(r)dt2 +N−2(r)dr2 + r2(Nϕdt+ dϕ)2, (1.41)

where

N2(r) = −M +
r2

l2
+
J2

4r2
, Nϕ = − J

2r2
, (1.42)
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with t ∈ (−∞,∞), r ∈ (0,∞) andϕ ∈ [0, 2π]. N2(r) andNϕ are called the squared lapse and
angular shift respectively. The event horizons can be obtained by solvingN2(r) = 0 and take
the form:

r± = l

√

M

2
(1 ± ∆) (1.43)

where

∆ =

√

1 −
(

J

Ml

)2

(1.44)

with imposed conditions that
M > 0 and |J | 6 Ml. (1.45)

In the extremal caseJ = |Ml|, the two event horizons coincide. Note thatl is the radius
of curvature which provides the length scale in order to havedimensionless mass. The BTZ
black hole is similar to its (3+1) counterpart, the Kerr solution. The BTZ black hole has an
ergosphere, namelyrerg = l

√
M and an upper bound in angular momentum for any given

mass. The spacetime geometry of the black hole is one of constant negative curvature, so it is
locally that of adS space. The BTZ black hole can only differ from the adS space in its global
properties [39].

1.2.2 Two-dimensional black holes

In 2D the Einstein action is topologically invariant, and ithas no dynamical content. To add
dynamics to the system we include the dilaton fields hence it is sometimes known as2D dilaton

black hole9. The action reads

I2DG =
1

4π

∫

d2x
√−g

(

XR + U(X)(∇X)2 − 2V (X, q)
)

, (1.46)

whereX is a scalar field (dilaton),U, V are arbitrary functions thereof defining the model and
R is the Ricci scalar associated with the 2D metricgµν . The functionV additionally depends on
a parameterq which may be interpreted as charge.10 In this way charged black hole solutions
can be described, including the RN black hole. We shall employthe definitions

Q(X) =

∫ X

U(z)dz , w(X, q) =

∫ X

eQ(z)V (z, q)dz . (1.47)

The quantityw(X, q) is invariant under dilaton dependent conformal transformations. In terms
of these functions it can be shown that the solution for the line-element in Eddington-Finkelstein
gauge reads

ds2 = 2eQ(X)du (dX − (w(X, q) +M)du) , (1.48)

9For a comprehensive review cf.e.g. [42,43].
10Such a dependence onq emerges for instance if one introduces in 2D an abelian Maxwell-term and integrates

it out exactly. Its only remnant is the conservedU(1) chargeq which enters the potentialV .
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whereM is a constant of motion corresponding to the mass. Killing horizons emerge for

w(X, q) +M = 0 . (1.49)

The solution of this equation for the outermost horizon is denoted byX = Xh.

1.3 Tidal charged black holes

Black hole solutions arise also in brane-world11 gravity models [44]. There are many brane-
world scenarios, but in the simplest gravity model evolves in a curved 5D space-time (the bulk),
which contains a temporal 4D hypersurface (the brane), on which all the fields of the standard
model are localized. Gravitational dynamics on the brane isgoverned by an effective Einstein
equation [45,46]. The most well-known brane black hole is the spherically symmetric vacuum
tidal chargedblack hole, derived in [47]:

ds2 = −f (r) dt2 + f−1 (r) dr2 + r2dΩ2
2. (1.50)

The metric functionf is given as

f (r) = 1 − 2M

r
+

q

r2
. (1.51)

Such black holes are characterized by two parameters: theirmassM and tidal chargeq. The
latter arises from the Weyl curvature of the 5D space-time into which the brane is embedded
(more exactly, from its "electric" part as computed with respect to the brane normal).

Formally the metric (4.93) agrees with the RN solution of a spherically symmetric Einstein-
Maxwell system in GR, provided we replace the tidal chargeq by the square of the electric
chargeQ. Thusq = Q2 is always positive, when the metric (4.93) describes the spherically
symmetric exterior of an electrically charged object in GR. Bycontrast, in brane-world theories
the metric (4.93) allows for any sign ofq. A positive tidal charge weakens the gravitational
field of the black hole in precisely the same way the electric charge of the RN black hole
does. A negative tidal charge, however, strengthens the gravitational field, contributing to the
localization of gravity on the brane.

The structure of the tidal charged black hole in the caseq > 0 is in full analogy with the
general relativistic RN solution12. For q ∈ (0,M2) it describes tidal charged black holes with
two horizons, located atr± = M ±

√

M2 − q, both below the Schwarzschild radius. For
q = M2 the two horizons coincide atre = M (this is the analogue of the extremal RN black
hole). Finally there is a new possibility (but unphysical inGR) due to physical considerations on

11According to string theory, we may be confined in a braneworld, which is a sub-universe embedded in the
higher dimensional bulk universe.

12In making analogy with the RN black hole one can also considerthe Born-Infeld black holes, which is a
nonlinear generalization of the RN black hole [48]
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the smallness of the electric charge. This is whenq > M2 for which the metric (4.93) describes
a naked singularity. Such a situation can arise whenever themassM of the brane object is small
enough, compared to the effect of the Weyl curvature expressed as a tidal charge. If we assume
that the tidal chargeq is a more or less global property of the brane, then the lattercan contain
many black holes of massM >

√
q.

For anyq < 0 there is only one horizon, atr+ = M +
√

M2 + |q|. For these black holes,
gravity is increased on the brane by the presence of the tidalcharge. This again contributes
towards the localization of gravity on the brane.

Work on the tidal charged black hole includes the matching with an interior stellar solution,
a procedure requiring a negativeq [49], the study of weak deflection of light to second order
in both parameters [50], a confrontation with solar system tests [51], and the evolution of thin
accretion disks in this geometry [52].
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Chapter 2

Black hole thermodynamics

I believe that in order to gain a better understanding of the degrees of freedom responsible

for black hole entropy, it will be necessary to achieve a deeper understanding of the notion

of entropy itself.

–R. M. Wald

This chapter concerns the subject of black hole thermodynamics, which has been studied
extensively during the past four decades. This is a field thathas been generating surprises since
its first emergence. There have been strong hints that there are very deep and fundamental
relationships between gravity, thermodynamics and quantum theory (for a review on black hole
thermodynamics, seee.g.[53]).

The history of black hole physics reached a climax when Hawking discovered that black
holes were actually not black,i.e. a black hole radiates as if it were a black body. This phe-
nomenon was well described in his world renowned book ‘A brief history of time’ [54]. Hawk-
ing himself had a hard time believing the truth he uncovered just like the community then.
Hawking was even told by the chairman of the session at the conference where he first pre-
sented his calculations that his results were all nonsense.

As a matter of fact, before Hawking’s startling discovery there were already pieces of infor-
mation that suggested that black holes could be thought of asthermodynamic systems, namely
J. Bekenstein—then a research student at Princeton—suggested that the area of the event hori-
zon was a measure of the entropy of the black hole [55]. We would not enjoy the rest of the
chapter as much if we conceal the truth that Hawking was indeed irritated by Bekenstein’s claim
even though Hawking had shown before that in fact the area of an event horizon can never de-
crease under quite general assumptions [57]1. As written clearly in his very famous book, he
felt Bekenstein misused his findings to claim that the surfacearea of the black hole was related
to its entropy. One year after Bekenstein, Hawking together with Bardeen and Carter wrote a
paper on black hole mechanics [59] discussing also similarities between entropy and the area
of the event horizon motivated partly by his irritation withBekenstein. The contribution of
Bekenstein was later acknowledged by Hawking after the startling discovery.

1Hawking proved that if there are no naked singularities, thecross sectional area of a future event horizon
cannot be decreasing anywhere.
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In a compact (mathematical) language we will recast the history described above as follows:
Bekenstein claimed that

SBH ∝ A. (2.1)

whereA is the surface area of black hole which is directly related tothe geometry of the event
horizon. The event horizon is characterized by a quantity,κ, known as the surface gravity2. The
surface gravity is uniformly constant over the event horizon. The black hole’s surface gravity
seemingly hastemperature-likeproperties in that it has absolute zero, arbitrary scale andis
defined in equilibrium. We can thus suspect that the black hole’s temperature is proportional to
its surface gravity

TBH ∝ κ. (2.2)

Now the great contribution of Hawking to black hole physics—despite all the surprises and
initial incredulity—is that he convincingly and systematically derived the proportionality con-
stants [60] for both Eqs. (2.1) and (2.2) by the method of quantum field theory on a black hole
background. The temperature3 of the black hole (a.k.a. Bekenstein-Hawkingor just Hawking

temperature) is therefore given by

TBH =
~κ

2πckB

, (2.3)

wherekB is the Boltzmann’s constant and the Bekenstein entropy (now known as Bekenstein-
Hawking entropy)

SBH =
c3kBA

4G~
, (2.4)

whereA refers to the area of the black hole’s horizon,G the Newton’s gravitational constant,
and~ the Planck’s constant. As a quick and simple exercise (we useonly natural units here),
we derive temperature and entropy of the Schwarzschild black hole. Since the surface area of
the Schwarzschild black hole is given by

A = 4πr2 = 16πM2, (2.5)

hence the entropy can be easily calculated to be

S = 4M2, (2.6)

usingkB = 1/π. Next the temperature of the Schwarszchild black hole is given by

T =
∂M

∂S
=

(

∂S

∂M

)−1

=
1

8M
. (2.7)

2For more detailed information, see Appendix A.
3There exists an analogous effect in flat spacetime, known asUnruh effect in which an observer moving at an

acceleration in a flat spacetime will record a temperature proportional to the magnitude of his acceleration. See
e.g. [58]. This result is also based on quantum field theory.
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One can clearly see that the larger the mass the lower the temperature. Should we be able
to measure the black hole’s temperature it would be from a rather small black hole instead of
supermassive black holes. Another way of computing the temperature is to work out the surface
gravityκ (see detailed discussion in Appendix A) and insert it in Eq. (2.3) in order to obtain the
black hole’s temperature. The Schwarzschild black hole has

κ =
1

4M
, (2.8)

thus we see that the resulting temperature coincides with the one calculated in Eq. (2.7).
For the sake of completeness we will compute the Hawking temperature of an astrophysical

black hole as follows:
TH =

~

8πGkBM
≈ 6.2 × 10−8M⊙

M
K, (2.9)

whereM⊙ = 1.98892 × 1030 kg is the solar mass. This is utterly negligible for large black
holes—the black hole absorbs much more from the microwave background radiation than it
radiates itself. In the case of the rotating "Kerr" black hole, the Hawking temperature is reduced
by the rotation, explicitly [13]

TH =
~κ

2πkB
= 2

(

1 +
M√

M2 − a2

)−1
~

8πMkB
<

~

8πMkB
, (2.10)

wherea = J/M . For the RN black hole, one has

TH =
~κ

2πkB
=

(

1 − Q4

r4
+

)

~

8πMkB
<

~

8πMkB
. (2.11)

Thus, electric charge also reduces the Hawking temperature. As a conclusive remark one can
safely say that the Hawking radiation plays no role in the case of large-sized black holes. The
only type of black hole where one can hope to observe this radiation is the so-called mini black
hole, which may have formed in the primordial stage of the Universe. It has been recently
discussed how to observe the Hawking radiation from black hole analogse.g. from acoustic
black holes in atomic Bose-Einstein condensates [61].

It is important to note that black hole thermodynamics restson thisno-hair theorem[62]
which states that the final state of a gravitational collapseis a stationary state characterized
by a small number4 of parameters. In other words the stationary black hole is described by a
geometry specified merely by the macroscopic parameters such asM , J andQ. Based on the
fact that the black hole is stationary (equilibrium) we can define the black hole’s temperature
since the surface gravity can be defined only when we have the Killing horizon where the norm
of the Killing vector goes null in a spacetime [63].

4much like a given thermodynamical system in equilibrium which is characterized by a small number of pa-
rameters only.
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S(M,J,Q)

Figure 2.1:A final stage of GR black hole in four dimensions in equilibrium is governed only
by a few control parameters. Its entropy is simplyS(M,Q, J).

2.1 The laws of black hole thermodynamics

The laws of black hole thermodynamics were written down as wecompare the laws of black
hole mechanics in GR with the laws of thermodynamics. Due to the black holeno-hair the-

orems(see,e.g. [64]) we can establish thatmechanically conserved parametersof stationary
black holes (black holes in equilibrium) are analogous to thestate parametersof ordinary ther-
modynamics. In the corresponding laws, the role of energy,E, is played by the mass,M , of
the black hole; the role of temperature,T , is played by a constant times the surface gravity,κ,
of the black hole; and the role of entropy,S, is played by a constant times the area,A, of the
black hole. The fact thatE andM represent the same physical quantity provides a strong hint
that the mathematical analogy between the laws of black holemechanics and the laws of ther-
modynamics might be of physical significance. The constantsaforementioned are fixed thanks
to Hawking’s startling discovery [60].

The four laws of black hole thermodynamics

We can write down the four laws of black hole thermodynamics as follows:

1. Zeroth law

The black hole’s physical temperature (we now denote it byTH) is given by

TH =
κ

2π
(2.12)

whereκ is the black hole’s surface gravity. This formula coincideswith T = ∂M
∂S

provided
one has the fundamental relation.

2. First law
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This law is concerned with the mass (energy) change,dM when a black hole switches
from one stationary state to another.

dM =
( κ

8π

)

dA+ "work terms". (2.13)

or

dM = TH dSBH + "work terms". (2.14)

It is readily seen that the above equations are analogous to the first law of thermodynam-
ics, i.e.

dE = TdS + "work terms". (2.15)

And the entropy of the black hole is thus represented by a quarter of the area of the event
horizon

SBH =
A

4
. (2.16)

The "work terms” are given differently depending on the type of the black holes. For the
Kerr-Newman black hole family, the first law would be

dM =
( κ

8π

)

dA+ Ω dJ + Φ dQ. (2.17)

whereΩ is the angular velocity of the hole andΦ is the electric potential which are defined
at the horizon by

Ω =
∂M

∂J
, (2.18)

Φ =
∂M

∂Q
. (2.19)

3. Second law

In any classical process, the area of the event horizon does not decrease

δA > 0, (2.20)

nor does the black hole’s entropy,SBH. The second law relies on theweak energy condi-

tion given by

Tµνv
µvν

> 0, (2.21)

wherevµ is any timelike vector. Note that the second law of black holethermodynamics
(mechanics) can be violated if we take into account quantum effects, i.e. the Hawking

radiation. This is because the area theorem proven by Hawking rests on the energy con-
dition. Gedanken (thought) experiments show that since there is black hole radiation in
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nature, there must be a rise in entropy in the surrounding region. In order not to violate the
second law of thermodynamics, Bekenstein [55,56] introduced the so-calledgeneralized

entropy, S ′ to account for the entropy of this sort and it is defined as

S ′ = SBH + Sm, (2.22)

whereSm is the entropy of the surrounding matter. The statement is known as theGen-

eralized Second Law(GSL)

δS ′
> 0. (2.23)

The ordinary second law seems to fail when the matter is dropped into a black hole be-
cause according to classical GR, the matter will disappear into a spacetime singularity,
in this manner the total entropy of the universe decreases asthere is no compensation for
the lost entropy. The virtue of the GSL keeps the law of entropy valid as the total entropy
of the universe still increases when that matter is dropped into the black hole.

4. Third law

The third law of thermodynamics also has an analog in black hole physics, namely the
surface gravity of the horizon cannot be reduced to zero in a finite number of steps.
There is a Planck-Nernst form of the third law of thermodynamics, which states that
S → 0 asT → 0. The analog of this law fails in black hole mechanics since there exist
extremal black holes (i.e. black holes withκ = 0) with finite A. However, there is good
reason to believe that the Planck-Nernst theorem should notbe viewed as a fundamental
law of thermodynamics [65] but rather as a property of the density of states near the
ground state in the thermodynamic limit, which happens to bevalid for commonly studied
materials. Indeed, examples can be given of ordinary quantum systems that violate the
Planck-Nernst form of the third law in a manner very similar to the violations of the
analog of this law that occur for black holes [66]. Other examples are frustrated spin
systems systems which violate the Planck-Nernst version ofthe third law [67].

2.2 Black hole in a box

Let’s consider a Schwarzschild black hole in an unspecified thermal bath emitting black body
radiation at temperatureTrad. As long as the Hawking temperature of the black holeTBH =

Trad then we have an equilibrium. However if the size of the thermal bath is large then the
equilibrium is unstable. The situation is as follows: if we,say, let5 a black hole absorb less
energy than it has radiated away then its mass diminishes slightly but its temperatureTBH will
increase resulting in a further increase of the radiation rate and a further reduction of the black

5One can imagine that this can happen randomly.
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hole’s mass. However a random fluctuation that increases themass of the black hole reduces
its temperature (and the rate of Hawking radiation) which means that the radiation accreted
onto the black hole becomes the dominating process. So we have two possible situations for
the Schwarzschild black hole in an unspecified thermal bath:either complete evaporation of
the black hole or an unlimited growth of its size. This characteristic is due to the black hole’s
negative specific heat. The formula is well-known

C =
∂M

∂T
= T

∂S

∂T
= T

(

∂T

∂S

)−1

= T

(

∂2M

∂S2

)−1

. (2.24)

For the Schwarzschild black hole it is easy to see thatC ∝ −M2. This property is character-
istic for systems with long-range attractive forcese.g.gravitating bodies. Black holes are self-
gravitating systems and like most such systems they exhibitnegative specific heats, in which
case they must be treated in microcanonical ensemble. Thereis however some exceptione.g.

the BTZ black hole whose specific heat is positive. Note also that systems with long-range
interactions are not extensive in nature,i.e.

S(λU, λV ) 6= λS(U, V ), (2.25)

whereλ is a scaling variable.
Now we can render the situation differently if we put theblack hole in a box, viz.we allow

the black hole to be a part of a finite-size thermodynamic system. If the total energy is fixed
within this box, it is shown that a stable equilibrium configuration can exist [74]. In this case
we have the black body radiation and a black hole, both a temerpatureT , then the energy and
entropy due to the radiation are given by

Erad = σV T 4, (2.26)

Srad =
4

3
σV T 3, (2.27)

whereσ is the Stefan’s constant, andV the volume of the box. The condition of stable equilib-
rium is achieved by maximazing the generalized entropy

Stot = SBH + Srad = 4M2 +
4

3
σV T 3 (2.28)

for a fixed value of total energy

Etot = MBH + Erad = M + σV T 4. (2.29)

There are two scenarios to consider,i.e. one where there is only a black body radiation and the
other one in which there is a stable configuration where the black hole is in equilibruim with
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the black body radiation. In the latter the radiation and black hole temperatures coincide,i.e.

8MT = 1 which is obviously the temperature of the Schwarzschild black hole. The equilibrium

is stable if
d2S

dT 2
< 1. However since we cannot "naturally" fix the volume of the box,it is

suggestive that black holes in nature live in canonical ensemble.

It is also worth mentioning that a black hole in AdS background can have positive specific
heat when it is large compared to the AdS space’s radius, whilst its specific heat is negative
when it is small. There is a critical temperature in which this occurs and this transition is known
as theHawking-Page(HP) phase transition [75]. The AdS space can be understood as some sort
of box for the AdS black hole, and hence we can imagine that theBTZ black hole lives in an
AdS box. If one considers the specific heat plot of the black hole in question, the HP transition
is where the specific heat changes from negative infinity to positive infinity at the minimum
temperature. In fact the research in the discipline of blackhole thermodynamics has developed
significantly since the work of HP. In particular, the phase transition of the AdS black hole in
5D inspired by string theory has generated renewed attention because it relates to confining-
deconfining phase transition on the gauge theory side through the AdS/CFT duality [76].

2.3 Mass of the black hole

In our research program we need the fundamental relation in explicit form, which satisfies
the first law of black hole thermodynamics. However computing the black hole’s mass can be
complicated for certain spacetimes. As discussed earlier we showed that electric charge is given
by a surface integral at infinity. In GR we normally use the ADMformula [68] to compute mass,
which is the surface integral at infinity. For the result to beconsistent one always has to check
that it satisfies the first law of thermodynamics. In 1972 L. Smarr [69] was able to obtain the
mass of the Kerr black hole (later the generalized formula for the mass of black hole is known as
theSmarr massformula). There have been papers dedicated to studying masses of various black
holes. In general, working out the black hole’s mass can be a complicated task. In 4D there is
a generalized Smarr formula that includes the negative cosmological constant (Kerr-Newman
black hole in AdS Space). Fortunately, the mass formula for the KN AdS black hole can be
expressed in a fairly compact form given by Marco Caldarelli,G. Cognola and D. Klemm [70].
They use the formulas given in [71] and obtain6

M =

√
S

2

√

(

1 − ΛS

3
+
Q2

S

)2

+
4J2

S2

(

1 − ΛS

3

)

(2.30)

This is the mainfundamental relationfor our study in this thesis. Having the mass function
expressed explicitly in terms of other control parameters one can invert it to obtain the entropy
formula. We can also use the Bekenstein-Hawking entropy knowing the outer horizon radius of

6The mass formula in Eq. (2.30) is not as presented in the paper[70] but a more compact form we discovered.
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Kerr-Newman AdS

S(M,J,Q)
Kerr-Newman

S(M,Q; Λ)

S(M,J ; Λ)

RN AdS

Kerr AdS

S(M,J,Q; Λ)

Λ
→

0

J
→

0

Q→
0

J
→

0

Q
→

0

Kerr RN
S(M,Q) S(M,Q)

Figure 2.2:A diagram displaying black hole families in 4D that we investigate in this thesis.

the black hole,e.g.for the KN black hole we have

r+ = M +M

√

1 − Q2

M2
− J2

M4
. (2.31)

Thus the area of the event horizon is given by

A = 4πr2
+, (2.32)

Using the entropy-area formula we obtain the entropy for theKN black hole as follows:

S = 2M2 −Q2 + 2M2

√

1 − Q2

M2
− J2

M4
, (2.33)

where we have usedkB = 1/π. Inverting the entropy equation (2.33) we obtain the mass
formula for the KN black hole as

M =

√

S

4
+

1

S

(

J2 +
Q4

4

)

+
Q2

2
, (2.34)

whereJ andQ are the hole’s spin and the electric charge respectively. This formula agrees per-
fectly with Eq. (2.30) when one takes the limitΛ → 0. Since this mass function satisfies the first
law of thermodynamics, we can straightforwardly derive intensive parametersi.e. temperature,
angular velocity and electric potential from it.
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2.4 Black hole thermodynamics and scale-invariant gravita-

tion

Black hole thermodynamic fundamental relation (2.25) is notextensive in nature since black
hole is a gravitating body but in some cases a somewhat similar property holds. The extensitiv-
ity of the system is related to the scale-invariant propertyof the theory which can be understood
as follows. Physical theory is understood to be invariant under a constant change of units. Hav-
ing scale invariance it is possible to extend our measurement to arbitrary spacetime-dependent
transformations of units [72,73]. To be more precise, a scale transformation means that we allow
the length to scale asL → Ω(xi)L whereΩ is some arbitrary function andΩ ∈ (0,∞). Under
such a transformation, mass with the dimension1

[L]
transforms asm → Ω−1(xi)m. The space-

time metric transforms asgµν → Ω2gµν . In this section we discuss how the Einstein-Maxwell
action is affected by the presence of the cosmological constant which breaks the scale-invariant
properties of their construction. The action of the Maxwellfield coupled to gravity in arbitrary
dimension in the cosmological background can be written as

S =

∫

dDx
√−g

(

gαβRαβ − 2Λ − gαβgγδFαγFβδ

)

. (2.35)

Now let ξ be a constant scaling parameter and let the metric tensor together with the field-
strength tensor transform as

gαβ → g′αβ = ξ2gαβ, (2.36)

Fαβ → F ′
αβ = ξFαβ. (2.37)

We can write the Einstein-Maxwell action fully as

S[gαβ, Fαβ] =

∫

dDx
[√−ggαβRαβ(gαβ) − 2Λ

√−g −√−ggαβgγδFαγFβδ

]

. (2.38)

The question to ask is the following:if (gαβ, Fαβ) is a solution, is(g′αβ, F
′
αβ) also a solution?We

need to see how each component of the action transforms with this scaling parameter. First we
notice that the Christoffel symbols and the Ricci tensors are invariant under the transformation,
whereas the inverse metric tensor and the determinant of themetric tensor transform as follows:

g
′αβ =

1

ξ2
gαβ, (2.39)

and

det g′ = ξ2D det g. (2.40)
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Substituting these transformed variables in the action we wish to transform, it becomes

S[g
′αβ, F

′αβ] =

∫

dDx
[

ξD
√−g 1

ξ2
gαβRαβ

− ΛξD
√−g − ξD

√−g 1

ξ2

1

ξ2
ξξgαβgγδFαγFβδ

]

.

(2.41)

Clearly, whenΛ = 0 we obtain

S[g
′αβ, F

′αβ] = ξD−2

∫

dDx
[√−ggαβRαβ(gαβ) −√−ggαβgγδFαγFβδ

]

. (2.42)

Therefore we can conclude that in the absence of the cosmological constant the action scales
with ξ, namely

S[g
′αβ, F

′αβ] = ξD−2S[gαβ, Fαβ]. (2.43)

The Einstein equations derived from action without the cosmological constant will be scale-
invariant, and thus thermodynamic properties of the black holes as they can be scaled in the unit
of length. We will elaborate this issue in Chapter 3 in the section on the flatness theorem.

2.5 Derivation of black hole fundamental relations

In this section we will discuss how one obtains explicit entropic/energetic fundamental relations
(entropy/mass functions) for certain black holes as we willeventually have to use them. So far
we have shown one explicit black hole’s entropy,i.e. that of the Schwarzschild black hole which
is trivial but there are certainly cases where it is very tricky to obtain the entropy function an-
alytically, and one will have to resort to its counterpart—the mass function. The fundamental
relations for GR black holes are functions of mass,M , electric charge,Q and angular momen-
tumJ . Selectively, we will discuss only three families of black holes,i.e. the Myers-Perry black
hole, BTZ and the dilaton black hole.

2.5.1 Myers-Perry black hole

There is no need to work out the entropic/energic function ofthe Reissner-Nordström and Kerr
black holes in 4D once we have worked out the fundamental relation for the MP black hole
because the MP solutions work in allD > 4.

MP Reissner-Nordström black hole

The Reissner-Nordström black hole in arbitrary spacetime has the metric described by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
(D−2), (2.44)
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with

f(r) = 1 − µ

rD−3
+

q2

r2(D−3)
. (2.45)

The ADM mass and charge are defined as in (1.19) and (1.20) respectively. The area of the
event horizon of the RN is given by

A = Ω(D−2)r
(D−2)
+ , (2.46)

wherer+ is given by (1.21). The entropy of the black hole can be calculated using

S =
kB

4G~
Ω(D−2)r

(D−2)
+ . (2.47)

We found a way to simplify the computations by introducing the Boltzmann’s constant as

kB =
[2(D − 2)]

D−2
D−3

4πΩ
1/(D−3)
(D−2)

. (2.48)

Hence the entropy of the black hole becomes

S = r
(D−2)
+ =

(

rD−3
+

)
D−2
D−3 . (2.49)

Explicitly we can write out the entropy in terms of the black hole’s mass and electric charge as

S =

(

M +M

√

1 − D − 2

2(D − 3)

Q2

M2

)

D−2
D−3

. (2.50)

Inverting the equation we obtain the mass of the MP Reissner-Nordström black hole as

M =
S

D−3
D−2

2
+

D − 2

2(D − 3)

Q2

S
D−3
D−2

. (2.51)

MP Kerr black hole

We have two cases (i) MP Kerr black hole with a single nonzero spin (ii) MP Kerr black hole
with a multiple nonzero spins but we will only discuss the single-spin case in arbitary D and
two-spin case inD = 5.

The important quantity of concern to us is the event horizon which is obtained by solving
the horizon equation in Section 1.1.3

r2
+ − a2 − µ

rD−5
+

= 0. (2.52)
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We can simplify the calculations by introducing Newton’s gravitational constant as

G =
Ω(D−2)

4π
. (2.53)

The area of the horizon becomes

A = Ω(D−2)r
(D−4)(r2

+ + a2). (2.54)

The ADM mass and charge of the black hole are given by

µ =
4M

D − 2
, (2.55)

a =
D − 2

2

J

M
. (2.56)

The entropy can now be written as

S = r
(D−4)
+ (r2

+ + a2) = r+µ, (2.57)

which is a useful formula for our work. Unfortunately, this (2.57) cannot be solved analytically
in arbitrary dimension. The mass function of the Kerr black hole inD dimension is given by

M =
D − 2

4
S

D−3
D−2

(

1 +
4J2

S2

)1/(D−2)

. (2.58)

One can obtain the temperature of this black hole by differentiating the above mass function
with respect to the entropy,i.e.

T =
(D − 3)

(

1 + 4D−5
D−3

J2

S2

)

4S
1

D−2

(

1 + 4J2

S2

)
D−3
D−2

. (2.59)

MP Kerr black hole with double spins

In arbitrary dimension, areas of the event horizon of higherdimensional Kerr black holes are
given by

A =
Ω(d−2)

r+

∏

i

(r2
+ + a2

i ) odd dimension, (2.60)

A = Ω(d−2)

∏

i

(r2
+ + a2

i ) even dimension. (2.61)

In 5D there can be only two angular momenta associated with the Kerr black hole, thus the area
of the event horizon reads

A =
2π2

r+
(r2

+ + a2
1)(r

2
+ + a2

2). (2.62)
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The temperature of the 5D Kerr black hole with two spins is theHawking temperatureT =

κ/2π where the surface gravityκ is given by

κ = r+

(

1

r2
+ + a2

1

+
1

r2
+ + a2

2

)

− 1

r+
. (2.63)

Since there are two angular momenta, there are two angular velocities associated with this black
hole,

Ωa1 =
a1

r2
+ + a2

1

, Ωa2 =
a2

r2
+ + a2

2

. (2.64)

The first law of thermodynamics for this black hole takes the form [77]

dM = TdS + Ωa1dJa1 + Ωa2dJa2 . (2.65)

The entropy of the 5D Kerr black hole with double spins is given by

S =
kBA

4G
=
kB

4G

2π2

r+
(r2

+ + a2
1)(r

2
+ + a2

2). (2.66)

We can choosekB andG such thatS simplifies as

S =
1

r+
(r2

+ + a2
1)(r

2
+ + a2

2), (2.67)

wherer+ is the largest root of

(r2 + a2
1)(r

2 + a2
2) − µr2 = 0, (2.68)

whereµ is the ADM mass defined in (2.55) with 5D andai = 3Ji/2M . The temperature of the
5D double-spin Kerr black hole reaches zero in the extremal limit which is given by

a1 + a2 =
√
µ (2.69)

or explicitly in terms of mass and the two spins as

J1 + J2 =
4M3/2

3
√

3
. (2.70)

Since solving for the entropy function directly is rather complicated, we thus use the same
procedure as in the case of the single-spin Kerr black hole and obtain the mass as a function of
entropy and two angular momenta as

M =
3S2/3

4

(

1 +
4J2

1

S2

)
1
3
(

1 +
4J2

2

S2

)
1
3

. (2.71)
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2.5.2 Dilaton black hole

In this case the area of the event horizon of a black hole is given by

A = 4πR2(r+) (2.72)

whereR2(r+) appears in Eq. (1.35). A straightforward calculation showsthat the entropy of
the dilaton black hole takes the form

S =
kBc

3A

4G~
= R2(r+)

= M2

(

1 +

√

1 − (1 − a2)
Q2

M2

)2















1 − (1 + a2)Q2

M2

(

1 +

√

1 − (1 − a2)
Q2

M2

)2















2a2

1+a2

(2.73)

where we are usingkB = 1/π. Clearly the entropy of the system vanishes when we take the
extremal limit (1.40) implying that the area of the horizon has shunk to zero size.

2.5.3 BTZ black hole

This is a case of the (2+1) dimensional black hole—the BTZ black hole. Even though it is
just a toy model, it is important for studies in gravitational physics as it is a counterpart of
Kerr black hole in 4D. It also possesses thermodynamical properties analogous to the (3+1)-
dimensional black hole,e.g.its entropy is captured by a law directly analogous to the Bekenstein
bound in (3+1)-dimensions, essentially with the surface area replaced by the BTZ black holes
circumference. One interesting fact about this black hole is that its heat capacity is always
positive, yet it is abona fideblack hole. This is related to the presence of the AdS background
which renders the specific heat of the RNAdS black hole positive above the Hawking-Page
phase transition. We investigate the information geometryof this black hole by starting with
the Weinhold metric as it is simpler,i.e.

M = S2 +
J2

4S2
. (2.74)

The hole’s temperature is given by

T = 2S − J2

2S3
, (2.75)

whereas its angular velocity takes a rather simple form

Ω =
J

2S2
. (2.76)
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The heat capacity is evaluated as

C =
∂M

∂T
= T

∂S

∂T
= T

(

∂T

∂S

)−1

= T

(

∂2M

∂S2

)−1

=
S(4S4 − J2)

4S4 + 3J2
. (2.77)

We can readily seen that the heat capacity of the BTZ black holeis positive.



Chapter 3

Black hole information geometry

If you haven’t found something strange during the day, it hasn’t beenmuch of a day.

–J. A. Wheeler

In this chapter we highlight many attempts to understand the(unsettled) underlying sta-
tistical mechanics of black holes, and introduce black holeinformation geometry—the main
research program for this thesis. Getting to the point, we all know that the thermodynamic the-
ory which is a macroscopic theory ought to have a microscopiccounterpart, namely a statistical
mechanics which is a microscopic theory. In classical gravity, a black hole is nothing but empty
space with a very strong gravitational field. It is thereforea highly nontrivial question whether
the similarity between black holes and the ordinary thermodynamical systems goes so far as
to include the possibility of a statistical mechanical foundation of black hole thermodynamics.
One easy way to see this nontriviality is to notice the Bekenstein-Hawking entropy,S = A

4
,

and write down the microscopic entropyS = kB ln Ω whereΩ is the number of accessible mi-
crostates. Comparing them we readily see that theΩ = eA/4kB . HoweverA, the black hole’s
surface area that we have so far is a mere function of macroscopic parameters. Since the entropy
of ordinary matter is understood to arise from the number of quantum states accessible to the
matter at given values of the energy and other state parameters, it is then natural to demand a
proper understanding of why the surface area of the black hole represents the entropy of a black
hole in GR. In order to identify the quantum dynamical degreesof freedom of a black hole, we
will need to go beyond the classical and semiclassical theories and consider black holes within
a fully quantum theory of gravity—a theory we apparently do not have. Furthermore there are
important questions one should address when one tries to study black hole statistical mechanics
e.g.(i) what are the microscopic degrees of freedom of black holes? (ii) where are they located
(if at all)? (iii) what happens to the black hole entropy after the black hole has evaporated?

Attempts to solve the black-hole-and-entropy problems date back to the 1970s when Beken-
stein used information theoretic approach to describe the black hole entropy [56]. In 1985
t’Hooft proposed the so-called brick wall model which allows one to relate the black hole en-
tropy to the entropy of thermal radiation at the Hawking temperature located outside the black
hole with the mirror-like boundary [78]. His calculations led to the entropy of the black hole
being proportional to its surface area but the proportionality constant is1/4 only at the Planck
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scale. Furthermore it does not address how thermal properties outside the black hole are con-
nected with the loss of information concerning the states inthe black hole interior. In the
same year Zurek and Thorne suggested that the entropy of a black hole can be interpreted as
the logarithm of the number of quantum-mechanical distinctways that the hole could have been
made [79]. In 1986 Bombelli, Koul, Lee and Sorkin [80] tried toexplain the origin of black hole
entropy by using entanglement entropy. In 1993 Susskind speculated that the classical entropy
of a black hole arose from configurations of strings with endswhich are frozen on the horizon.
He also suggested that quantum corrections to this entropy are finite unlike the case in quan-
tum field theory, and he also thought that all black holes are single string states [81]. In 1996
Strominger and Vafa derived the Bekenstein-Hawking entropyfor a class of five-dimensional
extremal black holes in string theory by counting the degeneracy of BPS bound states [82]. This
technique has been very popular and the Strominger-Vafa paper has been cited over a thousand
times. Attempts to locate the degrees of freedom of the blackhole entropy were discussede.g.

in [83] Horowitz and Marolf show that in string theory many modes of the gravitational field
exist only inside the horizon of an extremal black hole. In 1997 Ashtekar, Baez, Corichi and
Krasnov [84] studied black hole entropy in loop quantum gravity (LQG). They quantized the
classical phase space of the exterior of a black hole in vacuum GR, and were able to show that
the entropy of a large non-rotating black hole is proportional to its horizon area. The constant
of proportionality depends upon the hand-pickedBarbero-Immirzior just Immirzi parameter,
which fixes the spectrum of the area operator in loop quantum gravity. That the black hole
entropy could be derived in LQG (even though the proportionality constant does not emerge
naturally) has been advocated by some physicists as one of the most important achievements of
LQG [85]. It is worth mentioning that R. Sorkin has presented his philosophical viewpoint on
black hole entropy in an article titled "Ten theses on black hole entropy" [86].

Due to the lack of a consensus and complete understanding of black hole statistical mechan-
ics we are motivated to resort to a new idea/method in the hopeof opening up a new perspective
in the subject. Herein we resort to an idea ofthermodynamic geometry, a subclass of informa-
tion geometry, which is a subject in the realm of mathematical statistics. Information geometry
is one of the newest ideas in attempts to understand how blackhole thermodynamics is related
to its statistical mechanical description. Succinctly, information geometry is the study of prob-
ability and information by way of differential geometry [87]. Specifically we resort to the idea
of thermodynamic geometry which began with Gibbs’s reformulation of the theory in terms
of equilibrium states rather than processes. The surface ofthe set of equilibrium states was
Gibbs’s primary object of study and foreshadowed much of themodern differential geometric
theory of manifolds [88]. The work of Gibbs [89]—which was followed by Caratheodory [90],
Hermann [91] and later by Mrugała [92,93]—concerns a differential geometric approach based
upon the contact structure1 of the thermodynamic phase space generated by a one-form (a.k.a.

1Contact geometry is the study of a geometric structure on smooth manifolds specified by a one-form, for more
information seee.g. [94].
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Equilibrium thermodynamics Thermodynamic geometry Statistical mechanics

Figure 3.1:Underlying statistical mechanics is encoded in thermodynamic geometry.

a Gibbs form)G. This space is(2n+ 1)−dimensional and is coordinatized byn extensive vari-
ablesEa andn intensive variablesIa, together with the thermodynamic potentialΦ. The first
law of thermodynamics is then incorporated into this approach naturally through differential
forms. A particular subspace ofG is the space of thermodynamic equilibrium statesS. OnS,
the laws of thermodynamics are valid and thermodynamic systems are specified by means of a
fundamental equation.

With the idea that thermodynamics can be geometrized, Weinhold [95] and Ruppeiner [96]
proposedthermodynamic metricson the space of equilibrium states. The idea of Weinhold
and Ruppeiner is that we can describe thermodynamic systems in terms of a metric whose
components are given as the Hessian of the internal thermodynamic energy (Weinhold) or
entropy (Ruppeiner). This approach has been widely used to study properties of thermody-
namic space generated by the Weinhold and Ruppeiner metrics [97–99], the thermodynamic
length [100–102], the chemical and physical properties of various two-dimensional thermody-
namic systems [103–107], and the associated Riemannian structure [108–110]. Information
geometry in dimension larger than two was studied in [111].

3.1 Thermodynamic geometry

We refer to both the Weinhold and Ruppeiner geometries as thermodynamic geometry. The
Weinhold metric—a precursor to the Ruppeiner metric—is orginally defined as the Hessian of
the energy/mass,M , as a function of energy,S, and other mechanically conserved charges,2 Na

.
gW

ij = ∂i∂jM(S,Na). (3.1)

The Ruppeiner metricis defined as the negative of the Hessian of the entropy function with
respect to the thermodynamic system’s mechanically conserved quantities,i.e.

gR
ij = −∂i∂jS(M,Na), (3.2)

The infinitesimal distance on the thermodynamic state spaceis defined as

ds2 = gR
ijdx

idxj. (3.3)

2They are parameters that are additive in magnitude such as mass, entropy, electric charge, volume, etc.
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It is clearly assumed that the coordinatesxi form some preferred affine coordinates, and that is
the reason why we can think of the Hessian of the energy/entropy as a metric on thermodynamic
space (in question). The functions on Gibbssian surface allows for affine parametrization. An
affine transformation (affine map) between two vector spacesis given by

x 7→ Ax+ b. (3.4)

What extensive thermodynamic systems, black hole thermodynamics, and mathematical statis-
tics have in common is that there is a preferred set of variables (extensive quantities, additive
conserved charges, probability distributions). These things are arbitrary to some extent, for in-
stance you might want to change the zero point (add constantsto them), but if you subject them
to a coordinate transformation that is more general than an affine one they are no longer exten-
sive (additive conserved charges, probabilities). In thissense affine coordinate transformation
have a special status. Then it makes sense to use a definition of the metric which is invariant
under affine transformations only.

The Hessian matrix of the entropy function which we call the Ruppeiner metric transforms
as a metric, provided we restrict ourselves to only affine coordinate transformations. In ther-
modynamics the coordinatesxi represente.g.M,J andQ for the Kerr-Newman black hole. It
is worth noting that the thermodynamic metric is similar to the Kähler metric which is a metric
defined on a complex manifoldM , i.e.

gaā =
∂2K

∂za∂z̄ā

whereK = K(z, z̄) is the Kähler potential. The Kähler metric preserves its form under trans-
formationz′ = z′(z) andz̄′ = z̄′(z̄) which are the transformations that preserves the complex
structure.

curved Ruppeiner (thermodynamic) space

b

b

√

gR
ijdx

idxj

thermodynamic space withS(M,Na)

Figure 3.2:A visualized curved Ruppeiner geometry on thermodynamic state space character-
ized by entropyS and other mechanically conserved parameters such as mass,M , chargeQ
and angular momentumJ . The squared distance on this curved geometry isds2 = gR

ijdx
idxj.

The original idea of Ruppeiner is that the Riemannian curvature in some sense measures
the complexity of the underlying statistical mechanical model. The Ruppeiner geometry was
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first constructed in the context of thermodynamic fluctuation theory [99]. We have found that
even though thermodynamic fluctuations may not be associated with black hole systems, some
essential information can still be extracted from the Ruppeiner geometry. Let’s try to remind
ourselves how Ruppeiner formed his idea in relation to classical thermodynamic fluctuation
theory: letΩ be the number of (equiprobable) microstates consistent with a given macroscopic
state. Boltzmann argued that the macroscopic entropy is given by

S = kB ln Ω . (3.5)

Einstein rewrote this equation as

P ∝ eS/kB , (3.6)

whereP is the probability that the given macrostate will be realized. We can Taylor expand the
entropy around an equilibrium state, taking into account that the entropy has a maximum there,
and introduce the Hessian matrix

gij ≡ −∂i∂jS(x) . (3.7)

Herex stands for then extensive variables shifted so that they take the value zeroat equilibrium.
The matrix is positive definite if the entropy is concave. If we normalize the resulting probability
distribution (usingkB = 1) we arrive at

P (x) =

√
g

(2π)
n
2

e−
1
2
gijxixj

(3.8)

as the probability distribution governing fluctuations around the equilibrium state. The pair
correlation functions are then given by the contravariant metric tensor,

〈

xixj
〉

= gij . (3.9)

This derivation is valid as we assume that the fluctuations are small [112]. We should pause
and note here that the physical situation here is a system described by the canonical (or grand
canonical) ensemble, plus the fact that one extensive parameter (volume) has been set aside and
used to give an appropriate physical dimension togij. Ruppeiner argues that the Riemannian ge-
ometry of the metric tensorgij carries information about the underlying statistical mechanical
model of the system. In particular he argues that the metric is flat if and only if the statisti-
cal mechanical system is noninteracting, while curvature singularities are a signal of critical
behavior—more precisely of divergent correlation lengths. This viewpoint has been confirmed
in a number of soluble models, seee.g. [113, 114]. The construction of the Ruppeiner met-
ric used in thermodynamics is related to the Fisher–Rao metric that is used in mathematical
statistics.
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The Ruppeiner geometry is conformally related to the Weinhold geometry via

ds2 = gR
ijdM

idM j =
1

T
gW

ij dS
idSj , (3.10)

whereT is the system’s temperature. The proof of this conformal relation is given in Ap-
pendix C using the first law of thermodynamics in differential two-forms. In any regard
Eq. (3.10) is one of the most important equations in this thesis as it turns out to be very useful
in most of our calculations when they are not easily done in Ruppeiner coordinates (to be dis-
cussed and elaborated on in Chapter 4). In addition, we state that the Weinhold geometry does
not have the same physical meaning as the Ruppeiner geometry.

gR
ij

gW
ij

S(M,N i) M(S,N i)

gR
ij = 1

T
gW

ij

Figure 3.3:A correspondence between Ruppeiner and Weinhold manifolds.

It is worth stating that whenS(λU, λV, λN) = λS(U, V,N) the thermodynamic metric will be
degenerate3. So far, from the known models the Ruppeiner geometry is flatif and only if the
underlying statistics is noninteracting,i.e. that of the classical ideal gas [96, 99]. The ideal gas
has the fundamental relation (this equation is known asSackur-Tetrodeequation)

S = N ln

[

V

N

(

U

N

)c]

+ k1N. (3.11)

wherec is the ratio of specific heats,k1 is constant. Consider the ideal gas at fixed volume we
obtain the Ruppeiner metric as follows

ds2 =
CV

T 2
dT 2 +

V

Tρ2KT

dρ2, (3.12)

whereCV is the heat capacity at constant volume andKT is the isothermal compressibility of
the system. We are in the coordinates(T, ρ) whereρ ≡ N/V is the density. The equation
of state of the ideal gas has the formP = ρT andCV = Nκ whereP is the pressure andκ
is a positive definite constant. To see whether the metric in (3.12) is flat or not we can either

3This follows from the degree-one homogeneity property ofS and the Euler’s theorem that follows. See
Appendix D for more details.
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compute the Riemann curvature scalar (the Ricci scalar) of themetric or perform the coordinate
transformation. Using the equation of state and theCV equation we get

ds2 = V ρ

(

κ

T 2
dT 2 +

1

ρ2
dρ2

)

. (3.13)

We can further transform by using

x1 =
√

2V ρ

(

cos
t

2
+ sin

t

2

)

,

x2 =
√

2V ρ

(

cos
t

2
− sin

t

2

)

,

(3.14)

where

t =

∫ T

T0

√

κ

T 2
dT, (3.15)

with T0 being an arbitrary positive constant. The metric now reads

ds2 = dx2
1 + dx2

2. (3.16)

This is evidenly a flat metric and the state space covers an infinite two-dimensional plane.
According to Ruppeiner the vanishing Ruppeiner curvature corresponds to the absence of sta-
tistical interactions of the ideal gas. Interestingly the ideal gas at constant volume also has a flat
Weinhold metric, which takes the form

ds2
W = N

dT 2

T
+ T

dN2

N
, (3.17)

whereN = ρV andT = P/ρ, and we assume thatN, T ∈ R. By direct calculation of the
Riemann curvature the metric in Eq. (3.17) is flat, but we nevertheless wish to bring it into a
manifestly flat form. By mathematical wisdom we can rewrite Eq. (3.17) as

ds2 = NT

(

dT 2

T 2
+
dN2

N2

)

. (3.18)

We can usex = lnT andy = lnN (wherex, y ∈ R) to turn the metric above into

ds2 = ex+y(dx2 + dy2). (3.19)

This form is not yet a manifestly flat form so we transform further using

u =
1√
2
(x+ y) and v =

1√
2
(x− y), (3.20)
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and we arrive at
ds2 = e

√
2u(du2 + dv2). (3.21)

Next we use
α =

√
2eu/

√
2 and β =

v√
2
, (3.22)

whereα ∈ R
+ whilst β ∈ R, and we finally arrive the sought-after manifestly flat metric

ds2 = dα2 + α2dβ2. (3.23)

The state space of this Weinhold metric is recognizable as aninfinite covering of the plane,
a.k.a.a barber pole spiral.

3.2 Application of information geometry to black hole ther-

modynamics

Don Page was likely the first who thought of applying geometrized thermodynamics to black
holes as he wrote about his idea together with simple calculations in the letter to Physics Today
in January 1977 [115]. However he was negatively responded to by F. Weinhold. Approxi-
mately two decades after thermodynamic geometry was established, G. W. Gibbons together
with S. Ferrara and R. Kallosh suggested the use of Ruppeiner geometry in black hole physics
but they did not explicitly compute any geometrical quantities out of the Ruppeiner and Wein-
hold metrics [116]. Since then thermodynamic geometries have been computed for a number
of black hole families ranging from lower-dimensional black holes to GR black holes to dilaton
black holes to Myers-Perry black holes to black rings to black holes in unified theories. The
number of articles on this topic has been growing including both agreeable and conflicting re-
sults, seee.g.[117,120,121,123–131,144,154,155]. Our approach since 2003 has been mainly
to use this approach to uncover black hole thermodynamics’sgeometrical patterns and interpret
encoded pieces of information relevant to black hole physics. The most satisfactory outcome of
this research program is theprediction of the onset of thermodynamics of the Myers-Perry black

hole inD > 5. Detailed calculations and methodologies used will be discussed in Chapter 4.
Recently thermodynamic geometry of hot QCD system has been evaluated [132].

The Quevedo approach

Since 2007 H. Quevedo and his team in Mexico City having been investigating black hole
thermodynamics using the proposed modified thermodynamic geometry formalism namedGe-

ometrothermodynamicsor GTD in short [133, 134] . In the GTD formalism thermodynamic
geometry is made to incorporate invariance under Legendre transformation. Their statement is
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Figure 3.4:A diagram showing how black hole thermodynamics is related to the broader struc-
ture of the overall theory of gravity. An ellipse denotes an acceptable theory to date whereas
a rhombus denotes a theory to be established and "?" means unsettled/unfinished. We might
understand black hole statistical mechanics through the new perspective(s) opened up by infor-
mation geometry.
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that GTD allows one to derive Legendre invariant metrics in the space of equilibrium states.
They have applied this approach to black hole thermodynamics yielding different results from
ours. For example the modified thermodynamic metrics of the RNblack hole are more compli-
cated than our results, and in the case of the Kerr black hole both generalized geometries are flat
and, they claim, cannot reproduce its thermodynamic behavior and should be considered as a
negative result for the use of geometry in black hole thermodynamics. The Quevedo team have
also worked out their modified geometry for black holes in twodimensions [137], BTZ black
holes [136] and black holes in asymptotically AdS space [138].

3.3 Flatness theorem

It is observable that there are seemingly geometrical patterns of thermodynamic geometries for
black hole families. It is then natural to investigate why some thermodynamic geometries are
flat, whilst the others are not. In information geometry we can define a metric in some preferred
affine coordinate system by

gij = ∂i∂jψ, (3.24)

whereψ is any reasonable function. In mathematical statistics we have an example with the
choice of potential of the form

ψ =
N
∑

i=1

xi lnxi, xi > 0 (3.25)

whereψ is minus theShannon entropy. The Hessian matrix ofψ is known as theFisher infor-

mation matrix4. It is a flat metric on the positive cone and it is round on the probability simplex
defined by

∑

i

pi = 1 [139]. In our context,ψ is either the entropy with a negative sign in front

or the energy function. If

ψ = −S(M,Na), (3.26)

the corresponding metric is the Ruppeiner metric or it is the Weinhold metric if we have

ψ = M(S,Na). (3.27)

Now, the main question iswhen is an information metric flat?One possibility is that

ψ =
N
∑

i=1

fi(x
i). (3.28)

4In statistical geometry the metric tensor has a potential,i.e. there is a convex functionψ. The Hessian function
of ψ is called theFisher-Rao metric.
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Observations tell us that the Fisher metric on the positive cone comes from such a potential. As
well, the Ruppeiner metric of the ideal gas at fixed particle number is of this type, whereas the
black hole information metric is not. It turns out that if we assume the potentialψ to have the
quasi-homogeneity property

λa3ψ(x, y) = ψ(λa1x, λa2y), (3.29)

assuming thatx > 0 andψ > 0, then we can rewrite

ψ(x, y) = xaf(xby), (3.30)

wheref is some function,a, b being some exponents. If we chooseλa1x = 1 we will find that
a = a3/a1, b = −a2/a1. We have found that ifψ(x, y) = xaf(x−1y) then the information
metric is flat. However the converse is not true. So we state a sufficient but not necessary
condition theorem and provide a proof as follows:

Theorem: The Ruppeiner metric defined throughgR
ij = −∂i∂jΘ is a flat metric in any dimen-

sion if Θ = xaf(xby) with b = −1 anda 6= 1, x andy are coordinates on the state space and

f is some smooth function.

Proof: We change coordinates on state space(x, y) → (ψ, σ)

ψ = xaf(xby) and σ = xby. (3.31)

A calculation shows that the metric formed by the Hessian ofψ is given by

ds2 =

(

a− 1

a
− b(b+ 1)

a2

σf ′

f

)

dψ2

ψ
+ 2(b+ 1)

(

f ′

af
+
bσf ′2

a2f 2

)

dψdσ

+ ψ

(

f ′′

f
− 2b+ a+ 1

a

f ′2

f 2
− b(b+ 1)

a2

σf ′3

f 3

)

dσ2.

(3.32)

This metric is diagonal providedb = −1. If we introduce the new coordinater =
√
ψ it is a

manifestly flat metric, and it covers a wedge shaped region. Hence the theorem is proved.�

As a matter of fact we found that by usingx andσ as coordinates we obtain the metric
comparable to the Weinhold metric as

ds2 = xa−2
[

(a(a− 1)f − b(b+ 1)σf ′)dx2 + 2(a+ b)xf ′dxdσ + x2f ′′dσ2
]

. (3.33)

If a+ b = 0 this metric is diagonal, which takes the form

ds2 = ψ,x

(

(a− 1)
dx2

x
+
x

a

f ′′

f − σf ′dσ
2

)

, (3.34)
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whereψ,x is the derivative with respect tox of ψ(x, y). This is the metric on a flat wedge
multiplied with the conformal factorψ,x. It is worth noting that fora = 1 the Ruppeiner metric
is degenerate and this corresponds to the fact that the system’s entropy is extensive.

Alternatively, we can prove this by means of computing the Riemannian curvature scalar.
First it is instructive to look at the Riemannian curvature tensor. In the preferred coordinate
system the Christoffel symbols (with one index lowered usingthe metric) are given by

Γijk =
1

2
∂i∂j∂kψ. (3.35)

The expression for the Riemannian curvature tensor now reduces to

Rijkl = Γikmg
mnΓnjl − Γilmg

mnΓnjk. (3.36)

The scalar curvature takes a fairly complicated form [155]

R =
(b+ 1)x3a+4b−4

2g2

[

a(a− 1)(a+ b)ff ′f ′′ − 2a(a− 1)(a+ 2b)ff ′′2 − ab(a− 1)σff ′′f ′′′

+ (a+ b)2(a+ b− 1)f ′2f ′′ + b(a+ b)(2a+ b− 1)σf ′2f ′′′

+ b(2b− a2 − 3ab)σf ′f ′′2 + b2(b+ 1)σ2(f ′f ′′f ′′′ − f ′′2)

]

,

(3.37)

whereg is the determinant of the metric having the form

g = x2(a+b−1)
[

a(a− 1)ff ′′ − (a+ b)2f ′2 − b(b+ 1)σf ′f ′′] . (3.38)

Obviously the metric is flat forb = −1 for it sends the curvature scalar in (3.37) to zero,
regardless of the form of the functionf . However this is not a one-to-one statement. Note also
that fora+ b = 0 the Weinhold metric is flat.

3.3.1 Black hole examples

The fundamental relation for the entropy of black hole relates the area of the event horizon to
the ADM charges of the black hole as in (2.16). In the two-parameter family we occasionally
encounter the entropy function of the form

S = Maf(M bQ) (3.39)

whereM andQ are conserved quantities of the black hole system. We focus on the case
where the cosmological constant vanishes,i.e. when the Einstein-Maxwell equations are scale
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invariant. This enables us to perform the dimensional analysis; using length as the only basic
unit we can write down the black hole parameters as

[S] = LD−2, [M ] = LD−3, [Q] = LD−3, [J ] = LD−2, (3.40)

whereD is the spacetime dimension. The scale invariance of the Einstein-Maxwell equation
gives the entropy relation quasi-homogeneity properties,with definite exponents:

LD−2S(M,Q, J) = S(LD−3M,LD−3Q,LD−2J). (3.41)

Hence we can see that in the case of two parameters (RN and Kerr black hole respectively) the
black hole entropies will be of the form

S = M
D−2
D−3f

(

Q

M

)

and S = M
D−2
D−3f

(

J

M
D−2
D−3

)

. (3.42)

We can readily see that the Ruppeiner geometry of the RN black hole will be flat in any dimen-
sion. Similarly, the Weinhold metric of the Kerr black hole is flat in any dimension. This will
be also true for black rings in five dimensions. Explicitly wecan express the entropy function
of the RN black hole (forD > 4) as follows

S = M c

(

1 +

√

1 − c

2

Q2

M2

)c

, c ≡ D − 2

D − 3
. (3.43)

The Kerr black hole in arbitrary spacetimeD has the fundamental relation

M =
D − 2

4
S

D−3
D−2

(

1 +
4J2

S2

)1/(D−2)

. (3.44)

Our scale invariance argument works for both Kerr and RN blackholes, however it fails in
the case of the BTZ black hole which is the 2+1bona fideblack hole in the presence of a
cosmological constant. In this case the fundamental relation has the form

S = Maf

(

J

M

)

. (3.45)

The Ruppeiner metric of this black hole’s state space is a flat metric which translates into a
flat wedge in an Euclidean space. For exotic black hole examples such as the black ring the
fundamental formula can be found in [120].

It is instructive to compare the black hole examples to the ideal gas. Inverting the Eq. (3.11)
we obtain the internal energy as

U = k2
N (c+1)/c

V 1/c
e

S
cN , (3.46)
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where c is the ratio of specific heats,k2 is constant. It is worth stating again that when
S(λU, λV, λN) = λS(U, V,N) the thermodynamic metric will be degenerate, but if we set
V fixed then it belongs to the the classψ(x, y) = xaf(xby) which is our flatness theorem.

To conclude this section, we found that our small theorem gives a sufficient but not necessary
condition for flatness and it shows that the ideal gas is even more special than our black hole
examples. This theorem will be useful in a number of black hole casese.g. the dilaton black
hole to be discussed in the next chapter.



Chapter 4

Results and discussions

I have noticed even people who claim everything is predestined, and that we can do

nothing to change it, look before they cross the road.

–S. W. Hawking

In this chapter we summarize results we have obtained which are presented in the selected
publications as shown on page xiii. For conciseness we do notrepeat discussions on the black
holes’s metrics, rather we begin with the thermodynamic metrics, and discuss calculations done
which in some case lead to very satisfactory interpretations.

4.1 General relativity black holes

In ordinary spacetime we deal with three families of black holes, namely the Reissner-
Nordström black hole, Kerr and the Kerr-Newman black hole. The order here is based on
the complexity of the problem. The results in this section are based on [144].

4.1.1 Reissner-Nordström black hole

The Gibbs surface of the RN black hole is defined by

S(M,Q) = M2 −Q2 +M2

√

1 − Q2

M2
. (4.1)

As we have found in [144] it is simpler to start by working out the Weinhold metric. Thus we
invert (4.1) and obtain

M =

√
S

2

(

1 +
Q2

S

)

. (4.2)

The Weinhold metric can then be obtained and it takes the form

ds2
W =

1

8S
3
2

[

−
(

1 − 3Q2

S

)

dS2 − 8QdSdQ+ 8SdQ2

]

. (4.3)
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After some coordinate transformations it simplifies to

ds2
W =

1

8S
3
2

[

−(1 − u2)dS2 + 8S2du2
]

, (4.4)

where we have used
u =

Q√
S

; u ∈ (−1, 1). (4.5)

Surprisingly the variableu has the same value as the electric potential,Φ = ∂M
∂Q

, of the RN
black hole. The Hawking tempeature is given by

T =
∂M

∂S
=

1

4
√
S

(

1 − Q2

S

)

, (4.6)

which vanishes in the extremal limit of the RN black hole. By using the conformal transforma-
tion, we obtain the Ruppeiner metric of the RN black hole in Weinhold coordinates as

ds2
R = −dS

2

2S
+ 4S

du2

1 − u2
. (4.7)

This is a flat metric. With some insight, we can turn the Ruppeiner metric above into Rindler
coordinates as follows

ds2 = −dτ 2 + τ 2dσ2, (4.8)

by using
τ =

√
2S and u = sin

σ√
2
. (4.9)

Turning this into Minkowski coordinates(t, x) we obtain

ds2 = −dτ 2 + τ 2dσ2 = −dt2 + dx2, (4.10)

where we have used

t = τ coshσ.

x = τ sinhσ.
(4.11)

Thus the line element (4.8) is a timelike wedge in Minkowski space. Note that the range ofσ is
[− π√

2
, π√

2
]. We can also express the entropy function in terms ofx andt as

S =
1

2
(t2 − x2). (4.12)

It is readily seen that the black hole entropy vanishes on thethermodynamic light cone. We will
revisit the RN black hole again in Sec. (4.3.1)
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4.1.2 Reissner-Nordström—adS black hole

The formula of the RNadS is given by

M =

√
S

2

(

1 +
S

l2
+
Q2

S

)

. (4.13)

The extremal limit of this black hole is where

Q2

S
= 1 +

3S

l2
, (4.14)

which is consistent with the extremal limit of the ordinary RNblack hole when the cosmological
constant is switched off (Λ = 0 i.e. l → ∞). The Hawking temperature is found to be

T =
1

4
√
S

(

1 +
3S

l2
− Q2

S

)

. (4.15)

This temperature vanishes in the extremal limit as anticipated. The Weinhold metric of this
black hole is

ds2
W =

1

8S3/2

[

−
(

1 − 3S

l2
− 3Q2

S

)

dS2 − 8QdSdQ+ 8SdQ2

]

. (4.16)

This is a curved metric. By using the conformal relation we obtain the Ruppeiner metric in the
form

ds2 =
1

1 + 3τ2

2l2
− u2

[

−
(

1 − 3τ 2

2l2
− u2

)

dτ 2 + 2τ 2du2

]

. (4.17)

We can observe that the metric above changes its properties as the signature of the metric
changes. It is related to the thermodynamic stability of theblack hole. It is well known that
for sufficiently large black holes, the entropy function becomes concave [75]. The quantity of
concern to us in this context is of course the curvature scalar, which is found to be

R =
9

l2

(

3S
l2

+ Q2

S

)(

1 − S
l2
− Q2

S

)

(

1 − 3S
l2

− Q2

S

)2 (

1 + 3S
l2

− Q2

S

)
. (4.18)

It is readily observable that the curvature scalar divergesboth in the extremal limit and along
the curve where the metric changes signature. A quick glancetells us that asl → 0; R diverges
but this is not a physical situation because the limitΛ → ∞ does not exist.

4.1.3 Kerr black hole

From the fundamental relation (2.30) we obtain the entropy of the Kerr black hole in the form

S = 2M2 + 2M2

√

1 − J2

M4
. (4.19)
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The extremal limit of the Kerr black hole occurs when

J

M2
= ±1. (4.20)

The Ruppeiner metric of the Kerr black hole is found to be

ds2
R =

2
(

1 − J2

M4

)

{

−2

[

(

1 − J2

M4

)3/2

+ 1 − 3J2

M4

]

dM2 − 4J

M3
dMdJ +

dJ2

M2

}

, (4.21)

which can be diagonalized using

v =
J

M2
; v ∈ (−1, 1). (4.22)

The diagonalized metric reads

ds2
R = −2

(

1 +
2√

1 − v2

)

dM2 +
2M2

(1 − v2)3/2
dv2. (4.23)

The Ruppeiner geometry is curved and its curvature scalar is given by

R =
1

4M2

√

1 − J2

M4 − 2
√

1 − J2

M4

. (4.24)

This curvature scalar diverges in the extremal limit. Sincethe entropy function is not concave
the thermodynamic theoryà la Ruppeiner could not be used. Furthermore we have learned
from [120] that unstable modes do not appear1 in the extremal limit of the Kerr black hole in 4D.
However we have a different story in dimension higher than five as we will see in Sec. (4.3.2)

4.1.4 Kerr-Newman black hole

The fundamental relation for the KN black hole is given by (2.30). The first law of thermody-
namics for this black hole takes the form

dM = TdS + ΩdJ + ΦdQ, (4.25)

which enables us to computeΩ (angular velocity),Φ (electric potential) andT (temperature) by
means of partial differentiations.

1meaning that there is no change of stability despite the presence of a vertical slope in the extremal limit in the
conjugacy diagram (i.e.a plot of conjugate thermodynamic quantities such asβ = 1/T versus massM ), Fig. 3(a)
in [120]. Analyzing the conjugacy plot is part of the so-called Poincaré (turning point) method which is a standard
method for stability analysis. This method is in contrary tothe analysis based on the sign of the specific heat. In
effect, the Poincaré method does not predict any instability in 4D Kerr spacetimes.
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Unfortunately the Ruppeiner metric of the KN black hole is fartoo complicated to be pre-
sented here. We also could not deal with it by hand, thus some computer programs such as
CLASSI [145] and GRTENSORwere employed for performing the computations. The results
we obtained [144] were not surprising; both the Ruppeiner andWeinhold metrics are curved.
The Ruppeiner curvature diverges in the extremal limit of theKN black hole. Furthermore we
found that the Ruppeiner geometry of this black hole is not conformally flat.

4.2 Lower-dimensional black holes

4.2.1 BTZ black hole

The Weinhold metric for the BTZ black hole takes the form

ds2
W =

(

2 +
3J2

2S4

)

dS2 −
(

2J

S3

)

dSdJ +

(

1

2S2

)

dJ2, (4.26)

which is a non-flat metric. Using the conformal relation we obtain the Ruppeiner metric, which
after diagonalization, is given by

ds2
R =

1

S
dS2 +

(

S

1 − u2

)

du2, (4.27)

where we have used
λ =

J

2S2
; u ∈ (−1, 1) (4.28)

The Ruppeiner metric in [144] is a flat metric, in other words the space of its thermodynamic
state is a flat space. After an obvious and final coordinate transformation to polar coordinates
we find that this is a wedge in an Euclidean flat space. Note alsothat the metric signature of
the Ruppeiner metric for the BTZ black hole is Euclidean which corresponds to the positive
definiteness of its specific heat. The RNAdS black hole has positive specific heat above the
Hawking-Page phase transition.

4.2.2 Two-dimensional black holes

This section is a summary of paper [146]. In 2D the Hawking-Unruh temperature (as derived
e.g. from surface gravity [147]) is given by

T = |w′(X, q)|X=Xh
. (4.29)

Prime denotes differentiation with respect toX. The Bekenstein-Hawking entropy (as derived
e.g. from Wald’s Noether charge technique [148]) is given by

S = Xh . (4.30)
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We are now able to derive the Weinhold and Ruppeiner metrics. Because of (1.49)-(4.30) both
metrics depend on the conformally invariant functionw(X, q) only. So we are free to choose
Q = 0 to simplify the calculations. Putting together all definitions yields the Weinhold metric

ds2
W = −w′′(S, q)dS2 − 2ẇ′(S, q)dSdq − ẅ(S, q)dq2 , (4.31)

where dot denotes differentiation with respect toq. The Ruppeiner metric follows as

ds2
R =

1

|w′(S, q)|ds
2
W . (4.32)

The conformal factor between these two metrics never vanishes unless the horizon degenerates.
We discuss briefly two important classes of examples.

Reissner-Nordström like black holes The family of models (b 6= −1 6= c)

w = − A

b+ 1
Xb+1 − B

2(c+ 1)
Xc+1q2 (4.33)

is simple and interesting, as it contains the spherically reduced RN black hole fromD dimen-
sionsb = −1/(D − 2), as well as charged versions of the Witten black holeb = 0 [149] and
of the Jackiw-Teitelboim modelb = 1 [150]. With the coordinate redefinitionu = qSc+1 the
Weinhold metric simplifies to diagonal form,

ds2
W = (bASb−1 − (

c

2
+ 1)Bu2S−c−3)dS2 +

B

c+ 1
S−c−1du2 . (4.34)

It is flat for b = 0 or c = b− 2. Similarly, the Ruppeiner metric turns out as

ds2
R =

1

S(ASb + B
2
u2S−c−2)

[

b(ASb −
c
2

+ 1

b
Bu2S−c−2)dS2 +

B

c+ 1
S−cdu2

]

. (4.35)

The Ruppeiner metric (4.35) is not flat in general. However, ifthe conditionc = −b− 2 holds,
then (4.35) simplifies considerably,

ds2
R = b

dS2

S
+ 2S

1

(b+ 1)

du2

(−2A
B
− u2)

. (4.36)

The Ruppeiner metric (4.36) is flat and has Lorentzian or Euclidean signature, depending onb
and the sign ofu2 + 2A/B. The particular subclass

U = −b+ 1

X
, V = −AX2b+1 − B

2

q2

X
(4.37)

describes the spherically reduced RN black hole fromD dimensions withb = −1/(D − 2). It
fulfills the conditionc = −b − 2, and thus all corresponding Ruppeiner metrics are flat. This
agrees with the results in section 4.1.1 below: the line-element (4.36) essentially coincides with
the line-element (4.45) upon rescalingu and choosingB appropriately.
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Chern-Simons like black holes In some cases, like the Kaluza-Klein reduced gravitational
Chern-Simons term [151] or the toroidally reduced BTZ black hole [152], the chargeq does not
enter quadratically in the potential but only linearly. Therefore, we consider here the class of
models defined by

w = − A

b+ 1
Xb+1 − B

c+ 1
Xc+1q . (4.38)

We obtain the flat2 Weinhold metric

ds2
W = (bASb−1 + cBSc−1q)dS2 + 2BScdSdq , (4.39)

and the Ruppeiner metric

ds2
R =

1

ASb +BqSc

[

b

S
(ASb +

c

b
BqSc)dS2 + 2BScdSdq

]

(4.40)

The Ruppeiner metric (4.40) is not flat in general. However, ifthe conditionc = b holds, then
(4.40) simplifies considerably,

ds2
R = b

dS2

S
+B

2dSdq

A+Bq
. (4.41)

The Ruppeiner metric (4.41) is flat and has Lorentzian signature.

We conclude this section with a remark on a duality found in [153]. It connects two different
models leading to the same classical solutions for the line-element (1.48) and therefore to the
same surface gravity (4.29), but the respective entropies differ in general. It would be interesting
to study the behavior of the Weinhold and Ruppeiner metrics under this duality.

4.3 Myers-Perry black holes

In [154] we study thermodynamic geometries of Myers-Perry black holes (let us remind the
reader that we deal with higher spacetime dimensions in thissection) and obtain the following
results:

4.3.1 Reissner-Nordström black hole

From [144, 154] it is found that for the RN black hole, it is simpler to work in Weinhold coor-
dinates. Hence we start with the mass function given in (2.51)

M =
S

D−3
D−2

2
+

D − 2

2(D − 3)

Q2

S
D−3
D−2

. (4.42)

2The line element (4.39) describes a flat (Rindler type) geometry because the coordinateq appears only linearly.
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In D = 4 the mass formula becomes that of the ordinary RN black hole as in (4.2). The
Weinhold metric of RN black hole in arbitrary dimension can bediagonalized by choosing the
new coordinate

u =

√

D − 2

2(D − 3)

Q

S
D−3
D−2

; u ∈ (−1, 1). (4.43)

The Weinhold metric now becomes

ds2
W = S

D−1
D−2

(

−1

2

D − 3

(D − 2)2
(1 − u2)dS2 + S2du2

)

, (4.44)

which is a curved Lorentzian metric. The Ruppeiner metric canbe obtained by using the con-
formal relation, thus

ds2
R =

−1

D − 2

dS2

S
+ 2S

D − 3

D − 2

du2

1 − u2
. (4.45)

This is a flat metric. The black hole’s temperature is found tobe

T =
D − 3

2(D − 2)

1 − u2

S
1

D−2

. (4.46)

We have found that the Ruppeiner metric (4.45) can be written in Rindler coordinates as

ds2 = −dτ 2 + τ 2dσ2, (4.47)

by using

τ = 2

√

S

D − 2
and u = sin

σ
√

2(D − 3)

D − 2
. (4.48)

The angleσ then lies within the following interval

− (D − 2)π

2
√

2(D − 3)
6 σ 6

(D − 2)π

2
√

2(D − 3)
. (4.49)

Turning this into Minkowski coordinates(t, x) we obtain

ds2 = −dτ 2 + τ 2dσ2 = −dt2 + dx2, (4.50)

Using the new parameters defined in terms of mass and charge, we can represent the entropy of
the RN black hole in Minkowskian coordinates as follow:

S =
1

4
(D − 2)(t2 − x2). (4.51)

The Ruppeiner metric can be presented as a Rindler wedge as shown in Fig 4.1. Note that
curves of constantS are segments of hyperbolas and the opening angle of the wedgegrows as
D → ∞.
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x

t
curves of constant S

Figure 4.1:The state space of the 4D RN black holes shown as a wedge in a flat Minkowski
space.

4.3.2 Kerr black hole

We will start with the Weinhold metric as it turns out to be simpler than the Ruppeiner metric.
The mass function of the Kerr black hole inD dimension is given by

M =
D − 2

4
S

D−3
D−2

(

1 +
4J2

S2

)1/(D−2)

. (4.52)

One can obtain the temperature of this black hole by differentiating the above mass function
with respect to the entropy,i.e.

T =
(D − 3)

(

1 + 4D−5
D−3

J2

S2

)

4S
1

D−2

(

1 + 4J2

S2

)
D−3
D−2

. (4.53)

The Weinhold metric then takes the form

ds2
W = λ

(

[

−48(D − 5)J4 + 24S2J2 − (D − 3)S4
]

dS2

+
[

64(D − 5)J3S − 16(D − 1)JS3
]

dSdJ

+
[

−32(D − 4)J2S2 + 8(D − 2)S4
]

dJ2

)

.

(4.54)

The factorλ is given by

λ =
1

4(D − 2)(S2 + 4J2)
2D−5
D−2 S

D+1
D−2

. (4.55)

We can diagonalize this metric by using

u =
J

S
, (4.56)
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x

t

Figure 4.2:The state space of the 4D Kerr black holes shown as a wedge in a flat Minkowski
space. Curves of constant entropy gives causal structure to the state space of the black hole.

and

τ =

√

D − 2

D − 3
S

D−3
2(D−2) (1 + 4u2)

1
2(D−2) . (4.57)

Hence the Weinhold metric in a diagonal form reads

ds2
W = −dτ 2 +

2(D − 3)

(D − 2)

(1 − 4D−5
D−3

u2)

(1 + 4u2)2
τ 2du2. (4.58)

This metric is flat. InD = 4 we can write it in Rindler coordinates as

ds2
W = −dτ 2 + τ 2dσ2 (4.59)

using

u =
1

2
sinh 2σ. (4.60)

Note that in 4D and 5D we have extremal Kerr black holes whereas in 6D and above there is no
extremal limit in the solution. In 4D we haveJ = M2 as the extremal limit, henceu is bounded
by

|u| 6
1

2
, (4.61)

which translates into

−1

2
sinh−1 1 6 σ 6

1

2
sinh−1 1. (4.62)

Numerically it is

|σ| 6 0.4406. (4.63)
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By using (4.11) we obtain the wedge of the state space of the Kerr black hole in 4D in a flat
Minkowski whose edge is bounded by

−

√√
2 − 1√
2 + 1

6
x

t
6

√√
2 − 1√
2 + 1

. (4.64)

In 5D we have the extremal limit
J2

M3
=

16

27
, (4.65)

andu is bounded asu ∈ (−∞,∞) where

u =
1

2
tan

√
3σ. (4.66)

The angle of opening of this wedge is then given by

|σ| 6
1√
3

arctan∞ =
π

2
√

3
≈ 0.9069. (4.67)

Notably the opening angle of the wedge in 5D is wider than thanof 4D. For 6D and higher we
have the wedge that fills the entire lightcone as in those dimensions there are no extremal limits
for the Kerr black holes.

The causal structure of state space is determined by curves of constant entropy rather than
by the lightcone itself. For the 4D Kerr black hole the curvesof constant entropy are given by

S =
(t2 − x2)

4(t2 + x2)2
. (4.68)

The Ruppeiner geometry of the arbitrary-dimensional Kerr black hole is curved with the curva-
ture scalar in the following form

R = − 1

S

1 − 12
D − 5

D − 3

J2

S2
(

1 − 4
D − 5

D − 3

J2

S2

)(

1 + 4
D − 5

D − 3

J2

S2

) . (4.69)

In 4D the curvature scalar diverges along the curve4J2 = S2 which is consistent with the
previous result [144]. The curvature scalar (4.69) is validin any dimension higher than three.
In 5D it is reduced to

R = − 1

S
, (4.70)

which diverges in the extremal limit of the 5D Kerr black hole. Remarkably, in 6D we have a
curvature divergence but not in the limit of extremality, rather at

4J2 =
D − 3

D − 5
S2. (4.71)
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This is where Emparan and Myers [157] suggest that the Kerr black hole becomes unstable and
changes its behavior to be like a black membrane. This is alsowhere the temperature of the
higher-dimensional (D > 6) Kerr black hole reaches its minimum. We would like to add that
issues of instabilities of Kerr black holes in higher dimensions have recently gained attention,
seee.g. [158], [159] and [160].

4.3.3 Kerr black hole with double spins

We start with the mass function in order to compute the Weinhold metric,i.e.we use Eq. (2.71)

M =
3S2/3

4

(

1 +
4J2

1

S2

)
1
3
(

1 +
4J2

2

S2

)
1
3

. (4.72)

The Hessian ofM with respect to the entropy and two angular momenta yields the Weinhold
metric, which is found to be curved. The curvature scalar of the Weinhold metric takes the form

R =
16

3

S
2
3 (S8 + 3S6J2

1 + 3S6J2
2 + 4S4J2

1J
2
2 + 64J4

1J
4
2 )

(S2 + 4J2
1 )

1
3 (S2 + 4J2

2 )
1
3 (S2 − 4J1J2)2(S2 + 4J1J2)2

. (4.73)

We next transform it into the Ruppeiner metric via the conformal relation with an inverse tem-
perature as a conformal factor. The temperature of the double-spin Kerr black hole in five
dimensions is given by

T =
1

2S5/3

(S2 + 4J1J2)(S
2 − 4J1J2)

(S2 + 4J2
1 )2/3(S2 + 4J2

2 )2/3
. (4.74)

The Ruppeiner curvature scalar of the double-spin Kerr blackhole in five dimensions reads

R = −S
8 + 20S6J2

1 + 20S6J2
2 + 256S4J2

1J
2
2 + 192J4

1J
2
2S

2 + 192J2
1J

4
2S

2 − 256J4
1J

4
2

2S(S2 + 4J2
1 )(S2 + 4J2

2 )(S2 − 4J1J2)(S2 + 4J1J2)
.

(4.75)

Note that both the Weinhold and Ruppeiner curvature scalars are divergent at

J1J2 =
S2

4
, (4.76)

which is the extremal limit of the 5D double-spin Kerr black hole. Note also that this curvature
scalar does not vanish either in the limit ofJ1 = 0 or J2 = 0.

4.4 Dilaton black holes

By calculating the surface gravity,κ, of the dilaton black hole the temperature [161] is found to
be

T =
κ

2
=

1

4r+

(

1 − r−
r+

)
1−a2

1+a2

, (4.77)
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which becomes zero whenr− = r+ (for a = 0 (RN black hole) and0 < a < 1), whilst it
remains finite in the case ofa = 1 and diverges fora > 1. Alternatively the temperature of the
black hole can also be found by a simple formula,i.e.T = (∂M/∂S)Q. The entropy in terms
of r− andr+ reads [161]

S = r2
+

(

1 − r−
r+

) 2a2

1+a2

. (4.78)

The Gibbs free energy is given by

G = TS =
1

4
(r+ − r−). (4.79)

4.4.1 Dilaton black hole with a unit coupling constant

It is a useful exercise to explicitly check these results obtained from the flatness theorem, as
we can explicitly read off the physics from the Ruppeiner metric. It is natural to start with
the casea = 1, as we expect the case of arbitrarya to be complicated. Interestingly from the
higher dimensional blackp-brane perspective we see thata = 1 corresponds to the dimensional
reduction of an infinite dimensional object [37], and so thisis actually the maximal coupling
one could envisage. The fundamental thermodynamic relation of this black hole in terms of
mass and charge is given by

S = 4M2

(

1 − Q2

2M2

)

. (4.80)

Notice that the entropy function vanishes in the extremal limit Q2 = 2M2, and the temperature
of the solution can be written as

T =
1

8M
. (4.81)

The corresponding Ruppeiner metric is unsurprisingly simple and takes the following
Lorentzian form

ds2 = −8dM2 + 4dQ2, (4.82)

which is conformally Minkowski if we are able to scale the charge such thatQ →
√

2Q. To
better understand the state space let us introduce two new variables

t =
√

8M and x = 2Q, (4.83)

which are constrained to fall in the rangesx2/t2 6 1 with t ∈ [0,∞) andx ∈ (−∞,∞) 3, and
thus we obtain the Ruppeiner metric in Minkowski space as follows

ds2 = −dt2 + dx2. (4.84)

3This may plausibly give a minimal cutoff for the black hole’smass.
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t
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a=0 (RN)

a = 1 (string)

curves of 
constant entropy

Figure 4.3:The state space of the dilaton black hole with a unit couplingconstanta = 1 is a
wedge on the null cone. This can be compared with the case of Reissner-Nordström black hole
in whicha = 0. Curves of constant entropy give a causal structure to this plot.

The state space of this black hole can thus be presented as a wedge in Minkowski space and one
can clearly see that the wedge of the state space lies on the lightcone since (see Fig. 4.3)

x

t
= 1. (4.85)

We can rewrite the black hole’s entropy in terms of the re-defined Minkowskian coordinates as

S =
1

2
(t2 − x2), (4.86)

and it is worth noting that the entropy of the black hole vanishes on the null cone. Out of
curiosity we can calculate the Weinhold metric for this black hole in Ruppeiner coordinates and
obtain

ds2
W = − 1

M
(dM2 +

1

2
dQ2). (4.87)

This is a curved metric as expecteda priori, a result consistent with our previous works which
indicated that for two-parameter black hole solutions whenone metric is curved, the other is
typically flat. The curvature scalar takes the following simple form

RWeinhold =
1

M
. (4.88)

Clearly we see there is no curvature singularity, however themetric remains curved unless we
takeM → ∞ which reduces the number of physical degrees of freedom. However in the
extremal limit of the Weinhold picture we find that the scalarcurvature invariant is inversely
proportional to the electric charge. Interestingly the above expression is the same as the tem-
perature of the black hole, up to a factor ofO(1).
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4.4.2 Dilaton black hole with arbitrary coupling constant

We choose to present the Ruppeiner metric of the dilaton blackhole with arbitrarya in a com-
pact form by using Eq. (11) in Ref. [155] fora = 2 andb = −1 where we takeψ = −S. This
clearly simplifies to become

ds2
R = − 1

2S
dS2 + S

(

1

2

f ′2

f 2
− f

′′

f

)

du2 (4.89)

whereu = Q/M andf = f(u) is taken from Eq. (2.73). Our wish is to see how this metric can
be written in a manifestly flat form like those we studied earlier in [144, 154]. It is anticipated
that the wedge of the state space should fill the entire null cone, as in the case ofa = 1.

Ideally we would like to transform Eq. (4.89) into coordinates that are functions ofS andu
which demonstrate the manifest flatness of the metric,i.e.we wish to transform Eq. (4.89) into
Rindler coordinates (ds2 = −dτ 2 + τ 2dσ2) by choosing

τ =
√

2S, (4.90)

andσ to be some transcendental function ofu (e.g.arcsin in the case of RN black hole). Having
the metric in Rindler coordinates we can then transform it into the Minkowski metric using

t = τ coshσ and x = τ sinhσ. (4.91)

The metric fills the future null cone whenx/t = tanhσ = 1, which occurs whenσ tends to
infinity. Put simply we wish to see the range ofσ from the transformed metric component.

Unfortunately it is impractical to perform any direct coordinate transformation of the second
term of Eq. (4.89) into any transcendental function, since the functionf and its derivatives
combined are quite intractable. Thus we have to analyse the range ofσ knowing the behaviour
of the functionf , namely that it goes to zero in the extremal limitu =

√
1 + a2. We can state

our goal for the analysis as follows:

Let g =
1

2

f ′2

f 2
− f

′′

f
and letσ be a function ofu, therefore the integral ofg(u) will represent

the full range ofσ when integrating it up to the extremal limit,

σ =

∫ uext

g(u)du. (4.92)

Again this integral is not analytically tractable, therefore we resort to the standard method of
power-series expansion about the extremal solution. The expansion is performed about the
variablex wherex =

√
1 + a2 − u. By definition the extremal limit occurs whenx = 0. We

have done the power-series expansion ofg up toO(x2) and found that the integral diverges for
anya > 0, meaning thatσ is infinite. Thus we conclude that the wedge of state space forthe
dilaton black hole with arbitrary coupling constant fills the entire future null cone as anticipated.
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That the state space wedge for the dilaton black holes fills the entire thermodynamic light
cone shows that thermodynamic geometry can distinguish black hole solutions with genuine
extremal limits from those that do not have. We discussed thedifference between genuine
extremal limits and those that are not in Section 1.1.5.

4.5 Tidal charged black holes

We study thermodynamics of the tidal charged black hole mainly using the geometric methods
provided by the thermodynamic metrics. We start by derivingthe entropy of the tidal charged
black hole and analyzing its mass and tidal charge dependences. These thermodynamic consid-
erations could be useful not only per se, but also for the analysis of the possible 5D extensions
of the tidal charged black hole. We summarize our findings in brief as follows:

The tidal charged black hole has the metric

ds2 = −f (r) dt2 + f−1 (r) dr2 + r2
(

dθ2 + sin2 θdϕ2
)

. (4.93)

The metric functionf is given as

f (r) = 1 − 2M

r
+

q

r2
. (4.94)

Such black holes are characterized by two parameters: theirmassM and tidal chargeq. The
exterior horizon forq > 0 or the only horizon forq < 0 are both given by

r+ = M + Θ , (4.95)

where we have introduced the shorthand notationΘ =
√

M2 − q, real for anyq 6 M2. The
black hole’s entropy can be calculated using the celebratedBekenstein-Hawking formula (2.4)
with geometrized units andkB = 1/π chosen for convenience,

S =
A

4π
= r2

+ = (M + Θ)2 . (4.96)

By the first law of thermodynamics, the temperature of the black hole is given by

T (M, q) = ∂SM =
1

∂MS
=

Θ

2 (M + Θ)2 . (4.97)

The same valueT (M, q) is found by computing the temperature of the Hawking radiation if one
uses the well-known formula for the surface gravity of a spherically symmetric Killing horizon
(see e.g. [163]).

The temperatureT (M, q) increases withq for q < 0 up to the maximal valueT = 1/(8M)

at q = 0, then decreases with increasingq > 0 down toT = 0

Cq =
∂M

∂T
= T

∂S

∂T
= T

(

∂T

∂S

)−1

= T

(

∂2M

∂S2

)−1

=
−2S(S − q)

S − 3q
. (4.98)
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In the domain of its negative values the heat capacity reaches a local maximum at the
Schwarzschild configuration (Θ = M ). The thermodynamical interpretation of negative heat
capacity is that such a black hole cannot be in a stable equilibrium with an infinite heat reservoir
held atT = TBH(M, q). For instance, a small thermal fluctuation may transfer someheat to
the black hole and make the black hole colder, thus making heat transfer even more efficient.
This is the typical behavior of Schwarzschild black holes, which are unstable with respect to
emission of Hawking radiation in empty space and can be stable only in thermal contact with a
finite-volume reservoir.

Since the Universe may be considered as an infinite heat reservoir having the temperature
of the cosmic background radiation, these considerations may be relevant to the cosmological
stability of primordial or near-extremal black holes that have very low temperature. A near-
extreme black hole with tidal chargeq > 3M2/4 has a positive heat capacity and thus can
remain in a stable equilibrium with an infinite heat reservoir atT = TBH .

4.5.1 Thermodynamic geometries of the tidal charged black hole

The Ruppeiner metric

The geometry of the tidal charged black hole depends on two parameters:M andq. From the
generic definition (3.2) we find the corresponding Ruppeiner metric as

ds2
R =

1

Θ3

[

2 (M − 2Θ) (M + Θ)2 dM2 − 2(M2 − Θ2)dMdq +
M

2
dq2

]

. (4.99)

The Ruppeiner curvature scalar is

R =
1

2Θ(M + Θ)
. (4.100)

It is readily seen that the curvature scalar diverges in the extremal limit for q > 0, but stays
regular for anyq < 0.

The Weinhold metric

By passing to coordinates(M, Θ) in the Ruppeiner metric and using the conformal relation
(3.10 ) as well as the expression for the temperature, we obtain the Weinhold metric explicitly
as

ds2
W = Tds2

R =
− (M + 2Θ) dM2 − 2ΘdMdΘ +MdΘ2

(M + Θ)2 . (4.101)

This can be further simplified by introducing the new coordinater+ replacingΘ:

ds2
W =

dr+
r+

(

M
dr+
r+

− 2dM

)

, (4.102)
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then passing to(Z = log r+, W = log (r+/M
2)) we find

ds2
W = MdZdW , (4.103)

with

M = exp

(

Z −W

2

)

. (4.104)

In the coordinates(U+ = 2 exp (Z/2) , U− = 2 exp (−W/2)) the Weinhold metric becomes
manifestly flat,ds2

W = −dU+dU−. One can also introduce Minkowskian coordinates as
U± = X ± Y , finding ds2

W = −dX2 + dY 2. The sequence of coordinate transformations
leading to this result can be summarized as

X =
√
r+ +

M
√
r+

,

Y =
√
r+ − M

√
r+

. (4.105)

The inverse transformation is

4r+ = (X + Y )2 ,

4M = X2 − Y 2 . (4.106)

4.5.2 The global structure of the Ruppeiner geometry

The expression of the temperature in the(X, Y ) coordinates is

T =
r+ −M

2r2
+

=
4Y

(X + Y )3 , (4.107)

which leads to the manifestly conformally flat form of the Ruppeiner metric:

ds2
R =

(X + Y )3

4Y

(

−dX2 + dY 2
)

. (4.108)

Note that the domain of the original Ruppeiner coordinates is

M ∈ (0, ∞) , q ∈
(

−∞, M2
)

. (4.109)

The corresponding ranges of the variablesΘ, r+ areΘ > 0, r+ > 0; the Minkowskian coordi-
nates defined by (4.105) have the rangeX > Y > 0. Thus the state space is equivalent to the
right half of the interior of the future light cone of a Minkowski plane, with the vertical bound-
ary included but the light-like boundary excluded. (The light cone describesm = 0 states as
can be seen from4M = X2 − Y 2, which forq > 0 does not correspond to black hole metrics.)
The extremal states are located at

(

X = 2
√
M > 0, Y = 0

)

, i.e. on the positive half of the



4.5. Tidal charged black holes 65

X

Y
 

T 
= 
0

Figure 4.4: A Ruppeiner state space plot of the tidal charged black hole embedded in the flat
Minkowskian parameter space. Note that the thermodynamic light cone (TLC) describesM = 0

and the wedge fills the right half of the TLC with the light coneexcluded. The vertical axis
represents the extremal limit in whichT = 0.

time-like coordinate axis (the vertical boundary). This can be also seen by writing the curvature
scalar (4.100) of the Ruppeiner metric in the(X,Y ) coordinates:

R =
1

2 (r+ −M) r+
=

4

Y (X + Y )3 . (4.110)

We also remark that passing to the(X, Y ) coordinates by the transformation (4.106) induces
a degeneracy. For each pair of coordinates(M, q), as well as for(M,Θ) or (M, r+), we can
associate any of the combinations(±X, ± Y ), with X, Y defined by Eq. (4.105). Therefore
the light cone of the Minkowski plane provides a four-fold coverage of the original state space.
This is similar to the introduction of the well-known Kruskal coordinates for the Schwarzschild
geometry: Kruskal coordinates cover four patches in the Kruskal-Szekeres diagram, while the
original coordinates cover only one patch. We end our discussions on the tidal charged black
hole by the following remarks:

(A) The induced thermodynamic (Ruppeiner) geometry can havea physical singularity only
for q > 0, in the extremal mass limit. It is worth noticing that while the Ruppeiner
geometry of the tidal charged black hole is non-flat, the Ruppeiner metric for the Reissner-
Nordström black hole (when we promoteq = Q2 in the metric) is flat [144]. This is a
sharp difference emerging in spite of the similarities in the RN and tidal charged black
holes.

(B) While the state space of the RN black hole is a Rindler wedge embedded in a Minkowski
parameter space, we have found that the state space for the tidal charged black hole is the
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right half of the interior of the future light cone of the Minkowski plane, with the vertical
boundary included but the light-like boundary excluded. The light cone of the Minkowski
plane provides a four-fold coverage of this state space, similarly to the four-fold covering
of the curvature coordinates for a Schwarzschild black holeby Kruskal coordinates.

(C) With regard to the divergence found in the heat capacity, even tough the heat capacity
diverges, the energy (mass) function is regular in the respective pointΘ = M/2. In fact
we can see that the Ruppeiner metric (4.101) becomes degenerate at that point (the coef-
ficient ofdM2 vanishes) but according to Ruppeiner that is not a sign of phase transition.
A contradictory opinion is expressed by Davies [141], according to which a singularity
of the heat capacity appears when the black hole undergoes phase transition. In this con-
troversial context we stress again that a singularity in theheat capacity also emerged for
RN black holes [144], in the same point where the metric becamedegenerate, and it was
not accompanied by a phase transition. As nothing special happens with the tidal charged
black hole at the respective parameter values, we expect thesame here.
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4.6 State space graphics

In this section we present state space plots in a unified picture. This plot is for flat thermody-
namic geometries that can be brought into a Minkowskian form. The main structure of the state
space plot consists of a Thermodynamic Light Cone (TLC), whichis where the entropies of the
black holes vanish. We present conjectures on the wedge structure for higher dimensional black
holes based on the established outcomes.
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Figure 4.5: A state space plot of Einstein-Maxwell black holes.
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Chapter 5

Summary and outlook

Our imagination is stretched to the utmost, not, as in fiction, to imagine things which are

not really there, but just to comprehend those things which are there.

–R. P. Feynman

The information geometric theory applied to thermodynamics has generated intruiging re-
sults. It provides an alternative and elegant route to obtain insight into thermodynamics through
Riemannian geometry. Its power is due to the fact that the Ruppeiner metric together with its as-
sociated curvature and signature encodes many aspects of thermodynamics consistent with the
known results in systems whose statistical mechanics are known. Since the underlying statisti-
cal mechanics of black holes is still unsettled, the application of the Ruppeiner theory to black
hole thermodynamics then gives a new perspective on this subject. Although we currently have
few results that are physically significant, the outcomes ofthis project should give a clue for
further explorations in this field. We believe that the uncovered geometrical patterns may play
an important role in the future, when quantum gravity is better understood.

As a matter of fact, the Ruppeiner theory of black hole thermodynamics can be applied to
every class of black holes as long as their fundamental relations are well-defined. The difficulty
consists in finding reasonable interpretation(s) of the calculated Ruppeiner geometries. We
think that prediction of instabilities of ultraspinning Myers-Perry black holes using our method
is probably the most valuable outcome of this research program.

Future works of this research program includes 1) generalization of the flatness theorem to
three dimensions 2) understanding the AdS/CFT correspondence in terms of thermodynamic
geometries for certain systems, and 3) developing more clever computer programs for comput-
ing1 all the relevant quantities where the only input needed is the fundamental relation.

Last but not least, we end this chapter by presenting the outcomes of this research program
as shown in Table 5.1.

1this includes plots and stability analysis (based on curvature singularities of BH thermodynamic geometries).
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Spacetime dimension Black hole family Ruppeiner Weinhold
d = 2 (1+1) RN like BH (generic) Curved Curved

(1+1) reduced RN BH Flat Curved
(1+1) CS like BH (generic) Curved Flat

d = 3 (2+1) BTZ Flat Curved
(2+1) BTZ (Chern-Simons) Flat Curved
(2+1) BTZ (Log corrections) Curved Curved

d = 4 RN Flat Curved
Kerr Curved Flat
Kerr-Newman Curved Curved
Braneworld (tidal charged) Curved Flat
Dilaton Flat Curved

d = 5 Kerr Curved Flat
double-spin Kerr Curved Curved
RN Flat Curved
Black ring Curved Flat

anyd Kerr Curved Flat
RN Flat Curved

Table 5.1: GEOMETRY OF BLACK HOLE THERMODYNAMICS.



Appendices

Appendix A: Killing vectors, Killing horizons and surface gravity

Normally one would think of the surface gravity (ofe.g.a planet) as the gravitational accel-
eration experienced at its surface. However this concept issubtler in the context of black hole
physics we discuss in this thesis. Fortunately we have a notion that captures this concept but it is
limited to black holes whose event horizons are Killing horizons1. The Killing horizon is a null
surface to which the Killing vector fieldξ is normal. That the norm ofξ is zero on the horizon
is a necessary but not a sufficient condition for the Killing horizon2. We now state the definition
of surface gravity in a mathematical language as follows: ifξµ is a suitably normalized Killing
vector then the surface gravity,κ, can be defined by

∇µ(ξνξν) = −2κξµ, (A-1)

This equation is to be evaluated at the event horizon, and it implies thatξ2 = 0 which defines
a null hypersurface. An important feature of surface gravity is that it globally constant all over
the event horizon owing to the following facts:

(a) κ is constant along null generators of the Killing horizon, namely an invariance of Eq. (A-
1) under the isometries generated byξ implies thatκ is constant along each null generator,
ξµ∇µκ = 0.

(b) κ does not vary from one generator to another. In order to provethat κ does not vary
from generator to generator, one uses the fact3 that forκ 6= 0 there exists a 2D bifurcation
surface,S on whichξ = 0.

1In [63] Hawking and Ellis prove that the event horizon of a stationary black hole is a Killing horizon.
2For example, in the Kerr spacetime the norm oftµ ≡ ∂µ

t is zero on the static limit which is not a null
hypersurface, but the norm of the Killing vectorξµ ≡ ∂µ

t + ΩH∂
µ
ϕ is zero on the event horizon and there it defines

a null hypersurface.
3In [59] the constancy ofκ is proved without assuming atκ 6= 0 but requires the use of the Einstein equations

with matter obeying the dominant energy condition.



Another way of verifying thatκ is constant on the Killing horizon is by showing that∇[αωβ] = 0

whereωα = ǫαβγδξ
β∇γξδ, known as a twist of theξ field. This proof is given by Racz and Wald

in [143].
Eq. (A-1) can also be expressed as

ξµ∇µξ
ν = κξν . (A-2)

The surface gravity also admits the following representation

κ2 = −1

2
(∇µξν)(∇µξν). (A-3)

The surface gravity (for static black holes) can be viewed asa force required by an observer
at infinity to hold a test particle (by means of an infinitely long, massless string) at the event
horizon. For a spherically symmetric spacetime whose Killing vector isξ(t) = ∂t the surface
gravity is calculated to be

κ =
1

2
f ′(r+) (A-4)

wheref(r) appears in
ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2

2. (A-5)

For the Schwarzschild black hole with massM the surface gravity is given byκ = 1
4M

. The
Kerr-Newman black hole has a more complicated surface gravity

κ =
r+ −M

r2
+ + a2

(A-6)

where
r+ = M +

√

M2 − a2 −Q2. (A-7)

It is readily seen that in the limit ofJ = Q = 0 we recover the surface gravity of the
Schwarzschild black hole.

Appendix B: Dilaton black holes—a transformation between Einstein and
string frames

The dilaton black hole in string frame can be transformed into Einstein frame1 in the fol-
lowing way: We use the action given in [27] with spacelike metric signature as

S =

∫

d4x
√−g e−2φ

(

R + 4(∇φ)2 − F 2
)

(B-1)

1i.e.a frame in which there is no function multiplying the Ricci scalar.
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This is the low-energy action of string theory in string frame. We want to transform the action
in (B-1) into Einstein frame whose spacetime metric is related to the metric of the string frame
as:

gE
αβ = e−2φgαβ ⇔ gαβ = e2φgE

αβ (B-2)

So we need to know how other quantities in (B-1) transform under the conformal transformation
in (B-2). There are four quantities that tranform and they do so in the following manner:

Metric determinant:
√−g = e4φ

√

−gE (B-3)

A kinetic term: (∇φ)2 = gαβ∇αφ∇βφ = e−2φ(∇Eφ)2 (B-4)

Field strength term: FαβFαβ = gαγgβδFαβFγδ = e−4φF 2 (B-5)

Ricci scalar: R = e−2φRE − 6e−3φ
�eφ (B-6)

Rewriting (B-1) with transformed quantities in the four equations above:

SE =

∫

d4x
√−g e4φe−2φ

(

e−2φRE − 6e−3φ
�eφ + 4e−2φ(∇Eφ)2 − e−4φF 2

)

(B-7)

After integration by parts, this gives the action for dilaton gravity in the Einstein frame as

SE =

∫

d4x
√

−gE
(

RE − 2(∇Eφ)2 − e−2φF 2
)

(B-8)

Note the sign difference in front of the kinetic term.

Appendix C: Proof of the conformal relation between Ruppeiner and Wein-
hold metrics

The first law of thermodynamics can be written in differential forms as

D2U = dTdS − dpdV + dµidNi (C-1)

whereU, T, S, p, V, µ andN are internal energy, temperature, entropy pressure, chemical po-
tential and particle number respectively. Similarly we have

D2S = d

(

1

T

)

dU + d
( p

T

)

dV − d
(µi

T

)

dNi. (C-2)
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Invoking the first law of thermodynamics in its original form

dU = TdS − pdV + µidNi. (C-3)

Inserting Eq. (C-3) into the RHS of Eq. (C-2) and we obtain

D2S = − 1

T 2
dT (TdS − pdV + µidNi) +

TdP − pdT

T 2
dV − Tdµi − µidT

T 2
dNi

= − 1

T
dTdS +

�
�

�
��

P
dV dT

T 2
+

�
�

�
�
�

µi
dNdT

T 2
+
dPdV

T
−

�
�

�
��

P
dTdV

T 2
− dµidNi

T
−

�
�

�
�
�

µi
dNdT

T 2

= − 1

T
(dTdS − dpdV + dµidNi).

Thus

D2S = − 1

T
D2U. (C-4)

This proves that the Ruppeiner1 and Weinhold metrics are conformally related

gR
ij(U, x

i) =
1

T
gW

ij (S, xi). (C-5)

wherexi are the conserved parameters.

Appendix D: Degeneracy of Ruppeiner metric

In this appendix we show how extensitivity of the entropic fundamental relation leads to a
degenerate Ruppeiner metric. The entropy function of an extensive systeme.g.for the ideal gas
takes the form

U(λS, λV, λN) = λU(S, V,N). (D-1)

Since we will prove this in general, namely we write

U(λS, λxi) = λU(S, xi), (D-2)

wherexi are extensive parameters. In mathematics Eqs.(D-1) and (D-2) are homogeneous func-
tions of degree one (because the exponent ofλ is unity). A subsequent theorem of the homoge-
neous function is the Euler theorem which states that Eq. (D-2) implies that

(S∂S + xi∂xi
)U = U. (D-3)

1The minus sign is absorbed in the definition of the Ruppeiner metric, i.e.gR
ij = −∂i∂jS.
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Using thermodynamic relations we can rewrite the equation above as

ST + xiyi = U (D-4)

whereT is temperature, andyi ≡ ∂xi
U are intensive parameters. Taking the differential of

Eq. (D-4) gives
SdT + TdS + xidyi + yidxi = dU. (D-5)

Grouping the equation above we can see that (using the recognizable form of the first law of
thermodynamics)

((((((((

(TdS + yidxi) + SdT + xidyi = �
�dU, (D-6)

thus we are left with
SdT + xidyi = 0 (D-7)

known as theGibbs-Duhem relation. More elegantly we rewrite it as

xadya = 0, a = 1, . . . , n. (D-8)

We can express

dya =
dya

dxb
dxb, (D-9)

and because
ya = ∂aU, (D-10)

hence

dya =
∂2U

∂xa∂xb
dxb = gW

ab dx
b (D-11)

where we have used the definition of Weinhold metric. We now have

xadya = xagW
ab dx

b = 0, (D-12)

meaning that
xagW

ab = 0. (D-13)

This implies thatxa are null eigenvectors, therefore the Ruppeiner metric is degenerate.
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