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Abstract

In this thesis we aim to develop new perspectives on thesstati mechanics of black holes
using an information geometric approach (Ruppeiner and Naédiihgeometry). The Ruppeiner
metric is defined as a Hessian matrix on a Gibbs surface, anddess a geometric descrip-
tion of thermodynamic systems in equilibrium. This Ruppeigeometry exhibits physically
suggestive features; a flat Ruppeiner metric for systemsmatimteractions i.e. the ideal gas,
and curvature singularities signaling critical behawsdf the system. We construct a flatness
theorem based on the scaling property of the black holes;hyhioves to be useful in many
cases. Another thermodynamic geometry known as the Welndedmetry is defined as the
Hessian of internal energy and is conformally related tdRbippeiner metric with the system’s
temperature as a conformal factor.

We investigate a number of black hole families in variouwvtgyaheories. Our findings are
briefly summarized as follows: the Reissner-Nordstrom tipe Einstein-Maxwell-dilaton and
BTZ black holes have flat Ruppeiner metrics that can be repiegday a unique state space
diagram. We conjecture that the state space diagram enegttemality properties of the black
hole solution. The Kerr type black holes have curved Ruppeiedrics whose curvature sin-
gularities are meaningful in five dimensions and higheni§ygng the onset of thermodynamic
instabilities of the black hole in higher dimensions. Aketthree-parameter black hole families
in our study have non-flat Ruppeiner and Weinhold metrics leid &ssociated curvature singu-
larities occur in the extremal limits. We also study two-dmsional black hole families whose
thermodynamic geometries are dependent on parametedetieatmine the thermodynamics of
the black hole in question. The tidal charged black hole Wihigses in the braneworld gravity
is studied. Despite its similarity to the Reissner-Nordstigipe, its thermodynamic geometries
are distinctive.

KEYWORDS Black holes, Thermodynamics, instability, Hessian, EpyrdRuppeiner
geometry, Weinhold geometry, Information geometry.
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Abbreviations, conventions and notation

In this thesis we will use natural units whete= i = ¢ = 1 unless otherwise stated. The
spacetime dimension is denoted by D. The metric signatufe-js-,...,+). The Einstein
summation convention is used throughout unless othenpiseified. Greek indicegy, 3, . . .)
run from0 to n, wheren is the number of spatial dimensions. Abbreviations will sediwhere
appropriate.

Symbol Description
Afap) Symmetrization ofd, g, i.€. 2 (Aas + Aga)
Ajag) Antisymmetrization ofd, s, i.e. 1 (Aas — Aga)

LIS Partial derivative ofl, i.e. 0, ¥

A%y Covariant derivative oA%, i.e. Vg A*

Jop Metric on manifold.#

e, Christoffel symbol

g Metric determinant.e. det[g,3]

Ram‘S Riemann tensor

Ra.s Ricci tensor as constructed from froRy,s = R 5., p
dn? Line element on unit two-spherig. df? + sin? dy?
(a)ds (anti) de Sitter

BH Black hole

BR Black ring

D Number of spacetime dimensiong®.D =1+n
GR General Relativity

KN Kerr-Newman

RN Reissner-Nordstrom

Pl Planck

QM Quantum Mechanics

BTZ Banados, Teitelboim and Zanelli (black hole)

A Cosmological constant
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Popularvetenskaplig sammanfattning—a brief summary in
Swedish

Denna avhandling behandlar fragan om svarta hals fysiktgéaretiskt satt. Den sammanfat-
tar mitt arbete under de senaste fem aren. De svarta halgiksbfyserar sig pa den allmanna
relativitetsteorin som ar den mest accepterade teorinrfivitgtionen. Svarta hal har verifier-
ats observationellt indirekt men det finns fortfarande nadpgpblem sarskilt av teoretisk art
sasom vad de svarta halens entropi kommer fran eller var thetravarta halet entropin finns.
Svarta hals termodynamik, grundades for cirka 40 ar sed&@tephen W. Hawking med flera
och det blev en 6verraskning for de flesta fysiker att sddéassiska objekt (enligt relativitet-
steorin vilken ar en klassisk teori) kunde strala termiskt det forvantas bli helt kallt (noll
Kelvin). Denna stralning fran det svarta halet kallas "Hawgsitralning" och denna stralning
ar ointressant for de astrofysiska svarta halen men det &toabetydelse for de sma svarta
halen som kanske kommer upptackas vid varldens storstiiegdfysiklaboratorium (CERN) i
Schweiz/Frankrike. Om Hawkingstralningen kommer att &pkés da vi vet attvantgravita-
tion &r narmare att bli erkand och det ar mycket troligt att Haglkiommer mottaga Nobelpriset
i fysik i Stockholm.

Mitt arbete i denna avhandling behandlar inte kvantgréeiten direkt utan att 6ppna nya
perspektiv pad samspelet mellan svarta hals termodynanhilsearta hals statistiska mekanik
som, om de forstas, mojligtvis kan bana vag till den rattainefor statistisk mekanik for svarta
hal vilket kravs for vi ska ha en fullstandig teori for kvardgitation. Hari anvander vi en
geometrisk metod for att utforska svarta hals termodynaroikhar fatt nya originella resultat,
dvs vi utnyttjarinformationsgeometii synnerhet Ruppeiner- och Weinholdgeometrier) for att
studera svarta hals termiska egenskaper. Vi har anvantetmmegriska metoden att utforska
svarta hal i olika gravitationsteorier t. ex. de svarta haeligt Reissner-Nordstrém och Kerr i
fyra dimensioner samt Myers-Perrys svarta hal som finns r@r generaliserar den allmanna
relativitetsteorin till hégre dimensioner. Vi har ockséditrat svarta hal i tre dimensioner som
kallas BTZ svarta hal, samt dilatoniska svarta hal vilka &ressanta fran superstrangteoriernas
perspektiv.

Vi sammanfattar vara resultat pa foljande satt: Ruppeingikea for Kerrs svarta hal ar
krokt, medan det ar platt for Reissner-Nordstréom i alla rdsdimensioner (de tillhér Myers-
Perrys klass). Det sa kallade BTZ svarta halet har en platt &oppmetrik vilket ar ett forva-
nande faktum. Det dilatoniska svarta halet har en platt Rnpp@etrik men dess termody-
namiska egenskaper skiljer sig fran Reissner-Nordstromusastal. Geometriska monster kan
sammanfattas genom att rita ett diagram for tillstandsremiet tillater oss att dra slutsatser
om de svarta halens extremalitetsegenskaper. Det docket@ginta resultatet vi har fatt ar att
forutse dertermodynamiska instabilitetérMyers-Perrys svarta hal fran Ruppeinergeometrin.
Informationen om sadan instabilitet kwdad ikrékningsskalaren for Ruppeinermetriken.

Vi tror att de resultaten kommer att bli anvandbara i andrarsanhang av svarthals-

\



fysiken eftersom svarta hal numera utforskas inte bara avitgtionsfysiker utan ocksa av
kondenserade materiens fysiker och &ven av kvantinfoomsitysiker. Forhoppningen ar att de
geometriska monster vi upptackt kommer att bli betydandéweintgravitationen ar erkand.

Vi



Preface

I never see what has been done; | only see what remains to be done.

—Buddha

This is a PhD thestsand it contains what | have been doing in the past four andfyéats.

It has been a rather long period of time given the human’ssfii@n but in my mind those years
simply vanished. This is certainly due to many things thatgemed during these years. The
PhD program has profoundly influenced my perspectivespnssand thoughts about life as a
whole. It has also allowed me to be in new places and enviratsni which | could learn not
only physics but also cultures, peoples and various wayieoflimet many great thinketsvho
motivated and inspired me in a number of ways. Half way thhooy PhD program several
things happened that made me pause and think about othgsthoould possibly do in my
life than physics but nothing was stronger than the graeital pull of black holes so | stayed
on my trajectory and this manuscript is a result of my indreglg strong will to follow this
trajectory even farther.

As | always tell my friends and colleagues, black holes amtagdy some of the most
exotic entities encountered in physics of the present tihfgave always been astonished by
their existence. The verbal definition of the black hole igeystraightforward:it is a region
of spacetime surrounded by a boundary known as the eventohnanside which the force of
gravity is so strong that not even light can escape, hence ihvisible The mathematical
definition is not as simple but straightforward as we expeath@matics to be so, and we will
discuss and develop mathematics of black holes as we camytlois manuscript. The history of
black hole physics began in 1784 when John Michell, an Englsrgyman, discussed classical
bodies which have escape velocities greater than the sgdeghb The first scientist who
discussed this problem was Pierre Laplace in 1795 when heedethe gravitational radius
using Newtonian gravity. However serious and systemasiearch in black hole physics might

Lt is supposed to be advanced enough that lay people may detstand the main part of the thesis. So if you
do not know physics at a university level and only wish to kribezsummarized main ideas and outcomes, please
read only this section (you will actually learn a lot abougthiy of black hole physics and this section will contain

only one single equation) and skip the rest or just browseadilge.
20ne of them was Roy P. Kerr who | really had time to chat with.vw#e born on the same date as me but 45
years eatrlier.

vii



not have been as it is today had Karl Schwarzschild not beén salive the Einstein field
equation in a vacuum for uncharged spherically symmetsitesys shortly after Albert Einstein
founded the subject of General Relativity in 1915.

An electro-vacuum solution was found later on by H. Reissner@. Nordstrom in 1918
which is the solution of an electrically charged sphencalimmetric black hole known as the
Reissner-Nordstrom black hole. In 1920 Jgrg Tofte Jehsenunknown Norwegian physicist
from Oslo was the first to discover that the Schwarzschildtswi is the unique spherically
symmetric solution to the Einstein field equation in a vaculater in 1923 George D. Birkhoff
established the same theorem (now known as Birkhoff’s tlmeprehich states that the static
Schwarzschild metric is the unique solution outside anysdasribution, even when this varies
with time as long as the spherical symmetry is maintainéal 1939 the gravitational collapse
of a massive star which produces a black hole was first desthip Oppenheimer and Snyder.

To give a bit more of history, Schwarzschild himself did nedlize that his solution was a
black hole solution and this mathematical solution wasihglaround in the mind of physicists
until 1960s when this topic picked greater attention by Batstern and Soviet physicists. It
was the late John A. Wheeler who coined the term black®haMheeler passed away in 2008
at age 96. The uncharged rotating solution was found in 1963dy P. Kerr, a New Zealander
mathematician, which drove black hole physics into a seriregearch field. It can be said that
in the last 40 years or so the field of black hole physics hasrbeca serious business and a
large number of physicists make their living on this. Themelay now many subfields within
black hole physics ranging from gravitational waves rese&s numerical simulations to black
hole thermodynamics to pure mathematical studies of blatk $olutions. Furthermore black
hole physics is a subject of interest not only to relativimisalso cosmologists, astrophysicists,
string theorists, mathematicians and even some condenreter physicists.

Like most areas of physics there remain puzzles and undoped issues in black hole
physics. To list a few, the black hole information loss pasddthe cosmic censorship conjec-
ture by Penrose and the one related to my research—the ofigire black hole’s entropy. It
Is still far from clear what it is like inside the black holetlalone the statistical mechanics of
this object. We have thermodynamicg black holes thanks to Carter, Bardeen, Bekenstein and
Hawking who founded the subject. However it would not be aered valid to the full unless
one understands the microscopic pictures of them in a densimanner. The lack of statistical

3Jebsen’s publication on the uniqueness proof was indesditshpublication in the field of GR from Sweden.
The examiner of his work was C. W. Oseen, a physics profes&fp@sala University who was the pioneer lecturer
in GR in Sweden.

“In astrophysics, the spherical collapse of the star camsolirin any emission of gravitational radiation.

SBlack holes were known for some time as dead stars or frozes. st

Swhich may not be a problem anymore if one takes Hawking's&ssibn in Dublin in 2004 to the full.

"Thermodynamics is a macroscopic theory which deals aigbhow energy transfers for a given system. For
ordinary systems there are also microscopic pictures wéitistantiate the thermodynamic pictures, namely the
subject known as statistical mechanics.

viii



mechanics of black holes is largely due to the lack of quamhysic$ of black holes which is,
in my view, not going to be solidly established in the neaufet

What | have been actively involved in during past five yeartésstudy of black hole ther-
modynamics using a new approach, namefgrmation geometryMore specifically | employ
thermodynamic geometry known &uppeiner geometrftet’s denote it bygf}) to investigate
certain thermal properties of the black holes. The Ruppgieemetry has a counterpart known
as theWeinhold geometrydenoted b)giVjV. The two geometries are conformally related with a
conformal factor involving the black hole’s temperatufeg as follows

g = %gfjv :
It has been shown by various groups of scientists that tlusgéry encodes certain pieces of in-
formation. For an ideal gas, the Ruppeiner/Weinhold gegmeftat under some conditions but
they are nonflat for systems with underlying statistical haggcal interactions. The curvature
singularites (where the curvatures diverge) signalscaliphenomena such as phase transitions.
| have been studying black hole thermodynamics using thpsageh and have obtained satis-
factory outcomes including a prediction of thermodynantabdity of the Kerr black holes in
higher dimensions.

Readers who are not familiar with the concept of higher dinwrad physics should not
panic as we only study physics in such dimensions theoligtita short it is when the physical
space is higher than 3D which we are used to. Curiously | alstogm to a lower-dimensional
world in which the physical space is less than three. It masfigétly easier to cope with lower
dimensions in terms of doing computations. Simply put, i filatland (3D) and the lineland
(2D) we are able to do several things which cannot be doneeistdmdard (3+1) dimensions.

Since quantum theory of gravity is still in murky water, weplkdo test new ideas which may
give rise to some new insightful perspectives in black hblgspcs. Thanformation geometric
approachis one of the newest ideas in black hole physics.

Stockholm, Kingdom of Sweden
August 20, 2009

8This subject is believed to either emerge from string thewrguantum gravity which is still under develop-
ment. Although attempts to reconcile quantum mechanicsGRdegan already in 1930s we are still far from a
complete framework that combines both theories. The taskhmibining GR and quantum mechanics remains one
of the outstanding problems of theoretical physics.
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Part I:

Background






Chapter 1
Black hole species—a brief review

It is sometimes said that if naked singularities do occur, then this would berdisagor
physics. | do not share this view.

—R. Penrose

In this chapter we will discuss black hole families (solaspconcisely and it is anticipated
that our discussions will be a proper background for bladk tttermodynamics to be discussed
in the next chapter. As promised in the preface we will defitdaak hole in a more rigorous
manner, namely we must define the concegvat horizonvhich is the most important feature
of the black hole. An event horizon is a hypersurface sepparéihe spacetime points that are
connected to infinity by a timelike path from those that are Ade event horizon constitutes
the boundary of the black hole which separates the blackfhahe the outside universe. We
will develop an understanding of this concept as we proceéuback hole solutions in this
chapter.

1.1 Black hole solutions in General Relativity

The first and the most familiar black hole solution of the E&is equation in vacuum is the
Schwarzschild solution [1] named after Karl Schwarzschite discovered it already in 1916.
This solution is static and spherically symmetric (for agoeview see.q.[3])

-1
ds? = — (1 — ¥> dt? + (1 — ¥) dr® + r?dQ3 (1.1)
where M denotes the asymptotic mass of the black hdfe? is the metric on the unit two-
sphereviz. dQ% = df? + sin® Odp? with the following coordinate ranges: € (—oo, 00),

€ (0,00), 8 € [0,7] andp € [0,27]. At the originr = 0 there is a curvature singularity
as may be verified by computing the Kretschmann sc&|gf, 2***°. The black hole’s event
horizon is located at = 2)/ which is also a coordinate singularity (clearly not the klhole’s
singularity) of the metric but can be shifted away using al§gl) coordinate system.g.the
Kruskal-Szekeres coordinateshich are coordinates that cover the entire spacetimefoidni
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of the maximally extended Schwarzschild solution and art-ehaved everywhere outside
the physical singularity. The Schwarzschild black holefteroused as a model for spherical
gravitational collapse. By analyzing the radial light rags0d¢ constant ands? = 0) we find
thatZ = + (1 — 2M) tends to zero as it approaches the regica 2/, see Fig. (1.1). Inside
the event horizon, where < 2M the future light cones point inward, toward= 0 which is
the black hole’s singularity described above. Since pediand photons propagate within or
on the light cones, they cannot escape from such a regiorth&dtarth to become a black hole
the collapse would have to reach its Schwarzschild radiappfoximately 0.88 cm.

world line of particles

1
1
1
1
1
1
1
1
1
! N\,
<> I world line of photons
1
1
1
1
1
1

Figure 1.1:Future light cones in Schwarzschild coordinates outsidar and inside the region
r = 2M, the event horizon. In this diagram the light cones haveesfop far from the event
horizon, but their slope approacheso asr — 2M. It is easy to see from the Schwarzschild
metric that the andr coordinates swap character in the region 2M .

However the figure above does not capture what happens atyinfiamely in an asymptotic
region of the black hole, where the spacetime becomes Miskian. Studying the global
structure of spacetime—in particular the curved ones—aandry difficult. It is useful to
adopt the conformal diagram (often referred tdPasrose-Cartepor just Penrosediagrams) in
which infinities are brought to a finite distanegz.the boundary of the diagram, known &si
(pronounced "scri* due to the fact that it is written as a $Ctlp. In the Penrose diagram light
rays travel att5°. The Penrose diagram of the Minkowski space is depictedgn ER, and
a few things can be read off as follows? ™ (future null infinity) is where the light rays end,
and.# ~is thepast null infinity All timelike geodesics in the Penrose-Carter diagram bagin
the pointi~ (referred to apast timelike infinityand end at™ which is calledfuture timelike
infinity. Nongeodesic timelike curves that end at null infinity argnaistotically null. The
symboli® refers to thespatial infinityat which all the spacelike geodesics end.

Now that we have introduced the Penrose diagram, we can tagraefinition of the black
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Z‘+

J‘F

Figure 1.2:Minkowski space a la Penrose. Note the following symbofstis the future null
infinity, . ~is the past null infinity;* is future timelike infinity,i~ is the past timelike infinity
andi® is the spatial infinity, and they are just points in the diagra

hole as follows: A black hole in asymptotically flat spacedim defined as a region such that
no causal signalfrom it can reach#*. In the Schwarzschild spacetime, the Killfngector

¢ = 0; goes from being timelike to spacelike at the event horizba Killing vector field is null
along some null hypersurfaég then: is a Killing horizon of¢#. Note that the Schwarzschild
solution is time translation invariant for> 2. The Schwarzchild black hole at= oo has the
Minkowskian causal structure. The Schwarzschild soluisom one-parameter family because
it is characterized only by its magg. There are several black hole solutions in GR which are
exact solutions (for a comprehensive review of exact smhstto Einstein’s equations, see [4]).

Figure 1.3:A Penrose diagram for the Schwarzschild black hole spaeetiigzag linesi(= 0)
are the black hole’s singularityy; denotes the event horizon. Note that in the asymptoticat lim
it has the same causal structure as the Minkowski spacehioie. that in the Penrose diagram
each point corresponds to a two-sphere.

li.e.a signal propagating at velocity not faster than the spediglut
2A vector field on a Riemannian manifold (or pseudo-Riemamnianifold) that preserves the metric is called

a Killing vector. Killing fields are the infinitesimal gen¢oas of isometries. In a nutshell, if you move along the
direction of a Killing vector, then the metric does not changhe Killing vectors satisfy/,{,) = 0. For more
discussion, see.g. [2].
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1.1.1 Black hole families in four dimensions

The solution of the Einstein equation in electro-vacuuntepme with imposed spherical sym-
metry is the black hole solution known as tReissner-Nordstrorblack hole solution [5]. It
comes about by solving the Einstein equations coupled tedhece-free Maxwell’s equations,
le.

1
R, — EQWR =T, (1.2)
where the energy-momentum tensor of the electromagnédtidgigiven by
1
T = FnF) — Zgw,FpAFp)‘, (1.3)

with V, F'* = 0 anddy, F,yy = 0. The RN black hole metric is given by

ds* = —f(r)dt* + f~(r)dr® 4 r2d$23, (1.4)
2M Q2
where f(r) = 1 - — + —. M and@ are ADM mass and charge of the RN black hole

respectively. The RN metric has a curvature singularity at 0. Note that the Ricci scalar of
this spacetime is vanishinge. R = g, k" = 0. This is due to the fact that,, is traceless.
The electromagnetic fields associated with this solutiengaren by

s Q@

Er - Frt - 47'('7"2’ (15)
which comes from solving the Maxwell equations in vacuunis tibvious from (1.5) thad) is
the ADM charge® We can verify it by showing that the integration of the elictield over the
two-sphere at infinity gives rise to an electric chaige,

@ = — lim df dyp r? sinf E". (1.6)

r—o0 [g2
The event horizon of the RN black hole is obtained by solvirg-fivom the equatiorf(r) = 0
whose solution is given by the charge of the black hole.

re =M+ /M2 — Q2 1.7)

which is where the Killing vector becomes null. There are twots», which is the outer
horizon and- = r_ which is a hypersurface known as the Cauchy horizon [7]. Thetfan
f(r) might have one, two or no real zeroes depending on the relasilues ofA/ and( as
follows:

3]t is worth pointing out that the ADM (Arnowitt-Deser-Misneconserved charge [6] is a surface integral eva-
luted at spatial infinity, which is used when one consideysmgotically flat spacetime. In other words, the ADM
mass is a component of the four-momentum of asymptoticatynflanifolds. The ADM energy is a component of
the ADM four-momentum. If the black hole is static, the ADM ssds identical to the ADM energy. The ADM
charge is also given by a surface integral.
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e M? < () This is when we have a naked singularity [8] which is unphgisfoom the
cosmic censorship conjecture [9]. The RN black hole in thseoaould not be formed
by any gravitational collapse.

e M? = (> We have the so-called extremal RN black hole. For astropalysicmacro-
scopic black holes this seems to be an unlikely situationwé¥er the extremal RN
solution is interesting because it has a supersymmetry.

e M? > () Thisis a case expected in realistic gravitational colldpgehe chargé) would
be very small on an astrophysical scale. The surfaces ddiyned are null and they are
outer () and inner {_) horizons. However the singularity at= 0 is timelike, not
spacelike surface as in the Schwarzschild solution.

Black holes can also rotate. The uncharged rotating blackisdtnown as th&err black
hole [10]. The black hole that is electrically charged an@ting is named th&err-Newman
black hole [11,12]. The metrics describing the Kerr and K¢ewman black holes are more
complicated than the RN and Schwarzschild metrics. The ttaomal field of the Kerr black
hole with nonzero angular momentum is described by an axisgtmc solution which, in
Boyer-Lindquist coordinates, takes the form

PR A apisin2 edtQ B 2a2M7"pszin2 th dy
MUy p CASY 2gag? %Zer + phde?,  (L.8)
wherea = J/M is angular momentum per unit mass and
A=7r?—2Mr+d?, (1.9)
p® =1+ a*cos? 0. (1.10)
Its event horizons are (assuming that< M?)
re =M+ VM? = a2 (1.11)

The Kerr metric or Kerr solution is stationary (but not stptand axially symmetric and has
two horizonsi.e. outer and inner horizons. In between the event horizon amdtetic limit
lies the so-calle@érgospheranside which nothing can remain stationary. The area of Yeate
horizon of the Kerr black hole is given by = 47r%. The Kerr black hole family is of most
relevance to the real world as it has been confirmed that #irersome black holesg.in the
center of the Milky way which are near-extremal Kerr blackeso Note also that the Kerr black

4The static limit is the surface of the ergosphere wigre) becomes null.
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ergoregion static limit surface

Figure 1.4:Horizon structure around the Kerr solution (side view). é&Nttatr = 0 is not a
point in space but a disk and it is sometimes callad singularity because it spreads out over
the ring.

hole solution is meaningful when < M?. The solution becomes extremal whén= /% and
such a black hole solution is called an extremal Kerr blade.htt is readily seen that when
a = 0 we recover the Schwarzschild metric.

The black holes we have discussed so far are asymptoticallylick holes in GR (assuming
the cosmological constant, is zero). However they also exist in the background wites€ 0.
Black hole solutions in the background in whigh< 0 are calledAnti de Sitter(AdS) black
holes which are relevant to string thedrywhereas the black hole solutions in the background
in which A > 0 are calledde Sitter(dS) black holes, which are relevant to cosmology.

1.1.2 Higher-dimensional black holes

The idea of higher dimensions dates back to the work of Kdli&pand Klein [16] in which the
tiny extra dimensions are compactified and can be probedvatityery high energy. However
it was not until 1963 that black holes were studied in highereshsions,.e. when Tangher-
lini [17] was able to obtain a vacuum solution of the Einstequation in higher dimensions,
essentially the Schwarzschild black hole in arbitrary disien. In 1986 Myers and Perry [18]
found asymptotically flat black hole solutions in an arbsgraumber of spacetime dimensions
which we from now on refer to as thdyers-Perry black holeln recent years the black hole
solutions have been studied extensively and some new diseswere made, an important one
being theblack ring solution. We can safely say that GR in more than four spaeetirmen-
sions has been the subject of constantly increasing aitenfihere are various reasons why

5The context in which the AdS space is very interesting tmgttiveorists is known as thedS/CFT correspon-
dence[14] (Anti-de-Sitter space/Conformal Field Theory copesdence)a.k.a. Maldacena dualityThis is the
conjectured equivalence between a string theory definecherspace (5D gravity), and a quantum field theory
without gravity (say, supersymmetric Yang-Mills theorgfithied on the conformal boundary of this space, whose
dimension is lower by one or more. This conjecture comes biliteoholographic principle of string theory in that
the Yang-Mills theory can be thought of as a hologram on thendary of the 5D space where gravity takes place.
and that the quantum field theory is a conformal field theoliyT(IC
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we should study Einstein’s gravity theory in higher dimensi, and in particular its black hole
solutions. | would like to quote Emparan and Reall [20]:

1. String theory contains gravity and requires more tham émensions. In fact, the first
successful statistical counting of black hole entropy mngttheory was performed for
a five-dimensional black hole. This example provides the laé®ratory for the micro-
scopic string theory of black holes.

2. The AdJS/CFT correspondence relates the propertiesiadimensional black hole with
those of a quantum field theory (i — 1) dimensions.

3. The production of higher-dimensional black holes in rfatcolliders becomes a conceiv-
able possibility in scenarios involving large extra dimens and TeV-scale gravity

4. As mathematical objects, black hole spacetimes are athengost important Lorentzian
Ricci-flat manifolds in any dimension.

As a matter of fact the higher-dimensional black holes areen than their counterparts in
4D due to more rotational dynamics and the appearance afigadtieblack objects. It is also
worth mentioning that gravity is more difficult i > 4 due to the larger number of degrees of
freedom, and there are issues of black hole instabilitiesindre absent for 4D black holes. In
brief, the physics of higher-dimensional black holes camiguely different and richer than
in four dimensions. A number of reviews on the subject arelabie, seee.g.[20-22]. The
electrically charged non-rotating black hole solution rbitkary dimension in a background
with a generalized cosmological constant is obtained byisgifor the field equation from the
Einstein-Maxwell action

S = L / dPx\/=g (R — 2\ — F?), (1.12)
M

167G

where we have defined

(D—-1)(D—-2)A

5 :
GG is Newton’s universal gravitational constagta determinant of the metric tensor and the
negative sign under the square root is there to preventit freing imaginary due to the metric
signature R is the Ricci scalar whereds’ represents the modulus of the Maxwell field-strength
tensorF), = 20,4,), whereA, is the electromagnetic vector potential. The field equation
derived from (1.12) gives the Einstein-Maxwell black hatéusion with cosmological constant
in the following form

A= (1.13)

(D —1)(D - 2)A

G + G = 87T, . (1.14)

6At the moment there is no experimental data available at # Jcale but facilities are being set up at
CERN (European Organization for Nuclear Research). Updatel detailed information can be acquired from
WWw. cer n. ch.
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The field equation for the Maxwell field takes the same form1a8)( However in arbitrary
dimension the energy-momentum tensor is not tracelesscdimeaction off},, with the con-
travariant metric tensor gives

T =—(D—4)F? (1.15)

which obviously vanishes in the ordinary spacetime dinearssi In this thesis we will only deal
with the higher-dimensional black holes in a backgroundheut A, in which the most general
static solution with spherical symmetry is given by

ds® = — f(r)dt* + [~ (r)dr? + 1r°dYp ), (1.16)

wherer is a radial coordinatel(2¢;, ,, is the line element of a unitD — 2)-sphere whose area
Is given by
9 (D-1)/2

N0 1/2) -17)

Qp-2) =

wherel is the Gamma function [19]. This solution is indeed the RN klaole solution in
higher dimensional spacetime. The functifim) is given by

1 ¢

rD=3 " ,2(D=3)"

(1.18)

The mass parametgrand the charge parametgare the ADM mass and charge respectively.
They are related to the mass and electric charge of the RN htalelas follows:

167GM

D2 42
8¢
q= \/(D D= 3)Q. (1.20)

An event horizon of the RN black hole is whefér) = 0 which can be solved analytically in

any dimension.
2
W(Hiﬂ 1_4i) | (w21

We useG = QF), , /167 in order to eliminate all the’s under the root in (1.19) for the sake
of simplicity in further calculations. Note that stands for the RN black hole’s outer horizon
whereas-_ refers to the Cauchy horizon. It is worth noticing that

PP P = and PP = 2 (1.22)
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This equation can be expressed in terms of the ADM mass, elzarg dimension as follows

MQp_ D -2 @©?
D-3 (D-2)
=—"1|1 l-— 1. 1.2
"+ 2(D—2)( +\/ 2(D—3)M2> (1.23)
The RN black hole becomes extremal when
Q* _2(D-3)
—_ = 1.24
M? D -2 ( )

We can readily see that it = 4 the extremal limit is9? = M? as we already know.

1.1.3 Kerr black hole a la Myers-Perry

Owing to the fact that there is the possibility of rotatiorsgveral independent rotation planes
[18], the spinning (Kerr) black hole in higher dimension Inagre than one rotation plane. We
refer to the Kerr black hole in higher dimensions with mor@tlone angular momentum as the
multiple-spin Kerr black holeThe metric of this black hole in Boyer-Lindquist coordirater
odd D is given by

Ir

2
2 2 2 2 2 2 7172 pure - 2 77\2 2
where 9
di = dt — " ar, (1.26)
@
dé ¢+H—m’2r2+a?r ( )
with the constraint
p?=1. (1.28)
The functiond] and F' are defined as follows:
(D-1)/2
II= H (72 + CL?),
i=1 (1.29)
aZu?
F=1- -
r2 4+ a?

%

The metric is slightly modified for even D [18]. The event lzoms in the Boyer-Linquist
coordinates will occur wherg”™ = 1/g,, vanishes. They are the largest roots of

II—pur=0 evenD (1.30)
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O—pr*=0 oddD (1.31)

For an arbitrary D the position of the horizercannot be solved analytically. Myers and Perry
showed that the properties of the Kerr black hole in D dimamsare similar to thatin 4D. Note
that for D > 6, black holes can exist with arbitrary large angular momentor a fixed mass.
This is owing to the fact that there is no Kerr boundiin> 6 in the same way as in 4D.

1.1.4 Blackrings

Sl

Figure 1.5:Black ring in 5D with the horizon topolog§* x S*

The 5D MP Kerr black hole has an event horizon withtopology. However we can also
have the so-called black ring solution [23-25] due to the fhat there is the possibility of
rotation in several independent rotation planes [18]. &isced by Emparan and Reall in 2001
this solution is the asymptotically ffablack hole solution with the event horizon’s topology of
St x S2. The S! describes a contractible circle, not stabilized by topwlbgt by centrifugal
force due to rotation. The solution is regular on and outtieevent horizon provided that
it has angular momentum along tl§¢ direction. This construction can also be, heuristically,
understood as: take a piece of black string, withx R horizon, and curve it to form a black
ring with horizon topologyS? x S!. Since the black string has a tension, then $hebeing
contractible, will tend to collapse. But we may try to set thyrinto rotation and in this way
provide a centrifugal repulsion that balances the tensidns turns out to be possible in any
D > 5, so we expect that non-spherical horizon topologies arenargefeature of higher-
dimensional GR.

1.1.5 Dilaton black holes

The dilaton black hole solutions can be obtained from thedowrgy action of string theory [27]
by dropping all the fields except the mettjg,, the dilatod scalar fieldp and a Maxwell field

"Recently the black ring solution in AdS background has beend using approximate methods [26]

8t is a hypothetical elementary particle having zero maskzamo spin, which is introduced in constructing a
scale invariant theory involving massive patrticles. lingfitheory this particle arises naturally in the low-energy
spectrum. So far it has never been observationally verified.
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F,,. The main results on the dilaton black hole are given in [ZBhe black hole solution
coupled to a massive dilaton was also obtained by Horne amo\iz in the early 1990s [29].
Dilaton black hole solutions in dS and AdS spacetimes ardiextuin [30—32]. The rotating
dilaton black hole solution was found by Horne and Horow3][in 1992, in which they
discussed how a small amount of angular momentum can diwaltachange the properties
of extremal charged black holes coupled to a dilaton. This also further discussed in [34],
where explicit solutions were obtained when the couplingupeeter took either of the special
solutionsa = 0 or a = /3. It was argued that these values correspond to minimal owsgbf
the theory withu = 0 corresponding to no dilatonic coupling as in the RN solutarga = /3
corresponding to the minimal coupling of a five-dimensiagw@ution. Further evidence for the
special nature af = /3 also appeared in [35]. The more general case of dilaton thalgs in
higher spacetime dimensions is discussegin [36, 37].

The case ofi = 1 corresponds directly to a solution obtained from the lowrgpdimit
of string theory coupled to an Abelian gauge field. This cogphrises when we transform
from the string frame to the Einstein frame via a conformateding of the metric. The dilaton
arises naturally in this context as the zero mode of the dleséng and uniquely determines the
string coupling through the relation = !¢, where(¢) denotes the vacuum expectation value
of the field. The action for the 4D dilaton gravity is slighthodified from that of pure Einstein-
Maxwell gravity in that it has an electromagnetic field cagpto the dilaton scalar, hence there
is an additional kinetic term to consider. It can be seenke the following form in the Einstein
frame (see Appendix B for a transformation between Einstaohstring frames) [38]

S = / d*z/=g [R—2(V¢)* — e > F?] (1.32)

with a being the dilaton coupling constant, afd = F,,, ['**. We will also assume that > 0
as there is &, symmetry for the dilaton allowing us to exchange— —¢. It should be noted
that the only known values afarising from supergravity theories are= 0, ig, 1 and+/3, with
the second example arising from black string solutionserbstingly it is known that when we
takea > 1 the corresponding extremal black hole solution can bepné¢ed as an elementary
particle [29].

The metric for the dilaton black hole is given by

ds® = —f(r)dt* + Jfl(—g + R?(r)d<s, (1.33)
where we have defined
Fr) = (r= T‘})%(; —) (1.34)
and o (L)
R(r) = r (1 - %) ’ (1.35)
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The horizon is located at = r, and there is a singularity at= r_ for a # 0. The extremal
limit of this black hole occurs at, = r_. Note however that the extremal limit of the dilaton
black hole does not admit th&d.S; x S? geometry unlike its counterpart with= 0, i.e.the RN
black hole. In fact the extremal limit of the dilaton blacké&bas a timelike naked singularity.
The ADM mass and charge of the solution are

r. l—a?r_
M=— — 1.36
ror—
= : 1.37
¢ 14 a? (1.37)
Solving these expressions for andr_ we obtain the following
QQ
T’+:M‘|‘M\/1—(1—CL2)W7 (138)
2 2
S L i (1.39)
r+
The condition-, = r_ can be written in terms a¥/ and(@ as
2
= =14+d> (1.40)

M2

1.2 Lower-dimensional black holes

1.2.1 BTZ black hole

When the cosmological constant is zero, a vacuum solutio?+df)¢dimensional gravity is nec-
essarily flat and one expects no black hole solutions. Hom@Eaek hole solutions were shown
to exist for a negative cosmological constant in 1992 by Bafateitelboim, and Zanelli [39],

hence the name. The BTZ black hole is remarkably similar to(8t€.)-dimensional black

hole. Much like the Kerr black hole it contains an inner andater horizon. It has "no hairs"
and is fully characterized by ADM mass, angular momentum @raitge. However the BTZ
black hole is asymptotically adS whereas the 4D Kerr satutian be asymptotically flat. For
a comprehensive review on BTZ black holes, sag [40,41]. The line element of the BTZ
black hole can be written as

ds® = —N2(7")dt2 + N_2(r)d7“2 + TQ(N‘Pdt + dgp)Q, (1.412)

where
N*(r)=-M+ —+-—, N =——"— (1.42)
r T
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with ¢ € (—o0,00), 7 € (0,00) andy € [0,27]. N?(r) andN¥ are called the squared lapse and
angular shift respectively. The event horizons can be nbthby solvingV?(r) = 0 and take
the form:

ry = %(1 L) (1.43)
where
J 2
A=4[1- (ﬁl) (1.44)
with imposed conditions that
M >0 and |J| < MI. (1.45)

In the extremal casd = |MI|, the two event horizons coincide. Note tHat the radius

of curvature which provides the length scale in order to rdivgensionless mass. The BTZ
black hole is similar to its (3+1) counterpart, the Kerr smin. The BTZ black hole has an
ergosphere, namelyy = Iv/M and an upper bound in angular momentum for any given
mass. The spacetime geometry of the black hole is one of auinségative curvature, so it is
locally that of adS space. The BTZ black hole can only diffenfrthe adS space in its global
properties [39].

1.2.2 Two-dimensional black holes

In 2D the Einstein action is topologically invariant, anchés no dynamical content. To add
dynamics to the system we include the dilaton fields hensesibinetimes known &b dilaton
black holé. The action reads

Lpa = ﬁ / dx/—g (XR+U(X)(VX)*-2V(X,q)) , (1.46)

whereX is a scalar field (dilaton)/, V' are arbitrary functions thereof defining the model and
R is the Ricci scalar associated with the 2D metgic. The functionV” additionally depends on

a parameteg which may be interpreted as charfeln this way charged black hole solutions
can be described, including the RN black hole. We shall emipleydefinitions

Q(X):/ U(z)dz, w(X,q):/ eV (2, q)dz . (1.47)

The quantityw (X, ¢) is invariant under dilaton dependent conformal transfaiona. In terms
of these functions it can be shown that the solution for the-Blement in Eddington-Finkelstein
gauge reads

ds? = 29X du (dX — (w(X,q) + M)du) | (1.48)

9For a comprehensive review &.g. [42,43].
10sych a dependence gremerges for instance if one introduces in 2D an abelian Mixamen and integrates
it out exactly. Its only remnant is the conservé(l) chargeg which enters the potentiad!.
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whereM is a constant of motion corresponding to the mass. Killingzoms emerge for
w(X,q)+ M =0. (1.49)

The solution of this equation for the outermost horizon isated by X = X,.

1.3 Tidal charged black holes

Black hole solutions arise also in brane-wétidravity models [44]. There are many brane-
world scenarios, but in the simplest gravity model evolves curved 5D space-time (the bulk),
which contains a temporal 4D hypersurface (the brane), aohnddl the fields of the standard

model are localized. Gravitational dynamics on the brargoierned by an effective Einstein

equation [45, 46]. The most well-known brane black hole esgpherically symmetric vacuum

tidal chargedblack hole, derived in [47]:

ds* = —f (r)dt* + f~" (r) dr® + r*dQ;. (1.50)

The metric functionf is given as

f(r)zl—%—l-g. (1.51)

r 72

Such black holes are characterized by two parameters: ttess)/ and tidal charge. The
latter arises from the Weyl curvature of the 5D space-tinte which the brane is embedded
(more exactly, from its "electric" part as computed with exgdo the brane normal).

Formally the metric (4.93) agrees with the RN solution of assplally symmetric Einstein-
Maxwell system in GR, provided we replace the tidal chaydey the square of the electric
charge@. Thusq = ? is always positive, when the metric (4.93) describes thesphlly
symmetric exterior of an electrically charged object in GR dBwtrast, in brane-world theories
the metric (4.93) allows for any sign qf A positive tidal charge weakens the gravitational
field of the black hole in precisely the same way the electhiarge of the RN black hole
does. A negative tidal charge, however, strengthens thatgtianal field, contributing to the
localization of gravity on the brane.

The structure of the tidal charged black hole in the aase 0 is in full analogy with the
general relativistic RN solutidA. Forgq € (0, M?) it describes tidal charged black holes with
two horizons, located at. = M + /M2 — g, both below the Schwarzschild radius. For
g = M? the two horizons coincide at = M (this is the analogue of the extremal RN black
hole). Finally there is a new possibility (but unphysicalGR) due to physical considerations on

1According to string theory, we may be confined in a branewasldich is a sub-universe embedded in the
higher dimensional bulk universe.

2In making analogy with the RN black hole one can also considerBorn-Infeld black holes, which is a
nonlinear generalization of the RN black hole [48]
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the smallness of the electric charge. This is wihen M2 for which the metric (4.93) describes
a naked singularity. Such a situation can arise wheneven#ss\/ of the brane object is small
enough, compared to the effect of the Weyl curvature expreas a tidal charge. If we assume
that the tidal charge is a more or less global property of the brane, then the laftercontain
many black holes of mas¥ > ,/g.

For anyq < 0 there is only one horizon, at. = M + /M? + |q|. For these black holes,
gravity is increased on the brane by the presence of the dltiige. This again contributes
towards the localization of gravity on the brane.

Work on the tidal charged black hole includes the matchirth am interior stellar solution,
a procedure requiring a negatiyg49], the study of weak deflection of light to second order
in both parameters [50], a confrontation with solar systestst[51], and the evolution of thin
accretion disks in this geometry [52].
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Chapter 1. Black hole species—a brief review




Chapter 2
Black hole thermodynamics

I believe that in order to gain a better understanding of the degreesedbineresponsible
for black hole entropy, it will be necessary to achieve a deeper uadeliag of the notion
of entropy itself.

-R. M. Wald

This chapter concerns the subject of black hole thermodisgwhich has been studied
extensively during the past four decades. This is a fieldrtaatbeen generating surprises since
its first emergence. There have been strong hints that thergesy deep and fundamental
relationships between gravity, thermodynamics and qumatieory (for a review on black hole
thermodynamics, se=g.[53]).

The history of black hole physics reached a climax when Hag/kliscovered that black
holes were actually not blackge. a black hole radiates as if it were a black body. This phe-
nomenon was well described in his world renowned book ‘Aftristory of time’ [54]. Hawk-
ing himself had a hard time believing the truth he uncoveresd fike the community then.
Hawking was even told by the chairman of the session at théepemce where he first pre-
sented his calculations that his results were all nonsense.

As a matter of fact, before Hawking’s startling discovergréhwere already pieces of infor-
mation that suggested that black holes could be thought thfegisrodynamic systems, namely
J. Bekenstein—then a research student at Princeton—seddgbst the area of the event hori-
zon was a measure of the entropy of the black hole [55]. We dvoat enjoy the rest of the
chapter as much if we conceal the truth that Hawking was ihdeiéated by Bekenstein’s claim
even though Hawking had shown before that in fact the area efant horizon can never de-
crease under quite general assumptions![5&k written clearly in his very famous book, he
felt Bekenstein misused his findings to claim that the suréaea of the black hole was related
to its entropy. One year after Bekenstein, Hawking togeth#r Bardeen and Carter wrote a
paper on black hole mechanics [59] discussing also sirmdarbetween entropy and the area
of the event horizon motivated partly by his irritation wilekenstein. The contribution of
Bekenstein was later acknowledged by Hawking after thelisigqudiscovery.

Hawking proved that if there are no naked singularities, diess sectional area of a future event horizon
cannot be decreasing anywhere.



18 Chapter 2. Black hole thermodynamics

In a compact (mathematical) language we will recast thetystescribed above as follows:
Bekenstein claimed that

whereA is the surface area of black hole which is directly relatetheogeometry of the event
horizon. The event horizon is characterized by a quantjtgnown as the surface gravityThe
surface gravity is uniformly constant over the event harizd@he black hole’s surface gravity
seemingly hagemperature-likeproperties in that it has absolute zero, arbitrary scaleiand
defined in equilibrium. We can thus suspect that the blac&'stémperature is proportional to
its surface gravity

Thy X K. (2.2)

Now the great contribution of Hawking to black hole physiatespite all the surprises and
initial incredulity—is that he convincingly and systencatily derived the proportionality con-
stants [60] for both Egs. (2.1) and (2.2) by the method of guarfield theory on a black hole
background. The temperatdref the black hole 4.k.a. Bekenstein-Hawking just Hawking

temperaturgis therefore given by
hk

Ty = —
B onckp’

(2.3)

wherekg is the Boltzmann’s constant and the Bekenstein entropy (nawhkras Bekenstein-
Hawking entropy)
Cgk'BA

TET
where A refers to the area of the black hole’s horizéhthe Newton’s gravitational constant,
andh the Planck’s constant. As a quick and simple exercise (weonsenatural units here),
we derive temperature and entropy of the Schwarzschildkiflate. Since the surface area of
the Schwarzschild black hole is given by

(2.4)

A = 4mr? = 16w M?, (2.5)

hence the entropy can be easily calculated to be

S = 4M2, (2.6)

usingkp = 1/7. Next the temperature of the Schwarszchild black hole isrglyy

oM 0S5\ ! 1
“ﬁﬁ(m>—m~ 2.7)

2For more detailed information, see Appendix A.

3There exists an analogous effect in flat spacetime, knovnash effect in which an observer moving at an
acceleration in a flat spacetime will record a temperatuopgtional to the magnitude of his acceleration. See
e.g. [58]. This result is also based on quantum field theory.
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One can clearly see that the larger the mass the lower theetatope. Should we be able
to measure the black hole’s temperature it would be fromtzeragmall black hole instead of
supermassive black holes. Another way of computing the égatpre is to work out the surface
gravity x (see detailed discussion in Appendix A) and insert it in RgB)in order to obtain the

black hole’s temperature. The Schwarzschild black hole has

1
S 2.8
K=o (2.8)
thus we see that the resulting temperature coincides wétltie calculated in Eq. (2.7).
For the sake of completeness we will compute the Hawking &atpre of an astrophysical
black hole as follows:
T—LNGQXH)_S%K (2.9)
T RnGkgM T M '
where M, = 1.98892 x 103" kg is the solar mass. This is utterly negligible for largechla
holes—the black hole absorbs much more from the microwaek&dvaund radiation than it
radiates itself. In the case of the rotating "Kerr" black htte Hawking temperature is reduced

by the rotation, explicitly [13]

fik M R ki
Th=——=211 2.10
H 27T]€B ( + M2—a2) 87‘(’]\4]{33<87’(’]\4I{ZB7 ( )

wherea = J/M. For the RN black hole, one has

hk Q* h h
T = =(1- = : 2.11
H 2mkg < Ti) 8rMkg < 8rMkg ( )

Thus, electric charge also reduces the Hawking temperafiga conclusive remark one can
safely say that the Hawking radiation plays no role in theea#darge-sized black holes. The
only type of black hole where one can hope to observe thigtiadiis the so-called mini black
hole, which may have formed in the primordial stage of thevdrge. It has been recently
discussed how to observe the Hawking radiation from bladk hoalogse.g. from acoustic
black holes in atomic Bose-Einstein condensates [61].

It is important to note that black hole thermodynamics restghis no-hair theoren{62]
which states that the final state of a gravitational collapsa stationary state characterized
by a small numbérof parameters. In other words the stationary black hole serleed by a
geometry specified merely by the macroscopic parametelsasit/, J and(@. Based on the
fact that the black hole is stationary (equilibrium) we cafire the black hole’s temperature
since the surface gravity can be defined only when we haveitheghorizon where the norm
of the Killing vector goes null in a spacetime [63].

“much like a given thermodynamical system in equilibrium etthis characterized by a small number of pa-
rameters only.
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S(M, J,Q)

Figure 2.1:A final stage of GR black hole in four dimensions in equililmius governed only
by a few control parameters. Its entropy is simglM, Q, J).

2.1 The laws of black hole thermodynamics

The laws of black hole thermodynamics were written down as@mapare the laws of black
hole mechanics in GR with the laws of thermodynamics. Duééoltiack holeno-hair the-
orems(see,e.g. [64]) we can establish thamechanically conserved paramet@fsstationary
black holes (black holes in equilibrium) are analogous &sthte parametersf ordinary ther-
modynamics. In the corresponding laws, the role of enefgyis played by the massy/, of
the black hole; the role of temperatui®, is played by a constant times the surface grawvity,
of the black hole; and the role of entrogy, is played by a constant times the arda,of the
black hole. The fact that’ and M represent the same physical quantity provides a strong hint
that the mathematical analogy between the laws of blackinelehanics and the laws of ther-
modynamics might be of physical significance. The constaftiementioned are fixed thanks
to Hawking's startling discovery [60].

The four laws of black hole thermodynamics

We can write down the four laws of black hole thermodynamg&#ows:

1. Zeroth law
The black hole’s physical temperature (we now denote ifhyis given by

Ty = - (2.12)
21

wherex is the black hole’s surface gravity. This formula coincideth 7" = % provided

one has the fundamental relation.

2. First law
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This law is concerned with the mass (energy) chandé,when a black hole switches
from one stationary state to another.

dM = (i> dA + "work terms". (2.13)
8
or
dM = Ty dSgy + "work terms" (2.14)

It is readily seen that the above equations are analogohe fiirst law of thermodynam-
ics, i.e.
dE =TdS + "work terms" (2.15)

And the entropy of the black hole is thus represented by aeuafthe area of the event
horizon A

Son = - (2.16)

The "work terms” are given differently depending on the typée black holes. For the
Kerr-Newman black hole family, the first law would be

AM — <i> dA +QdJ + ®dQ. (2.17)
8

where(? is the angular velocity of the hole adds the electric potential which are defined
at the horizon by

oM

Q=— 2.18
aJ Y ( )
oM

= 2.19
50 (2.19)

3. Second law
In any classical process, the area of the event horizon duietecrease
0A >0, (2.20)

nor does the black hole’s entrogyg. The second law relies on theeak energy condi-
tion given by

T, 0" >0, (2.22)

wherev” is any timelike vector. Note that the second law of black hb&¥modynamics
(mechanics) can be violated if we take into account quantfiects, i.e. the Hawking

radiation. This is because the area theorem proven by Hawking restseceniergy con-
dition. Gedanken (thought) experiments show that sinceetiseblack hole radiation in
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nature, there must be arise in entropy in the surroundinigme¢n order not to violate the
second law of thermodynamics, Bekenstein [55, 56] introdube so-calledjeneralized
entropy S’ to account for the entropy of this sort and it is defined as

S" = Spu + S, (2.22)

wheresS,, is the entropy of the surrounding matter. The statementasvkras theGen-
eralized Second La{GSL)
65" > 0. (2.23)

The ordinary second law seems to fail when the matter is drpmo a black hole be-
cause according to classical GR, the matter will disappdararspacetime singularity,
in this manner the total entropy of the universe decreast®eas is no compensation for
the lost entropy. The virtue of the GSL keeps the law of entradid as the total entropy
of the universe still increases when that matter is dropptxthe black hole.

4. Third law

The third law of thermodynamics also has an analog in blad& pbysics, namely the
surface gravity of the horizon cannot be reduced to zero imigefnumber of steps.
There is a Planck-Nernst form of the third law of thermodyrm@mwhich states that
S — 0 asT — 0. The analog of this law fails in black hole mechanics sinezdtexist
extremal black holes.g. black holes withx = 0) with finite A. However, there is good
reason to believe that the Planck-Nernst theorem shouldengiewed as a fundamental
law of thermodynamics [65] but rather as a property of thesdgrof states near the
ground state in the thermodynamic limit, which happens tedtie for commonly studied
materials. Indeed, examples can be given of ordinary quasistems that violate the
Planck-Nernst form of the third law in a manner very similarthe violations of the
analog of this law that occur for black holes [66]. Other epéen are frustrated spin
systems systems which violate the Planck-Nernst versidimeothird law [67].

2.2 Black hole in a box

Let’s consider a Schwarzschild black hole in an unspecifiednal bath emitting black body
radiation at temperaturé..q. As long as the Hawking temperature of the black Hblg =
T..a then we have an equilibrium. However if the size of the thérbadh is large then the
equilibrium is unstable. The situation is as follows: if veay, let a black hole absorb less
energy than it has radiated away then its mass diminishgstislibut its temperaturégy will
increase resulting in a further increase of the radiatite aad a further reduction of the black

5One can imagine that this can happen randomly.



2.2. Black hole in a box 23

hole’s mass. However a random fluctuation that increasem#es of the black hole reduces
its temperature (and the rate of Hawking radiation) whictangethat the radiation accreted
onto the black hole becomes the dominating process. So wethavpossible situations for
the Schwarzschild black hole in an unspecified thermal beitiner complete evaporation of
the black hole or an unlimited growth of its size. This chésastic is due to the black hole’s
negative specific heaThe formula is well-known

OM aS or\ 2MN\ !
oo U () () 220

For the Schwarzschild black hole it is easy to see that —M?2. This property is character-
istic for systems with long-range attractive fora@eg.gravitating bodies. Black holes are self-
gravitating systems and like most such systems they exhdgative specific heats, in which
case they must be treated in microcanonical ensemble. Thémvever some exceptiang.
the BTZ black hole whose specific heat is positive. Note alsb $ystems with long-range
interactions are not extensive in nature,

S(AU, \V) £ AS(U, V), (2.25)

where is a scaling variable.

Now we can render the situation differently if we put tilack hole in a boxviz. we allow
the black hole to be a part of a finite-size thermodynamicesystlf the total energy is fixed
within this box, it is shown that a stable equilibrium configiion can exist [74]. In this case
we have the black body radiation and a black hole, both a tesere’’, then the energy and
entropy due to the radiation are given by

Frpqa = oVT?, (2.26)
4 3
Siad = 5aVT , (2.27)

whereo is the Stefan’s constant, andthe volume of the box. The condition of stable equilib-
rium is achieved by maximazing the generalized entropy

4
Stot = SBH + Srad = 4M2 + gO-VTS (228)

for a fixed value of total energy

Eiot = Mpy + Eroa = M + aVT™. (2.29)

There are two scenarios to consider, one where there is only a black body radiation and the
other one in which there is a stable configuration where thekbhole is in equilibruim with
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the black body radiation. In the latter the radiation anctklaole temperatures coincidies.

8MT = 1 which is obviously the temperature of the Schwarzschildlbleole. The equilibrium
2

is stable |1‘ﬁ < 1. However since we cannot "naturally” fix the volume of the bibxs
suggestive tﬁat black holes in nature live in canonical e,

It is also worth mentioning that a black hole in AdS backgrbean have positive specific
heat when it is large compared to the AdS space’s radiusswiksl specific heat is negative
when itis small. There is a critical temperature in whicls thccurs and this transition is known
as theHawking-PaggHP) phase transition [75]. The AdS space can be undersgsadme sort
of box for the AdS black hole, and hence we can imagine thaBifi& black hole lives in an
AdS box. If one considers the specific heat plot of the bladk oquestion, the HP transition
Is where the specific heat changes from negative infinity ®tpe infinity at the minimum
temperature. In fact the research in the discipline of blaak thermodynamics has developed
significantly since the work of HP. In particular, the phasasition of the AdS black hole in
5D inspired by string theory has generated renewed attebi&gause it relates to confining-
deconfining phase transition on the gauge theory side thrthegAdS/CFT duality [76].

2.3 Mass of the black hole

In our research program we need the fundamental relatiorxphicé form, which satisfies
the first law of black hole thermodynamics. However commutime black hole’s mass can be
complicated for certain spacetimes. As discussed earBeshewed that electric charge is given
by a surface integral at infinity. In GR we normally use the Afdvimula [68] to compute mass,
which is the surface integral at infinity. For the result todoasistent one always has to check
that it satisfies the first law of thermodynamics. In 1972 L.aBnj69] was able to obtain the
mass of the Kerr black hole (later the generalized formuléhfe mass of black hole is known as
theSmarr mas$ormula). There have been papers dedicated to studyingamassarious black
holes. In general, working out the black hole’s mass can mgticated task. In 4D there is
a generalized Smarr formula that includes the negative olugjital constant (Kerr-Newman
black hole in AdS Space). Fortunately, the mass formulalHerKN AdS black hole can be
expressed in a fairly compact form given by Marco CaldaréliCognola and D. Klemm [70].
They use the formulas given in [71] and obfain

\/_ AS Q2 4.J2 AS
— |1 - — 2.30
5) % (-F) @30
This is the mairfundamental relatiorfor our study in this thesis. Having the mass function

expressed explicitly in terms of other control parameters can invert it to obtain the entropy
formula. We can also use the Bekenstein-Hawking entropy kmgpthe outer horizon radius of

5The mass formula in Eq. (2.30) is not as presented in the japEbut a more compact form we discovered.
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Kerr-Newman AdS
S(]\/'L ‘]7 Q* A)

Figure 2.2:A diagram displaying black hole families in 4D that we invgate in this thesis.

the black holee.g.for the KN black hole we have

QQ J2
Thus the area of the event horizon is given by
A =4mr?, (2.32)
Using the entropy-area formula we obtain the entropy folktNeblack hole as follows:
Q2 J2
S:2M2—Q2+2M2\/1—W—W, (2.33)

where we have usedz; = 1/7. Inverting the entropy equation (2.33) we obtain the mass
formula for the KN black hole as

M:\/§+1<J2+Q_4)+Q_2 (2.34)

4 S 4 27

whereJ and( are the hole’s spin and the electric charge respectivelig fobhmula agrees per-
fectly with Eq. (2.30) when one takes the limit— 0. Since this mass function satisfies the first
law of thermodynamics, we can straightforwardly derivensive parameteis. temperature,
angular velocity and electric potential from it.
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2.4 Black hole thermodynamics and scale-invariant gravita-
tion

Black hole thermodynamic fundamental relation (2.25) isedensive in nature since black
hole is a gravitating body but in some cases a somewhat siprd@erty holds. The extensitiv-
ity of the system is related to the scale-invariant propeftye theory which can be understood
as follows. Physical theory is understood to be invariamtaura constant change of units. Hav-
ing scale invariance it is possible to extend our measuretoarbitrary spacetime-dependent
transformations of units [72,73]. To be more precise, aesttahsformation means that we allow
the length to scale a6 — Q(z*) L where() is some arbitrary function and € (0, o). Under
such a transformation, mass with the dimensi?rtransforms asn — Q!(z")m. The space-
time metric transforms ag,, — QQgW. In this section we discuss how the Einstein-Maxwell
action is affected by the presence of the cosmological enhgthich breaks the scale-invariant
properties of their construction. The action of the Maxwielld coupled to gravity in arbitrary
dimension in the cosmological background can be written as

S = /de\/—g (gaﬁRag —2A — go‘ﬁgV‘sFmFg(g) ) (2.35)

Now let £ be a constant scaling parameter and let the metric tensethigwith the field-
strength tensor transform as

Gap = Ghp = EGap; (2.36)
Fos — Fly = EFup. (2.37)

We can write the Einstein-Maxwell action fully as
S[go‘ﬁ, Faﬁ] = /dDZL’ [\/—ggaﬁRag(gaﬂ) —2A\/—g — \/—ggaﬁgW‘sFmFﬂg] ) (2.38)

The question to ask is the following:(g.s, Fus) is a solution, igg;, 5, F7,3) also a solutionAVe

need to see how each component of the action transformshigtis¢aling parameter. First we
notice that the Christoffel symbols and the Ricci tensorsrarariant under the transformation,
whereas the inverse metric tensor and the determinant ofi¢iiec tensor transform as follows:

, 1
g’ = ggaﬁ : (2.39)

and
det ¢ = €*P det g. (2.40)
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Substituting these transformed variables in the action vgé o transform, it becomes
/ ! 1
Sl ) = [l Ray
— APV =g - €P V=g

2.41
BeOE Fasl. (249
£2£2559 9 Lay ﬁé]

Clearly, whenA = 0 we obtain
Slg*?, F'*f) = ¢P~2 / A"z [v/=99*" Rap(9*") — V=997 9"° For, Fgs] . (2.42)

Therefore we can conclude that in the absence of the cosinalagpnstant the action scales
with £, namely
S[g P, F'*P) = €P25[gF Ff). (2.43)

The Einstein equations derived from action without the aalsigfical constant will be scale-
invariant, and thus thermodynamic properties of the blatksas they can be scaled in the unit
of length. We will elaborate this issue in Chapter 3 in theisaabn the flatness theorem.

2.5 Derivation of black hole fundamental relations

In this section we will discuss how one obtains explicit epic/energetic fundamental relations
(entropy/mass functions) for certain black holes as weewdintually have to use them. So far
we have shown one explicit black hole’s entroipy, that of the Schwarzschild black hole which
is trivial but there are certainly cases where it is verykiyito obtain the entropy function an-
alytically, and one will have to resort to its counterparke-imass function. The fundamental
relations for GR black holes are functions of mak,electric chargeg) and angular momen-
tum J. Selectively, we will discuss only three families of blaciés,i.e.the Myers-Perry black
hole, BTZ and the dilaton black hole.

2.5.1 Myers-Perry black hole

There is no need to work out the entropic/energic functiothefReissner-Nordstrom and Kerr
black holes in 4D once we have worked out the fundamentalioaldor the MP black hole
because the MP solutions work in &l > 4

MP Reissner-Nordstrom black hole

The Reissner-Nordstrom black hole in arbitrary spacetinsetteametric described by

ds® = —f(r)dt* + f(r) " dr? +r2dQp ), (2.44)
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with
2

X q
f(r)y=1- D3 + S5 (2.45)

The ADM mass and charge are defined as in (1.19) and (1.20@ctdagly. The area of the
event horizon of the RN is given by

A=Qup_orP™?, (2.46)
wherer, is given by (1.21). The entropy of the black hole can be cateal using

kB D-2
S = MQ(D_Q)TL ), (2.47)

We found a way to simplify the computations by introducing Boltzmann’s constant as

D—2
2(D —2)]P=s
1=l
Hence the entropy of the black hole becomes
S =P = (pP-3)D (2.49)

Explicitly we can write out the entropy in terms of the blaakéis mass and electric charge as

D2 @\

Inverting the equation we obtain the mass of the MP Reissioeddtrom black hole as

Sp=2  D-2 Q?
2 +2(D—3)5%‘

M= (2.51)

MP Kerr black hole

We have two cases (i) MP Kerr black hole with a single nonzero i) MP Kerr black hole
with a multiple nonzero spins but we will only discuss thegéaspin case in arbitary D and
two-spin case iD = 5.

The important quantity of concern to us is the event horiztircivis obtained by solving
the horizon equation in Section 1.1.3

ry —a” — ——= =0. .
22ty (2.52)
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We can simplify the calculations by introducing Newton'sigtational constant as

Qp—
G =02 (2.53)
4
The area of the horizon becomes
A= Q(D_2)7,(D74) (Ti + CL2). (254)
The ADM mass and charge of the black hole are given by
4M
= — 2.55
e Dy (2.55)
D—-21J
a 5 (2.56)
The entropy can now be written as
S = T_(FD74) (r? +a®) =rip, (2.57)

which is a useful formula for our work. Unfortunately, this%7) cannot be solved analytically
in arbitrary dimension. The mass function of the Kerr blaolehin D dimension is given by

D—9 _ 4 2\ 1/(D-2)
M= Sp-2 (1+ J) . (2.58)

52

One can obtain the temperature of this black hole by diffea&ng the above mass function
with respect to the entropye.

NGRS (1+452%)

- N (2.59)
15753 (1+4%) P
MP Kerr black hole with double spins

In arbitrary dimension, areas of the event horizon of higtierensional Kerr black holes are
given by

Qa—
A=""2TT¢2 +a?)  odd dimension (2.60)
Ty p
A=Qu [[*? +4a})  even dimension (2.61)

)

In 5D there can be only two angular momenta associated watKénr black hole, thus the area

of the event horizon reads o2
A= Tl(ri +a2)(r2 + dd). (2.62)
+
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The temperature of the 5D Kerr black hole with two spins is lHasvking temperatur@ =
/27 where the surface gravityis given by

1 1 1
H:T+(2 5 + )—— (2.63)

2 2 :
T+ + a3 Ty

Since there are two angular momenta, there are two angutanities associated with this black

hole,
Doy = L Q=2 (2.64)

r2 +a?’ r2 +a3
The first law of thermodynamics for this black hole takes tivef[77]

AM = TdS + Qu,dJy, + QaydJa,. (2.65)

The entropy of the 5D Kerr black hole with double spins is gibg

. /{?BA _k‘_B27T2

We can chooséz andG such thatS simplifies as

1
S = T—(r%r +a?)(r} + a3), (2.67)
JF
wherer, is the largest root of
(r* +a})(r* +a3) — pr® = 0, (2.68)

wherey is the ADM mass defined in (2.55) with 5D angd= 3.J;/2M. The temperature of the
5D double-spin Kerr black hole reaches zero in the extremmét Wwhich is given by

a1 +as = /it (2.69)

or explicitly in terms of mass and the two spins as
4M3/2
3v3

Since solving for the entropy function directly is rathemyaicated, we thus use the same
procedure as in the case of the single-spin Kerr black haleoatain the mass as a function of
entropy and two angular momenta as

352/3 472\ 3 4J2\ 3
M == <1+S—21) <1+S—§) . (2.71)

Ji+Jy=

(2.70)
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2.5.2 Dilaton black hole

In this case the area of the event horizon of a black hole &gy

A =47 R*(r ) (2.72)

where R?(r, ) appears in Eq. (1.35). A straightforward calculation shdwes the entropy of
the dilaton black hole takes the form

- ]{?BCSA 2
S="qgn ~ )
12~+(»la2
9 (2.73)
Q? 1+ a?®)Q?

M2 <1+\/1—(1—a2)%>

where we are usingg = 1/7. Clearly the entropy of the system vanishes when we take the
extremal limit (1.40) implying that the area of the horizaslshunk to zero size.

2.5.3 BTZ black hole

This is a case of the (2+1) dimensional black hole—the BTZ blamle. Even though it is
just a toy model, it is important for studies in gravitatibpaysics as it is a counterpart of
Kerr black hole in 4D. It also possesses thermodynamicglgates analogous to the (3+1)-
dimensional black holes.g.its entropy is captured by a law directly analogous to the Bstan
bound in (3+1)-dimensions, essentially with the surfa@aaeplaced by the BTZ black holes
circumference. One interesting fact about this black hsléhat its heat capacity is always
positive, yet it is dona fideblack hole. This is related to the presence of the AdS backglo
which renders the specific heat of the RNAdS black hole pesgivove the Hawking-Page
phase transition. We investigate the information geometrtis black hole by starting with
the Weinhold metric as it is simplarg.

M=25%+ ‘]—2 (2.74)
452
The hole’s temperature is given by
J2

whereas its angular velocity takes a rather simple form

J

(2.76)
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The heat capacity is evaluated as

C

oS

oM 98 (aT)‘ . (82M>‘ _S(st -3 2.77)

= —=T7T—=T .
orT or 052 454 + 3J2

We can readily seen that the heat capacity of the BTZ blackibglesitive.



Chapter 3
Black hole information geometry

If you haven’t found something strange during the day, it hasn'’t eech of a day.
-J. A. Wheeler

In this chapter we highlight many attempts to understand(@imsettled) underlying sta-
tistical mechanics of black holes, and introduce black malermation geometry—the main
research program for this thesis. Getting to the point, Wkraw that the thermodynamic the-
ory which is a macroscopic theory ought to have a microscopimterpart, namely a statistical
mechanics which is a microscopic theory. In classical gyasiblack hole is nothing but empty
space with a very strong gravitational field. It is therefargighly nontrivial question whether
the similarity between black holes and the ordinary therynadhical systems goes so far as
to include the possibility of a statistical mechanical fdation of black hole thermodynamics.
One easy way to see this nontriviality is to notice the Belandtawking entropyS = %,
and write down the microscopic entropy= kg In Q2 wheref2 is the number of accessible mi-
crostates. Comparing them we readily see thatthe e*/*5. HoweverA, the black hole’s
surface area that we have so far is a mere function of maquasparameters. Since the entropy
of ordinary matter is understood to arise from the numberuainjum states accessible to the
matter at given values of the energy and other state paresnétes then natural to demand a
proper understanding of why the surface area of the blackrepresents the entropy of a black
hole in GR. In order to identify the quantum dynamical degfdseedom of a black hole, we
will need to go beyond the classical and semiclassical tee@nd consider black holes within
a fully quantum theory of gravity—a theory we apparently @b Imave. Furthermore there are
important questions one should address when one triesdy btack hole statistical mechanics
e.g.(i) what are the microscopic degrees of freedom of blackd®l@) where are they located
(if at all)? (iii) what happens to the black hole entropy aftes black hole has evaporated?

Attempts to solve the black-hole-and-entropy problems Batk to the 1970s when Beken-
stein used information theoretic approach to describe thekthole entropy [56]. In 1985
t'Hooft proposed the so-called brick wall model which alkbwane to relate the black hole en-
tropy to the entropy of thermal radiation at the Hawking tenapure located outside the black
hole with the mirror-like boundary [78]. His calculatioredlto the entropy of the black hole
being proportional to its surface area but the proportibnabnstant isl /4 only at the Planck
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scale. Furthermore it does not address how thermal prepestitside the black hole are con-
nected with the loss of information concerning the statethénblack hole interior. In the
same year Zurek and Thorne suggested that the entropy otla liatde can be interpreted as
the logarithm of the number of quantum-mechanical distiveggs that the hole could have been
made [79]. In 1986 Bombelli, Koul, Lee and Sorkin [80] trieckixplain the origin of black hole
entropy by using entanglement entropy. In 1993 Susskinduspied that the classical entropy
of a black hole arose from configurations of strings with emtigch are frozen on the horizon.
He also suggested that quantum corrections to this entnapfirate unlike the case in quan-
tum field theory, and he also thought that all black holes argles string states [81]. In 1996
Strominger and Vafa derived the Bekenstein-Hawking entfopya class of five-dimensional
extremal black holes in string theory by counting the deganeof BPS bound states [82]. This
technique has been very popular and the Strominger-Vaferpes been cited over a thousand
times. Attempts to locate the degrees of freedom of the btatdk entropy were discussed).

in [83] Horowitz and Marolf show that in string theory many des of the gravitational field
exist only inside the horizon of an extremal black hole. 1®71%shtekar, Baez, Corichi and
Krasnov [84] studied black hole entropy in loop quantum gya{LQG). They quantized the
classical phase space of the exterior of a black hole in vadB®, and were able to show that
the entropy of a large non-rotating black hole is propodido its horizon area. The constant
of proportionality depends upon the hand-piclkarbero-Immirzior justImmirzi parameter,
which fixes the spectrum of the area operator in loop quantrawity. That the black hole
entropy could be derived in LQG (even though the proportipnaonstant does not emerge
naturally) has been advocated by some physicists as one ofdkt important achievements of
LQG [85]. It is worth mentioning that R. Sorkin has presentedghilosophical viewpoint on
black hole entropy in an article titled "Ten theses on bladk leotropy” [86].

Due to the lack of a consensus and complete understandingadflole statistical mechan-
ics we are motivated to resort to a new idea/method in the bbppening up a new perspective
in the subject. Herein we resort to an idedlegrmodynamic geometrg subclass of informa-
tion geometry, which is a subject in the realm of mathembstistics. Information geometry
is one of the newest ideas in attempts to understand how hlaekhermodynamics is related
to its statistical mechanical description. Succinctlyprmation geometry is the study of prob-
ability and information by way of differential geometry [BSpecifically we resort to the idea
of thermodynamic geometry which began with Gibbs’s refdation of the theory in terms
of equilibrium states rather than processes. The surfatkeo$et of equilibrium states was
Gibbs’s primary object of study and foreshadowed much ointloelern differential geometric
theory of manifolds [88]. The work of Gibbs [89]—which wadléaed by Caratheodory [90],
Hermann [91] and later by Mrugata [92, 93]—concerns a dififtial geometric approach based
upon the contact structuref the thermodynamic phase space generated by a one-fokm.(

LContact geometry is the study of a geometric structure orotimuoanifolds specified by a one-form, for more
information seee.g. [94].
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Equilibrium thermodynamick Thermodynamic geometr Statistical mechanics

Figure 3.1:Underlying statistical mechanics is encoded in thermooyogeometry.

a Gibbs form)j. This space i$2n + 1)—dimensional and is coordinatized hyextensive vari-
ablesE* andn intensive variableg“, together with the thermodynamic potential The first
law of thermodynamics is then incorporated into this apghoaaturally through differential
forms. A particular subspace ¢fis the space of thermodynamic equilibrium stafeOn S,
the laws of thermodynamics are valid and thermodynamiegystare specified by means of a
fundamental equation.

With the idea that thermodynamics can be geometrized, \wd{B5] and Ruppeiner [96]
proposedthermodynamic metricen the space of equilibrium states. The idea of Weinhold
and Ruppeiner is that we can describe thermodynamic systerresms of a metric whose
components are given as the Hessian of the internal themamalg energy (Weinhold) or
entropy (Ruppeiner). This approach has been widely usedutty giroperties of thermody-
namic space generated by the Weinhold and Ruppeiner me®ie®9], the thermodynamic
length [100-102], the chemical and physical propertiesapious two-dimensional thermody-
namic systems [103-107], and the associated Riemanniactis&{108—110]. Information
geometry in dimension larger than two was studied in [111].

3.1 Thermodynamic geometry

We refer to both the Weinhold and Ruppeiner geometries astidynamic geometry. The
Weinhold metrie—a precursor to the Ruppeiner metric—is orginally definechasHessian of
the energy/massg/, as a function of energys, and other mechanically conserved charga¥,

g;;v = GZOJM(S, Na) (31)

The Ruppeiner metrigs defined as the negative of the Hessian of the entropy fametith
respect to the thermodynamic system’s mechanically coadajuantitiesi.e.

gﬁz—@@SMﬂNﬂ, (3.2)

The infinitesimal distance on the thermodynamic state sigatefined as

ds® = glldz'da’. (3.3)

2They are parameters that are additive in magnitude such ss, ewatropy, electric charge, volume, etc.
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It is clearly assumed that the coordinaté$orm some preferred affine coordinates, and that is
the reason why we can think of the Hessian of the energy/feyntas a metric on thermodynamic
space (in question). The functions on Gibbssian surfacavalfor affine parametrization. An
affine transformation (affine map) between two vector spacgisen by

x— Ax +b. (3.4)

What extensive thermodynamic systems, black hole thernadios, and mathematical statis-
tics have in common is that there is a preferred set of vaagaf@xtensive quantities, additive
conserved charges, probability distributions). Theseghiare arbitrary to some extent, for in-
stance you might want to change the zero point (add condtatiiem), but if you subject them
to a coordinate transformation that is more general tharifene@ne they are no longer exten-
sive (additive conserved charges, probabilities). In sieisse affine coordinate transformation
have a special status. Then it makes sense to use a definitibea metric which is invariant
under affine transformations only.

The Hessian matrix of the entropy function which we call th@@piner metric transforms
as a metric, provided we restrict ourselves to only affinerdioate transformations. In ther-
modynamics the coordinates represene.g. M, J and( for the Kerr-Newman black hole. It
is worth noting that the thermodynamic metric is similartie Kahler metric which is a metric
defined on a complex manifold?, i.e.

PK
Jaa = 5 apza
whereK = K(z, z) is the Ka&hler potential. The K&hler metric preserves iteffander trans-

formationz’ = 2/(z) andz’ = z'(z) which are the transformations that preserves the complex
structure.

curved Ruppeiner (thermodynamic) space

Figure 3.2:A visualized curved Ruppeiner geometry on thermodynamie staace character-
ized by entropyS and other mechanically conserved parameters such as massharger)
and angular momentuth. The squared distance on this curved geometigis= g{jdz”dmi .

The original idea of Ruppeiner is that the Riemannian cureattirsome sense measures
the complexity of the underlying statistical mechanicald®elo The Ruppeiner geometry was
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first constructed in the context of thermodynamic fluctuativzeory [99]. We have found that
even though thermodynamic fluctuations may not be assdoth black hole systems, some
essential information can still be extracted from the Rupgegeometry. Let’s try to remind
ourselves how Ruppeiner formed his idea in relation to adasshermodynamic fluctuation
theory: letQ) be the number of (equiprobable) microstates consistehtawgiven macroscopic
state. Boltzmann argued that the macroscopic entropy is giye

S =lkslnQ. (3.5)

Einstein rewrote this equation as

P x %k (3.6)

whereP is the probability that the given macrostate will be realizZé/e can Taylor expand the
entropy around an equilibrium state, taking into accouat the entropy has a maximum there,
and introduce the Hessian matrix

gij = —0,0;S(x) . (3.7)

Herez stands for the: extensive variables shifted so that they take the valueatexquilibrium.
The matrix is positive definite if the entropy is concave. & mormalize the resulting probability
distribution (usingcz = 1) we arrive at

P(z) = VI —foyata (3.8)
(2)2
as the probability distribution governing fluctuations ward the equilibrium state. The pair
correlation functions are then given by the contravariaetrio tensor,

<xiazj> =g . (3.9)

This derivation is valid as we assume that the fluctuatioessarall [112]. We should pause
and note here that the physical situation here is a systeotided by the canonical (or grand
canonical) ensemble, plus the fact that one extensive desfvolume) has been set aside and
used to give an appropriate physical dimensiog toRuppeiner argues that the Riemannian ge-
ometry of the metric tensay;; carries information about the underlying statistical maatbal
model of the system. In particular he argues that the medrftat if and only if the statisti-
cal mechanical system is noninteracting, while curvatimgigarities are a signal of critical
behavior—more precisely of divergent correlation lengtfisis viewpoint has been confirmed
in a number of soluble models, segy.[113, 114]. The construction of the Ruppeiner met-
ric used in thermodynamics is related to the Fisher—Rao entitat is used in mathematical
statistics.
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The Ruppeiner geometry is conformally related to the Weithigglometry via

, . 1 , ,
ds® = gldMidM’ = fng dsS'ds’ (3.10)

J J

whereT' is the system’s temperature. The proof of this conformadtiah is given in Ap-
pendix C using the first law of thermodynamics in differehti@o-forms. In any regard
Eq. (3.10) is one of the most important equations in thisithes it turns out to be very useful
in most of our calculations when they are not easily done ingeuger coordinates (to be dis-
cussed and elaborated on in Chapter 4). In addition, we $tatéhte Weinhold geometry does
not have the same physical meaning as the Ruppeiner geometry.

w

R_ 1
95 = 7Y

Figure 3.3:A correspondence between Ruppeiner and Weinhold manifolds.

It is worth stating that whel§'(\U, AV, AN) = AS(U, V, N) the thermodynamic metric will be
degenerafe So far, from the known models the Ruppeiner geometry igffend only if the
underlying statistics is noninteractingg. that of the classical ideal gas [96, 99]. The ideal gas
has the fundamental relation (this equation is knowBackur-Tetrodequation)

V (U\°

wherec is the ratio of specific heatg; is constant. Consider the ideal gas at fixed volume we
obtain the Ruppeiner metric as follows

ds® = &dTZ + 4

= dp? 3.12
T TR, (3.12)

whereCly, is the heat capacity at constant volume dngis the isothermal compressibility of
the system. We are in the coordinatds p) wherep = N/V is the density. The equation
of state of the ideal gas has the fotth= pT andCy, = Nk whereP is the pressure and

is a positive definite constant. To see whether the metri8.ih2) is flat or not we can either

3This follows from the degree-one homogeneity propertySofind the Euler’s theorem that follows. See
Appendix D for more details.
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compute the Riemann curvature scalar (the Ricci scalar) ohtttec or perform the coordinate
transformation. Using the equation of state anddfeequation we get

K 1
ds>=Vp (EdTQ + ;dﬁ) . (3.13)

We can further transform by using

t

t
r1=2Vp (cos 5 + sin 5) ,
(3.14)

2

T K
t—/ \/ = dT, (3.15)
n V17

with T being an arbitrary positive constant. The metric now reads

t t
xo =1/2Vp (cos 3~ sin —) ,

where

ds® = dx? + dx3. (3.16)

This is evidenly a flat metric and the state space covers amitenfiwo-dimensional plane.
According to Ruppeiner the vanishing Ruppeiner curvatureesponds to the absence of sta-
tistical interactions of the ideal gas. Interestingly ttiedl gas at constant volume also has a flat
Weinhold metric, which takes the form

dT? dN*?

where N = pV andT = P/p, and we assume thaf, 7" € R. By direct calculation of the
Riemann curvature the metric in Eq. (3.17) is flat, but we rt&edess wish to bring it into a

manifestly flat form. By mathematical wisdom we can rewrite E417) as

dT?  dN?

ds> = NT <W + W) . (3.18)

We can use = InT andy = In N (wherez, y € R) to turn the metric above into
ds® = Y (dz* + dy?). (3.19)

This form is not yet a manifestly flat form so we transform gt using
1( +y) and 1( ) (3.20)
u=——=( v=—=(x—1Y), .
vl v
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and we arrive at
ds® = eV (du® + dv?). (3.21)
Next we use
v

7

wherea € R* whilst § € R, and we finally arrive the sought-after manifestly flat neetri

a=v2e"V? and B= (3.22)

ds* = da* + o*df?. (3.23)

The state space of this Weinhold metric is recognizable asfante covering of the plane,
a.k.a.a barber pole spiral.

3.2 Application of information geometry to black hole ther-
modynamics

Don Page was likely the first who thought of applying georaettithermodynamics to black
holes as he wrote about his idea together with simple cdlonkin the letter to Physics Today
in January 1977 [115]. However he was negatively responddxy tF. Weinhold. Approxi-
mately two decades after thermodynamic geometry was estadl G. W. Gibbons together
with S. Ferrara and R. Kallosh suggested the use of Ruppeionenegjey in black hole physics
but they did not explicitly compute any geometrical quaasitout of the Ruppeiner and Wein-
hold metrics [116]. Since then thermodynamic geometrie® lieeen computed for a number
of black hole families ranging from lower-dimensional lHdwles to GR black holes to dilaton
black holes to Myers-Perry black holes to black rings to blacles in unified theories. The
number of articles on this topic has been growing includiathlagreeable and conflicting re-
sults, see.q.[117,120,121,123-131,144,154,155]. Our approach si008 Bas been mainly
to use this approach to uncover black hole thermodynangesimetrical patterns and interpret
encoded pieces of information relevant to black hole plsysSitie most satisfactory outcome of
this research program is tipeediction of the onset of thermodynamics of the MyersyFaliack
hole in D > 5. Detailed calculations and methodologies used will beutised in Chapter 4.
Recently thermodynamic geometry of hot QCD system has beduadwd [132].

The Quevedo approach

Since 2007 H. Quevedo and his team in Mexico City having beeestigating black hole
thermodynamics using the proposed modified thermodynaedmetry formalism nameGe-
ometrothermodynamiasr GTD in short [133,134] . In the GTD formalism thermodynami
geometry is made to incorporate invariance under Legemansformation. Their statement is
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Quantum theory of gravity

BH statistical mechanics

?
]Information geometry?

Classical limit
Low energy limit

Thermodynamic limit?

Black hole thermodynamics

Quantum field theory
in curved spacetime

General relativity

Figure 3.4:A diagram showing how black hole thermodynamics is relabeti¢ broader struc-
ture of the overall theory of gravity. An ellipse denotes aneptable theory to date whereas
a rhombus denotes a theory to be established and "?" mearnfiedisefinished. We might

understand black hole statistical mechanics through thepegspective(s) opened up by infor-
mation geometry.
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that GTD allows one to derive Legendre invariant metricshia $pace of equilibrium states.
They have applied this approach to black hole thermodyramedding different results from
ours. For example the modified thermodynamic metrics of thebRisk hole are more compli-
cated than our results, and in the case of the Kerr black latledeneralized geometries are flat
and, they claim, cannot reproduce its thermodynamic beharid should be considered as a
negative result for the use of geometry in black hole theynadics. The Quevedo team have
also worked out their modified geometry for black holes in tlumensions [137], BTZ black
holes [136] and black holes in asymptotically AdS space]138

3.3 Flatness theorem

It is observable that there are seemingly geometrical irestiaf thermodynamic geometries for
black hole families. It is then natural to investigate whyngothermodynamic geometries are
flat, whilst the others are not. In information geometry we dafine a metric in some preferred
affine coordinate system by

9ij = 0:0;9, (3.24)

where is any reasonable function. In mathematical statistics axetan example with the
choice of potential of the form

N
Y= le Inz’,  2'>0 (3.25)
i=1

wherey is minus theShannon entropyThe Hessian matrix af is known as théd-isher infor-
mation matri%. It is a flat metric on the positive cone and it is round on thebpbility simplex
defined byz p; = 1[139]. In our contexty) is either the entropy with a negative sign in front

or the eneréy function. If
Y= —S(M,N%), (3.26)

the corresponding metric is the Ruppeiner metric or it is tlerihold metric if we have

= M(S,N?). (3.27)

Now, the main question ihen is an information metric flat®ne possibility is that

N
b= Z fila). (3.28)

“4In statistical geometry the metric tensor has a potentékhere is a convex function. The Hessian function
of v is called theFisher-Rao metric
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Observations tell us that the Fisher metric on the positreeccomes from such a potential. As
well, the Ruppeiner metric of the ideal gas at fixed particleber is of this type, whereas the
black hole information metric is not. It turns out that if wesame the potentiat to have the
gquasi-homogeneity property

ABP(z,y) = DAz, A?y), (3.29)
assuming that > 0 andt> > 0, then we can rewrite

P(z,y) =2 f(a"y), (3.30)

wheref is some functiong, b being some exponents. If we choosex = 1 we will find that

a = az/a;,b = —ay/a;. We have found that if)(z,y) = 2% f(x~'y) then the information
metric is flat. However the converse is not true. So we stateffecient but not necessary
condition theorem and provide a proof as follows:

Theorem: The Ruppeiner metric defined throug;ﬁ] = —0,0;0 is a flat metric in any dimen-
sion if© = z¢f(zPy) withb = —1 anda # 1,  andy are coordinates on the state space and
f is some smooth function.

Proof: We change coordinates on state space) — (¢, o)

Y =2f(z"y) and o =zby. (3.31)

A calculation shows that the metric formed by the Hessian f given by

gs? — (a—l B b(b+1)gf’) d—W—Q—Q(b—i—l) (L’+ baf/2> Lo

a a? f P af  a?f?
/o 2b+a+1f% bb+1)of?
G v L
(3.32)

This metric is diagonal providetl= —1. If we introduce the new coordinate= /% it is a
manifestly flat metric, and it covers a wedge shaped regi@mcH the theorem is provell.

As a matter of fact we found that by usingand o as coordinates we obtain the metric
comparable to the Weinhold metric as

ds> =27 [(a(a = 1) f = b(b+ 1)o f")dz® + 2(a + b)z f'dado + 2> f"do?] . (3.33)

If @ + b = 0 this metric is diagonal, which takes the form

ds® =, ((a - 1)%52 + g ; _f J f/daz) 7 (3.34)
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where , is the derivative with respect to of ¢)(x,y). This is the metric on a flat wedge
multiplied with the conformal factog ,. It is worth noting that for = 1 the Ruppeiner metric
is degenerate and this corresponds to the fact that thensgstatropy is extensive.

Alternatively, we can prove this by means of computing theniRienian curvature scalar.
First it is instructive to look at the Riemannian curvaturestar. In the preferred coordinate
system the Christoffel symbols (with one index lowered usirggmetric) are given by

1
Lijr = §3i3j3k¢- (3.35)

The expression for the Riemannian curvature tensor now esciac

Rijit = Likm9™ " Urjt — Litm @™ Uik (3.36)

The scalar curvature takes a fairly complicated form [155]

(b + 1>x3a+4b—4

R =
292

ala—1)(a+0)ff'f" —2a(a—1)(a+26)f 1" — abla — Vo ff"f"

+(a+b)2*a+b—1)ff" +bla+b)(2a+b—1)af?f"

+ b<2b o Cl2 . 3ab)0f’f"2 + bQ(b + 1)02(f/f//f”/ . f//2) 7

(3.37)
whereg is the determinant of the metric having the form
g ="V ala=1)ff" = (a+b)*f? = b(b+ o f f']. (3.38)
Obviously the metric is flat fob = —1 for it sends the curvature scalar in (3.37) to zero,

regardless of the form of the functigh However this is not a one-to-one statement. Note also
that fora + b = 0 the Weinhold metric is flat.

3.3.1 Black hole examples

The fundamental relation for the entropy of black hole edahe area of the event horizon to
the ADM charges of the black hole as in (2.16). In the two-paater family we occasionally
encounter the entropy function of the form

S =M f(M°Q) (3.39)

where M and () are conserved quantities of the black hole system. We foouthe case
where the cosmological constant vanishes when the Einstein-Maxwell equations are scale



3.3. Flatness theorem 45

invariant. This enables us to perform the dimensional &mslyising length as the only basic
unit we can write down the black hole parameters as

[S] = LP~2, [M]=LP73 [Q]=LP®, [J]=L""2 (3.40)

where D is the spacetime dimension. The scale invariance of thetdtmMaxwell equation
gives the entropy relation quasi-homogeneity propertigth, definite exponents:
LP728(M,Q,J) = S(LP3M, LP~3Q, LP~2)). (3.41)

Hence we can see that in the case of two parameters (RN and|Kekriinle respectively) the
black hole entropies will be of the form

S =MD f (%) and S = M f (ﬁ) . (3.42)

We can readily see that the Ruppeiner geometry of the RN bldekwith be flat in any dimen-
sion. Similarly, the Weinhold metric of the Kerr black hotefiat in any dimension. This will
be also true for black rings in five dimensions. Explicitly wan express the entropy function
of the RN black hole (foiD > 4) as follows

. c Q? ‘ _D-2

The Kerr black hole in arbitrary spacetimiehas the fundamental relation

9 o 2\ 1/(D-2)
M= D4 2583 (1 + ﬂ) . (3.44)

Our scale invariance argument works for both Kerr and RN blaaes, however it fails in
the case of the BTZ black hole which is the 2b&na fideblack hole in the presence of a
cosmological constant. In this case the fundamental ogldttas the form

S = Mf (i) . (3.45)

M
The Ruppeiner metric of this black hole’s state space is a fi&tionwhich translates into a
flat wedge in an Euclidean space. For exotic black hole exasnglich as the black ring the
fundamental formula can be found in [120].
It is instructive to compare the black hole examples to tealigas. Inverting the Eq. (3.11)

we obtain the internal energy as
Nt+D/e o

U= k’gwem, (346)
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where ¢ is the ratio of specific heatd;, is constant. It is worth stating again that when
S(AU,\V,AN) = AS(U,V, N) the thermodynamic metric will be degenerate, but if we set
V fixed then it belongs to the the clagér, y) = 2 f(2by) which is our flatness theorem.

To conclude this section, we found that our small theoreregy@/sufficient but not necessary
condition for flatness and it shows that the ideal gas is evererspecial than our black hole
examples. This theorem will be useful in a number of blaclelwalse®.g.the dilaton black
hole to be discussed in the next chapter.



Chapter 4
Results and discussions

| have noticed even people who claim everything is predestined, and ¢hedarmdo
nothing to change it, look before they cross the road.

—S. W. Hawking

In this chapter we summarize results we have obtained whilpr@sented in the selected
publications as shown on page xiii. For conciseness we doepeiat discussions on the black
holes’s metrics, rather we begin with the thermodynamiaicgtand discuss calculations done
which in some case lead to very satisfactory interpretation

4.1 General relativity black holes

In ordinary spacetime we deal with three families of blackelp namely the Reissner-
Nordstrom black hole, Kerr and the Kerr-Newman black holéne Drder here is based on
the complexity of the problem. The results in this sectianl@sed on [144].

4.1.1 Reissner-Nordstrom black hole

The Gibbs surface of the RN black hole is defined by

S(M,Q) :MQ—Q2+M%/1—%. (4.1)

As we have found in [144] it is simpler to start by working obetWeinhold metric. Thus we

invert (4.1) and obtain
VS Q?
M_7(1—|—§>. (4.2)

The Weinhold metric can then be obtained and it takes the form

ds?, = {— (1 - 34@2) dS? — 8QdSdQ + 8SdQ2} (4.3)
REYE S ' '
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After some coordinate transformations it simplifies to

1

dsyy = —5 [—(1 — v*)dS® + 85%du?] (4.4)
RS2
where we have used 0
u=——; wue€c(—-11). 4.5

Surprisingly the variable: has the same value as the electric potentbal: %—]g, of the RN
black hole. The Hawking tempeature is given by

_om_ 1 (@
P () "

which vanishes in the extremal limit of the RN black hole. Byngsihe conformal transforma-
tion, we obtain the Ruppeiner metric of the RN black hole in Weld coordinates as
dS? du?

2 ———
dsh = —5g + 457 . (4.7)

This is a flat metric. With some insight, we can turn the Rupgemetric above into Rindler
coordinates as follows

ds* = —dr* + 7%do?, (4.8)
by using
r=+25 and wu=sin %. (4.9)
Turning this into Minkowski coordinateg, =) we obtain
ds* = —dr* + 7%do* = —dt* + da?, (4.10)
where we have used
t = 1 cosho. @.11)

x = 7 sinh o.

Thus the line element (4.8) is a timelike wedge in Minkowglace. Note that the range ofis
[—%, \/%]. We can also express the entropy function in terms ahdt as
1
S = 5(# — 7). (4.12)

It is readily seen that the black hole entropy vanishes othienodynamic light cone. We will
revisit the RN black hole again in Sec. (4.3.1)
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4.1.2 Reissner-Nordstrom—adS black hole

The formula of the RNadS is given by

V'S S Q?
M—T(1+l—2+?>. (4.13)
The extremal limit of this black hole is where
Q? 35
X 14 = 4.14

which is consistent with the extremal limit of the ordinary Bldck hole when the cosmological
constant is switched off\ = 0 i.e.[ — o). The Hawking temperature is found to be

S 2

This temperature vanishes in the extremal limit as antiegha The Weinhold metric of this
black hole is

1 38 3Q2
{‘( 12 S

1-——-———)452—8qm5dQ-+85dQﬂ. (4.16)

This is a curved metric. By using the conformal relation weaobthe Ruppeiner metric in the
form

1 372
ds® = ————— {— <1 — Lg - U2> dr* + 272du2] : (4.17)
- [\

We can observe that the metric above changes its propediéiseasignature of the metric
changes. It is related to the thermodynamic stability oflifeek hole. It is well known that
for sufficiently large black holes, the entropy function bexes concave [75]. The quantity of
concern to us in this context is of course the curvature soaldch is found to be

38 | @ S _ Q2
9 (z—z+?)<—z—z—?>
R:ﬁl PRI (4.18)
( —z—z—?> ( +z—2—?)

It is readily observable that the curvature scalar divetgeh in the extremal limit and along
the curve where the metric changes signature. A quick gleeliseus that ag — 0; R diverges
but this is not a physical situation because the lilnit-> oo does not exist.

4.1.3 Kerr black hole

From the fundamental relation (2.30) we obtain the entrdir@Kerr black hole in the form

/ J2
2 2
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The extremal limit of the Kerr black hole occurs when

% = +1. (4.20)

The Ruppeiner metric of the Kerr black hole is found to be

2 J2\*? 3.J2 AT d.J?
dst, = ————{-2|(1-— 1— = | dM? — —dMdJ + — 4.21
B <1—;f—i>{ [( 7)1 | G @
which can be diagonalized using
J
The diagonalized metric reads
2 2M?
2 = 2 - 2
dsp, = 2(1+m> dM +(1_1}2)3/2dv : (4.23)

The Ruppeiner geometry is curved and its curvature scalaves ¢y

V1—L =2
R— — Se— (4.24)

4M? 1 _ 2
M

This curvature scalar diverges in the extremal limit. Siti@eentropy function is not concave
the thermodynamic theorg la Ruppeiner could not be used. Furthermore we have learned
from [120] that unstable modes do not apgeéathe extremal limit of the Kerr black hole in 4D.
However we have a different story in dimension higher tham dis we will see in Sec. (4.3.2)

4.1.4 Kerr-Newman black hole

The fundamental relation for the KN black hole is given by8(®. The first law of thermody-
namics for this black hole takes the form

AM = TdS + Qd.J + ®dQ, (4.25)

which enables us to compuie(angular velocity)® (electric potential) and’ (temperature) by
means of partial differentiations.

Imeaning that there is no change of stability despite theepiasof a vertical slope in the extremal limit in the
conjugacy diagrami.g€. a plot of conjugate thermodynamic quantities sucl¥as 1/T versus masa/), Fig. 3(a)
in [120]. Analyzing the conjugacy plot is part of the so-edlPoincaré (turning point) method which is a standard
method for stability analysis. This method is in contrarghe analysis based on the sign of the specific heat. In
effect, the Poincaré method does not predict any instalnlit D Kerr spacetimes.
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Unfortunately the Ruppeiner metric of the KN black hole isttas complicated to be pre-
sented here. We also could not deal with it by hand, thus samguter programs such as
CLASSI [145] and GRENsORwere employed for performing the computations. The results
we obtained [144] were not surprising; both the Ruppeiner\&thhold metrics are curved.
The Ruppeiner curvature diverges in the extremal limit ofkiNeblack hole. Furthermore we
found that the Ruppeiner geometry of this black hole is nofaomally flat.

4.2 Lower-dimensional black holes

4.2.1 BTZ black hole

The Weinhold metric for the BTZ black hole takes the form

2 2 1
dsy, = <2 + %) ds? — (S—‘g) dSdJ + (2—52> dJ?, (4.26)

which is a non-flat metric. Using the conformal relation weadthe Ruppeiner metric, which
after diagonalization, is given by

1 S
ds% = §d5*2 + <1 — u2) du?, (4.27)
where we have used 7
= — —1 .
A 555 ue (—1,1) (4.28)

The Ruppeiner metric in [144] is a flat metric, in other words $ipace of its thermodynamic
state is a flat space. After an obvious and final coordinatestoamation to polar coordinates
we find that this is a wedge in an Euclidean flat space. Notethiathe metric signature of
the Ruppeiner metric for the BTZ black hole is Euclidean whiolr&sponds to the positive
definiteness of its specific heat. The RNAdS black hole hagipesipecific heat above the
Hawking-Page phase transition.

4.2.2 Two-dimensional black holes

This section is a summary of paper [146]. In 2D the Hawkingtintemperature (as derived
e.g. from surface gravity [147]) is given by

T = |w’(X, q)|X:Xh . (429)

Prime denotes differentiation with respectto The Bekenstein-Hawking entropy (as derived
e.g. from Wald’s Noether charge technique [148]) is given by

S=X,. (4.30)
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We are now able to derive the Weinhold and Ruppeiner metricsalge of (1.49)-(4.30) both
metrics depend on the conformally invariant functio(X, ¢) only. So we are free to choose
@ = 0 to simplify the calculations. Putting together all defioits yields the Weinhold metric

dsy, = —w"(S,q)dS* — 20’ (S, q)dSdq — (S, q)dq* (4.31)

where dot denotes differentiation with respecttd@he Ruppeiner metric follows as
1
|w'(S, q)]

The conformal factor between these two metrics never vagighless the horizon degenerates.
We discuss briefly two important classes of examples.

2 _
dsp =

ds?, . (4.32)

Reissner-Nordstrém like black holes The family of modelsf # —1 # ¢)

A Xb+1 o LXchqu (433)

| 2(c+1)

is simple and interesting, as it contains the sphericaliyyced RN black hole frond dimen-
sionsb = —1/(D — 2), as well as charged versions of the Witten black ftote 0 [149] and
of the Jackiw-Teitelboim modél = 1 [150]. With the coordinate redefinitiom = ¢S<*! the
Weinhold metric simplifies to diagonal form,

f B
ds?, = (BAS™ — (S + 1)Bu2S~)dS? + ——S—"1du?. (4.34)
2 c+1
Itis flat for b = 0 or ¢ = b — 2. Similarly, the Ruppeiner metric turns out as

1 €41 B
b(AS® — 2 Bu?5°2)dS? + —— S °du?| . 4.35
S(ASY + Bu25--2) ( b Jds™ + c+1 “ (4.35)

2 _
dsp =

The Ruppeiner metric (4.35) is not flat in general. Howevehefconditionc = —b — 2 holds,
then (4.35) simplifies considerably,
dS? 1 du?

ds?, = b= + 28 | 4.36
S (U § Y (4.36)

The Ruppeiner metric (4.36) is flat and has Lorentzian or Beeln signature, depending bn
and the sign ofi> + 2A/B. The particular subclass

_H_l V:_AX%H_EQ_Q

U=—~%" 2 X

(4.37)

describes the spherically reduced RN black hole fi@rdimensions withb = —1/(D — 2). It
fulfills the conditionc = —b — 2, and thus all corresponding Ruppeiner metrics are flat. This
agrees with the results in section 4.1.1 below: the linesel& (4.36) essentially coincides with
the line-element (4.45) upon rescalin@nd choosing3 appropriately.
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Chern-Simons like black holes In some cases, like the Kaluza-Klein reduced gravitational
Chern-Simons term [151] or the toroidally reduced BTZ blackehb52], the charge does not
enter quadratically in the potential but only linearly. Téfere, we consider here the class of

models defined by
A Xb+1 B Xc+1

- _ _ . 4.38
v b+ 1 c+1 4 ( )
We obtain the fl&tWeinhold metric
ds?, = (bAS"™ + cBS“ 'q)dS* + 2BS°dSdq, (4.39)
and the Ruppeiner metric
1 b c
dst = ———— | =(AS" + = B¢S°)dS? + 2BS°dSd 4.40
Sh A0 1 BaS S(S+b qS)dS* + 2BS°dSdq ( )

The Ruppeiner metric (4.40) is not flat in general. Howevehefconditionc = b holds, then
(4.40) simplifies considerably,

4s?  2dSdg
B .
s T AT Bg

dst, =b (4.41)
The Ruppeiner metric (4.41) is flat and has Lorentzian sigaatu

We conclude this section with a remark on a duality found B8]1 It connects two different
models leading to the same classical solutions for thedieaient (1.48) and therefore to the
same surface gravity (4.29), but the respective entropifes oh general. It would be interesting
to study the behavior of the Weinhold and Ruppeiner metrickeuthis duality.

4.3 Myers-Perry black holes

In [154] we study thermodynamic geometries of Myers-Petack holes (let us remind the
reader that we deal with higher spacetime dimensions irstfgion) and obtain the following
results:

4.3.1 Reissner-Nordstrom black hole

From [144, 154] it is found that for the RN black hole, it is siemto work in Weinhold coor-
dinates. Hence we start with the mass function given in (2.51
Sz D-2 Q?
2 2(D-3) g%

(4.42)

2The line element (4.39) describes a flat (Rindler type) gepnteecause the coordinagappears only linearly.
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In D = 4 the mass formula becomes that of the ordinary RN black hole 44.2). The
Weinhold metric of RN black hole in arbitrary dimension candiegonalized by choosing the
new coordinate

D -2
u= 5D —3) Sgg; ue (—1,1). (4.43)

The Weinhold metric now becomes

D—1 1 D -
452, — 5B <_§ﬁ(1 _2)ds? + Sdeﬁ) , (4.44)

which is a curved Lorentzian metric. The Ruppeiner metriclmambtained by using the con-

formal relation, thus
—1 dS? D —3 du?

2 _ - = - =
dsh=5—5 g + 255 5T (4.45)
This is a flat metric. The black hole’s temperature is founbdeo
D—-3 1—u?
T = ) 4.4
2(D —2) gp=2 (4.46)

We have found that the Ruppeiner metric (4.45) can be writtdRimdler coordinates as

ds® = —dr® 4+ rdo?, (4.47)

by using

2(D —3
T=24/— and u:sina ( )

I —D_3 (4.48)

The angles then lies within the following interval

_M<U<M (4.49)
2/2(D=3) 2/2(D-3) '

Turning this into Minkowski coordinateg, =) we obtain

ds* = —dr? + 7%do? = —dt* + da?, (4.50)

Using the new parameters defined in terms of mass and chaegeggmwrepresent the entropy of
the RN black hole in Minkowskian coordinates as follow:

1
S = Z(D —2)(#* — 2?). (4.51)
The Ruppeiner metric can be presented as a Rindler wedge as $hdvig 4.1. Note that
curves of constant are segments of hyperbolas and the opening angle of the vggdgs as

D — oc.
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curves of constant !

/

X

Figure 4.1: The state space of the 4D RN black holes shown as a wedge in aiflabWski
space.

4.3.2 Kerr black hole

We will start with the Weinhold metric as it turns out to be pier than the Ruppeiner metric.
The mass function of the Kerr black hole ihdimension is given by

D—2 bp-s 4.2 1/(D=2)
(1+ ) |

M = SD 2 = (4.52)

One can obtain the temperature of this black hole by diffiméng the above mass function
with respect to the entropye.

(D —3) (1 n 43_1%_2)

T = 1 — (4.53)
4S7=2 (1 +44)P2
The Weinhold metric then takes the form
dsyy, = A( [—48(D — 5)J* +245%J* — (D — 3)5*] dS?
+ [64(D — 5)J%S — 16(D — 1)JS%| dSdJ (4.54)
+ [-32(D — 4)J*5* 4+ 8(D — 2) 5] dJ2>.
The factor) is given by
A= ! . (4.55)

A(D — 2)(S2 + 4.J2) 57 S5

We can diagonalize this metric by using

J
i 4.
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X

Figure 4.2: The state space of the 4D Kerr black holes shown as a wedgeah Mifikowski
space. Curves of constant entropy gives causal structuhe tate space of the black hole.

D —2 D-3 1
— /= §30-2) (] + 492202 . i
T ”D—?)S (14 4u”) (4.57)

Hence the Weinhold metric in a diagonal form reads

and

2(D —3) (1 — 45=3u?)
(D—2) (1+4u2)

dsy, = —dr* + T2du®. (4.58)

This metric is flat. InD = 4 we can write it in Rindler coordinates as

dsy, = —dr? + 7%do? (4.59)

using
1
u=g sinh 20. (4.60)

Note that in 4D and 5D we have extremal Kerr black holes wiseire6D and above there is no
extremal limit in the solution. In 4D we have= M? as the extremal limit, henceis bounded
by

Jul < (4.61)

1

27

which translates into . .
—3 sinh™'1 <o < 3 sinh™'1. (4.62)

Numerically it is
lo| < 0.4406. (4.63)
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By using (4.11) we obtain the wedge of the state space of theli{ack hole in 4D in a flat
Minkowski whose edge is bounded by

V2-1 = V2 -1
_’/\/§+1<?< NP (4.64)

In 5D we have the extremal limit

J? 16

B 5 (4.65)
andu is bounded as € (—o0, c0) where
u= % tan v/30. (4.66)
The angle of opening of this wedge is then given by
o] < L arctan 0o = —— ~ 0.9069. (4.67)

V3 2V/3

Notably the opening angle of the wedge in 5D is wider than tfa4D. For 6D and higher we
have the wedge that fills the entire lightcone as in those alsoas there are no extremal limits
for the Kerr black holes.

The causal structure of state space is determined by cufwEsstant entropy rather than
by the lightcone itself. For the 4D Kerr black hole the curgésonstant entropy are given by
(t? — 2?)

= e

(4.68)
The Ruppeiner geometry of the arbitrary-dimensional Keacklhole is curved with the curva-
ture scalar in the following form

D—5.J2
112222
1 -
D—35° (4.69)

S D—5J? D—-5J%\"
l-4—— ) (1+4———
( D—3S2) ( * D—352)
In 4D the curvature scalar diverges along the cutyé = S? which is consistent with the

previous result [144]. The curvature scalar (4.69) is vadidny dimension higher than three.
In 5D it is reduced to

R=—

1
S 4.70
RS, (4.70)

which diverges in the extremal limit of the 5D Kerr black hoRemarkably, in 6D we have a
curvature divergence but not in the limit of extremalitythex at

D—3
4 = — =52 4.71
J D—5S (4.71)
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This is where Emparan and Myers [157] suggest that the Kaokidhiole becomes unstable and
changes its behavior to be like a black membrane. This isvalsye the temperature of the
higher-dimensionallp > 6) Kerr black hole reaches its minimum. We would like to add tha
issues of instabilities of Kerr black holes in higher dimens have recently gained attention,
seee.g. [158], [159] and [160].

4.3.3 Kerr black hole with double spins

We start with the mass function in order to compute the Wdahhweetric,i.e. we use Eq. (2.71)

3523 [ AJA\F [ 4J2\7
M == <1+S—;) <1+S—§) : (4.72)

The Hessian ofl/ with respect to the entropy and two angular momenta yield3/Akinhold
metric, which is found to be curved. The curvature scalanefWweinhold metric takes the form
16 S5(S® 4 356J2 + 3562 + 45422 + 64.J4 1) | 4.73)
3 (52 +4J2)3(S2 + 4J2)5(S2 — 4J1.J5)2(S2 + 4J1.J5)?

We next transform it into the Ruppeiner metric via the confalrnrelation with an inverse tem-
perature as a conformal factor. The temperature of the degjih Kerr black hole in five
dimensions is given by

1 (S%+4J105)(S? — 4J1J3)
T 2953 (52 1 4J2)23(S% + 4J3)2/3

T (4.74)

The Ruppeiner curvature scalar of the double-spin Kerr biteté in five dimensions reads
_S8 + 205¢J7 + 20863 + 25651 T2 I3 + 192J1 J35? + 192J2J35% — 256.J1 T3

R =
25(S52 + 4J2)(S% + 4J3)(S? — 4J,J5) (5% + 4J1.J5)
(4.75)
Note that both the Weinhold and Ruppeiner curvature scatardigergent at
2
T — SI’ (4.76)

which is the extremal limit of the 5D double-spin Kerr blacidér Note also that this curvature
scalar does not vanish either in the limit.gf= 0 or J, = 0.

4.4 Dilaton black holes

By calculating the surface gravity, of the dilaton black hole the temperature [161] is found to
be

1 \ e
Ay R 4.77)
2 47"+
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which becomes zero when = r, (for a = 0 (RN black hole) and) < a < 1), whilst it
remains finite in the case af= 1 and diverges for. > 1. Alternatively the temperature of the
black hole can also be found by a simple formule, 7" = (aM/(‘?S)Q. The entropy in terms
of r_ andr, reads [161]

2402

S=12 (1 - T—) - (4.78)

T+

The Gibbs free energy is given by

G=TS= i(nr —r_). (4.79)

4.4.1 Dilaton black hole with a unit coupling constant

It is a useful exercise to explicitly check these resultsaot@d from the flatness theorem, as
we can explicitly read off the physics from the Ruppeiner metit is natural to start with
the caser = 1, as we expect the case of arbitraryo be complicated. Interestingly from the
higher dimensional black-brane perspective we see that 1 corresponds to the dimensional
reduction of an infinite dimensional object [37], and so tkisictually the maximal coupling
one could envisage. The fundamental thermodynamic relatidhis black hole in terms of
mass and charge is given by

S = 4M> (1 _ @ ) . (4.80)
e

Notice that the entropy function vanishes in the extrenmaitl)? = 212, and the temperature

of the solution can be written as ]

T=—.
8M

The corresponding Ruppeiner metric is unsurprisingly semphd takes the following
Lorentzian form

(4.81)

ds? = —8dM?* + 4dQ?, (4.82)

which is conformally Minkowski if we are able to scale the gi@such that) — +/2Q. To
better understand the state space let us introduce two neathes

t=+8M and z=20Q, (4.83)

which are constrained to fall in the ranges't* < 1 with ¢ € [0, 00) andz € (—o0, ) 3, and
thus we obtain the Ruppeiner metric in Minkowski space as\l

ds* = —dt* + da*. (4.84)

3This may plausibly give a minimal cutoff for the black hole'mss.
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AN

a =1 (string)

curves of
constant entropy

> X

Figure 4.3: The state space of the dilaton black hole with a unit couptiogstant. = 1 is a
wedge on the null cone. This can be compared with the case se$h&iNordstrém black hole
in whicha = 0. Curves of constant entropy give a causal structure to tbis pl

The state space of this black hole can thus be presented aa weMinkowski space and one
can clearly see that the wedge of the state space lies orgtitedne since (see Fig. 4.3)

= 1. (4.85)

x
t

We can rewrite the black hole’s entropy in terms of the rerdfiMinkowskian coordinates as
1 2 2
S = §(t —z°), (4.86)

and it is worth noting that the entropy of the black hole vaag on the null cone. Out of
curiosity we can calculate the Weinhold metric for this klaole in Ruppeiner coordinates and
obtain

1

M(dM2 + %dQ2). (4.87)

dsy, = —
This is a curved metric as expectagbriori, a result consistent with our previous works which
indicated that for two-parameter black hole solutions wbhea metric is curved, the other is
typically flat. The curvature scalar takes the following gienform
1

Rweinhold = U (4.88)

Clearly we see there is no curvature singularity, howeventbgic remains curved unless we
take M — oo which reduces the number of physical degrees of freedom. edemin the
extremal limit of the Weinhold picture we find that the scatarvature invariant is inversely
proportional to the electric charge. Interestingly thevabexpression is the same as the tem-
perature of the black hole, up to a factor®f1).
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4.4.2 Dilaton black hole with arbitrary coupling constant

We choose to present the Ruppeiner metric of the dilaton Blatkwith arbitrarye in a com-
pact form by using Eq. (11) in Ref. [155] far= 2 andb = —1 where we take) = —S. This
clearly simplifies to become

_idg2 +S (lf_/z _ f_ﬂ) du? (4.89)

2
Y 2f2  f
whereu = Q/M andf = f(u) is taken from Eq. (2.73). Our wish is to see how this metric can
be written in a manifestly flat form like those we studied ieaiin [144, 154]. It is anticipated
that the wedge of the state space should fill the entire nakcas in the case af= 1.

Ideally we would like to transform Eq. (4.89) into coordieathat are functions ¢f andu

which demonstrate the manifest flatness of the mataowe wish to transform Eq. (4.89) into
Rindler coordinatesds? = —dr? + 72do?) by choosing

T =1/25, (4.90)

ando to be some transcendental functionide.g.arcsin in the case of RN black hole). Having
the metric in Rindler coordinates we can then transform d@ the Minkowski metric using

t=71coshoc and x = Tsinho. (4.91)

The metric fills the future null cone wheryt = tanh o = 1, which occurs whem tends to
infinity. Put simply we wish to see the rangemfrom the transformed metric component.

Unfortunately it is impractical to perform any direct coorate transformation of the second
term of Eg. (4.89) into any transcendental function, sirdefunctionf and its derivatives
combined are quite intractable. Thus we have to analyseatigerofs knowing the behaviour
of the functionf, namely that it goes to zero in the extremal limit= v/1 + a2. We can state
our goal for the analysis as follows:

2 "
Letg = 5? L and leto be a function of., therefore the integral af(u) will represent
the full range ofr when integrating it up to the extremal limit,

o= /um g(u)du. (4.92)

Again this integral is not analytically tractable, themefave resort to the standard method of
power-series expansion about the extremal solution. Tiparesion is performed about the
variablez wherexz = /1 + a2 — . By definition the extremal limit occurs when= 0. We
have done the power-series expansiog ap toO(z?) and found that the integral diverges for
anya > 0, meaning that is infinite. Thus we conclude that the wedge of state spacthéor
dilaton black hole with arbitrary coupling constant fillténtire future null cone as anticipated.
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That the state space wedge for the dilaton black holes fdlstitire thermodynamic light
cone shows that thermodynamic geometry can distinguistkiilale solutions with genuine
extremal limits from those that do not have. We discusseddifierence between genuine
extremal limits and those that are not in Section 1.1.5.

4.5 Tidal charged black holes

We study thermodynamics of the tidal charged black hole ipaising the geometric methods
provided by the thermodynamic metrics. We start by derithgentropy of the tidal charged
black hole and analyzing its mass and tidal charge depeprdeiibese thermodynamic consid-
erations could be useful not only per se, but also for theyaisabf the possible 5D extensions
of the tidal charged black hole. We summarize our findinggieflas follows:

The tidal charged black hole has the metric

ds® = —f (r) dt* + £ (r) dr’ + 1 (6% + sin® 0dp*) . (4.93)

The metric functionf is given as

2M
fry=1-—+4%2 (4.94)
T T
Such black holes are characterized by two parameters: rttess)/ and tidal charge. The

exterior horizon for; > 0 or the only horizon for; < 0 are both given by
r.=M+06, (4.95)

where we have introduced the shorthand nota@os /M2 — ¢, real for anyg < M?. The
black hole’s entropy can be calculated using the celebBé&@nstein-Hawking formula (2.4)
with geometrized units anklz; = 1/7 chosen for convenience,

A

S:E:ri:(M—l—@)Q. (4.96)
By the first law of thermodynamics, the temperature of thekolaade is given by
1
T(M,q) =0sM = © (4.97)

S 2(M +0)*

The same valu&' ()M, q) is found by computing the temperature of the Hawking radrati one
uses the well-known formula for the surface gravity of a sgadly symmetric Killing horizon
(see e.qg. [163]).

The temperatur@'(M, q) increases witly for ¢ < 0 up to the maximal valué& = 1/(8M)
atq = 0, then decreases with increasing- 0 down to7 = 0

oM _.9S oT\ " M\ ™' —25(S —q)
Cq—a—T_Ta—T_T<—) _T(852) =5 3 (4.98)
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In the domain of its negative values the heat capacity reaehcal maximum at the
Schwarzschild configuratiore( = M). The thermodynamical interpretation of negative heat
capacity is that such a black hole cannot be in a stable bquiih with an infinite heat reservoir
held atT" = Ty (M, q). For instance, a small thermal fluctuation may transfer shes to
the black hole and make the black hole colder, thus makingtheasfer even more efficient.
This is the typical behavior of Schwarzschild black holekjol are unstable with respect to
emission of Hawking radiation in empty space and can beestatdly in thermal contact with a
finite-volume reservoir.

Since the Universe may be considered as an infinite heatvoesaving the temperature
of the cosmic background radiation, these consideraticagIme relevant to the cosmological
stability of primordial or near-extremal black holes thaié very low temperature. A near-
extreme black hole with tidal charge > 3M?2/4 has a positive heat capacity and thus can
remain in a stable equilibrium with an infinite heat reserabil’ = Tgy.

4.5.1 Thermodynamic geometries of the tidal charged black hole

The Ruppeiner metric

The geometry of the tidal charged black hole depends on twenpeters:AM/ andq. From the
generic definition (3.2) we find the corresponding Ruppeinetrimas

ds? = — |2(M —20) (M + ©)*dM? — 2(M? — ©*)dMdq + %dq2 : (4.99)

The Ruppeiner curvature scalar is

1

It is readily seen that the curvature scalar diverges in #teemal limit for ¢ > 0, but stays
regular for any; < 0.

The Weinhold metric

By passing to coordinatgs\/, ©) in the Ruppeiner metric and using the conformal relation
(3.10) as well as the expression for the temperature, werotita Weinhold metric explicitly
as
A5, = Tds?, — —(M+2®)dM2—2®0£Md®+Md@2 . (4.101)
(M +0©)
This can be further simplified by introducing the new cooadiar ;. replacing®:

d d
ds?, = <+ (Mﬁ _ sz) , (4.102)

Ty [
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then passing t¢Z = logr,, W = log (r/M?)) we find

dsy, = MdZdW (4.103)
with 7w
M :exp( _2 > . (4.104)
In the coordinatesU, = 2exp (Z/2), U- = 2exp (—W/2)) the Weinhold metric becomes
manifestly flat,ds};, = —dU.dU_. One can also introduce Minkowskian coordinates as
Uy = X £V, findingds?, = —dX? + dY?. The sequence of coordinate transformations

leading to this result can be summarized as

M
X = Jir+

Y

VT
Y = Jri— M (4.105)
= /i Nk :
The inverse transformation is
4T+ = (X+Y)2 9
4M = X?-Y?2. (4.106)
4.5.2 The global structure of the Ruppeiner geometry
The expression of the temperature in {3 Y') coordinates is
p_-M_ A (4.107)
2T+ (X + Y)
which leads to the manifestly conformally flat form of the Rapyer metric:
Y 3
a5 = X vy ayv?y (4.108)
4Y
Note that the domain of the original Ruppeiner coordinates is
M € (0, 00), g € (—o0, M?) . (4.109)

The corresponding ranges of the varialfes, are® > 0, r, > 0; the Minkowskian coordi-
nates defined by (4.105) have the radge> Y > 0. Thus the state space is equivalent to the
right half of the interior of the future light cone of a Minkeki plane, with the vertical bound-
ary included but the light-like boundary excluded. (Thétigone describes: = 0 states as
can be seen fromiM = X? — Y2, which forq > 0 does not correspond to black hole metrics.)
The extremal states are Iocated(a?t’ =2V/M >0,V = 0), i.e. on the positive half of the
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N
<

Figure 4.4: A Ruppeiner state space plot of the tidal chardackthole embedded in the flat
Minkowskian parameter space. Note that the thermodynagtitdone (TLC) describe&/ = 0
and the wedage fills the right half of the TLC with the light comecluded. The vertical axis
represents the extremal limit in whi@h= 0.

time-like coordinate axis (the vertical boundary). This && also seen by writing the curvature
scalar (4.100) of the Ruppeiner metric in 1€, Y') coordinates:
1 4

R:2(r+—M)r+ Y (X 1Y) (4.110)

We also remark that passing to th&, Y') coordinates by the transformation (4.106) induces
a degeneracy. For each pair of coordindtés ¢), as well as for M, ©) or (M, r,), we can
associate any of the combinatiofs X, + YY), with X, Y defined by Eq. (4.105). Therefore
the light cone of the Minkowski plane provides a four-foldretage of the original state space.
This is similar to the introduction of the well-known Krudkaordinates for the Schwarzschild
geometry: Kruskal coordinates cover four patches in theska+Szekeres diagram, while the
original coordinates cover only one patch. We end our dsouns on the tidal charged black
hole by the following remarks:

(A) The induced thermodynamic (Ruppeiner) geometry can hagveysical singularity only
for ¢ > 0, in the extremal mass limit. It is worth noticing that whileet Ruppeiner
geometry of the tidal charged black hole is non-flat, the Rungvenetric for the Reissner-
Nordstrom black hole (when we promaje= Q? in the metric) is flat [144]. This is a
sharp difference emerging in spite of the similarities ia RN and tidal charged black
holes.

(B) While the state space of the RN black hole is a Rindler wedgeedadd in a Minkowski
parameter space, we have found that the state space fodaheharged black hole is the
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(®)

right half of the interior of the future light cone of the Miolski plane, with the vertical
boundary included but the light-like boundary excludede Tight cone of the Minkowski
plane provides a four-fold coverage of this state spacelasignto the four-fold covering
of the curvature coordinates for a Schwarzschild black bgl&ruskal coordinates.

With regard to the divergence found in the heat capacitgndough the heat capacity
diverges, the energy (mass) function is regular in the s@epoint© = M/2. In fact
we can see that the Ruppeiner metric (4.101) becomes detgnethat point (the coef-
ficient of dM? vanishes) but according to Ruppeiner that is not a sign ofeptraasition.
A contradictory opinion is expressed by Davies [141], adoag to which a singularity
of the heat capacity appears when the black hole underg@ese pransition. In this con-
troversial context we stress again that a singularity inhthat capacity also emerged for
RN black holes [144], in the same point where the metric becdegenerate, and it was
not accompanied by a phase transition. As nothing speqguudres with the tidal charged
black hole at the respective parameter values, we expesathe here.
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4.6 State space graphics

In this section we present state space plots in a unifiedrgictlhis plot is for flat thermody-
namic geometries that can be brought into a Minkowskian farhe main structure of the state
space plot consists of a Thermodynamic Light Cone (TLC), widalhere the entropies of the
black holes vanish. We present conjectures on the wedgaateifor higher dimensional black

holes based on the established outcomes.

This is a conjecture for 6D Kerr BH

Tidal charged BH's state space is 4 t
with 2 equal spins!

a right half of the future TLC with
TLC excluded. T=0 on vertical N
5
S When D is infinite,

axis and zero mass on TLC.
)
v H
F \ 1 the RN's wedge

reaches TLC

4D dilaton BH's state
space fills the entire TLC
for any dilaton coupling.

For 5D Kerr BH when 1 spin
is turned off we obtain the

same wedge structure as the

dilaton BH in 4D. X

Figure 4.5: A state space plot of Einstein-Maxwell blackdsol
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Chapter 5
Summary and outlook

Our imagination is stretched to the utmost, not, as in fiction, to imagine things which are
not really there, but just to comprehend those things which are there.

—R. P. Feynman

The information geometric theory applied to thermodynanhias generated intruiging re-
sults. It provides an alternative and elegant route to abitaight into thermodynamics through
Riemannian geometry. Its power is due to the fact that the Rnppmetric together with its as-
sociated curvature and signature encodes many aspectywidtlynamics consistent with the
known results in systems whose statistical mechanics awhknSince the underlying statisti-
cal mechanics of black holes is still unsettled, the appboeaof the Ruppeiner theory to black
hole thermodynamics then gives a new perspective on thjsduldlthough we currently have
few results that are physically significant, the outcomethsf project should give a clue for
further explorations in this field. We believe that the urer@d geometrical patterns may play
an important role in the future, when quantum gravity isdratinderstood.

As a matter of fact, the Ruppeiner theory of black hole therynadhics can be applied to
every class of black holes as long as their fundamentaloakare well-defined. The difficulty
consists in finding reasonable interpretation(s) of thewated Ruppeiner geometries. We
think that prediction of instabilities of ultraspinning Mgs-Perry black holes using our method
is probably the most valuable outcome of this research progr

Future works of this research program includes 1) genatadiz of the flatness theorem to
three dimensions 2) understanding the AdS/CFT correspaedenterms of thermodynamic
geometries for certain systems, and 3) developing morectamputer programs for comput-
ing! all the relevant quantities where the only input neededdduhdamental relation.

Last but not least, we end this chapter by presenting theomés of this research program
as shown in Table 5.1.

lthis includes plots and stability analysis (based on cureasingularities of BH thermodynamic geometries).
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Spacetime dimension| Black hole family Ruppeiner | Weinhold
d=2 (1+1) RN like BH (generic) | Curved Curved
(1+1) reduced RN BH Flat Curved
(1+1) CS like BH (generic) | Curved Flat
d=3 (2+1) BTz Flat Curved
(2+1) BTZ (Chern-Simons) | Flat Curved
(2+1) BTZ (Log corrections) Curved Curved
d=14 RN Flat Curved
Kerr Curved Flat
Kerr-Newman Curved Curved
Braneworld (tidal charged) | Curved Flat
Dilaton Flat Curved
d=5 Kerr Curved Flat
double-spin Kerr Curved Curved
RN Flat Curved
Black ring Curved Flat
anyd Kerr Curved Flat
RN Flat Curved

Table 5.1: GOMETRY OF BLACK HOLE THERMODYNAMICS.




Appendices

Appendix A: Killing vectors, Killing horizons and surface gravity

Normally one would think of the surface gravity (@fg.a planet) as the gravitational accel-
eration experienced at its surface. However this concegpibsler in the context of black hole
physics we discuss in this thesis. Fortunately we have amttiat captures this concept but it is
limited to black holes whose event horizons are Killing korig. The Killing horizon is a null
surface to which the Killing vector field is normal. That the norm & is zero on the horizon
is a necessary but not a sufficient condition for the Killimgior?. We now state the definition
of surface gravity in a mathematical language as follows* is a suitably normalized Killing
vector then the surface gravity, can be defined by

vu(éyfl/) = _2/{§;u (A'l)

This equation is to be evaluated at the event horizon, amdgliés that¢? = 0 which defines
a null hypersurface. An important feature of surface gyagithat it globally constant all over
the event horizon owing to the following facts:

(a) «is constant along null generators of the Killing horizomedy an invariance of Eq. (A-
1) under the isometries generateddaynplies thatx is constant along each null generator,
PV k= 0.

(b) ~ does not vary from one generator to another. In order to ptiosatx does not vary
from generator to generator, one uses the* féet forx # 0 there exists a 2D bifurcation
surfaceS on whichg = 0.

1In [63] Hawking and Ellis prove that the event horizon of aistaary black hole is a Killing horizon.

2For example, in the Kerr spacetime the normttf= 9} is zero on the static limit which is not a null
hypersurface, but the norm of the Killing vectgt = 9;° + Q0% is zero on the event horizon and there it defines
a null hypersurface.

3In [59] the constancy of is proved without assuming at+# 0 but requires the use of the Einstein equations
with matter obeying the dominant energy condition.



Another way of verifying thak is constant on the Killing horizon is by showing thég,ws = 0
wherew,, = €,4,6£°V7€°, known as a twist of thé field. This proof is given by Racz and Wald
in [143].

Eg. (A-1) can also be expressed as

MV &Y = KE”. (A-2)

The surface gravity also admits the following represeoiati

1
R = 5 (Vi) (V"€"). (A-3)
The surface gravity (for static black holes) can be viewed &rce required by an observer
at infinity to hold a test particle (by means of an infinitelydp massless string) at the event
horizon. For a spherically symmetric spacetime whose tglivector is§; = 0, the surface

gravity is calculated to be
1 /
K= §f (r+) (A-4)

wheref(r) appears in
ds* = —f(r)dt* + f(r) 'dr® + r2dQs. (A-5)

For the Schwarzschild black hole with magsthe surface gravity is given by = ﬁ The
Kerr-Newman black hole has a more complicated surface tyravi

- M
k=t (A-6)
rit+a
where
ry =M+ \/M?—a?— Q> (A-7)

It is readily seen that in the limit of = @ = 0 we recover the surface gravity of the
Schwarzschild black hole.

Appendix B: Dilaton black holes—a transformation between Einstein and
string frames

The dilaton black hole in string frame can be transformed Einstein framé&in the fol-
lowing way: We use the action given in [27] with spacelike noesignature as

S = / d*z/=ge* (R+ 4(V9)* — F?) (B-1)

li.e.a frame in which there is no function multiplying the Riccatar.
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This is the low-energy action of string theory in string fanWe want to transform the action
in (B-1) into Einstein frame whose spacetime metric is reldtethe metric of the string frame
as:

Gas = € Gap < gap = €291, (B-2)
So we need to know how other quantities in (B-1) transform utiteeconformal transformation
in (B-2). There are four quantities that tranform and theyamghe following manner:

Metric determinant: /—g = e**\/—¢¥ (B-3)
Akinetic term: (V@) = ¢*°V ¢V 0 = e 2*(Vo)? (B-4)
Field strength term: F*°F, 3 = ¢* g™ F,3F,5 = e F? (B-5)
Ricciscalar: R = e 2*Rp — 6e3%e? (B-6)

Rewriting (B-1) with transformed quantities in the four eqoas above:
Sg = /d4:c —g €' % (e R — 6e*?0e” + 4e**(Vp¢)® — e " F?) (B-7)
After integration by parts, this gives the action for dilafgravity in the Einstein frame as
Sp= [ d'z/—gF (Rg — 2(Vpe)? — e 2 F?) (B-8)

Note the sign difference in front of the kinetic term.

Appendix C: Proof of the conformal relation between Ruppeiner and Wein-
hold metrics

The first law of thermodynamics can be written in differeifitams as

DU = dTdS — dpdV + dyi;dN; (C-1)

whereU, T, S,p,V,n and N are internal energy, temperature, entropy pressure, clatipo-
tential and particle number respectively. Similarly wedav

DS =d (%) dU + d (%) dv —d (%) dN;. (C-2)
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Invoking the first law of thermodynamics in its original form

dU =TdS — pdV + p;dN;. (C-3)

Inserting Eqg. (C-3) into the RHS of Eg. (C-2) and we obtain

1 TdP — pdT Tdp; — p;dT
2qQ
D?S = = 5 dT(TdS = pdV + pidNy) + ——+—dV — === ===dN,

1 dVdP  dANdP  dPAV _dTdV dwdN; — dNAP

— __dTdS+ P 4 _p _ —
FdS + D=+ = + = T2 T M=
1

= —=(dTdS — dpdV + djdNy).

Thus )
D?S = —D°U. (C-4)

This proves that the Ruppeiteand Weinhold metrics are conformally related

wherez® are the conserved parameters.

Appendix D: Degeneracy of Ruppeiner metric

In this appendix we show how extensitivity of the entropindamental relation leads to a
degenerate Ruppeiner metric. The entropy function of amekte systene.g.for the ideal gas
takes the form

UMS, AV, AN) = \U(S,V,N). (D-1)

Since we will prove this in general, namely we write

UNS, \z;) = \U(S, ;), (D-2)

wherez; are extensive parameters. In mathematics Eqs.(D-1) ar) 8be homogeneous func-
tions of degree one (because the exponentisfunity). A subsequent theorem of the homoge-
neous function is the Euler theorem which states that EQR)(IDaplies that

(SOs + 2:0,,) U = U. (D-3)

1The minus sign is absorbed in the definition of the Ruppeir@rimi.e.gf} = —0,0;S.
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Using thermodynamic relations we can rewrite the equatimve as

whereT is temperature, ang; = 0,,U are intensive parameters. Taking the differential of
Eq. (D-4) gives
SdT 4+ TdS + x;dy; + y;dx; = dU. (D-5)

Grouping the equation above we can see that (using the rizadu@ form of the first law of
thermodynamics)

(TdSAy;dz;) + SdT + x;dy; = 4, (D-6)
thus we are left with

known as th&sibbs-Duhem relationMore elegantly we rewrite it as

2%dy, =0, a=1,...,n. (D-8)
We can express
dya b
dya = - da’ (D-9)
and because
Ya = aaU7 (D'].O)
hence 92r7
_ b_ Wb D-11
dys = 5oz da’ = gij du (D-11)

where we have used the definition of Weinhold metric. We noveha

rdy, = x°g)y da’ = 0, (D-12)

meaning that
zg" = 0. (D-13)

This implies thate® are null eigenvectors, therefore the Ruppeiner metric isdeggte.
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