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Abstract

This thesis examines how a quantum computer can be simulated using a clas-
sical computer. It provides a theoretical background to the basics of qubits and
to quantum computing, including a mathematical representation for quantum
states and gates using vectors and matrices. This background is then applied
through the implementation of a simulator that is able to execute quantum
circuits written in the quantum programming language OpenQASM on a clas-
sical computer. Finally, the simulator is used to implement Quantum Fourier
Transform (QFT) and Shor’s algorithm as OpenQASM programs.
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1 Introduction

In 1981 Richard Feynman [5] introduced the idea of using a computer based on
concepts from quantum mechanics to simulate how quantum systems behave.
He argued that a classical computer is not useful to simulate real world quan-
tum systems because the time and resources required grows exponentially with
the size of the problem. However, the resource consumption in a quantum com-
puter only grows linearly with the size of the quantum problem. This makes
a computer based on quantum effects much more suitable for solving quantum
problems, we call this type of computer a quantum computer .

In the beginning there were no quantum computers and even today there
are very few of them and they are relatively small. In order to develop the the-
oretical models required for programming a quantum computer and to validate
algorithms developed for use on a quantum computer researchers developed sim-
ulators for quantum computers that could be executed on a classical computer.
These simulators use a mathematical model of quantum mechanics to immitate
how a real quantum computer would behave, given a program and a set of input
parameters.

The purpose of this thesis is to learn about the techniques used to sim-
ulate a quantum computer on a classical computer and to create a program
that can simulate the basics of how a quantum computer behaves. At the start
of the project there were six objectives: Theoretical basis for classical simula-
tion of quantum circuits, Noise and error correction, Develop a quantum circuit
simulator for a classical computer, Quantum algorithm, GPU acceleration and
Floating point precision.

Halfway into the project GPU acceleration and Floating point precision were
excluded because they were less relevant for the purpose of the thesis, they
focused too much on the performance aspect of the simulator. The objective
Noise and error correction has been reduced to a theoretical part that is included
in the thesis, but it has not been implemented in the simulator.

This chapter introduces concepts that are used throughout the rest of the
thesis, it is recommended that the reader become familiar with these concepts
before reading the other chapters. Chapter 2 Simulation of Quantum Circuits
introduces the mathematical model used for simulating quantum circuits and
also explores other topics (such as noise and error correction).

After having focused on theory in the first two chapters the following two
chapters describe the results from the implementation of the simulator. Chap-
ter 3 Simulator Design explains key design decisions made during the imple-
mentation of the simulator. To get some real use from a quantum computer
(or simulator) we need to use it to solve a problem, chapter 4 Quantum Algo-
rithms discusses how the simulator was used to support QFT (Quantum Fourier
Transform) and Shor’s algorithm.

Finally, chapter 5 summarizes the work performed during this thesis project.
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1.1 Anatomy of a Quantum Program

There are several different techniques used to physically realize a quantum com-
puter, they include but are not limited to: ion traps, nuclear magnetic resonance
and harmonic oscillators. These will not be further discussed in this thesis, they
are out-of-scope just like the design of a silicon chip is not included when dis-
cussing the design and implementation of a program on classical computers. It
is sufficient to say that there exist physical realizations of quantum computers
and they allow for quantum programs to be executed on them.

In the context of quantum computing we do not use the term quantum
program, instead we use quantum circuit to represent the programming logic
that is executed on a quantum computer. Figure 1 shows the main concepts that
are involved in a quantum circuit. A quantum circuit consists of a sequence of
operations (called quantum gates) that each operate on one, two or sometimes
three qubits. The input to the circuit is a system state on which the circuit
operates, the circuit produces a system state as output. Each of these terms are
further explained in the following sections.

Figure 1: Concepts of a quantum circuit.

Another characteristic of a quantum circuit is that it does not execute on
its own. A normal scenario is that a researcher provides input to a program
on a classical computer, that program then prepares the system state that is
provided as input to the quantum circuit and it also interprets the output from
the quantum circuit. Finally, the classical program produces an output to the
researcher. This way the classical program can do what it is good at (high-level
structured programs) while the quantum circuit provides a quantum advantage
in areas where it is more efficient. Figure 2 illustrates this relationship. An
example of this structure is how Shor’s algorithm is structured in the simulator
implemented as part of this thesis, the classical part is described in chapter 4.5
and the quantum part is described in chapter 3.6.1.
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Figure 2: Classical computer using a quantum computer to solve a problem.

1.1.1 Qubit

The bearer of information in a quantum system is the qubit . To introduce the
concept of a qubit we start with a more familiar concept, a bit in a classical
computer (like the laptop you use to write your homework on). A bit can take
two values (0 and 1) and you can combine many bits to represent information,
e.g., the character ’Q’ can be represented as 01010001 when you save it in a text
file. An important characteristic of a classical bit is that it has a specific value,
it is either 0 or 1 and never anything in between. When you save the sequence
of bits representing Q you don’t want them to change their value, because if
you read them the sequence would no longer represent a Q.

Using similar language to the above a first attempt at describing a qubit
could be as a quantum bit that can take the values |0⟩ or |1⟩ 1. This is an
oversimplified description because a qubit is much more complex than a classical
bit, but for those unfamiliar with qubits it may serve as a way to get used to
the term (which we will use a lot in this thesis).

A more correct characterization is that a qubit is a two-state quantum system
that can be in a superposition of |0⟩ and |1⟩. This means that the qubit does not
have a specific value, it represents a probability distribution of the two possible
states. It is not limited to be either-or, it can also be both.

Equation 1 illustrates that the quantum state |Ψ⟩ has one probability to be
in state |0⟩ and another to be in state |1⟩. Note that α and β are complex
numbers and the probability to measure |0⟩ is |α|2 and the probability for |1⟩ is
|β|2.

|Ψ⟩ = α|0⟩+ β|1⟩ (1)

When we read the value of the qubit we say that we perform a measurement.
The measurement forces the qubit to assume one of the possible states, using

1The notation |0⟩ or |1⟩ is called the Dirac notation a.k.a. bra-ket notation. It is used to
describe the basis states of a quantum system.
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quantum mechanical terminology we say that the qubit collapses from its inde-
termined probabilistic state to a specific state. This means that if we perform
repeated measurements of the qubit then we will always get the same result, the
qubit has assumed a value and it will not change. This is illustrated in Figure
3 below.

|Ψ⟩ = α|0⟩+ β|1⟩ measurement−−−−−−−−−−−−−→

{
|0⟩ with probability |α|2
|1⟩ with probability |β|2

Figure 3: Measuring the state of a qubit causes it to collapse to a specific value.

Once again there is more depth to be added to the description. In quantum
mechanics you are not restricted to only describe and measure the quantum state
using |0⟩ and |1⟩ (a.k.a. the computational basis). We can define a new basis
where |+⟩ = 1√

2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩) and make a measurement

using this basis, the quantum state will then collapse to one of |+⟩ or |−⟩. If
we repeat the measurement multiple times it will always yield the same result
as when we first measured it using the |+⟩/|−⟩ basis.

Assume that we first measure using the computational basis and get the
result |1⟩ and then measure using the |+⟩/|−⟩ basis and get the result |+⟩. Now,
what result will we get if we now perform a measurement in the computational
basis? In classical physics you would expect to get |1⟩, the length of something
doesn’t change when we measure its weight. Also, we have said that the inital
measurement in the computational basis collapse the qubit to the state |1⟩, so
we would expect the result to be |1⟩ once again.

However, in quantum mechanics when we perform a measurement using
one basis we disturb the quantum state with regard to any other basis. The
result of this is that if we first measure |1⟩ and then measure |+⟩ and then
perform another measurement in the computational basis the result is just as
indetermined as it was before the first measurement. The qubit is once again
in a superposition of |0⟩ and |1⟩ and which one of these states that we will get
from the measurement is not determined until we perform the measurement.

Above we have described measurements as an abstract mechanism that
somehow gives us |0⟩/|1⟩ or |+⟩/|−⟩. In a physics lab we can make concrete
measurements of the physical properties of a particle, e.g. we can measure the
polarization of an electron along different axis. If we measure polarization along
the z-axis and get the value + 1

2 we say that the state is |0⟩ and if we get − 1
2 we

say that the state is |1⟩. Similarly, if we measure polarization along the x-axis
we interpret the result as |+⟩ or |−⟩.

When you measure using different basis in classical computing you can get
results that look different, e.g. 10 (decimal) and A (hexadecimal), but changing
basis in classical computing does not alter the actual result and has more to
do with visualization of the result. This is a key difference when compared to
quantum mechanics where the result is not known when you change basis and
perform a measurement.
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If you store information using qubits that are in a superposition you don’t
know what you will get back and this makes qubits a bad choice for storing
information. However, this is also the strength of qubits! Instead of focusing on
the inability to recover an exact state from a qubit, let us consider that a single
qubit can be seen as storing more information when compared to a classical bit.
Because the qubit, through superposition, can be both |0⟩ and |1⟩ at the same
time.

Using this quantum mechanical property of qubits in clever ways is of part
of what makes it possible to create quantum algorithms that perform better
than classical algorithms. This will be further discussed in chapter 4.

1.1.2 System state

Just like we can construct a sequence of classical bits and say that it holds
information, we can also construct a sequence of qubits and say that it holds
information. The information carried by a sequence of qubits is called the system
state or quantum state of a quantum system.

Using the computational basis, a two-qubit system has the basis states |00⟩,
|01⟩, |10⟩ and |11⟩. To describe a state |Ψ⟩ we write |Ψ⟩ = α1|00⟩ + α2|01⟩ +
α3|10⟩ + α4|11⟩, where α1, α2, α3 and α4 are four (22) complex parameters.
This illustrates that the system state for a two qubit system doesn’t have to
be in a single basis state (e.g. |10⟩) as a classical state would have to be (e.g.
10). Because each qubit can be in a superposition, the state |Ψ⟩ can be in a
superposition of several different basis states. Of course, it is possible that |Ψ⟩
has all but one parameter equal to zero so that it with 100% certainty is in one
of the basis states, but that is just one of infinitely many states that |Ψ⟩ can be
in.

In a three-qubit system the basis states are |000⟩, |001⟩, |010⟩ |011⟩, |100⟩,
|101⟩, |110⟩, |111⟩. To describe a state |Ψ⟩ that consist of three qubits we use
eight (23) parameter and write |Ψ⟩ = α1|000⟩ + α2|001⟩ + α3|010⟩ + α4|011⟩ +
α5|100⟩+ α6|101⟩+ α7|110⟩+ α8|111⟩.

We see that we need 2n complex parameters (α1, . . . , α2n) to describe a
system with n qubits. This exponential growth (2n) of the number of parameters
required to describe a system state quickly becomes a problem when building
a simulator for a quantum computer using a classical computer, the available
memory (RAM) runs out even for low number of qubits! See chapter 2.1.3 for
more details.

It is the state of the quantum system that is manipulated when a program
runs in a quantum computer. During execution of the program quantum op-
erations are carried out that change the state. Finally, the output from the
program is the system state after all operations have been completed.

1.1.3 Pure states and mixed states

To describe the well-defined system states shown above (e.g. |Ψ⟩ = α1|00⟩ +
α2|01⟩+α3|10⟩+α4|11⟩) it is sufficient to work with the 2n parameters α1 . . . α2n .
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We call a state that is completely described by α1 . . . α2n a pure state.
If a system state represents a statistical mix of different states we call that

a mixed state. A mixed state is described using a density matrix, see chapter
2.1.2. To make this a bit more concrete, let us assume that one system state
represents electrons polarized in one direction and other system states represent
electrons polarized in a different direction. If our quantum system contains a
statistical mix of these two type of particles then that would be a mixed state.

A pure state is a special case of a mixed state and its description can be
simplified to be a state vector, see chapter 2.1.1. But a pure state can also
always be described using a density matrix.

1.1.4 Entanglement

Another phenomenon that may affect a quantum state is entanglement. When
qubits are entangled the state of the qubits are dependent on each other. The
dependency does not mean that the qubits must have the same value, but you
could say that only certain combinations of their values are available.

|Ψ⟩ = |00⟩+ |11⟩√
2

(2)

Consider the system state shown in Equation 2, it is a system state that
can only be in one of the states |00⟩ or |11⟩. If you measure the system state
then the result may be any of those two states. But also note that if you only
measure the first qubit and find that it is |0⟩ then you immediately know that
if you measure the second qubit it will also be |0⟩. We say that the qubits are
entangled.

In addition to a strong correlation between qubits entanglement also has
the property of being non-local. If we have a system containing two qubits as
described in Equation 2 and separate the individual qubits by any geographical
distance, then they are still entangled and measurement of any of the qubits
instantaneously determine the state of the other qubit.

When we discussed qubits in section 1.1.1 we said that measurements in one
basis disturb measurements in another basis. Therefore it could be expected
that entanglement only applies in a single basis. But let us see what happens if

we define |0⟩ = |+⟩+|−⟩√
2

and |1⟩ = |+⟩−|−⟩√
2

and insert that in Equation 2.

|Ψ⟩ = |00⟩+ |11⟩√
2

=

1
2

(
(|+⟩+ |−⟩)(|+⟩+ |−⟩) + (|+⟩ − |−⟩)(|+⟩ − |−⟩)

)
√
2

=
|++⟩+ | − −⟩√

2
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We see from the derivation above that the entanglement translate between
the computational basis and the |+⟩/|−⟩ basis.

Entanglement is a complex topic that is an important part of quantum me-
chanics, but for more on this topic we refer the reader to [17] and [14]. To
round off let us just mention that the state in Equation 2 is called a Bell state
after John Bell who analyzed properties of quantum mechanics, among them
entanglement. The Nobel Prize in physics in 2022 was awarded to Alain Aspect,
John Clauser, and Anton Zeilinger ”for experiments with entangled photons, es-
tablishing the violation of Bell inequalities and pioneering quantum information
science” [18].

1.1.5 Circuit model of quantum computing

Quantum gates or just gates are operations that manipulate the system state,
a gate typically changes the value of a qubit. But the result of a gate may also
depend on an additional qubit to make a logical decision, the additional qubit
is called a control qubit, see section 2.2.1. A typical gate changes one or two
qubits and uses zero or one control qubit.

When many quantum gates are used together we call the assembly a quantum
circuit. A quantum circuit is the program of a quantum computer.

Potentially you can also view smaller parts of a program as individual quan-
tum circuits, maybe they are well known or reusable circuits. A great example
of this is Quantum Fourier Transforms (QFT) which will be discussed in chapter
4.4.

1.2 Physical and logical qubits

When building a quantum computer you construct physical qubits, but that is
not necessarily what you are interested in when you ask how large a quantum
computer is. A physical qubit is very small and very delicate, disturbance from
the environment or normal quantum events can easily alter its state.

To compensate for the fragility of a physical qubit we use error correction.
Error correction uses several physical qubits to create a more reliable qubit, we
call these logical qubits.

Logical qubits is something we can use in real-world application. The quan-
tum circuits described in previous sections are not built using physical qubits,
instead they use logical qubits that are assumed to be stable. When we say that
a quantum circuit use three qubits during its execution that is not necessarily
three physical qubits, it is three logical qubits which may translate to many
more physical qubits.

Today’s quantum computers do not provide high-quality qubits and they
have a high error rate [19]. To limit the impact of errors we include error
correction in quantum circuits, this gives us stable circuits with high confidence
in the result. The disadvantage is that error correction logic requires many
qubits, so the number of qubits available for the circuit logic decreases. At the
time of this writing (September 2024) the largest quantum computer processor
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has 1121 qubits [11], but when you implement error correction the number of
logical qubits is much lower then 1121. The decrease in number of usable qubits
decreases the complexity of the problems the we can solve using the quantum
computer.
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2 Simulation of Quantum Circuits

The previous chapter gave a general introduction to the concept of quantum
computing. This chapter discuss those concepts in the context of simulating
a quantum computer using a classical computer. The discussion focuses on
things that are common to all simulators, specific details about the design of the
simulator that was implemented as part of this thesis are described in Chapter
3.

What is the toolbox we have available if we wish to simulate quantum me-
chanical systems using a classical computer? The general answer is mathematics
and more specifically linear algebra. Maybe you did not think about it, but al-
ready in Figure 1 we used mathematics and linear algebra to represent the
system state.

In Figure 1 the system state was shown as a vector, but we have also dis-
cussed probability and mentioned complex numbers. In addition to the above,
this chapter will also make extensive use of matrices (with complex numbers as
elements) and multiplication between matrices.

2.1 System State Representation

The system state is a complete description of the state for all qubits in the
quantum system. The system state does not focus on an individual qubit, only
on the state from the combination of all qubits.

Below are two common ways to represent the quantum state during simula-
tion of quantum circuits.

2.1.1 State vector

The simplest way to describe the state of a quantum system is as a state vector
that has 2n elements to describe n qubits, see chapter 1.1.2. Each of the elements
are complex numbers

To make it more concrete consider Figure 4 below. It shows a state vector on
the left and to the right are the states that each component of the state vector
refers to. When using a state vector the probability to measure a state in the
computational basis is the squared magnitude of the parameter for that state,
in the figure below the probability for the basis state |001⟩ is | i2 |

2 = 1
4 .
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|000⟩
|001⟩
|010⟩
|011⟩
|100⟩
|101⟩
|110⟩
|111⟩

Figure 4: A state vector representing a quantum system state with three qubits
and 23 = 8 possible states.

When a quantum circuit executes the gates operate on the state vector,
thereby evolving the system state. Figure 1 illustrate how the input state on
the left is evolved to the output state on the right by performing gate operations
on the state.

A mathematical property of the state vector is that if the components are
represented as ei then

∑
|ei|2 = 1. Compare to how we defined the probability

for a state when we looked at a single qubit in Figure 3.
A limitation of state vectors are that they only can represent pure states, if

your state is a mixed state then it is not enough to use a state vector. However,
if we avoid non-unitary operators (see section 2.2), quantum noise (see section
2.5) and don’t do partial traces (see section 2.1.5) in the simulation it is fine to
use state vectors.

2.1.2 Density Matrix

A more general way to represent the state of a quantum system is to use a
density matrix , using a density matrix allows us to represent both pure states
and mixed states. The size of a density matrix for n qubits is 2n · 2n = 22n

elements.

2n rows


p1,1 p2,1 . . . p2n,1
p1,2 p2,2 . . . p2n,2
. . . . . . . . . . . .
p1,2n p2,2n . . . p2n,2n


︸ ︷︷ ︸

2n columns

Figure 5: Density matrix for a quantum state with n qubits.

If we have a pure state |Ψ⟩ we can create the density matrix ρ through
ρ = |Ψ⟩⟨Ψ|. The density matrix for the vector state given in Figure 4 is shown
below, it is much larger so it requires more memory to store and operations on
it will take much longer to perform. It is therefore beneficial for a simulator if
all system states can be limited to state vectors.
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Figure 6: A density matrix for a quantum system state with three qubits and
2n2 = 22n = 22·3 = 26 = 64 matrix elements.

2.1.3 Working with multi-qubit systems

Now let us look at how much memory is required to work with these state
representations.

The number of parameters required to describe a multi-qubit system as a
state vector is 2n. If we have 32 qubits we need 232 = 4 294 967 296 matrix
elements to describe the state vector. Each matrix element is a complex floating
point number and assuming we use 32-bit (4 bytes) floating point numbers this
will require 232 × 2 × 4 bytes = 34 359 738 368 bytes = 32 GB 2 to store the
state vector in memory.

Today (2024) a highend personal computer has 32 GB of RAM, so this small
system with 32 qubits will allocate all the available memory of the computer
just to store the state vector. But to just hold the state is not enough, for the
system to be useful we must also perform operations on it and that will require
even more memory. When we wish to apply a quantum gate to a state with 232

qubits we need a matrix with 232 × 232 = 264 elements, which is a number so
large that it cannot possibly be stored in memory on a computer.

The exponential growth of memory required to work on multi-qubit systems
limits the size of the quantum systems that can be simulated on a classical
computer.

2.1.4 Optimizing storage of quantum state

When you build a simulator for a quantum computer you can use smart tech-
niques to optimize memory usage. One such technique is to realize that in many
cases the vectors and matrices used during a simulation often have a lot of zeros
in them, and then there are optimized ways to work with sparse vectors and
matrices.

Example: The version of Shor’s Algorithm that is implemented in this thesis
project (see chapter 4.5) uses 10 qubits which means that the state vector has

2232 matrix elements ×2 floating points per complex number (real and imaginary parts)
×4 bytes per floating point.
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1024 elements, but in practise when running the algorithm there are only 16
elements that have a non-zero value and the other 1008 elements are zero. When
we apply a quantum gate on that state vector it has a size of 1024 × 1024 =
1 048 576, but only 1024 elements that are non-zero and 1 047 552 are zero.

2.1.5 Measurements

When you measure a system state it collapses to one of the possible states of the
system, the system is no longer in a superposition and repeated measurements
(using the same basis) will give the same answer.

In the physical world you can measure e.g. position, energy or momentum
and, within the limitations given by the uncertainty principle, repeated mea-
surements can yield the same result. In the world of quantum computing we
measure a qubit using the computational basis, so the result of measurement of
a single qubit is either |0⟩ or |1⟩. As discussed in chapter 1.1.1 results may also
be interpreted using other basis, e.g. the |+⟩/|−⟩ basis, when this is required
the system state is transformed before a measurement is made in the compu-
tational basis. Example: if we have a system state that we wish to measure in
the |+⟩/|−⟩ basis we can apply a Hadamard gate and then perform the mea-
surement in the computational basis, the result can then be interpreted using
|+⟩/|−⟩ basis.

When a state vector is used to describe the system state each vector element
gives a probability for the corresponing state, pi = |αi|2. When you measure the
state during a simulation of a quantum circuit, you can create a random number
[0, 1] and check which of the state probability intervals it falls into. Example: If
we have |Ψ⟩ = 1√

2
(|0⟩+ |1⟩) then we can define the internal [0, 0.5) to mean |0⟩

and (0.5, 1] to mean |1⟩. If our random number is 0.35 we say that the result of
the measurement was |0⟩.

A similar technique, although a bit more complex, can be used if the system
state is described by a density matrix.

The above description of measurement assumes that the full state is mea-
sured. In many cases you wish to measure only a subset of qubits. This leaves
the other qubits untouched, allowing them to either be measured at a later point
in time or to be completely ignored. Ignoring the results from some qubits is
not as strange as it sound, many quantum algorithms use extra qubits that are
necessary for the execeution of the algorithm but they do not carry information
about the result of the algorithm.

To measure only a subset of the system state you perform a partial trace that
creates a reduced density matrix that only holds information about the qubits
you are interested in. Assume the density matrix ρAB describes a system that
consist of two part (A and B), when a partial trace is performed over system
B the results is a reduced density matrix ρA that only contains information
about system A. We say that we have ”traced out” information about system
B, so only information about system A remains. The reduced density matrix
is smaller in size than the original density matrix, because it hold information
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about fewer qubits. When a measurement is performed on the reduced density
matrix, the result is a measurement of only system A.

Qurigo does not implement support for partial trace on density matrices.

2.2 Quantum Gates

In section 1.1.5 we described the role of a quantum gate, how it acts on a
quantum state to change it from one state to another. We now define a quantum
gate in a simulator to be a matrix operating on a state vector or density matrix.
To simulate that a quantum gate operates on a state we perform a multiplication
between a matrix (the gate) and a vector/matrix (state vector/density matrix).

The matrices used to represent quantum gates are unitary matrices, satisfy-
ing UU† = U†U = I and hence also U† = U−1.

Later in this chapter we will introduce many different types of gates; their
purpose and how they are represented as matrices when building a simulator
for a quantum computer.

Figure 7 below shows how a CNOT gate (see chapter 2.2.2) transforms
|10⟩ → |11⟩ and |11⟩ → |10⟩, but |00⟩ and |01⟩ remain in their inital state.
It only affects |10⟩ and |11⟩, leaving the other states unaffected.

Figure 7: Visualisation of transformation performed by a quantum gate.

The matrix elements of a gate are not limited to integers or even to real
numbers, an element can be an arbitrary complex number; a+ bi with a, b ∈ R.

It is also possible to transform one state to a superposition, this can be done
using the Hadamard-gate where the following transformations are performed:
|0⟩ → 1√

2
(|0⟩+ |1⟩) and |1⟩ → 1√

2
(|0⟩ − |1⟩).
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Figure 8: Visualisation of transformation performed by the Hadamard gate.

When building the simulator one challenge is to ensure that systems of ar-
bitrary size (up to constraints given by memory as discussed in section 2.1.3)
can be simulated. Even if a gate only operates on a single qubit the matrix
that represents the gate must still be a full 2n × 2n matrix, but most parts of
that matrix will look like an identity matrix. This area is one where an efficient
simulator can provide optimizations that keep memory consumption as low as
possible.

2.2.1 Controlled Gates

A common type of gate is the controlled gate, it is when the application of a
operation on a qubit is conditioned on the value of another qubit. The qubit
whose value is used to determine if the operation should be applied or not
is called the control qubit. If the control qubit has value |1⟩ the operation is
applied, and if the control qubit has value |0⟩ the operation is not applied. If
the control qubit is in a superposition of |0⟩ and |1⟩, then that superposition
will also be reflected in the resulting system state after applying the operation.

The most well-known example of a controlled gate is the CNOT gate (see
chapter 2.2.2) shown in Figure 7, where the prefix C means Controlled and the
follows the name of the gate that is controlled (in this case the NOT gate, a.k.a.
the X gate).

There are also gates with more than one control qubit. The Toffoli gate is
an example of a gate with two control qubits, where both control qubits needs
to be in state |1⟩ in order for the operation to be applied.

2.2.2 Description of some quantum gates

This section describes selected quantum gates, focus is on gates that have been
used to implement Shor’s algorithm as described in chapter 4.5.

The matrix representation of the gates are presented in the way most com-
mon in litterature and on Wikipedia, this allows the reader to refer to other
resources to learn more without causing confusion. However, the representa-
tion used in this chapter numbers qubits using the Big Endian notation and the
Qurigo simulator implemented as part of this thesis uses Little Endian notation.
This means that the matrix representation for two- and three-qubit gates are
different between the matrices below and what is used in the source code for
Qurigo. See section 3.2 for more details.
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Pauli Gates (X, Y and Z) The most well known quantum gates are the
Pauli gates a.k.a. Pauli matrices, they are typically introduced to students
during their first course in Quantum Mechanics with the names σx, σy and σz.
The X, Y and Z gates are single-qubit gates.

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
Hadamard Gate (H) The Hadamard gate is a single qubit gate that creates
a superposition for a qubit, it can also be seen as a transformation between the
computational basis and the |+⟩/|−⟩ basis. The transformations are |0⟩ 7−→
|0⟩+|1⟩√

2
= |+⟩ and |1⟩ 7−→ |0⟩−|1⟩√

2
= |−⟩. Creation of superposition is a key

component of many quantum algorithms.

H =
1√
2

(
1 1
1 −1

)
T Gate The T gate is a special version of the phase gate using θ = π

4 .

T =

(
1 0
0 ei

π
4

)
=

(
1 0
0 1√

2
+ i√

2

)

CNOT Gate The CNOT gate (a.k.a. CX gate) is a controlled version of the
X (NOT ) gate, and it acts on two qubits3 .

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


ECR gate The Echo Cross Response (ECR) gate is a two-qubit gate that
performs a CX operation and a Hadamard operation in a single gate.

ECR =
1√
2


1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1


CSWAP Gate The CSWAP gate (a.k.a. Fredkin gate) is a three-qubit gate4

that represents a contolled version of the SWAP gate. It only performs the
SWAP operation if the control qubit is |1⟩.

3A two-qubit gate means that the matrix will have 22 × 22 elements.
4A three-qubit gate means that the matrix will have 23 × 23 elements.
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CSWAP =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


Toffoli gate (CCX) The Toffoli gate is a three-qubit gate that has two control
qubits and if they both are |1⟩ then an X gate is applied.

CCX =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


2.3 Universal Quantum Gates

As shown in [14], it is possible to define a set of universal quantum gates that
can be used to create all other quantum gates, to any given precision. In [14]
they choose to include the H, T and CNOT gates in their universal set, but
other universal sets can also be constructed.

In theory it would be enough to just support these three gates in a simulator
and when someone wishes to write a program using the simulator he would
deconstruct any other gates into these universal gates. However, that would
be both cumbersome and inefficient for the researcher because he would have
to know all deconstructions and it would also lead to programs that are much
longer than necessary.

Instead the simulator implements support for a larger number of different
quantum gates, allowing a researcher to create quantum circuits with high-level
gates. When the simulator executes it takes on the responsibility of decompos-
ing quantum gates to universal quantum gates. Example, when the simulator
executes a circuit with a CZ gate it executes the sequence H-CNOT-H (which
are universal gates).

An important note to make here is that the gates supported natively by
a real quantum computer is most likely not the H-T-CNOT set of universal
gates. So if a simulator is supposed to simulate a specific quantum computer in
a relastic way then the set of universal gates will have to be replaced with the
gates that the physical qubits support.
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2.3.1 Gate decomposition vs matrix operation

You may ask yourself why not just implement the CZ gate as a matrix operation
and be done with it? The answer is that then the simulator would not be scaling
the same way as a real quantum computer would, because the number of gates
needed to implement a circuit would decrease significantly.

If the purpose of the simulator is to imitate a real quantum computer by
adding noise it can be of great importance that the number of gates used to
implement a circuit it close to the number of gates required when executing the
same circuit on the real quantum computer.

If on the other hand the purpose is to validate programs on a logical qubit
level then all gates could be implemented as direct matrix operations, and skip
the decomposition into universal gates.

2.3.2 Universal gates vs native gates in a quantum computer

When a real quantum computer is built, i.e. a physical computer, the native
gates will have to include gates that together form a set of universal gates. Thus
they are in no way limited to just support the gates that form the universal set.

The IBM Eagle r3 quantum processor has support for these gates: ECR,
ID, RZ, SX, X. To form a universal set it is enough to include ECR and
one of RZ/SX/X, but by supporting more native gates than is necessary it
becomes easier to write programs for the quantum processor.

2.4 Quantum Circuits

In chapter 1.1 we introduced the concept of a quantum circuit to be equivalent
to a program running on a quantum computer. A better definition would be
that a quantum circuit is a sequence of quantum gates that is applied to a
quantum state. This is illustrated in Figure 9.

Please note that a conceptual notation is used in this section to describe
the logical concept of a quantum circuit and its relation to the matrices of the
gates, the purpose is to explain the concept of quantum circuit optimizations.
See section 2.4.2 for a mathematical description.

Figure 9: Logical representation of a Quantum Circuit shown as gates.
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Now let us combine this definition with the discussion in chapter 2.2 where
we have defined a quantum state as a state vector (or density matrix) and a
quantum gate as a matrix that transform the state vector. The quantum circuit
takes a state vector as input and its output is also a state vector, each gate in
the quantum circuit is a matrix that operate on the state vector. This is shown
in Figure 10.

Figure 10: Logical representation of a Quantum Circuit as a sequence of matri-
ces, see section 2.4.2 for a formal mathematical description.

2.4.1 Optimizing Execution of a Quantum Circuit

The purpose of a simulator is to be true to the system it simulates, but it should
also aim to make an efficient simulation. So let us discuss how we can minimize
the number of matrix multiplications that is necessary to execute a quantum
circuit.

This is important because the size of each matrix is 2n × 2n, so for 16
qubits the matrix stores 65 536 × 65 536 complex numbers which takes up
approximately 69 GB of memory on the classical computer used to simulate the
quantum circuit.

It can easily be understood that when two gates act in parallel on different
qubits the individual matrices can be combined into a single matrix, as shown
in Figure 11. Each gate operates independently from the other and the operator
on different parts of the state vector, so they can be executed in parallel.

Figure 11: Quantum Circuit with two gates (X + H) combined into one matrix.

Less obvious is that all gates in a quantum circuit can be combined in a single
matrix as shown in Figure 12, this is discussed in [16] and is also a technique used
by Qiskit. The neat thing is that the size of the combined matrix is the same as
each of the individual gate matrices, so just because it has all the information
of the individual gate matrices the size of the matrix does not grow. However,
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the number of matrix elements that are non-zero will grow so if we consider the
techniques discussed in chapter 2.1.4 we will have still have more information
to store. But the benefit of not calculating each of the individual matrices each
time far exceeds the downside of storing more non-zero elements.

Figure 12: Quantum Circuit with all gates combined into a single matrix.

When implementing a simulator for a quantum computer this is a useful
technique to speed up execution when a quantum circuit (or parts of a quantum
circuit) is used several times. The work to prepare the combined matrix is the
same as applying each gates separately, because the combined matrix is created
by multiplying all of the gate matrices, but when the combined matrix has been
prepared it can be saved. Using the saved matrix the execution of the quantum
circuit becomes a single operation (i.e., a single matrix multiplication).

2.4.2 Mathematical description of optimization

If the quantum circuit only has a single X gate the mathematical description
of the transformation performed by the quantum circuit would be |Ψoutput⟩ =
UX |Ψinput⟩. If it first appliedX and thenH we would get |Ψoutput⟩ = UHUX |Ψinput⟩,
which could be rewritten as |Ψoutput⟩ = UXH |Ψinput⟩ where UXH = UHUX .

Now, let us assume we have the circuit shown in Figure 9. We can describe
as |Ψoutput⟩ = UQC |Ψinput⟩, where UQC is a unitary matrix representing the
optimized quanatum circuit shown in Figure 12. To construct UQC we use the
same technique as in the previous paragraph and the result is show below in
Equation 3.

|Ψoutput⟩ = UQC |Ψinput⟩ = UCXUSWAPUHUCXUHUX |Ψinput⟩ (3)

Note that the first gate (X) in the quantum circuit is located to the right
next to the input state. The last gate (CX) in the circuit is to the left and it is
applied to the result of all other gate operations.

Using this information we can prove the claim in section 2.4.1 that the matri-
ces representating the gates in a quantum circuit can be combined into a single
matrix. To prove this we use the associative property of matrix multiplication.
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Un . . . U3U2U1|Ψ > (4)

=Un . . . (U3(U2(U1|Ψ >))) (5)

=Un . . . (U3((U2U1)|Ψ >)) (6)

=Un . . . ((U3U2U1)|Ψ >) (7)

. . . (8)

=(Un . . . U3U2U1)|Ψ > (9)

=UQC |Ψ > (10)

2.5 Noise in Simulations

Consider a classical computer where the bits are stored in RAM memory, you
do not expect this information to be lost if you leave the computer on for a
week. You expect to be able to retrieve the information just as you wrote it
to memory. In a quantum computer the state deteriorates much faster due to
interaction with the external environment, the time it takes to loose state is
called decoherence time. The IBM Eagle r3 processor discussed in section 2.5.1
has a median decoherence time of 119µs. If a simulator wishes to be true to
how a real quantum computer behaves, then the simulator has to include this
instability in the data model.

A simple way to introduce noise would be to add noise each time a gate is
applied to a state. It could be a fixed probability vector that is applied every
time regardless of which gate is being executed, it can also be a more complex
model where the probability of introducing an error depends on the type of gate
being executed. Using this model immediately makes it important if a gate is
native or if it is derived from other gates. Executing a native gate (e.g. H, T or
CNOT) will have a low probability of introducing an error, but if you execute
the Toffoli (CCX) gate which is created using 21 H/T/CNOT gates the risk of
an error is 21× larger than for a native gate.

Assume that the probability of success for a gate is p and you execute n gates,
then the success rate of is pn. If we apply this to the Toffoli gate mentioned
above in the context of the an IBM Eagle r3 processor that has a median error
rate of 6.8 · 10−3 and p = (1 − 6.8 · 10−3) = 0.9932. For 21 native gates the
overall success rate is pToffoli = p21 = 0.993221 = 0.8665. So the risk of a failure
when executing a Toffoli gate is over 13%!

A more advanced model for noise would be to look at the decay time for each
individual qubit you simulate, e.g. by taking information from a real quantum
computer and study how the stability varies between individual qubits. It is
also possible that the noise is different depending on if the state is |0⟩ or |1⟩.
Another possibility is that noise is correlated between qubits, i.e. the noise for
one qubit is linked to the noise of another qubit.

If you also study the time required to execute an individual quantum gate
you can calculate how long it takes to execute a quantum circuit, and then you
can introduce appropriate noise during each gate operation.
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The simulator built as part of this thesis does not include noise in its simu-
lation.

2.5.1 Noise in IBM quantum computers

IBM make some of their real quantum computers available as cloud resources,
i.e. a researcher can create programs and execute them remotely on one of IBM’s
quantum processors. Currently (September 2024) the most common quantum
processor in IBM’s cloud offering is the Eagle r3, which has 127 physical qubits,
see https://quantum.ibm.com/services/resources?system=ibm_kyiv for more
details. IBM Eagle was launched at the end of 2021 and has since then been
succeeded by new generations called Osprey, Heron and Condor. Of these newer
generations only Heron is part of IBM’s cloud offering.

IBM publishes error rates for their public quantum computers, see Figure
13 for the error rates of the IBM Eagle and its 127 qubits when they execute
the CZ gate. The qubit with the highest error rates has 0.1807 but the median
over all qubits is 0.0068.

Another interesting thing to note in Figure 13 is that at the top they show
that this quantum computer supports OpenQASM 3. This is the same program-
ming language that I have chosen for my simulator, see chapter 3.6.

Figure 13: Readout errors for IBM physical qubits.

2.5.2 Error correction

When there is noise in program you want to perform steps to minimize the effect
of the noise. In chapter 1.2 we introduced a logical qubit to represent a qubit
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free of errors, built from physical qubits which have errors. Creation of a logical
qubit relies on error correction.

To detect errors in classical computing we can use a parity bit, it can be
used to detect if any single one of the involved bits have changed value. But it
cannot detect if two bits change value, and it cannot recover the original value.

Using three-bit coding in classical computing it is possible to also recover
from errors. Reference [14] discusses in detail how the three-bit coding can be
generalized to quantum computing.
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3 Simulator Design

Much of the work during this thesis has been put into building a quantum
computer simulator that runs on a classical computer. The simulator has been
named Qurigo and it will be referred to that henceforth. The purpose of creating
a simulator is to put the theory presented in the previous chapters into practical
work and see how hard it is to create a simulator. Qurigo has been published
as open source on GitHub [15].

3.1 Modular design

A primary goal when designing Qurigo was to make it modular to allow easily
swapping core building blocks without affecting other building blocks. This
makes Qurigo a generic simulator that can be configured to behave differently
or to run different simulations. The building blocks that can be swapped are:

• State representation: State vector or Density matrix, see section 3.1.1.

• Native instructions: H-T-CNOT or IBM Eagle r3, see section 3.1.2.

In addition to the above the initial plans included to support noise and
compare results in noisy and noiseless simulations, but that feature was excluded
due to time constraints.

To support easy swapping of building blocks the software design technique
called dependency injection [6] was used.

3.1.1 State representation

Qurigo support both state vector and density matrix to represent the state of
a quantum system. During the work to implement quantum algorithms (see
chapter 4) focus was on using state vectors, but the density matrix representa-
tion was validated in unit tests where identical tests were performed using both
state vector and densit matrix.

3.1.2 Instruction Sets and Native Gates

The Qurigo simulator defines an instruction set that consists of a number of
gates that can be used to build a circuit. The supported gates are: X, Y , Z, H,
T , CNOT (CX), SWAP , CSWAP , Toffoli (CCX), SX, RZ, S, ECR, and
CRk.

The idea is that Qurigo always implements the same instruction set but uses
different native gates to do it, in one instruction set CNOT can be a native
gates but in another instruction set CNOT can be a derived gate. This allow
for evaluation of the same quantum circuit using different instruction sets and
compare the result in resource consumption and noise. However, as the work
progressed the focus on comparison of resource consumption, performance and
noise between different implementations was removed to better match the scope
of a Bachelor thesis in Physics.
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Qurigo defines two implementations of the instruction set:

• H-T-CNOT : Use H, T and CNOT as native gates and derive all other
gates from these, an exception was made for X, Y and Z which also are
considered native. This set of native gates is based on the discussion on
universal quantum gates in chapter 2.3 .

• IBM Eagle r3 : During the thesis work some quantum programs have been
executed on real quantum computers from IBM [1]. It uses the ECR, ID,
RZ, SX and X gates as native gates. In order to execute the same
quantum circuit both on the real quantum computer and in the simulator
an instructions set using these gates as native gates was developed.

3.2 Qubit ordering

The first decision in the design of Qurigo was in which order qubits would be
numbered. At first glance there it may seem like a small question with perhaps
an obvious answer, but it affects the core of the implementation and is not so
easy to take.

Assume we have the state |100⟩ and also assume that we reference qubits
using a zero-based numbering, then we have 3 qubits and their indexes are 0, 1
and 2. But which qubit does the 1 represent? Is it qubit number zero or qubit
number two?

When using Little Endian encoding we read the qubits from right to left,
which means that in the example above qubit number two has the value 1. Big
Endian encoding read from left to right, making qubit zero in the example above
to have the value 1.

It may seem obvious to choose Little Endian encoding due to its alignment
with binary numbers, but books such as [17] and [14] as well as Wikipedia
pages discussing quantum computing typically assume Big Endian encoding.
However, the quantum computing simulators from IBM (Qiskit) and Microsoft
(Q#) both use Little Endian.

I have chosen to use Little Endian for my simulator. My reasons are that
it makes the interpretation of a state aligned with the normal interpretation of
binary numbers and also that it allows me to easily compare my results to those
from Qiskit.

Using Little Endian the state |100⟩ would be interpreted as |100⟩ =
[
1 · 22 +

0 · 21 + 0 · 20 = 8
]
= |8⟩ .

3.3 Native and Derived Gates

A native gate is a gate that is defined as a direct mathematical operation, i.e. it
is defined as a matrix multiplication on a state vector. A derived gate is defined
by executing a sequence of two or more native gates to get the desired result.
For a simulator the difference is that for a native gate it only has to perform one
matrix multiplication, but for a derived gate there will be at least two matrix
multiplications to execute the gate. As we will see below there are typically
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much more than two matrix multiplications involved in a derived gate, so using
native gates is very much preferred.

Let us look at two concrete examples. The SWAP gate swaps the value of two
qubits and we can easily define this as a matrix multiplication, but if we want
to simulate the behaviour of a quantum computer that cannot perform SWAP
as a native operation in the hardware then this is not an accurate simulation.
Let’s instead assume that we have CNOT as a native gate, then we can define
the SWAP gate as a sequence of three CNOT gates.

The Toffoli gate (a.k.a. CCX) can also be defined as a single matrix mul-
tiplication, but when using the H-T -CNOT instruction set we need to use a
sequence of 15 gates to define the Toffoli gate. The end result is the same, but
the amount of resources require to run the program will increase if 15 matrix
multiplications are performed compared to a single matrix multiplication.

If the only reason for implementing derived gates as a sequence of native
gates was that we want to consume more CPU time and more memory, then
that would be a poor design choice because in a quantum computer the resource
consumption does not scale the same way it does in a simulator. The actual
value we get from implementing derived gates the way we do is:

• Quantum circuit complexity : If the simulator implements a gate as a single
operation where a real quantum computer needs e.g. 15 gates to imple-
ment the same gate then the simulator would avoid the complexity of the
quantum computer, which defeats the purpose of the simulator. However,
if the only purpose is to validate a quantum algorithm then it makes sense
to focus on the sequence of gates and not on how the are implemented.

• Execution time: Avoiding the complexity of gates will also make the simu-
lator look more efficient than the quantum computer it intends to simulate.
This would also limit the usefulness of the simulator to estimate the depth
of the circuit and the execution time required on a real quantum computer
(remember that one purpose of a simulator is to make a realistic simulation
of a quantum computer in order to learn how to best use them).

• Noise and error propagation: As discussed in chapter 2.5 noise and errors
occur naturally in a quantum computer. If a simulator aims at realistically
simulate noise then it cannot take 15 gates and replace them with one gate,
that would defeat the purpose of a simulator where noise can occur.

3.4 Gate matrices for arbitrary size of system state

A challenge during the implementation of Qurigo was to create gates that can
be applied to system states of arbitrary size.

Let us assume that we have a system state that consists of eight qubits
represented as state vector and that we want to apply the X gate to qubit 3,
we can illustrate this as X3|Ψ⟩. In chapter 2 we learned that a gate operation
is multiplication between the state vector and the gate matrix. In this case our
state vector has size 28 so the gate matrix needs to have size 28 × 28, and the
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128×128 matrix X3 is very different from the 2×2 matrix for the X gate shown
in chapter 2.2.2. The mathematical definition of the matrix we need to create
in this case is I⊗ I⊗X ⊗ I⊗ I⊗ I⊗ I⊗ I where ⊗ is the tensor product applied
between the eight 2× 2 matrices that represent identity (I) and X gate.

From a mathematical standpoint it may not have been so complex to build
these matrices, but it was challenging to control the loops and qubit numbering
when they should support any number of qubits.

3.4.1 Matrices for controlled gates

Creating the gate matrices for controlled gates was another challenge. The
mathematical definition of a controlled gate is shown in Equation 11. Here we
have the system state |Ψ⟩ = |Φc⟩|Φ⟩ with |Φc⟩ representing the control qubit,
and U is the 2n × 2n matrix that apply the gate.

|0⟩|Φ⟩+ |1⟩U |Φ⟩ (11)

This definition assumes that the control qubit (Φc) is the first qubit in the
system state, but that is of course not true in the general case which makes the
creation more complex.

An additional complexity is when we have two control qubits as in the Toffoli
(CCX) and CRk gates. The Toffoli gate was solved by implementing it using
15 native H/T/CNOT gates. The CRk gate was implemented as a native gate
which required support for building the transformation matrix. To generalize
this to support all cases became too complex, and therefore Qurigo only support
CRk in the special case that was required for implementing Shor’s algorithm.

3.5 Validation of the Simulator

When developing the simulator it is sometimes hard to know if your program is
correct. One way of ensuring that the program is correct is by using unit testing,
in Qurigo I have tested basic operations on single quantum gates which can be
mathematically verified using a pen and paper. However, when the number of
qubits grow above two and we apply multiple gate in the test quickly becomes
hard to verify manually.

If the expected result is hard to calculate by hand then the alternative is
to compare results with an authorative source, and in this case the authorative
source is three different tools from IBM.

• IBM Composer: A browser based visual designer for quantum circuits,
it also supports writing and testing OpenQASM 2.0 code. The limitations
are that it only supports states with up to six qubits and that OpenQASM
2.0 has a more restrictive syntax. The tool available for free at https:

//quantum.ibm.com/composer.

• IBM Eagle r3: IBM makes some of their real quantum computers
available on the Internet and using the Open Plan option this allow for up
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to 10 minutes of free execution time per month; https://docs.quantum.
ibm.com/guides/instances#open-plan, see also section 2.5.1 for details
about IBM Eagle. I have taken advantage of this program and executed
programs on their hardware and then compared the resulting state vectors
with those produced by the Qurigo simulator. Execution was done using
Qiskit, as describe below.

• Qiskit: Qiskit is a quantum programming software package developed by
IBM, targeting researchers who want to use IBM’s real quantum comput-
ers. It includes options to either run quantum circuits in a local simulator
or to send them to an IBM quantum computer.

Circuits developed using Qiskit can be executed on both a real quantum
computer and in Qiskits simulator running locally on your computer. In this
capacity Qiskit has been very useful to validate the behaviour of Qurigo, it was
used both for verification of individual gates for multi-qubit system states and
for comparing the result of the QFT and phase estimation algorithms.

Qiskit was used both to extend the unit tests and to write small programs
(representing quantum circuits) whose output was compared to the results in
Qurigo.

When making validations using the IBM Eagle quantum processor the pro-
gram was written using the Qiskit language which was then transpiled to Open-
QASM using the Qiskit toolkit. To perform the validation of Qurigo I copied
the OpenQASM that was executed on the IBM Eagle quantum processor and
then ran the same code in Qurigo. Minor adjustmensts were necessary due to
that IBM Eagle use OpenQASM 2.0 and Qurigo use OpenQASM 3.0.

3.6 Programming Language

The programming language chosen to represent quantum circuits in Qurigo is
OpenQASM 3 (Open Quantum ASseMbly language) [2] [4], it was developed by
IBM and they provide a reference implementation in their quantum computing
platform called Qiskit.

OpenQASM was chosen due to its simple structure which makes it easy to
implement a language interpreter. In general OpenQASM uses the structure
command paramater1, parameter2; which makes it straight-forward to parse
from left to right. In addition to OpenQASM I evaluated using the Python-
based syntax of Qiskit (from IBM) and Q# (from Microsoft), but they were
rejected due to their more complex structure.

Only a small subset of the capabilities in the full OpenQASM specification
has been implemented, but these capabilities are enough to implement a quan-
tum algorithm such as phase estimation as part of Shor’s algorithm. Supported
features are shown below.
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Feature Example
Declare qubits qubit[10] q; to define a state of 10 qubits, numbered 0. . . 9.
Quantum gates H, T, CNOT, X, Y, Z, SWAP, CRk, CSWAP, ...

Programming logic if, while

Declare and manipulate variables int count = 0; count = count + 1

Simple expressions parameter1 >= 8

Declare and call functions def qft6i(int input) to define and qft6i(6); to call.
Comments # this is a comment

3.6.1 Example: Phase Estimation for Shor’s Algorithm

Let us look at an example of what a program written in OpenQASM might look
like, the program below in Listing 1 is used in the implementation of Shor’s
algorithm (described in section 4.5) and it performs a phase estimation.

Row 1 define that this as an OpenQASM program.
Row 5 declare a quantum state q with 8 qubits, numbered 0 to 7.
There are two subroutines in this program, they are reusable components

that can be called multiple times within the scope of the program. The first
subroutine is qft4i which is defined on rows 7-24 and is called once on row 52.
The second subroutine is cswapHelper (defined on rows 26-36) and it is called
four times on rows 46-49. There are no parameters for qft4i, but cswapHelper
declares two parameters (control and repeat) that are used to control the
programming logic of the cswapHelper subroutine.

Looking at the programming logic that define the qft4i subroutine we first
find the Hadamard gate on row 8. h q[3] means that we apply the Hadamard
gate to the 4th qubit, remember from section 3.2 that we use zero-based num-
bering for the qubit so q[3] becomes the 4th qubit. The Hadamard gate is a
single-qubit gate, so it only require one parameter.

Next we have three controlled rotation gates (crk) on row 9-11. When
applying this gate we need to provide three parameters; the control qubits, the
qubit on which to apply to rotation and the k-value that determines the angle of
the rotation (see section 4.3.1). crk q[0], q[3], 4; means apply the rotation
θ = 2π

24 to the 4th qubit (q[3]) if the 1st qubit (q[0]) is |1⟩.
The last gate used in the qft4i subroutine is the SWAP gate. It switch the

values of two qubits with eachother, so we require two parameters when using
it.

The cswapHelper subroutine takes two parameters. The first parameter,
control, is used on lines 30-32 where it dynamically choose which qubit that
is used as control qubit. If control has the value 1 then the statement cswap
q[control], q[4], q[5] means that the 5th and 6th qubits are swapped if the
2nd qubit is |1⟩.

There is also a variable defined in cswapHelper on row 27, index. It gets
an initial value of 0 and it is then used in the condition for the while statement
on row 29. On row 34 the index variable is increased by one.

Finally, the actual program that is executed starts at row 39 and ends on
row 52. It apply an X gate and four H gates before it calls the cswapHelper

28



subroutine and then the qft4i subroutine.

1: OPENQASM 3;

2:

3: # 0, 1, 2, 3 : control registers

4: # 4, 5, 6, 7 : target registers

5: qubit [8] q;

6:

7: def qft4i () {

8: h q[3];

9: crk q[3], q[0], 4;

10: crk q[3], q[1], 3;

11: crk q[3], q[2], 2;

12:

13: h q[2];

14: crk q[2], q[0], 3;

15: crk q[2], q[1], 2;

16:

17: h q[1];

18: crk q[1], q[0], 2;

19:

20: h q[0];

21:

22: swap q[0], q[3];

23: swap q[1], q[2];

24: }

25:

26: def cswapHelper(int control , int repeat) {

27: int index = 0;

28:

29: while(index < repeat) {

30: cswap q[control], q[4], q[5];

31: cswap q[control], q[5], q[6];

32: cswap q[control], q[6], q[7];

33:

34: index = index + 1;

35: }

36: })

37:

38: # Psi_prep

39: x q[4];

40:

41: h q[0];

42: h q[1];

43: h q[2];

44: h q[3];

45:

46: cswapHelper (0, 1);

47: cswapHelper (1, 2);

48: cswapHelper (2, 4);

49: cswapHelper (3, 8);

50:

51: # Inverse QFT

52: qft4i ();

Listing 1: Phase estimation written in OpenQASM 3.0.
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3.7 OpenQASM Interpreter

To support writing generic programs in OpenQASM an interpreter was imple-
mented in Qurigo. An interpreter is a computer program that takes the source
code of another program as input and execute the programming logic of that
source code to produce an output. Popular languages that use an interpreter to
execute programs are Python and JavaScript.

The interpreter in Qurigo has two phases. The first phase makes a syntax-
tical analysis and verification of the program and build an in-memory model of
the logical steps of the program. The in-memory model is called the parse tree
in this thesis, sometimes it can also be called an abstract syntax tree (AST).
When the parse tree has been created an execution engine take that as input
and run the program from the first step to the last step, at which point the
execution of the program has finished.

The syntaxtical analysis and verification is performed by a parser. The
parser compares the source code to the formal definition of the language, in
this case it is a subset of OpenQASM 3. The parser ensures that there are
no unknown syntaxtical elements in the source code, it also performs other
validation tasks such as checking datatypes and that there are correct number
of parameters for the quantum gates. If we assume that the source code contains
the incorrect line swap q[3];, then the parser will detect that swap is a two-
qubit gate but there is only one qubit specified as a parameter. The parser will
then stop parsing the source code and report an error to the programmer.

Most of the programming work for Qurigo was spent building the interpreter
for OpenQASM. The execution engine is the component that does the actual
quantum computer simulation, and the previous sections in this chapter describe
challenges related to the exection engine. Naturally the execution engine was
challenging in many ways, but the OpenQASM parser also took a long time to
implement.
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3.7.1 Relationship between source code and parse tree

To illustrate the relationship between the source code and the parse tree consider
the OpenQASM source code in Listing 2 and then crossreference that with
Figure 14 to see how the source code is parsed into an parse tree. Note that
when executing a subroutine it uses a shared definition of the subroutine, the
nodes are not duplicated in the parse tree.

qubit [8] q;

def cswapHelper(int control , int repeat) {

int index = 0;

while(index < repeat) {

cswap q[control], q[4], q[5];

cswap q[control], q[5], q[6];

index = index + 1;

}

}

x q[4];

h q[3];

cswapHelper (2, 4);

cswapHelper (3, 8);

Listing 2: Sample OpenQASM program.

Figure 14: A sample parse tree created by Qurigo.
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3.7.2 Language that are not interpreted

The opposite to using an interpreter is to perform syntaxtical analysis and
verification using a compiler. A compiler translates the source code to machine
code that a computer can execute natively. This is generally seen as better
approach if performance is the goal because many optimizations can be made
by the compiler. The classical examples of compiled languages are C and C++,
but the Qiskit programming model also uses a compiler. Qiskit use the term
transpiler to descibe the transformation of the Qiskit source code to the native
instructions of a quantum computer.
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4 Quantum Algorithms

4.1 Introduction

One of the objectives defined in chapter 1 was to use the simulator to implement
and execute a quantum algorithm. This chapter describes how QFT (Quantum
Fourier Transform) and Shor’s algorithm are supported in Qurigo.

As discussed in chapter 1.1 a program that solves a problem using a quantum
computer is not just a quantum computer running a program. There is always
a classical program that prepares a system state for the quantum computer,
interprets the result and perhaps makes further calculations before presenting
a result to the user. I believe that the main reason for this is that it is hard
to program a quantum computer and it is expensive to execute programs on a
quantum computer, therefore you want to limit the usage of a quantum com-
puter to only those parts of an algorithm where the quantum computer gives
an advantage.

It is important to understand that while some quantum algorithms gives a
definite answer to a problem (e.g. Grover’s algorithm), other algorithms give a
result which is correct only with a certain probability (e.g. QFT). The impact
is that the quantum algorithm may give an incorrect result, so you have to
test to see if the result is correct or not. This is of course an inconvenience
for most types of problems, but if you have a problem that is unsolvable using
a classical computer then getting a correct answer with some probability is so
much worth it. You just rerun the quantum program a few times until you get
the correct answer. This requires that there is an effective way to test if an
answer is correct or not (i.e., that correctness can be validated in polynomial
time). For Shor’s algorithm the probabilty of a correct answer is approximately
40%, so you would expected to run the quantum program of the algorithm a
few times to get a correct answer. To test if the answer is valid or not you can
just make a simple division and see if the answer is a factor or not, this is a test
that can be efficiently executed on a classical computer.

In the case of Shor’s algorithm the quantum advantage is in the execution of
the QFT. The result from the quantum part of Shor’s algorithm is processed in
the classical part and among other things a GCD (Greatest Common Divider) is
executed. 5 The GCD can be effectively (polynomial time) implemented using
a classical program. Running the GCD on a quantum computer just makes the
algorithm more complex and more expensive to execute.

An interesting conclusion from this is that if the secret in Shor’s algorithm is
that the QFT gives a quantum advantage when applied to an entagled quantum
state, then other algorithms that apply QFT on an entangled state may also be
able to gain the same advantage.

But the opposite is also true. If an algorithm does not contain a step that

5Taking a step back it is worth reflecting on that in the implementation of Shor’s algorithm,
an innovative modern algorithm from the 20th century, we make use of GCD, which was
described by Euclid’s as ealy as 300 B.C. No work in science stands alone, it is always built
on the work of previous generations.
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has a quantum advantage, then there is no advantage at all in trying to run it
on a quantum computer.

Unfortunately there are not that many known algorithms that give a quan-
tum advantage so the number of problems that can be sped up with a quantum
computer is quite limited. Much of the research on quantum algorithms focus
on optimizating the implementation of the known algorithms that gives a quan-
tum advantage, the goal is to make them useful on the small and noisy quantum
computers that are available today.

4.2 Computational complexity: P and NP

The discussion in the previous section can also be formulated in the terminology
of computational complexity theory .

There are many complexity classes but we limit our discussion to the classes
P and NP. The P (Polynomial) complexity class contains problems that can be
solved in polynomial time. When the size of the problem (e.g. the number of
digits in a number to be factorized) grows the time and resources require to
solve the problem grows as some polynomial. These are problems that typically
are solvable using a classical computer.

The NP (Non-deterministic Polynomial) complexity class contains problems
for which there may not be any known solution using polynomial time. But if
a potential solution is found, then the validity of the solution can be verified in
polynomial time (using a P-class algorithm).

Using this terminology we can say that prime number factorization is a NP-
problem, there is not any known classical algorithm executing in polynomial
time. Using a quantum computer and Shor’s algorithm we can get a potential
solution to the factorization problem, but we don’t know for sure if that is
the solution or not. However, we can validate the potential solution using the
GCD-algorithm, which is a P-class algorithm.

More on complexity theory can be found in [14] and [17].

4.3 Additional Quantum Gates

When the work started on implementing QFT and Shor’s algorithm there was
a need to add two more gates to the instruction set of Qurigo. They were not
part of the inital set of gates supported by the instruction set, but as they are
key components of the algorithms it made sense adding them to the supported
gates. The alternative would have been to define them as subroutines each
time they were needed, and this would both make the quantum program more
complex and a larger subset of the OpenQASM specification would have had to
be supported.

4.3.1 Controlled Rotation CRk

The controlled rotation gate (CRk) is a two-qubit controlled gate that rotates
the target qubit if the control qubit is |1⟩. The rotation is determined by the
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value of k and the rotation angle θ = 2π
2k
.

Rk =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eθi

 =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
2πi

2k


When used in a quantum circuit the CRk gate is drawn as below.

|qcontrol⟩

|qtarget⟩ Rk

4.3.2 CSWAP

The CSWAP gate is a three-qubit controlled gate that swap the value of two
qubits if the control qubit is |1⟩. Being a three-qubit gate it is represented by a
23 × 23 = 8× 8 matrix.

CSWAP =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


When used in a quantum circuit the CSWAP gate is drawn as below.

|qcontrol⟩
|qtarget1⟩
|qtarget2⟩

4.4 Quantum Fourier Transforms (QFT)

Fast Fourier Transform (FFT) is a technique that is widely used in science,
the quantum version of FFT is called a Quantum Fourier Transform (QFT).
The algorithm described in this chapter is the Inverse QFT, because that is the
version of QFT that is used by Shor’s Algorithm.

The general implementation of the Inverse QFT for an arbitrary number of
qubits is fairly simple and follows a repetitive pattern, as shown in Figure 15.

This algorithm requires n Hadamard gates and n(n−1)
2 CRk gates when applied

to a system with n qubits.
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Figure 15: Quantum circuit for QFT with n qubits. [By Trenar3 -
Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php
?curid=66422968]

Below is a circuit that implement QFT for four qubits. These circuits also in-
clude the SWAP operations that are required in order to get the qubit-ordering
correct after performing the QFT.

|q3⟩ H

|q2⟩ R2 H

|q1⟩ R3 R2 H

|q0⟩ R4 R3 R2 H

Figure 16: QFT for four qubits.

4.4.1 Implementation in Qurigo

Below is the implementation of the QFT circuit using OpenQASM in Qurigo,
it is the implementation of the 4-qubit QFT shown in Figure 16. It defines a
reusable subroutine called qft4i that applies a sequence of Hadamard gates (h),
Controlled Rotation (CRk) gates and swap gates to the qubits in the system
state.

h q[3]; means apply the Hadamard gate on the 4th qubit, remember from
section 3.2 that we use zero-based numbering for the qubit. When applying
the controlled rotation gate it takes three parameters; the control qubits, the
qubit on which to apply to rotation and the k-value that determines the angle of
the rotation (see section 4.3.1). crk q[0], q[3], 4; means apply the rotation
θ = 2π

24 to the 4th qubit if the 1st qubit is |1⟩.

36



def qft4i() {

h q[3];

crk q[2], q[3], 2;

crk q[1], q[3], 3;

crk q[0], q[3], 4;

h q[2];

crk q[1], q[2], 2;

crk q[0], q[2], 3;

h q[1];

crk q[0], q[1], 2;

h q[0];

swap q[0], q[3];

swap q[1], q[2];

}

Listing 3: OpenQASM subroutine performing a QFT on four qubits.

4.5 Shor’s Algorithm

Perhaps the best known quantum algorithm is Shor’s algorithm for integer fac-
torization, it was developed in 1994 by Peter Shor [21]. To factorize an integer
means that we find all prime factors of that integer. Calculating prime factors
is complex and time consuming on a classical computer when the numbers get
large, the computational resources required grow exponentially (2n, where n is
the number of digits in the number).

When using Shor’s algorithm the computational resources required to factor
integers grow polynomially. There are many different implementations of Shor’s
algorithm, but in [7] they describe an algorithm that require 3n + 0.002n log n
logical qubits and 0.3n3 + 0.0005n3 log n Toffoli gates to factor a n-bit RSA
integer. This is significantly better than the best know classical algorithm which

is 2n
1/3

.
Shor’s algorithm is a concrete example of an algorithm where a quantum

computer can solve a problem that has real world applications. When the
times comes that quantum computers are large enough and stable enough to
efficiently execute Shor’s algorithm they will pose a severe threat to the integrity
of cryptographic methods based on large numbers with large prime factors,
specifically the RSA 6 crypto would become insecure.

But we are still a long way from being able to practicaly apply Shor’s algo-
rithm. The estimation by [7] show that we need 20 million noisy qubits to be
able to solve the RSA crypto with 2048 bits.

6RSA, named after its inventors Rivest-Shamir-Adleman, is a cryptographic algorithm
whose security relies on that it is impossible to determine the prime factors of very large
numbers (when using 2048 bits it compares to a decimal number with 617 digits). If quantum
computing can factor numbers of this order then a message encrypted using RSA will no
longer be secure.
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4.5.1 High-Level Description

As already mentioned, Shor’s algorithm is a mix of classical computation and
quantum computation. The classical part can be summarized as below, a sim-
plified implementation is shown in section 4.5.2.

1. Test N for being even or a prime power.

2. Generate a random number 1 < a < N .

3. Check if a is a factor to N.

4. Use quantum algorithm to find the order r or a, using a phase estimation
algorithm based on QFT.

5. Use r to construct a candidate factor and check if it is valid using GCD.

6. If it is not a factor, go back to step 2.

The quantum part of the algorithm is a phase estimation using the quantum
circuit shown below in figure 17. It creates an entangled state using Hadamard
gates and then apply powers of the controlled unitary U , finally an inverse QFT
is applied to the state and a mesaurement is performed. The unitary U multiply
by a (modulo N). An implementation of phase estimate using OpenQASM is
detailed in chapter 3.6.1.

Figure 17: Quantum circuit for phase estimation with n qubits. [By Bender2k14
- Own work. Created in LaTeX using Q-circuit. Source code below., CC BY-SA
4.0, https://commons.wikimedia.org/w/index.php?curid=34319883]
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4.5.2 Implementation of Shor’s Algorithm

The program below is a simplified version of the implementation of the classical
computer part of Shor’s algorithm in Qurigo. It is written using Microsoft
.NET and C#, but it could have been written in any programming language
(e.g. Java, Python or C++). In this case C# was chosen because Qurigo is
implemented in C# and it makes it simple to call Qurigo without having to
spend time implementing a cross-language function call mechanism.

The functionality covered by this program are steps 3, 4 and 5 from the
description of Shor’s algorithm in section 4.5.

The quantum algorithm part of this program is the execution of a Open-
QASM program using qurigo.Run. The logic of the quantum program that is
executed (phase-estimation-6.qasm) is analyzed in section 3.6.1.

public static void Factor(int N, IServiceProvider serviceProvider)

{

// Step 1 and 2 are not included.

// Step 3: Use quantum algorithm to find the order r or a,

// using a phase estimation algorithm based on QFT.

QurigoSimulator app = new QurigoSimulator(serviceProvider.

GetService <IExecutionContext >());

double phase = qurigo.Run("phase -estimation -6. qasm");

if (phase == 0 || phase == 1)

{

// Trivial factor , try again

Factor(N, serviceProvider);

return;

}

// Step 4: Use r to construct a candidate factor and check

// if it is valid using GCD

Fraction frac = Fraction.LimitDenominator(phase , 64);

int r = frac.Denominator;

int factor = GCD((int)Math.Pow(8, r / 2) - 1, N);

// Step 5: If it is not a factor , go back to step 2.

if(factor == 1 || factor == N)

{

// Trivial factor , try again

Factor(N, serviceProvider);

return;

}

if(N % factor == 0)

{

Console.WriteLine($"Non -trivial factor found: {factor}");

return;

}

// Not a real factor , try again

Factor(N, serviceProvider);

}

Listing 4: Classical part of Shor’s Algorithm in Qurigo.
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5 Results and Discussion

The deliverables from this thesis project is this report and Qurigo [15], a quan-
tum circuit simulator running on a classical computer. During the development
of Qurigo I have applied the theoretical background of quantum circuit simula-
tion, as described in chapters 1 and 2, and the design of Qurigo is described in
chapter 3.

After the initial research phase the development of Qurigo was started and
the focus was on developing functionality directly related to quantum circuit
simulation. This was interesting and it was rewarding to see new results ev-
ery day. However, when the base functionality was completed and validated I
started working on support for Shor’s algorithm. This changed focus to imple-
menting support for OpenQASM by writing an OpenQASM interpreter, which
consists of a syntax parser and an execution engine. I choose to write my own
parser for OpenQASM after looking at open source alternatives, in hindsight it
might have been more productive to use an open source parser as a base.

The implementation of Shor’s algorithm using Qurigo was translated and
adapted from a sample in Qiskit. This required extending the subset of Open-
QASM that Qurigo supported and also required new gates to be implemented
in the instruction set.

The proper function of Qurigo has been validated using both manual math-
ematical validation using small quantum circuits and comparing with IBM’s
Qiskit simulator. The validation using Qiskit was done by comparing the state
vectors before measurements, using trivial gates, QFT and phase estimation as
input. It was very valuable to use Qiskit to validate the functionality of Qurigo,
because it would have been hard to fully trust results if I both developed Qurigo
and also performed the validation matrix multiplications (the largest matrices
used were 1024×1024). I recommend Qiskit to anyone who wants to get started
with quantum computation.

Since work started on supporting OpenQASM most of the executions of
quantum circuits has been performed using the H/T/CNOT instruction set.
But early in the project I also implemented the instruction set used by the
IBM Eagle r3 quantum computer. I used that to compare and validate the
results from my simulator to that of the state vector from IBM’s real quantum
computer. Executing a quantum circuit on a real quantum computer was a very
inspiring experience.

Overall I think I have reached the main goal of the thesis project, to show
that it is possible to implement a quantum circuit simulator in this limited time
scope and that it behaves as expected. The one regret is not having been able
to include quantum noise and error correction in Qurigo.
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