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Abstract

The Lorentz group is a symmetry group on Minkowski space, and as such
is central to studying the geometry of this and related spaces. The group
therefore shows up also from physical considerations, such as trying to for-
mulate quantum physics in anti-de Sitter space. In this thesis, the Lorentz
group in 2+1 dimensions and its representations are investigated, and com-
parisons are made to the analogous rotation group. Firstly, all unitary
irreducible representations are found and classified. Then, those represen-
tations are realised as the square-integrable, analytic functions on the unit
circle and the unit disk, which turn out to correspond to the projective
lightcone and the hyperbolic plane, respectively. Also, a way to realise a
particular class of representations on 1+1-dimensional anti-de Sitter space
is shown.

Keywords: The Lorentz group, representation theory, anti-de Sitter space,
relativity.

Sammanfattning

Lorentzgruppen är en symmetrigrupp p̊a Minkowski-rum, och är s̊aledes
central för att studera geometrin i detta och relaterade rum. Gruppen dyker
ocks̊a därför upp fr̊an fysikaliska fr̊ageställningar, s̊asom att försöka for-
mulera kvantfysik i anti-de Sitter-rum. Denna uppsats undersöker Lorentz-
gruppen i 2+1 dimensioner och dess representationer, och jämför med den
analoga rotationsgruppen. Först konstrueras och klassificeras alla unitära
irreducibla representationer. Sedan realiseras dessa representationer som
de analytiska funktioner p̊a enhetscirkeln och enhetsskivan vars belopp i
kvadrat är integrerbara. Det visar sig att denna cirkel respektive skiva
svarar mot den projektiva ljuskonen respektive det hyperboliska planet.
Dessutom visas att en särskild klass av representationer blir relevanta för
att formulera kvantfysik i 1+1-dimensionellt anti-de Sitter-rum.

Nyckelord: Lorentzgruppen, representationsteori, anti-de Sitter-rum, rela-
tivitet.
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1 Introduction

The Lorentz group is the group of isometries on Minkowski space that keep the origin fixed. In-
tuitively, its elements are linear transformations of this space that preserve spacetime distances.
The study of the Lorentz group was pioneered by mathematical physicists like Wigner [17] and
Bargmann [1], and the groups are interesting not only for understanding the geometry of Minkowski
and related spaces, but also because they have profound physical applications.
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For instance, close relatives of the Lorentz groups are the symmetry groups of anti-de Sitter
space (indeed, the groups coincide with each other in 2+1 dimensions), a space studied extensively
by theoretical physicists. The groups become highly relevant in trying to formulate a quantum
field theory in anti-de Sitter space, as discussed in e.g. Fronsdal [7]. In these applications, it is
important to find representations such that the “quantum number” corresponding to energy is
bounded below (cf. Section 5 below). Similarly, the groups arise in the study of supersymmetry
(Nicolai [15]), a proposed extension of the so-called standard model of particle physics. Also, there
is no shortage of string theory papers where interest is taken in anti-de Sitter space, but the most
famous is arguably Maldacena [14] (when this thesis was written, his paper had a modest 19,148
citations).

However, the Lorentz group also shows up in less expected places. For instance, Yurke et al. [18]
characterised optical interferometers through a group-theoretic framework, and proposed a class of
interferometers based on the group SU(1, 1) which, as we shall see, is closely related to the Lorentz
group. An accessible introduction to this field is Han & Kim [10]. All these examples go to show
that the study of the Lorentz group is likely worthwile - not only from a mathematical standpoint,
but also from a physics perspective.

It is instructive to compare the Lorentz group and the special orthogonal group, or simply the ro-
tation group, the group of rotations in standard euclidean space. This group is typically well-known
by undergraduate physics students, and shows up in many different contexts. It arises naturally in
e.g. Goldstein [8] in the study of rigid body motion in classical mechanics, but also when investi-
gating angular momentum in quantum mechanics (section 3.3 of Sakurai [16] provides an excellent
overview). More interestingly, quantum mechanics textbooks will often treat representations of
the group, something to be discussed in this thesis, although this word is not always used in that
context.

As it turns out, the unitary irreducible representations (the precise meaning of these words are
defined further down) of the rotation group SO(3) have a deep physical interpretation, as they
precisely describe possible spin states of a single particle in quantum mechanics. Given that the
Lorentz group is the analogous group in Minkowski space, it therefore becomes relevant to study
representations of the Lorentz group in 2 + 1 dimensions, and this is precisely the purpose of this
thesis.

The over-arching structure of this thesis will follow that of Barut & Fronsdal [2] which, in turn,
is a re-derivation of the original paper of Bargmann [1] by means of simpler algebraic methods.
This paper is chosen because it very closely follows the methods to derive the representations of
the rotation group, as they are given in standard quantum mechanical textbooks like Sakurai [16].
In developing the theory in this way, we will be able to see exactly when and why the two groups
differ, and the implications that this has.

1.1 Thesis Structure

The present thesis is structured with the undergraduate physics student in mind, and so the math-
ematical theory is developed at points where it becomes necessary. The only exception is the
Appendix, to which introductory group theory has been appended. The reason for this is that
although group theory is essential to this thesis, no fully satisfying account of the theory can be
given in a thesis like this, and so only a brief review is given with references to further reading.

Section 2 defines a number of important groups, most notably the Lorentz group itself. Also in
this section are a few mathematical proofs of isomorphisms between some groups, which enables
us to work with not the Lorentz group itself, but instead the related group SU(1, 1), as well as
some definitions regarding group representations and covering groups. In Section 3 all irreducible

4



Stockholm University The 2+1 Lorentz Group and Its Representations

representations of the rotation group and the Lorentz group are found. Firstly, the linear irreducible
representations are constructed, and it is then investigated which of these can be made unitary.
Then, Section 4 and Section 5 provide some physical contexts in which representations of the
Lorentz group are highly relevant. Specifically, Section 4 discusses the hyperbolic plane and the
projective lightcone, and the representations found are realised as functions on these spaces. Also
discussed in this section are Möbius transformations, which turn out to connect some of the concepts
used in this thesis. Section 5 follows up with an exploration of anti-de Sitter space and a class of
representations viewed from this perspective. Finally, Section 6 gives a summary of the thesis, as
well as discussing some questions for which there was not enough time.

2 A Few Groups and Group Representations

2.1 The Rotation Group and the Lorentz Group

Let us start by giving a definition of the rotation group, since it is perhaps easier to visualise.

Definition 2.1. The rotation group SO(3) is defined as the set of unit determinant, orientation-
preserving linear transformations on R3 that leave the form

X2
1 +X2

2 +X2
3

invariant. The group operation, here, is composition of transformations.

Intuitively, the rotation group preserves spheres centered on the origin in 3-dimensional eu-
clidean space. By changing an important sign, we are ready to give a more formal definition of the
Lorentz group.

Definition 2.2. The 2+1-dimensional proper, orthochronous Lorentz group SO+(2, 1) is
defined to be the set of unit determinant, orientation-preserving linear transformations on 2+1-
dimensional Minkowski space that leave the form

X2
1 +X2

2 −X2
3

invariant. Again, the group operation is composition of transformations.

When we write “the Lorentz group” from now on, we shall actually refer to the proper, or-
thochronous Lorentz group in 2+1 dimensions. It can be seen that the surfaces preserved by the
Lorentz group are one family of one-sheeted hyperboloids, one family of two-sheeted hyperboloids,
and the lightcone centered on the origin.

By extending the definitions slightly, one similarly defines the groups SO(n) and SO(n− k, k)
for natural numbers n, k. However, this thesis will be restricted to n = 3 and k = 0, 1 since
the most important aspects of the two groups are captured in this dimension. Furthermore, it so
happens that the Lorentz group (on 2 + 1-dimensional Minkowski space) and the symmetry group
for 1+1-dimensional anti-de Sitter space coincide, which is helpful for the discussion in Section 5.
In fact, the reason that the 2+1 Lorentz group acts as symmetries on 1+1 Anti-de Sitter space is
that this space can be viewed as a one-sheet hyperboloid embedded in 2+1 Minkowski space.

2.2 Some More Matrix Groups

Apart from the above groups, there are a few other matrix groups that are interesting to us. We
shall define these below, starting with the most important group.
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Definition 2.3. The general linear group of order n, denoted GL(n,C), is the set of invertible
n× n complex matrices, with the group operation being matrix multiplication.

By restricting the determinant to unity, an equally important subgroup is obtained.

Definition 2.4. The special linear group of order n, denoted SL(n,C), is the set of unit
determinant n× n complex matrices, again with matrix multiplication as the group operation.

The remaining groups in this subsection are all subgroups of the special linear group for some
given n, as is the case below with n = 2.

Definition 2.5. The set of 2 × 2 real matrices with unit determinant form the special linear
group of order 2, denoted SL(2,R). Thus, an element S ∈ SL(2,R) takes the form

S =

(
a b
c d

)
, ad− bc = 1 (2.1)

with a, b, c, d ∈ R.

Viewed as linear isomorphisms on R2, one sees that SL(2,R) precisely corresponds to area-
preserving transformations.

Definition 2.6. The set of 2× 2 complex matrices of the form

U =

(
α β
−β∗ α∗

)
, |α|2 + |β|2 = 1 (2.2)

where α, β ∈ C and superscript ∗ denotes complex conjugation, form the special unitary group.

With a slight change of sign we obtain a closely related group, for which there is no common
name as far as the author is aware.

Definition 2.7. The set of 2× 2 complex matrices of the form

U =

(
α β
β∗ α∗

)
, |α|2 − |β|2 = 1 (2.3)

gives rise to another group, denoted SU(1, 1).

Comparing with Definition 6.6 in the Appendix, we note that SU(2) is a compact Lie group,
since it suffices to set C equal to any number greater than unity. On the contrary, SU(1, 1) is
non-compact, since the magnitudes of the parameters α, β can be chosen arbitrarily large. This
has consequences for the dimensions of the representations of the rotation group versus the Lorentz
group, as discussed in Section 2.4.

It is a somewhat striking feature of matrix groups in small dimensions to coincide, and the
above groups are prime examples.

Theorem 2.1. The groups SL(2,R) and SU(1, 1) are isomorphic.

A proof of this theorem is presented below.
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Proof. Fix the matrix

T =
1√
2

(
1 −i
−i 1

)
(2.4)

and consider an arbitrary matrix U =

(
α β
β∗ α∗

)
∈ SU(1, 1). We want to show, firstly, that

TUT−1 ≡ SU ∈ SL(2,R) (2.5)

Therefore, T−1 is computed. Since det(T ) =
√

2, the inverse is found to be

T−1 =
1√
2

(
1 i
i 1

)
(2.6)

This allows us to compute SU as

SU =
1

2

(
1 −i
−i 1

)(
α β
β∗ α∗

)(
1 i
i 1

)
=

1

2

(
α+ iβ + α∗ − iβ∗ iα+ β − iα∗ + β∗

−iα+ β + iα∗ + β∗ α− iβ + α∗ + iβ∗

)
=

(
<(α)−=(β) −=(α) + <(β)
=(α) + <(β) <(α) + =(β)

)
(2.7)

Evidently, this matrix is real. To verify that it is contained in SL(2,R), it remains to show that
its determinant equals one. This will follow from the fact that |α|2 − |β|2 = 1. Explicitly, we find

det (SU ) = [<(α)]2 − [=(β)]2 −
(
−[=(α)]2 + [<(β)]2

)
= [<(α)]2 + [=(α)]2 −

(
[<(β)]2 + [=(β)]2

)
= |α|2 − |β|2

= 1 (2.8)

Thus TUT−1 ∈ SL(2,R), as was the claim.
We have found a function of SU(1, 1) into SL(2,R). It is clearly a group homomorphism since

TUV T−1 = TUT−1TV T−1 = SUSV (2.9)

for all U, V ∈ SU(1, 1). Moreover, it must be surjective; consider a matrix S ∈ SL(2,R) given by

S =

(
a b
c d

)
(2.10)

where the requirement is that ab− cd = 1. By defining α and β such that

a = <(α)−=(β) (2.11a)

b = −=(α) + <(β) (2.11b)

c = =(α) + <(β) (2.11c)

d = <(α) + =(α) (2.11d)
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we are guaranteed that U =

(
α β
β∗ α∗

)
∈ SU(1, 1), and also TUT−1 = S.

Lastly, injectivity must be shown. For this, note that the inverse mapping U = T−1SUT is
well-defined.

A bijective group homomorphism between SU(1, 1) and SL(2,R) has been found, and it is so
an isomorphism. Therefore,

SU(1, 1) ∼= SL(2,R) (2.12)

as was the claim.

2.3 Establishing an Important Isomorphism

This section is devoted to showing that the Lorentz group is isomorphic, up to a sign, to the group
SL(2,R) ∼= SU(1, 1). Let us first define what “up to a sign” means in this context.

The subset {1,−1}, with 1 the 2 × 2 identity matrix, of SL(2,R) (or of SU(1, 1)) forms a
normal subgroup in SL(2,R) (or in SU(1, 1)). By taking the quotient with this group, a subgroup
is obtained in which we have identified each matrix with its corresponding negative matrix, and
this group is given a special name.

Definition 2.8. The projective special linear group PSL(2,R) is defined as the quotient group

PSL(2,R) = SL(2,R)/{1,−1} (2.13)

Similarly, we define

PSU(1, 1) = SU(1, 1)/{1,−1} (2.14)

Since SL(2,R) and SU(1, 1) are isomorphic, so are PSL(2,R) and PSU(1, 1). This group
turns out to be closely related to SO+(2, 1) (isomorphic, in fact), which is suggested by re-writing
position vectors as symmetric matrices. Recall that points in 2+1-dimensional Minkowski space
are conveniently labelled by inertial coordinates (X1, X2, X3). Out of these coordinates, we form a
symmetric matrix

X =

(
X1 +X3 X2

X2 −X1 +X3

)
(2.15)

The determinant of this matrix then satisfies

−det(X) = X2
1 +X2

2 −X2
3 (2.16)

which is precisely the norm squared of the position vector X = (X1, X2, X3) in Minkowski space.
Now, take a matrix S from SL(2,R) and consider the mapping

X 7→ X ′ = SXST (2.17)

where superscript T denotes matrix transposition. It is seen that transformations of this kind are
linear, in the sense that if X,Y are two matrices constructed from inertial components and a, b are
real numbers, then

aX + bY 7→ aX ′ + bY ′ = aSXST + bSY ST (2.18)

8
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Also, by properties of the determinant,

det(X ′) = det
(
SXST

)
= det(X) (2.19)

Viewed in this way, the matrices of SL(2,R) preserve the form X2
1 +X2

2 −X2
3 , which was how we

defined the Lorentz group above. We note, though, that S and −S map X to the same matrix,
and so we are led to believe the following theorem.

Theorem 2.2. The groups PSL(2,R) and SO+(2, 1) are isomorphic.

The above arguments provide an outline for a proof of this theorem. It remains to show that
this map between PSL(2,R) and SO+(2, 1) is surjective, in the sense that every transformation
in the Lorentz group is “hit” by a matrix from PSL(2,R). Since this part of the proof does not
provide much added insight, it has been omitted for brevity.

With this isomorphism established, we will be able to use the three groups PSL(2,R), PSU(1, 1)
and SO+(2, 1) interchangeably to study properties of the Lorentz group. For instance, noting that
SU(1, 1) is non-compact, we deduce that the same is true of PSU(1, 1), so by extension SO+(2, 1)
is non-compact. On the contrary, SU(2) is compact, and so PSU(2) (an analogously defined group)
is and therefore also SO(3).

2.4 Group Representations and Irreducibility

There are two more concepts that will be essential in our study of the Lorentz group, and one of
them is the notion of a group representation. In principle, the properties of the groups defined above
can all be deduced from their respective definitions, which are known as the defining representations
of the groups. However, there exist many other possible representations, and it is not always the
defining representations that arise from physical (or mathematical) investigations.

The definition of a group representation (slightly shortened from [6]) is given below.

Definition 2.9. Let G be a group, F a field and n a positive integer. A representation of
G is a homomorphism ρ : G → GL(n,F). If, furthermore, the homomorphism is injective, the
representation is faithful.

In the above definition, GL(n,F) is the group of n × n invertible matrices with elements from
the field F. For our purposes, the field F will always be either R or C. Strictly speaking, the above
definition defines a matrix representation, but such a representation is naturally identified with a
linear representation [6], and we shall use the word “representation” to mean either kind.

If, in addition, all matrices in a representation of the above form are unitary, we shall say that the
representation itself is unitary. This will be an important feature when we look for representations
of physical significance in quantum mechanics.

Looking at the above definition, one observes that every group has a representation, given by
the map g 7→ 1 for all g ∈ G, where 1 is the n×n identity matrix. This representation is called the
trivial representation. On the other hand, such a representation is never faithful, unless the group
G contains only the identity element. Similarly, for a given representation, it could happen that
one or more subspaces of Fn is mapped to itself by all elements of ρ(G), so that the representation
can, in some sense, be decomposed into representations acting on those subspaces. This motivates
the definition of irreducibility.

Definition 2.10. A representation ρ : G → GL(n,F) is irreducible if the only subspaces V ⊆
Fn such that ρ(G) sends V to itself is the zero vector space {0} and Fn itself. Otherwise, the
representation is reducible.

9
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A subspace V ⊆ Fn mapped to itself by the elements of ρ(G) is said to be invariant under the
action of G.

Now that we have established a language for discussing the representations of groups, there
is a remark that can already be made on the qualitative difference between representations of
the rotation group and of the Lorentz group. In general, the unitary irreducible representations
of a non-compact Lie group are infinite-dimensional, something that is discussed in both [1] and
[2]. With this in mind, it will not appear surprising that it is found in Section 3.2 that all such
representations of the rotation group are finite-dimensional, while none of those for the Lorentz
group are (apart from the trivial representation).

Finally, we want a notion of “sameness” of two representations, since two representations of the
same group in different vector spaces may superficially look very different but can turn out to be
identical.

Definition 2.11. Let G be a group, and suppose ρ : G → GL(n,E) and σ : G → GL(m,F) are
two representations of G, with E,F fields and n,m natural numbers. Then ρ and σ are equivalent
provided there exists a linear isomorphism L : En → Fm such that

L ◦ ρ(g) ◦ L−1 = σ(g) (2.20)

for all g ∈ G. If not, the two representations are inequivalent.

2.5 Covering Groups and Multiple Coverings

Finally, a discussion on covering groups will establish (among other things) something that has
been hinted at in the previous sections, which is that the unitary irreducible representations of the
rotation group will be finite-dimensional, while those of the Lorentz group will not.

We saw above that PSL(2,R) is isomorphic to the Lorentz group, rather than SL(2,R) itself.
Therefore, the map SL(2,R) → SO+(2, 1) is not one-to-one, but rather two-to-one. As another
example of this, we could consider the map from the real line to SO(2) (whose group manifold is

the circle) given by x 7→
(

cos(x) sin(x)
− sin(x) cos(x)

)
. Such a mapping is then infinitely many-to-one.

The following definition seeks to formalise this idea.

Definition 2.12. A Lie group G is covered by a covering group C provided there exists a
covering map p : C → G with the following properties.

• The covering map p is continuous and surjective.

• The group C covers G evenly. That is to say, for every element g ∈ G, there exists an open
neighbourhood U ⊆ G around g such that its pre-image p−1(U) in C is the disjoint union of
a set of open neighbourhoods in C, each of which is homeomorphic to U via p.

• The mapping p is a continuous group homomorphism.

The surjectivity ensures that, in some sense, the group is fully covered, while the second con-
dition implies that p−1(g) is a discrete set for each g ∈ G. If the third condition is removed, the
more general definition of a covering space is obtained, valid for any topological space.

In particular, it is the second axiom that allows for the covering group C to cover G multiple
times, provided any small region V ⊆ C “looks like” p(V ) ⊆ G. If, for every U ⊆ G like in the
above definition, p−1(U) contains exactly two disjoint sets, then C is a double cover of G.

Equipped with the above terminology, we note that SL(2,R) is a double cover of the Lorentz
group, as is SU(1, 1). Similarly, the special unitary group SU(2) is a double cover of the rotation
group.

10
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3 Representations of the Rotation and Lorentz Groups

We now go on to construct representations for the rotation group and for the Lorentz group. The
methods employed here mostly follow the standard discussion of angular momentum in advanced
quantum mechanics textbooks like Sakurai [16].

3.1 Linear Representations of Both Groups

Following [2], we shall study the representations of the Lie algebra of the group SU(1, 1), instead
of directly studying the Lorentz group. The reason for studying the algebra, as was mentioned in
the Appendix, is that those are typically easier to work with. Also, we might as well work with
SU(1, 1) first, and later find the representations of SO+(2, 1) as a special case. Its algebra has
three linearly independent generators, i.e. a basis, denoted by J12, J13, J23. They are defined to
satisfy the relations [2]

Jαβ + Jβα = 0 (3.1a)

[Jαγ , Jγβ] = −igγγJαβ (3.1b)

(with no summation performed over γ). Here, gαβ refers to the Minkowski metric, which is diagonal
and in this convention is given by g11 = g22 = −g33 = 1. The reason that the generators have
two indices, unlike the single index objects seen for the case of SO(3), is that this notation more
easily generalises to higher dimensions. Specifically, it is true in any dimension that the action of
a rotation can be decomposed using a family of parallel planes, such that points in a given plane
are transformed to other points in the same plane. The same also holds for Lorentz boosts. On
the contrary, it is a special property of 3-dimensional space that there exists a unique (up to sign)
unit normal vector to each plane, which is why rotations can be said to be defined by a single axis
direction.

Now, since we are studying the special case of three dimensions, we could define a set of single-
index operators by

Jαβ = εαβγJ
γ (3.2)

where εαβγ is the totally antisymmetric Levi-Civita symbol with ε123 = 1. Also, here the Einstein
summation convention is employed, which states that an index is implicitly summed over when it
appears once upstairs and once downstairs. We shall continue to employ the Einstein convention
throughout this thesis.

We could then re-write the equations (3.1b) in a way that more resembles the familiar case:

[J2, J3] = iJ1 (3.3a)

[J3, J1] = iJ2 (3.3b)

[J1, J2] = −iJ3 (3.3c)

where the index-lowering property of the metric tensor was used, namely Jα = gαβJ
β. We see

that the commutation relations are almost identical, but not equivalent, to those for the rotation
group. Although it is illustrative to work with the single-index operators in three dimensions, they
will not be pursued further since they do not generalise to higher dimensions like the double-index
operators do.

11



Stockholm University The 2+1 Lorentz Group and Its Representations

We can go even further in our attempts to make the algebras look similar. For this purpose,
the operators M+ and M− are defined, called the raising and lowering operators respectively, via

M± =
1√
2

(±J23 + iJ13) (3.4)

This is to be compared with equation (3.5.5) in [16], where the corresponding operators for SU(2)
are M± = 1√

2
(J23 ± iJ13). Then, the commutation relations for J12,M

+,M− are identical for both
groups: [

J12,M
±] = ±M± (3.5a)[

M+,M−
]

= J12 (3.5b)

This allows us to find the linear representations for both groups simultaneously. Given this, it is
important to realise where the two groups differ. In a unitary representation, it will be required
that J†ij = Jij , so that elements of the Lie algebra are hermitian. Then, looking at (3.4),(

M±
)†

= −M∓ (3.6)

while, for the rotation group, (M±)
†

= M∓. We see that the groups must necessarily differ in their
unitary representations.

Let us return to the search for linear representations, by considering the action of these operators
on a vector space. We define a set of vectors by

|a, b〉 = ξa1ξ
b
2 (3.7)

for a two-component spinor (ξ1, ξ2) and where, a priori, a and b may take arbitrary complex values
(this thesis will contain no deeper discussion of spinors - for us, they are simply the vectors in the
space on which these operators act). In this representation, the operators J12 and M± are given
by [2]

J12 =
1

2

(
ξ1

∂

∂ξ1
− ξ2

∂

∂ξ2

)
(3.8a)

M+ =
1√
2
ξ1

∂

∂ξ2
(3.8b)

M− =
1√
2
ξ2

∂

∂ξ1
(3.8c)

These equations may seem to appear out of nowhere, but it can be shown that the operators indeed
satisfy the imposed commutation relations. As an example, we compute [J12,M

+] below:[
J12,M

+
]

= J12M
+ −M+J12

=
1

2
√

2
ξ1

∂

∂ξ1

(
ξ1

∂

∂ξ2

)
− 1

2
√

2
ξ2

∂

∂ξ2

(
ξ1

∂

∂ξ2

)
− 1

2
√

2
ξ1

∂

∂ξ2

(
ξ1

∂

∂ξ1
− ξ2

∂

∂ξ2

)
=

1

2
√

2
ξ1

∂

∂ξ2
+

1

2
√

2
ξ21

∂2

∂ξ1∂ξ2
− 1

2
√

2
ξ1ξ2

∂2

∂ξ22
− 1

2
√

2
ξ21

∂2

∂ξ2∂ξ1
+

1

2
√

2
ξ1

∂

∂ξ2
+

1

2
√

2
ξ1ξ2

∂2

∂ξ22

=
1√
2
ξ1

∂

∂ξ2
= M+ (3.9)
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as was the claim. By letting the operators defined in (3.8a)-(3.8c) act on the vectors |a, b〉, it is
found that

J12 |a, b〉 =
1

2
(a− b) |a, b〉 (3.10a)

M+ |a, b〉 =
1√
2
b |a+ 1, b− 1〉 (3.10b)

M− |a, b〉 =
1√
2
a |a− 1, b+ 1〉 (3.10c)

By observing the above action, one finds a few invariants. Firstly, the complex number

j =
1

2
(a+ b) (3.11)

is seen to be left unchanged by the operators. In any irreducible representation, therefore, its value
must be fixed. This value is related to the operator Q, called the Casimir operator, given by

Q = 2M−M+ + J12 (J12 + 1) (3.12)

since it can be seen that

Q |a, b〉 = j(j + 1) |a, b〉 (3.13)

so that Q is a scalar in a given representation. For the case of the rotation group, Q turns out to
equal J2, the total angular momentum squared. For the Lorentz group, it is found that

Q = − (J23)
2 − (J13)

2 + (J12)
2 (3.14)

We see that the different signs in the metric give rise to some relative signs in the Casimir operator,
but there is not much more to say about this.

Next, one finds that 1
2(a − b) can only change its value by integers, and so the fractional part

is another invariant, and the permissible values of the expression are

1

2
(a− b) = E0 +m (3.15)

for integers m. Without loss of generality, we may impose −1
2 ≤ < (E0) <

1
2 .

If j and E0 are fixed, then the labelling of the basis vectors by m is unambiguous. The only
problem could be that the representation is reducible still, after having fixed these values. This
will happen when either a, b, or both take integer values. This is because at least one of the
relations (3.10b)-(3.10c) vanishes when either a or b equals 0, and it follows that there will exist an
invariant subspace. With this observation, we are able to classify all possible linear representations
by investigating the cases separately.

(A) If neither a nor b are integers, the representations above are irreducible. It remains to identify
equivalent representations, which occur when E′0 = E0 and j′ = j or j′ = −j − 1 [2]. For this
reason, all representations with different Q and/or E0 are inequivalent.

This family of representations will be denoted D (Q,E0), following the convention in [2].

(B) If a, and possibly b, takes integer values, then M− |0, b〉 = 0, and so the subspace a ≥ 0 is
invariant. Therefore, to obtain an irreducible representation, the vector space must firstly be
restricted to a ≥ 0.

13
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Next, we must consider if restrictions have to be put on b. The claim is that the values of
b must be such that 2j is not a non-negative integer, i.e. that j is not zero or a positive
half-integer. To see why, note that b = 2j − a is bounded above by 2j. Hence, if 2j is a
non-negative integer, then for a = 2j we find that b = 0. Noting that M+ |a, 0〉 = 0, the
subspace b ≥ 0 would be an invariant subspace, and the representation would be reducible.
It is for this reason b is restricted such that 2j is not a non-negative integer.

Lastly, we see that there is a natural smallest “fractional part” of 1
2(a−b) obtained when a = 0.

Denoting the corresponding value by E0 (i.e. dropping the restriction that −1
2 ≤ E0 <

1
2), it

is found that E0 = −j since, for the b such that a = 0, we have j = 1
2(a+ b) = 1

2b. It follows
that the spectrum of 1

2(a− b) is

1

2
(a− b) = −j +m, m ≥ 0 (3.16)

where only non-negative integersm ≥ 0 are allowed because a ≥ 0. Equivalently, the spectrum
is obtained by repeated applications of M+ to the state |0, 2j〉.
We denote this family of representations by D+(j).

(C) If b, and possibly a, takes integer values, then for the same reasons irreducibility is met if
b ≥ 0 and 2j is not a non-negative integer. This time, there is a natural largest “fractional
part” E0 = j, and the spectrum of 1

2(a− b) is

1

2
(a− b) = j +m, m ≤ 0 (3.17)

as is seen by applying M− repeatedly to |2j, 0〉.
This family of representations is written D−(j), and collectively the representations D±(j)
are called the discrete series.

(D) Lastly, if both a and b are integers, two cases must be considered. If a + b < 0, then either
of the cases (B) or (C) above are recovered. We therefore restrict our attention to when
a+b ≥ 0. To obtain irreducibility, we must set a ≥ 0 and b ≥ 0. Then, 2j is a positive integer
or zero, so let us fix 2j to be a non-negative integer. We note that a and b are both bounded
above by 2j, and this gives rise to the finite spectrum

1

2
(a− b) = −j,−j + 1, . . . , j − 1, j (3.18)

We write D(j) for this family of representations.

3.2 Unitary Representations of the Rotation Group and the Lorentz Group

We now go on to consider which, if any, of the above representations can be made unitary by some
transformation of the basis vectors. The claim is that it can be done while keeping J12 diagonal,
and the argument for why that is true is, to some extent, that it works. However, it is perhaps not
so surprising that it is so, since the general strategy in quantum mechanics is to find a maximal set
of diagonalisable, mutually commuting operators, and we know this to be possible for the rotation
group. With this being said, it turns out [2] that the operators J13 and J23 have continuous
spectra, which makes for a significantly tougher analysis than what is given in this thesis. For a
more thorough discussion on this matter, the reader is referred to Lindblad & Nagel [13], where
the analysis is carried out for J13 diagonal.

14
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Proceeding with J12 diagonal, we introduce a set of normalising factors {Nm} together with the
set of basis vectors

|j,m〉 = Nm |a, b〉 = Nmξ
a
1ξ
b
2 (3.19)

The question is whether there exist normalising factors Nm such that

〈j,m′|j,m〉 = δm′m (3.20)

can consistently be imposed, where δnm is the Kronecker delta. One finds in this representation
that, analogously to (3.10a)-(3.10c), the actions of our operators are found by substituting a and b
for j and m, remembering to take the factors Nm into account. The new relations are

J12 |j,m〉 = (E0 +m) |j,m〉 (3.21a)

M+ |j,m〉 =
1√
2

(j − E0 −m)
Nm

Nm+1
|j,m+ 1〉 (3.21b)

M− |j,m〉 =
1√
2

(j + E0 +m)
Nm

Nm−1
|j,m− 1〉 (3.21c)

It is at this point that the groups start to differ, since the operators for the respective groups
satisfy slightly different unitarity relations. For both, we have J†12 = J12. Therefore, noting that
J12 |j,m〉 ∝ |j,m〉, a particular inner product can be evaluated in two ways. Namely, consider
〈j,m|J12|j,m〉. On the one hand, applying J12 to the right gives

〈j,m|J12|j,m〉 = E0 +m (3.22)

On the other, since J†12 = J12, we can have J12 act to the left instead. Then,

〈j,m|J12|j,m〉 = 〈j,m|J†12|j,m〉 = E∗0 +m (3.23)

Equating the two, we require that

E∗0 +m = E0 +m (3.24)

Since m takes integer values, it must be that = (E0) = 0.
Now, the notation E0 seems to suggest a possible interpretation as a ground state energy, and

we shall see in Section 5 that it indeed takes this role, for the special case of the discrete series
D+(j). However, the value of E0 has a more general connection to group coverings. Consider the
one-parameter subgroup G of the Lorentz group (or the rotation group, equivalently) generated by
J12, whose elements are

gφ = eiφJ12 (3.25)

for real φ, and where the group operation is multiplication. We note, in particular, that g0 = 1,
the identity operator. In a natural way, this group acts on the |j,m〉 vectors by

gφ |j,m〉 = eiφ(E0+m) |j,m〉 (3.26)

Recalling that the complex exponential f(x) = eix is periodic in its real argument x, one could
ask whether the same is true of gφ. That is, is there a smallest positive φ such that gφ = 1? This
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must depend on the eigenvalues of J12, namely the value of E0. Restricting ourselves to unitary
representations, we consider real E0.

We start by noting that if there exists a smallest positive number τ such that gτ = 1, then
the group G is still generated if φ is restricted onto [0, τ). For such a number to exist, τ must
necessarily be an integer multiple of 2π, since we require eimτ = 1 for all (or at least infinitely
many) integers m. This, in turn, forces

τE0 = 2πpE0 = 2πq (3.27)

for some positive integer p and any integer q, or

E0 =
q

p
(3.28)

That is, whenever E0 is a rational number, then there exists a period τ and we may restrict φ onto
[0, τ). Conversely, if E0 is irrational, then no such period exists, and gφ 6= gψ whenever φ 6= ψ (so
the map φ 7→ gφ with domain R is one-to-one).

Now, it can be asked which of these coverings correspond to the groups discussed above. For
the rotation group, one must set E0 to an integer or a half-integer. The first choice gives a faithful
representation of SO(3), and the other a faithful representation of SU(2). For the Lorentz group,
on the other hand, many more values for E0 are accessible, and in this way one could construct
faithful representations of other coverings of the Lorentz group than the ones discussed in this
thesis.

3.2.1 Unitarity Conditions for the Rotation Group

For the rotation group, recall that (M+)
†

= M−. Hence, noting that M−M+ |j,m〉 ∝ |j,m〉, we a
similar trick as previously. On the one hand,

〈j,m|M−M+|j,m〉 =
1√
2

(j − E0 −m)
Nm

Nm+1
〈j,m|M−|j,m+ 1〉

=
1

2
(j − E0 −m)

Nm

Nm+1
(j + E0 +m+ 1)

Nm+1

Nm

=
1

2
(j − E0 −m) (j + E0 +m+ 1) (3.29)

On the other,

〈j,m|M−M+|j,m〉 = 〈j,m|
(
M+

)†
M+|j,m〉

=
1√
2

(j∗ − E0 −m)
N∗m
N∗m+1

· 1√
2

(j − E0 −m)
Nm

Nm+1

=
1

2
(j∗ − E0 −m) (j − E0 −m)

∣∣∣∣ Nm

Nm+1

∣∣∣∣2 (3.30)

where we have used the fact that E0 is real. Again, equating the two gives

(j − E0 −m) (j + E0 +m+ 1) = (j∗ − E0 −m) (j − E0 −m)

∣∣∣∣ Nm

Nm+1

∣∣∣∣2 (3.31)
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Requiring any kind of recursion relation, j − E0 − m is assumed non-zero, and the equation is
divided through by it. Lastly, solving for the normalising factors, the analogue of equation (4.4) in
[2] is recovered: ∣∣∣∣Nm+1

Nm

∣∣∣∣2 =
j∗ − E0 −m
m+ j + E0 + 1

(3.32)

We require the left-hand side to be real and non-negative, and so we must do the same of the
right-hand side. It is clear from looking at the equation, however, that for sufficiently large m the
numerator is negative while the denominator is positive, and vice versa when m is sufficiently small.
In any unitary irreducible representation of the rotation group, then, m must be bounded above
and below.

So, a familiar result from quantum mechanics is recovered. Namely, we see that when j is
interpreted as the total angular momentum of a particle, then a component m thereof cannot take
arbitrarily large or small values.

3.2.2 Unitarity Conditions for the Lorentz Group

Recall that J†12 = J12 for this group, too, and so = (E0) = 0 by the same arguments. The difference,

this time, is that (M+)
†

= −M−, and so when 〈j,m|M−M+|j,m〉 is evaluated like above, a relative
sign between the left- and right-hand side is introduced. Therefore,∣∣∣∣Nm+1

Nm

∣∣∣∣2 = − j∗ − E0 −m
m+ j + E0 + 1

=
m+ E0 + 1

2 −
(
j∗ + 1

2

)
m+ E0 + 1

2 +
(
j + 1

2

) (3.33)

We can no longer apply the argument above to deduce that m must be bounded above and below.
Instead, we investigate each family of representations separately.

(A) For D (Q,E0), the recursion relation must hold for all integers m. We see that the right-hand
side is necessarily positive for large enough or small enough m, so it is the intermediate case
that needs investigation. Also, it must be considered whether j is allowed to take complex
values or not. Let us investigate the case of m = 0. We then require that

E0 + 1
2 −

(
j∗ + 1

2

)
E0 + 1

2 +
(
j + 1

2

) > 0 (3.34)

Since it is not known whether j is purely real or more generally complex, the latter is assumed.
It is convenient to split j up into its real and complex parts, say, j = k + il. We find

E0 + 1
2 −

(
k + 1

2

)
+ il

E0 + 1
2 +

(
k + 1

2

)
+ il

> 0 (3.35)

Assume, firstly, that l 6= 0. For the fraction to be positive at all, it must certainly be real.
Since the complex parts of the numerator and denominator are equal, so too must the real
parts be. This happens only if k = −1

2 , and so one set of permissible values for j is

j = −1

2
+ il, l ∈ R (3.36)

With this choice of j, it is also clear that the fraction is positive for all integers m, since the
fraction equals 1 identically.
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On the other hand, assume now that j is purely real. Then, for m = 0 we have

E0 + 1
2 −

(
j + 1

2

)
E0 + 1

2 +
(
j + 1

2

) > 0 (3.37)

Recalling that, for this representation −1
2 ≤ E0 <

1
2 , no representation can be possible for

E0 = −1
2 . For this reason, we restrict the search to −1

2 < E0 <
1
2 .

We may multiply by the denominator squared on both sides of the above inequality to find(
1

2
+ E0

)2

−
(
j +

1

2

)2

> 0 (3.38)

or (
j +

1

2

)2

<

(
1

2
+ E0

)2

(3.39)

Since 1
2 + E0 > 0, taking the square root on both sides yields∣∣∣∣j +

1

2

∣∣∣∣ < 1

2
+ E0 (3.40)

Repeating the procedure for the case of m = −1, one finds∣∣∣∣j +
1

2

∣∣∣∣ < 1

2
− E0 (3.41)

For both equations to be true simultaneously, we need∣∣∣∣j +
1

2

∣∣∣∣ < 1

2
− |E0| (3.42)

which is the equation given in [2]. It remains to show that j has been restricted enough to be
guaranteed a representation. However, we see from the above equation that the numerator
and denominator are both positive for m = 0, and both negative for m = −1. It follows that
the fraction is positive for arbitrarily large integers m, and for arbitrarily small integers m.
We are done.

(B) For the representation D+(j), m ≥ 0 and E0 = −j. Since E0 is real, so is j, and in fact j
must be real for the remaining representations. We therefore require

m− 2j

m+ 1
> 0 (3.43)

for all non-negative integers m. This is satisfied precisely when j < 0.

(C) For D−(j), instead, E0 = j and m ≤ 0, and so we impose

m

m+ 1 + 2j
> 0 (3.44)

The largest integer m for which
∣∣∣Nm+1

Nm

∣∣∣2 is well-defined is m = −1. Inserting this above, it is

seen that the restriction j < 0 is again sufficient.
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(D) Lastly, for the representation D(j), then E0 = 0 and m = −j,−j + 1, . . . , j − 1, j, where we
have allowed m to take half-integer values too. If we try to impose

m− j
m+ 1 + j

> 0 (3.45)

for m in the stated range, this fails because the numerator is non-positive, while the denom-
inator is positive. The only possibility is that j = 0, for which there is no recursion in the
first place since the basis for the vector space contains the single |0, 0〉 vector. Thus, the only
unitary D(j) representation is the trivial one.

To distinguish between the two families of representations of the form D (Q,E0), we call (3.36)
and (3.42) the principal and the supplementary series, respectively, denoted by DP (Q,E0) and
DS (Q,E0).

Lastly, let us find explicitly the normalising factors Nm. For the principal series, the recursion
holds for Nm = 1 identically, or indeed any other constant. For the remaining representations, the
claim is that the choice

Nm =

[
(m+ E0 − 1− j)!

(m+ E0 + j)!

]1/2
=

[
Γ (m+ E0 − j)

Γ (m+ E0 + 1 + j)

]1/2
(3.46)

where Γ(z) is the gamma function, gives the correct recursion. The reason this works is that the
gamma function satisfies the relation

Γ(z + 1) = zΓ(z) ⇔ Γ(z + 1)

z
= Γ(z) (3.47)

Computing the ratio
∣∣∣Nm+1

Nm

∣∣∣2 using the above relation and that j is purely real in these cases indeed

reproduces the recursion relation (3.33).

4 Some Physical Realisations of the Unitary Representations

This section is devoted to ascribing some physical meaning to the above unitary representations,
by representing them as functions on suitable Hilbert spaces. After this, a discussion of Möbius
transformations follows, which will connect many of the concepts introduced in the previous sec-
tions.

4.1 The Hyperbolic Plane and the Projective Lightcone

We turn our attention to some spaces relevant for the various representations found above, starting
with the hyperbolic plane.

Definition 4.1. The hyperboloid model for the hyperbolic plane H2 is the hyperboloid

X2
1 +X2

2 −X2
3 = −R2, X3 > 0 (4.1)

with R > 0 a constant, embedded in 3-dimensional Minkowski space, together with the (standard
Minkowski) metric

ds2 = dX2
1 + dX2

2 − dX2
3 (4.2)
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It can be shown that the hyperbolic plane has constant gaussian curvature − 1
R2 , and thus it is

in a sense a non-compact analogue of the 2-sphere (for which the curvature is 1
R2 ). From now on,

R will be set to 1 for convenience. Also, we note that the Lorentz group is precisely the symmetry
group on this hyperboloid.

In a similar way to the hyperboloid model, the lightcone XαXα = 0 is mapped to itself by
the Lorentz group. Since, moreover, the spacetime distance between any two points on the same
lightray is zero, it is natural to view every lightray as a “point” in some other space, which results
in a space called the projective lightcone. One way to go about this is to, for every lightray, choose
a representative point of that lightray, e.g. the one with X3 = 1. This lets us view the projective
lightcone as the circle X2

1 +X2
2 = 1, X3 = 1.

Coming back to the hyperboloid model, it should be stressed that it really defines a particular
model of H2, and that there are many others. In particular, another model called the Poincaré disk
model is obtained by stereographically projecting the hyperboloid sheet above to the X3 = 0 plane
via the point (X1, X2, X3) = (0, 0,−1). That is to say, each point on the hyperboloid is connected
to (0, 0,−1) by a straight line segment, and the intersection of that line with the plane X3 = 0
defines the mapped point. See Figure 1 for a depiction of this projection.

Figure 1: The projection from the hyperboloid X3 =
√

1 +X2
1 +X2

2 onto the disk X2
1 + X2

2 <
1, X3 = 0. The point a is mapped by a straight line, connecting a with the point (0, 0,−1), to the
point a′ in the disk. The hyperboloid should be thought of as extending infinitely upwards.

It is seen that the hyperboloid is mapped to the unit disk X2
1 + X2

2 < 1, X3 = 0. After some
computation, the induced metric in this space can be found, and it is given in e.g. Cannon et al.
[4]. We can make the formal definition.

Definition 4.2. The Poincaré disk model of the hyperbolic plane H2 is the set of points
(x1, x2) ∈ R2 inside the unit disk

x21 + x22 < 1 (4.3)
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together with the metric

ds2 = 4
dx21 + dx22(

1− x21 − x22
)2 (4.4)

This model of the hyperbolic plane has the advantage of using as many coordinates as the
dimension of the space, and also that any point in the space is described by finite coordinates. We
shall see this unit disk, as well as the projective lightcone, appearing from other arguments in the
next section.

Another model of H2 is the half-plane model, given below.

Definition 4.3. The half-plane model of the hyperbolic plane H2 is the set of points (x1, x2) ∈
R2 in the upper-half plane

x2 > 0 (4.5)

together with the metric

ds2 =
1

x22

(
dx21 + dx22

)
(4.6)

Although this model does not directly show up in our investigations in the next section, it turns
out to very naturally connect the groups PSU(1, 1) and PSL(2,R) that were discussed above. The
connection comes from Möbius transformations, discussed in Section 4.3.

4.2 Representations in Hilbert Spaces

Informally, a Hilbert space is an infinite-dimensional vector space equipped with some inner product,
and as such it requires a heavier mathematical apparatus than that for ordinary vector spaces. For
the discussion in this thesis, though, we will take much of this theory for granted, in the same way
that (say) the position basis is used without much hesitation in quantum mechanics textbooks like
[16].

In the |j,m〉 basis, any vector |Ψ〉 can be written as a linear combination of the basis vectors
in the following way:

|Ψ〉 =
∑
m

Cm |j,m〉 (4.7)

for some set of coefficients {Cm}, and where the summation is performed over either (all) the inte-
gers, the non-negative integers, or the non-positive integers, depending on which unitary irreducible
representation is taken (the different cases will be discussed shortly). The inner product between
two such vectors is then

〈Ψ|Ψ′〉 =
∑
m

C∗mCm (4.8)

and so for a vector |Ψ〉 to have finite norm, the series
∑

m |Cm|
2 must converge.

We now define a continuous basis for this vector space by

|φ〉 =
∑
m

Nme
−imφ |j,m〉 (4.9)

21



Stockholm University The 2+1 Lorentz Group and Its Representations

where φ is allowed to take real values. We can translate between the two bases by using some
Fourier analysis. It is found that

|j,m〉 =
1

2πNm

ˆ 2π

0
eimφ |φ〉 dφ (4.10)

by noting that 1
2π

´ 2π
0 ei(n−m)φ dφ equals 0 when n 6= m and 1 when n = m. Therefore, in the |φ〉

basis, an arbitrary vector |Ψ〉 is written

|Ψ〉 =
∑
m

Cm
2πNm

ˆ 2π

0
eimφ |φ〉 dφ

=
1

2π

ˆ 2π

0

∑
m

Cm
Nm

eimφ |φ〉 dφ

=
1

2π

ˆ 2π

0
ψ(φ) |φ〉 dφ (4.11)

where, in the last line, we defined the “wavefunction”

ψ(φ) =
∑
m

Cm
Nm

eimφ (4.12)

Given a wavefunction ψ, the coefficients Cm can also be found by Fourier analysis as

Cm =
Nm

2π

ˆ 2π

0
e−imφψ(φ) dφ (4.13)

It is possible to have the operators J12,M
+,M− act on this wavefunction for a given representation,

by defining e.g. M+ψ such that

M+ |Ψ〉 =
1

2π

ˆ 2π

0

(
M+ψ(φ)

)
|φ〉 dφ (4.14)

and similarly for the other operators. Initially, we shall consider the principal and supplementary
series, and so currently m runs from −∞ to ∞ in all series. As an example, we compute M+ψ, by
first noting

M+ |Ψ〉 =
∑
m

CmM
+ |j,m〉 =

∑
m

Cm ·
1√
2

(j − E0 −m)
Nm

Nm+1
|j,m+ 1〉 (4.15)

If equation (4.10) is now inserted, it is found that

M+ |Ψ〉 =
∑
m

Cm ·
1√
2

(j − E0 −m)
Nm

Nm+1
· 1

2πNm+1

ˆ 2π

0
ei(m+1)φ |φ〉 dφ

=
1

2π

ˆ 2π

0

(
1√
2
eiφ
∑
m

Cm
Nm

(j − E0 −m)

∣∣∣∣ Nm

Nm+1

∣∣∣∣2 eimφ
)
|φ〉 dφ (4.16)
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From the above, the transformed wavefunction M+ψ can be read off. If we also insert the recursion
relation (3.33) it is found that

M+ψ(φ) =
1√
2
eiφ
∑
m

Cm
Nm

(j − E0 −m)

(
−j + E0 +m+ 1

j − E0 −m

)
eimφ

=
1√
2
eiφ
∑
m

Cm
Nm

(−j − E0 −m− 1) eimφ

=
1√
2
eiφ (−j − E0 − 1)

∑
m

Cm
Nm

eimφ − 1√
2

∑
m

Cm
Nm

meimφ (4.17)

The first series is recognised to be the wavefunction ψ(φ) (cf. equation (4.12)). As for the latter
series, observe that

dψ

dφ
(φ) =

d

dφ

(∑
m

Cm
Nm

eimφ

)
=
∑
m

Cm
Nm

d

dφ

(
eimφ

)
= i
∑
m

Cm
Nm

meimφ (4.18)

Collecting these results,

M+ψ(φ) =
1√
2

(−j − E0 − 1) eiφψ(φ) +
i√
2
eiφ

dψ

dφ
(φ) (4.19)

Finally, an application of the chain rule backwards yields

M+ψ(φ) =
1√
2

(
−j − E0 + i

d

dφ

)
eiφψ(φ) (4.20)

The other equations are found similarly, and the results are

J12ψ(φ) =

(
E0 − i

d

dφ

)
ψ(φ) (4.21a)

M+ψ(φ) =
1√
2

(
−j − E0 + i

d

dφ

)
eiφψ(φ) (4.21b)

M−ψ(φ) =
1√
2

(
−j + E0 − i

d

dφ

)
e−iφψ(φ) (4.21c)

These are the reported equations (5.6) in [2].
Given two vectors |Ψ〉 and |Ψ′〉 with respective wavefunctions ψ and ψ′, their inner product can

be computed from (4.11) as

〈Ψ|Ψ′〉 =
1

(2π)2

ˆ 2π

0

ˆ 2π

0
ψ∗(φ)ψ′(φ′) 〈φ|φ′〉 dφdφ′ (4.22)

The inner product 〈φ|φ′〉 is evaluated using (4.9):

〈φ|φ′〉 =
∑
m

∑
m′

N∗mNm′eimφe−im
′φ 〈j,m|j,m′〉

=
∑
m

∑
m′

N∗mNm′e−imφeim
′φδmm′

=
∑
m

|Nm|2 eim(φ−φ′) (4.23)
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We now recall that for the principal series Nm = 1 identically, and so

〈φ|φ′〉 =
∑
m

eimφ−φ
′

= 2πδ(φ− φ′) (4.24)

where δ is the Dirac delta function. Therefore,

〈Ψ|Ψ′〉 =
1

(2π)2

ˆ 2π

0

ˆ 2π

0
ψ∗(φ)ψ′(φ′) · 2πδ(φ− φ′) dφdφ′

=
1

2π

ˆ 2π

0

ˆ 2π

0
ψ∗(φ)ψ′(φ) dφ (4.25)

In particular, requiring any vector |Ψ〉 to have finite norm, we impose

〈Ψ|Ψ〉 =
1

2π

ˆ 2π

0
|ψ(φ)|2 dφ <∞ (4.26)

Hence, for the principal series the Hilbert space is the space of square-integrable functions on the
circle.

A similar analysis can be performed for the supplementary series, and also for the discrete series,
but for the latter case the derivation is trickier because φ must be allowed to take complex values.
A discussion on these cases is provided in Bargmann’s paper [1], and it is found that the discrete
series is realised on the Hilbert space of analytic functions on the unit disk |z| < 1 in the complex
plane.

From these investigations we have again encountered a unit circle and a unit disk, which are
meaningful having considered the hyperbolic plane and the projective lightcone above. In fact,
with this interpretation we can consider the respective Hilbert spaces to be the analytic, square-
integrable functions on the hyperbolic plane and on the projective lightcone themselves. What
we have then obtained is an orthonormal basis for these sets of functions, in the sense that any
such function on the space of interest is a linear combination of the basis functions on that space.
Therefore, we have found the analogues of the spherical harmonics on the 2-sphere, and another
connection to the rotation group has been established.

4.3 Möbius Transformations

Möbius transformations are a powerful tool to study geometry on the complex plane, and in par-
ticular on what is known as the Riemann sphere. In addition, they will give some geometrical
intuition to matrix groups we have already discussed. Firstly, we define the Riemann sphere, and
its interpretation in terms of projections.

Definition 4.4. The Riemann sphere is the union of the complex plane with the point at complex
infinity, denoted by Ĉ = C∪{∞}. Accordingly, sequences that diverge in magnitude in the complex
plane are said to converge to the point ∞ on the Riemann sphere.

The reason it is called a sphere is seen from the following visualisation. Consider the unit 2-
sphere embedded in R3 whose center lies on the origin, i.e. the surface X2

1 +X2
2 +X2

3 = 1. We call
the point (X1, X2, X3) = (0, 0, 1) the “north pole”, and similarly (0, 0,−1) the “south pole”. Next,
we visualise the plane X3 = −1 tangent to the sphere at the south pole. Then, any line segment
drawn from a point on the plane to the north pole will intersect the sphere in a unique point, and
furthermore every point on the sphere is hit by one such a line segment, except for the north pole
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itself. If we view the plane projected from as the complex plane, this gives a mapping from C
to the unit sphere minus the north pole. Therefore, if we furthermore define the point ∞ to be
mapped to the north pole, this gives a bijective mapping between the Riemann sphere and the unit
two-dimensional sphere. This motivates the naming of the Riemann sphere. For a diagrammatic
overview of this projection, called the stereographic projection, see Figure 2.

Figure 2: A diagram depicting the projection from the Riemann sphere onto the 2-sphere. Drawn
is the sphere X2

1 + X2
2 + X2

3 = 1 and part of the plane X3 = −1. The point b in the plane is
mapped by a straight line, connecting b with the “north pole” (X1, X2, X3) = (0, 0, 1), to the point
b′ on the 2-sphere. The plane should be visualised as extending infinitely in its directions.

It is reasonable to ask what the group of symmetries on the Riemann sphere looks like, and it
turns out that these are given by a set of functions called Möbius transformations.

Definition 4.5. A Möbius transformation f : Ĉ → Ĉ is a fractional linear transformation of
the form

f(z) =
az + b

cz + d
(4.27)

with a, b, c, d ∈ C such that ad− bc 6= 0.

The group of Möbius transformations on Ĉ is denoted Aut(Ĉ), the group of automorphisms on
the Riemann sphere. These transformations have many interesting properties. Firstly, they are
analytic on the Riemann sphere, and this will be shown below.

Consider a Möbius transformation of the above form. Since it is the ratio of two differentiable
functions, it is differentiable on C whenever the numerator does not equal zero. For such points we
find that

f ′(z) =
a(cz + d)− (az + b)c

(cz + d)2
=

ad− bc
(cz + d)2

(4.28)
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If c = 0, f ′ is constant and so f is differentiable on C. If not, the derivative f ′ goes to complex
infinity at the point z = −d

c , and so it actually converges to ∞ in Ĉ. Since we consider f as
a function of the Riemann sphere into itself, it is necessarily differentiable everywhere on C. It
remains to show differentiability at∞, and the standard procedure is to consider the function f

(
1
z

)
and show that its derivative is well-defined around the origin. We find

f ′
(

1

z

)
=
− a
z2

(
c
z + d

)
−
(
a
z + b

) (
− c
z2

)(
c
z + d

)2 = − ad− bc
(c+ dz)2

(4.29)

If d 6= 0, investigating a disk of radius smaller than
∣∣ c
d

∣∣ shows that f is differentiable around infinity.
If d = 0, the derivative is constant (and so well-defined around infinity). So f is analytic on the
Riemann sphere.

It is a well-known result of complex analysis (see e.g. theorem 3.4 in [5]) that an analytic
function f is angle-preserving, or conformal, everywhere on its domain where f ′ 6= 0. Hence, all
Möbius transformations are everywhere conformal, since ad− bc 6= 0 by definition.

There is a beautiful connection between subgroups of the group of Möbius transformations and
the matrix groups we have defined. Consider the mapping π : GL(2,C)→ Aut(Ĉ) defined by(

a b
c d

)
7→ fabcd (4.30)

where fabcd is the Möbius transformation such that fabcd(z) = az+b
cz+d . Noting that the same Möbius

transformation is obtained if a, b, c, d are all re-scaled by a non-zero complex number, the coefficients

can always be chosen such that det

(
a b
c d

)
= 1, and so we can consider the domain of the

mapping to be SL(2,C) instead. Even so, there are exactly two matrices (differing by a sign) that
map to each given transformation, and the domain can be restricted further to PSL(2,C). The
resulting function π : PSL(2,C)→ Aut(Ĉ) is then a bijection. Moreover, it can be shown to define
a group homomorphism, and it follows that Aut(Ĉ) ∼= PSL(2,C).

With this result, we can consider subgroups of PSL(2,C) and interpret them as groups of
Möbius transformations. For instance, it is seen that matrices in PSL(2,R) leave the real line
invariant, and so the upper-half plane (and the lower-half plane) is left invariant. Therefore, if we
view the upper-half plane model as embedded in C instead of R2, then PSL(2,R) is the symmetry
group on the hyperbolic plane.

Also interesting is the case of PSU(1, 1), for which the induced Möbius transformations take
the form

f(z) =
αz + β

β∗z + α∗
(4.31)

These transformations will, in fact, preserve the unit circle |z|2 = 1 in the complex plane. To see
this, we note that

|f(z)|2 =
|αz + β|2

|β∗z + α∗|2
=
|α|2 + αzβ∗ + α∗z∗β + |β|2

|β|2 + αzβ∗ + α∗z∗β + |α|2
= 1 (4.32)

where, in the middle step, we used the fact that |z| = 1. By extension, Möbius transformations with
coefficients from PSU(1, 1) map the unit disk |z| < 1 to itself. Therefore, if we in the same way
view the Poincaré disk model as embedded in C, then PSU(1, 1) is its symmetry group. With this
and the above result for PSL(2,R), it becomes immediately evident that the two groups must be
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isomorphic, the proof of which we established in Section 2.2. In fact, we can even give a geometric
interpretation of the matrix T , defined in equation (2.4), that was used in this proof. Viewed as a
Möbius transformation, the matrix T takes the real line to the unit circle |z| = 1, and the upper-half
plane =(z) > 0 to the unit disk |z| < 1. To see this, we observe that for z = x+ iy with x real and
y > 0,

|f(x+ iy)|2 =
|x+ iy − i|2

| − ix+ y + 1|2
=
x2 + (y − 1)2

x2 + (y + 1)2
< 1 (4.33)

and so T acts as a chart between the two models of the hyperbolic plane.

5 The Discrete Series Represented on Anti-de Sitter Space

In this section, we explore another setting in which the class of representations D+(j), the discrete
series, that was found above takes on a very natural physical meaning. We only need a few more
concepts from differential geometry, and the definition of 1+1-dimensional anti-de Sitter space, to
see this.

5.1 Lie Derivatives and Killing Vector Fields

A Killing vector field is a vector field on some spacetime that describes the flow of an isometry of
that spacetime, in a way that will be made precise below. The study of such vector fields will help
us obtain a physical intuition for some of the representations found above.

Before giving the precise definition of a Killing vector field, the notion of a Lie derivative is
needed. Intuitively, the Lie derivative measures the initial rate of change of an object (e.g. a
function, vector field, tensor field) as points on the spacetime move in the direction of a given
vector field. More formally, we have the following definition, taken from Huggett & Tod [12].

Definition 5.1. Let V = V α∂α and W = Wα∂α be tangent vector fields on some spacetime S,
and let f be a function on S. Then, the Lie derivative of f in the direction of V is

LVf = V α∂αf (5.1)

Similarly, the Lie derivative of W in the direction of V is

LVWα = V β∂βW
α −W β∂βV

α (5.2)

Observing the antisymmetry in V and W in the definition of the Lie derivative, it makes sense
to define the commutator of two tangent vector fields to be the new vector field whose components
are

[V,W]α = V β∂βW
α −W β∂βV

α (= LVWα = −LWV α) (5.3)

By requiring the Lie derivative to be linear and satisfy leibnizian properties, this derivative can be
extended uniquely to arbitrary tensor fields on a spacetime. Also, for those familiar with differential
geometry, the partial derivatives could all be replaced by covariant derivatives without altering the
definitions, as is done in Huggett & Tod [12] (this can be done since all the arising Christoffel
symbols cancel). However, to avoid a discussion on more differential geometry than is needed, and
also to stress that the Lie derivative can be defined even in the absence of a metric, we shall use
the partial derivatives instead.
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In particular, consider what happens when the Lie derivative is applied to the metric gαβ of a
spacetime. For some tangent vector field V, we have

LVgαβ = V γ∂γgαβ + gαγ∂βV
γ + gγβ∂αV

γ (5.4)

An interesting special case arises, when such a derivative vanishes identically.

Definition 5.2. Let gαβ be a metric on a spacetime S, and V = V α∂α a tangent vector field on
S. Then, V is a Killing vector field provided

LVgαβ = 0 (5.5)

Thus, a Killing vector field has the property that spacetime distances and angles are unchanged
as points in the spacetime move in the direction of the vector field, and so Killing vector fields
describe symmetries (isometries) on a spacetime.

5.2 Anti-de Sitter Space and the Discrete Series

There is one more space left for us to define which, like the hyperboloid model, is most easily
visualised as embedded in Minkowski space.

Definition 5.3. The hyperboloid model for 1+1-dimensional anti-de Sitter space AdS2 is
the hyperboloid

X2
1 +X2

2 −X2
3 = 1 (5.6)

together with the (standard Minkowski) metric

ds2 = dX2
1 + dX2

2 − dX2
3 (5.7)

In this space, one direction is periodic while the other is not, and since we are free to swap the
meaning of space and time in 1+1 dimensions, the periodicity can be ascribed to either coordinate.
However, in accordance with how higher-dimensional anti-de Sitter spaces are defined, time is
interpreted to be the periodic coordinate. (Actually, instead interpreting the periodic direction as
the spatial direction gives a model of 1+1-dimensional de Sitter space, dS2, but the close relation
between anti-de Sitter space and de Sitter space is lost in higher dimensions. Also, the interpretation
of D+(j) made below cannot be made for the case of de Sitter space.)

We can construct three linearly independent Killing vector fields on the hyperboloid (such that
any Killing vector field is a linear combination of the three) by

J12 = −X2∂1 +X1∂2 (5.8a)

J13 = X3∂1 +X1∂3 (5.8b)

J23 = X3∂2 +X2∂3 (5.8c)

These preserve AdS2 in the sense that LJαβ
(
X2

1 +X2
2 −X2

3

)
= 0. For instance,

LJ13

(
X2

1 +X2
2 −X2

3

)
= Jβ13∂β

(
X2

1 +X2
2 −X2

3

)
= 2X3X1 − 2X1X3 = 0 (5.9)

Specifically, J12 corresponds to a rotation of the hyperboloid, and the other two give Lorentz boosts
in the respective directions. It is no coincidence that we have used the symbols Jαβ to describe
these vector fields; indeed, they satisfy the commutation relations

[J13,J12] = J23 (5.10a)

[J12,J23] = J13 (5.10b)

[J13,J23] = −J12 (5.10c)
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As an example, we compute the components of [J12,J23].

[J12,J23]
1 = Jβ12∂βJ

1
23 − J

β
23∂βJ

1
12 = X3 (5.11a)

[J12,J23]
2 = Jβ12∂βJ

2
23 − J

β
23∂βJ

2
12 = 0 (5.11b)

[J12,J23]
3 = Jβ12∂βJ

3
23 − J

β
23∂βJ

3
12 = X1 (5.11c)

and so [J12,J23] = J13. Therefore, the Killing vector fields Jαβ give a representation for the algebra
of SO+(2, 1). Now, the observant reader will have noticed that there is a factor i missing between
equations (3.3a)-(3.3c) and equations (5.10a)-(5.10c). This is not an error in our calculations; it
comes from how the Lie algebra is defined. Instead of defining the algebra as the elements X such
that eitX is an element of the group for all real t, one could equivalently define the algebra as the
elements such that etX is in the group for all real t. This is why we can still rightfully say that the
vector fields Jαβ represent a basis for the Lie algebra of the Lorentz group.

More conveniently, there exists a coordinate system for AdS2 in which both the temporal and
the spatial coordinate take finite values, called “sausage coordinates”. (The name has to do with
the analogous coordinates for 2+1 anti-de Sitter space, for which the coordinate space informally
looks like a sausage.) These coordinates are discussed in e.g. Holst [11], and are defined by the
relations

X1 =
1 + x2

1− x2
cos(t) (5.12a)

X2 =
1 + x2

1− x2
sin(t) (5.12b)

X3 =
2x

1− x2
(5.12c)

In this space it is seen explicitly that the temporal coordinate is periodic, and this is slightly
problematic but not a major hindrance. When it is important that time be non-periodic, we can
mathematically go to the covering space where this is fulfilled (cf. Definition 2.12). Also, the
induced metric in sausage coordinates can be computed, and is done in e.g. Bengtsson et al. [3].
We can make a formal definition.

Definition 5.4. The sausage model for 1+1-dimensional anti-de Sitter space, AdS2, is the
set of points (x, t) ∈ R2 in the rectangle −1 < x < 1, 0 ≤ t ≤ 2π together with the metric

ds2 = −
(

1 + x2

1− x2

)2

dt2 +
4

(1 + x2)2
dx2 (5.13)

where the points (x, 2π) are identified with the points (x, 0).

Like previous models of spacetimes, this model has the convenient property that all points are
represented by finite coordinates. It does have the drawback that lightcones are not given by 45
degree lines, but nonetheless it will suffice for the discussion to follow.

We now wish to write the vector fields Jαβ in the sausage model, and one of them is easily
found since, by the chain rule,

∂t =
∂t

∂Xα
∂α = −X2∂1 +X1∂2 = J12 (5.14)

Thus J12 precisely generates time translation, and the time translational symmetry of AdS2 is
evident.
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Before writing down the two other vector fields, the coordinate relations (5.12a)-(5.12c) will be
inverted. We note that x is a function of X3 alone, and that

tan(t) =
X2

X1
(5.15)

so that

t = atan2 (X2, X1) (5.16)

where atan2 is the function such that if t = atan2 (X2, X1), then tan(t) = X2
X1

andX2 =
√
X2

1 +X2
2 sin(t).

That is, atan2 (X2, X1) is similar to arctan
(
X2
X1

)
, but it also uses the signs of the two arguments to

return the correct value in 0 ≤ t ≤ 2π, as opposed to the inverse tangent function whose codomain
is e.g. −π

2 ≤ t ≤
π
2 .

We also need some partial derivatives of the coordinate relations. We find

∂t

∂X1
=

1

1 +
X2

2

X2
1

·
(
−X2

X2
1

)
= − X2

X2
1 +X2

2

(5.17a)

∂t

∂X2
=

1

1 +
X2

2

X2
1

· 1

X1
=

X1

X2
1 +X2

2

(5.17b)

Moreover, by a standard result from single variable calculus,

∂x

∂X3
=

dx

dX3
=

1
dX3
dx

=

(
2
(
1− x2

)
− 2x(−2x)

(1− x2)2

)−1

=

(
1− x2

)2
2 (1 + x2)

(5.18)

Therefore, we can find J13 and J23 by similar chain rule considerations. As an example, J13 is
computed:

J13 = X3∂1 +X1∂3 = X3

(
∂x

∂X1
∂x +

∂t

∂X1
∂t

)
+X1

(
∂x

∂X3
∂x +

∂t

∂X3
∂t

)
=

2x

1− x2
·
(
−1− x2

1 + x2
sin(t)

)
∂t +

1 + x2

1− x2
cos(t) ·

(
1− x2

)2
2 (1 + x2)

∂x

=
1

2

(
1− x2

)
cos(t)∂x −

2x

1 + x2
sin(t)∂t (5.19)

The calculation for J23 is comparable, and one finds

J23 =
1

2

(
1− x2

)
sin(t)∂x +

2x

1 + x2
cos(t)∂t (5.20)

We return, now, to a physical application of the representations found in previous sections. It was
observed that J12 corresponds to infinitesimal time translation in the sausage model for AdS2. This
gives a new interpretation of the spectrum of J12 as the possible quantum mechanical energies of
a single particle in this space. In any reasonable quantum theory, these energies must be bounded
from below, and therefore the discrete series representation D+(j) is singled out as the physically
interesting one here. Indeed, this is the reason why it is this class of unitary irreducible represen-
tations that is studied in e.g. Fronsdal [7] and Nicolai [15]. Finally, for this class of representations
the lowest allowable energy is E0 = −j, which motivates the choice of notation.
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6 Conclusions and Further Discussion

In this thesis, we have discussed the Lorentz group in 2+1 dimensions and its representations, with
the over-arching goal of comparing to and contrasting with the more familiar rotation group. In
this pursuit, we first saw a number of matrix groups that initially seemed different, but were later
seen to be related in various ways. We went on to find and classify all linear, and then all unitary,
irreducible representations of both the rotation group and the Lorentz group. It was found that
while all the unitary irreducible representations of the rotation group are finite-dimensional, none
of those for the Lorentz group are. After this, we saw that the representations of the Lorentz group
can be viewed as the set of analytical, square-integrable functions on suitable spaces, in analogy
with the spherical harmonics defined on the 2-sphere. Finally, a particular class of representations
was found to be relevant for quantum theories in Anti-de Sitter space. Along the way, a number of
mathematical concepts were introduced, to support these arguments.

As it stands, this thesis has in many ways been a mathematical endeavor. That is not to say
that mathematics is something that should be used sparingly, but there are many questions of
physical nature that can be raised from this thesis. Firstly, how does the approach presented in
this thesis generalise to higher dimensions? What new difficulties arise, and what new physics can
be done in these higher dimensions?

Also, how do the methods developed apply to symmetry groups of spacetimes other than
Minkowski? For instance, what can be found for SO(n, 2) with n > 1, the symmetry groups
of higher-dimensional anti-de Sitter spaces? Secondly, given the relevance that the representations
for the Lorentz group seems to have for quantum theories in curved spacetimes, one might ask what
such a theory actually looks like. With the incorporation of relativity, the Schrödinger equation
can no longer be the governing equation, since it treats temporal and spatial derivatives differently.

Finally, the connection between SU(2), SU(1, 1) and quantum optics, as investigated in Yurke
et al. [18], would be interesting to study in detail. Due to the time constraints of this thesis, there
was unfortunately not enough time to pursue this direction very far. These are all questions that
would be interesting to pursue in a future study.
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Appendix: Review of Group Theory

A.1: What Is a Group?

Basic results of group theory are ubiquitous to this thesis, and so the author chose to append a
review of the most important definitions and results. However, as an introduction to the subject it
will certainly be lacking, and the reader may wish to consult standard mathematics textbooks for
this, e.g. Dummit & Foote [6]. This subsection is largely written following this book.

So we start with the definition of a group.

Definition 6.1. A set G equipped with a function ? : G×G→ G is called a group if the following
axioms hold (we write a ? b ≡ ?(a, b) for all a, b ∈ G):

1. Associativity: the relation a ? (b ? c) = (a ? b) ? c holds for all a, b, c ∈ G.

2. Identity: there exists an element e ∈ G such that e ? a = a ? e = a for all a ∈ G.

3. Inverses: for each a ∈ G there exists an element a−1 ∈ G, called the inverse of a, such that
aa−1 = a−1a = e.

When it is clear what the operation ? is from the context, we shall write ab = a ? b for brevity.
This definition may sound vague, but therein lies its power, since the abstract concept of a group
allows for proofs of properties of a very large class of objects.

Familiar examples of groups include the integers Z under addition, the non-zero complex num-
bers C \ {0} under multiplication, and many more. These groups both have the property that
ab = ba for all elements in the group, which is the defining property of an abelian group. Groups
also frequently appear as symmetries of mathematical objects, as is the case for the Lorentz group.
For such cases, the group elements are the symmetry transformations, and the group operation is
composition of transformations.

In a similar fashion, a subgroup H of a group G is a subset of G such that the group properties
hold for H, and we have closure, which is to say that hg ∈ H for all h, g ∈ H. In this way we see,
for instance, that the rational numbers Q for a subgroup of the reals R under addition.

Next, we need a notion of when two groups are “equal”, and for this, we define a group isomor-
phism.

Definition 6.2. Let G and H be two groups with respective operations · and ?. A function
ϕ : G→ H is called a group isomorphism if it is a bijection and

ϕ (g1 · g2) = ϕ (g1) ? ϕ (g2) (6.1)

for all g1, g2 ∈ G. If such a function exists, we say that G and H are isomorphic, and write G ∼= H.

A function that satisfies (6.1) (bijective or not) is called a group homomorphism. The set of
elements in G that map to the identity in H is called the kernel of ϕ, denoted kerϕ, while the
image of ϕ, written imϕ, is the set ϕ(G) = {ϕ(g) | g ∈ G}.

We now need two more notions from group theory, namely normal subgroups and quotient
groups. A normal subgroup N of some group G is a subgroup such that

gNg−1 = {gng−1 | n ∈ N} = N (6.2)

for all g ∈ G. Given such a normal subgroup, we define the quotient group G/N (read “G mod
N”) as the set

G/N = {gN | g ∈ G} (6.3)
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where gN = {gn | n ∈ N}. It can be shown that the operation

(gN)(hN) = (gh)N (6.4)

is well-defined, and this turns the set G/N into a group, which is why it deserves its name. The
requirement that N is normal is needed, because only then is the above operation well-defined.

As a concluding remark on group theory, we shall state a famous result without proof. The
interested reader is again referred to [6].

Theorem 6.1. The first isomorphism theorem. Let φ : G → H be a group homomorphism.
Then

G/ kerϕ ∼= imϕ (6.5)

In particular, if ϕ is surjective, then G/ kerϕ ∼= H.

Finally, for completeness we shall formally define a field.

Definition 6.3. A field F is a set equipped with two operations + and ·, called addition and
multiplication respectively, with respective identities 0 and 1 such that 0 6= 1. Also, the following
properties must all hold:

• F is an abelian group under addition.

• F \ {0} is an abelian group under multiplication.

• The distributive law holds, so for all a, b, c ∈ F,

a · (b+ c) = (a · b) + (a · c) (6.6)

Most of the familiar number systems are fields, like the rationals Q, the reals R and the complex
numbers C.

A.2: Lie Groups and Lie Algebras

Groups come in all varieties, both finite and infinite. Among the infinite ones, some further classi-
fications can be made. Of special importance, both mathematically and physically, are Lie groups.
They are groups that also have a manifold structure, and so they are in some sense smooth. As
such, the general theory of Lie groups require a reasonable amount of topology and differential
geometry. Fortunately for us, though, we will only work with matrix groups, for which the theory
can be substantially simplified.

The exposition in this subsection will closely follow the textbook of Hall [9], which is an ap-
proachable treatment for physics students, too. Before defining a matrix Lie group, we need a
definition of convergence of matrices in Mn(C), the set of n× n complex matrices.

Definition 6.4. Let Am be a sequence of complex matrices in Mn(C). Then Am converges to
a matrix A ∈ Mn(C) if each entry in Am converges to the corresponding entry in A, as m → ∞.
That is to say, each sequence of complex numbers (Am)ij converges to Aij , for all 1 ≤ i, j ≤ n.

We can now state the definition of matrix Lie groups, which indeed are Lie groups [9].

Definition 6.5. A matrix Lie group G is any subgroup of GL(n,C) such that if Am is a sequence
in G that converges to a matrix A ∈Mn(C), then either A ∈ G or A is not invertible.
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Between different matrix Lie groups, there is one more distinction that is interesting to make,
which is that of compactness. It is essentially compactness that sets the Lorentz group apart from
the rotation group.

Definition 6.6. A matrix Lie group G is said to be compact if it holds that

• If Am is a sequence of matrices in G that converges to a matrix A ∈Mn(C), then A ∈ G.

• There exists a positive real number C such that for all A ∈ G, |Aij | < C for all 1 ≤ i, j ≤ n.

The above definition is essentially a statement of the Heine-Borel theorem, as typically seen in
a real analysis course, which states that a subset of Rn is compact if and only if it is closed and
bounded.

There is one thing left to define in this section, and that is a Lie algebra. Intuitively, the
Lie algebra of a Lie group generates the group by exponentiation, a sentence that will be made
clear shortly. Firstly, we define exponentiation of a matrix just like the usual power series for the
exponential function. For any n× n matrix X, we make the definition

eX =
∞∑
k=0

1

k!
Xk (6.7)

It is a fact [9] that such a power series converges for all such matrices X. We can now define a Lie
algebra, a tool that will help us study the corresponding groups.

Definition 6.7. Let G be a matrix Lie group. Then, the Lie algebra of G, written g, is the set
of all matrices X such that eitX ∈ G for all real numbers t.

In general, an algebra in mathematics is a vector space V equipped with a function [·, ·] : V ×V →
V called a commutator, satisfying a few properties. Namely, for all u, v, w ∈ V , we require linearity
in both arguments, antisymmetry (i.e. [u, v] = −[v, u]), and that the Jacobi identity holds, which
is to say that

[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0 (6.8)

It should be noted that the Jacobi identity implies non-associativity. Knowing this, the name Lie
algebra is fitting because the commutator can, up to a constant factor, be taken to be the usual
matrix commutator, so that for all X,Y ∈ g, we define

[X,Y ] = −i(XY − Y X) (6.9)

It can be shown [9] that for all X,Y ∈ g, one has [X,Y ] ∈ g, together with the other conditions
needed for the commutator. Therefore, a Lie algebra is indeed an algebra.

For many purposes, the Lie algebra of a Lie group is easier to study than the group itself. One
of the reasons has to do with linearity: for all X,Y ∈ g, one has aX + bY ∈ g for all real a, b.
Moreover, since g is a vector space, it is often sufficient to investigate one of its bases. On the
contrary, the Lie group may have a more complicated group operation, and there is in general no
notion of a basis for a Lie group.
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