
Graphing gamma matrices, and
connecting the two Heisenberg groups

in dimension 4

Niklas Kastlander

Bachelor’s Thesis (15 ECTS)
Supervisor: Ingemar Bengtsson (Fil.dr.)
Department of physics
Stockholm University
Spring term 2022



Abstract

There are two Heisenberg groups in four dimensions - one generated by taking the direct product of the
Heisenberg group in two dimensions with itself, and one by using the standard Weyl-Heisenberg generator
definition. Although these are typically taken as distinct, and used in separate contexts, there exists an as
of yet unexplored connection between them. Using a common representation, the two groups permute each
other, or equivalently, lie in each other’s Clifford groups. This thesis explains and explores this connection.

On the way, we take a detour to a group intimately tied to the Heisenberg group, namely the group generated
by the gamma matrices. We explore a graphical representation for the commutation relations of this group
in four dimensions, introduced in 1996 by David Goodmanson [ 1 ], and consider if a similar representation
can be found in higher dimensions. On this front, only a partial success is reached - while a generalization
is found, it lacks key features of the four-dimensional case.
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1 Introduction

Although the framing might be unfamiliar, most students of quantum mechanics have in practice already
worked with the Heisenberg group in two dimensions. Essentially, this is the group of the Pauli matrices,
some of the most well known objects in the entire field. It is perhaps then not so surprising that the Heisen-
berg group is of large importance, and that it has been extended to higher dimensions as well. One can think
of this as analogous to generalizing the Pauli matrices themselves to unitary matrices in higher dimensions.

When considering composite systems, where each subsystem is connected to a Pauli matrix, it is reasonable
to consider the tensor product of Pauli matrices to be connected to the system as a whole. This corresponds
to generating Heisenberg groups in higher dimensions by taking the direct product of smaller Heisenberg
groups. For a specific example from quantum computing, where the composite system is built from qubits,
see Gottesman [ 2 ]. We will cover a general approach for this in Section  3 .

As part of Section  3 we will encounter the gamma matrices, which play an important physical role in the
Dirac equation. Although typically introduced from that angle, i.e. strongly associated with the physical
space-time, we will be mostly considering them from a different direction, namely as a practical application
of the Heisenberg group. In Section  4 we dive into the possibilities of representing the commutation relations
of these gamma matrices graphically, first in a four-dimensional space-time, and later in higher dimensions.

After this graphical excursion, we return to a different way of generalizing the Heisenberg group, which does
not require using smaller Heisenberg groups as building blocks. The result, the so called Weyl-Heisenberg
groups, are useful in several areas of quantum mechanics, as well as classical signal processing. This gener-
alization is covered in Section  5 .

Now, we could be satisfied with there simply being two distinct ways to do this generalization, and use
whichever one works best for each application. But the pattern-seeking researcher might wonder if there
isn’t some link between them, which could potentially be used to view them in a different light. In Section  6 

we will build a common matrix representation for the two different Heisenberg groups in 4 dimensions, and
in Sections  7 and  8 we will use this to discuss such a link.

The link has to do with the Clifford group, the group consisting of those unitary operators which permute
the elements of the Heisenberg group. As is usual in science, the name has a confusing origin. Originally
the name Clifford group belonged to the group of gamma matrices, due to the fact that the gamma matrices
form what is called a Clifford algebra. This name spread to the Heisenberg group (originally a generalization
of the gamma matrices), and to its permuting group. In the end the gamma group and the Heisenberg group
got different names, and the permuting group became known as the sole Clifford group.
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2 H2, and some fundamental theory

Consider the set of the Pauli matrices, including the identity element:{
σ0 = 1, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)}
(1)

These constitute a unitary operator basis for C2 - by which we mean that every linear operator acting on C2

can be written as a linear combination of these four operators. Equivalently, each complex 2× 2-matrix can
be written as such a linear combination. We can also define a scalar product between two operators A and
B as tr(A†B), for which this basis is orthogonal. Viewing the set of Pauli matrices as an orthogonal basis
like this is one of the fundamental reasons why it is of interest. We will however mainly concern ourselves
with a different perspective: viewing this set in the context of group theory.

A group is a set associated with some binary operation 

1
 that satisfies certain properties. The most essential

one is that a group is closed under the operation - meaning that when acting on two elements in the group,
the operation returns another group element. The remaining properties are that the group contains an
identity element and inverses to all elements, and that the binary operation is associative.

In the case of the Pauli matrices, we will consider matrix multiplication (which is inherently associative) as
our binary operation. It is well known that the product of two Pauli matrices yields a new Pauli matrix,
which motivates the introduction of group theory. However, the product typically also includes a phase
factor - for instance σ1σ2 = iσ3. Technically speaking, the set of Pauli matrices isn’t closed, and thus isn’t a
group. We can however fix this easily by extending the set to include phase factors. If we include iσ3, −σ3

and −iσ3, and the same for all other Pauli matrices, we obtain a true closed group. This group is what we
formally mean with the Heisenberg group in two dimensions, which will be denoted in this paper as H2.

{ σ0, − σ0, iσ0, − iσ0,

σ1, − σ1, iσ1, − iσ1,

σ2, − σ2, iσ2, − iσ2,

σ3, − σ3, iσ3, − iσ3 }

Figure 1: The Heisenberg group in two dimensions, H2, is formally defined as the above
set where we can multiply elements together by matrix multiplication.

An important question is what we mean by a group in n dimensions. 

2
 In order to explain this, we first need

to discuss the concept of representations.

When we specify a set of specific matrices in order to define a group, as we did with H2 in Figure  1 , that
set is called a matrix representation for that group. One group can have many different representations -
for instance we could have written the Pauli matrices in a different basis. We call a matrix representation
of a group irreducible, if the matrices can not be reduced to block-triangular matrices via some unitary
transformation. As an example, the reader might know that the rotational group SO(3) has irreducible
representations for matrices of size 3,5,7, and so on.

The Heisenberg group H2 only has irreducible representations for 2×2-matrices, which means the group itself
is specifically connected to two-dimensional vector spaces. This is what motivates the naming convention
that H2 is a group in two dimensions. When we later discuss extending the Heisenberg group to dimension
n, what we mean is to find groups which naturally extend the structure of H2, but which have irreducible
representations for n× n-matrices instead.

1An operation taking in two objects, and returning another one, e.g. scalar multiplication.
2Especially since the dimension of a group is an entirely separate thing.
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Instead of listing all of the elements in the group explicitly, one can also describe this group in terms of
the generators i1, σ1 and σ3. 

3
 What we mean by this is that every element in the group can be bro-

ken down to some product containing only these three factors (with possible repetition). As an example,
−σ2 = i1 × σ3 × σ1. Such products of generators are more commonly called words.

Because all Pauli-matrices either anti-commute or commute, we can always change the order of a word in
H2, as long as we are okay with a potential sign change. This means we could choose a standard form,
e.g. (i1)n1(σ1)

n2(σ3)
n3 , on which all elements of the group could be written. Continuing our example from

above, writing −σ2 on this form requires a sign change, which yields −σ2 = (i1)3σ1σ3. One advantage of
having a standard form is that the group elements can now be associated with the vectors (n1, n2, n3) -
giving us an alternate way to think of how the group is structured.

Finally, we state a specific fact we will need later on. Consider the Hadamard operator :

H =
1√
2

(
1 1
1 −1

)
(2)

Applying this operator as a change of basis (or active transformation) has the effect of swapping σ1 and σ3,
while leaving σ0 and σ2 mostly unchanged: 

Hσ0H
−1 = σ0

Hσ1H
−1 = σ3

Hσ2H
−1 = −σ2

Hσ3H
−1 = σ1

(3)

3 Generalizing H2 via the direct product

3.1 Dimension four: H2×2

One simple way to generalize H2 to dimension four is to take the direct product H2 × H2 - that is, to
consider the set of matrices {σi ⊗ σj}. This yields a set of 16 4 × 4-matrices, which once again forms a
unitary operator basis, but this time for operators on C4. If we extend this set in the same way as for H2, by
multiplying with phase factors, we get a true Heisenberg group containing 64 elements. One can also check
that irreducible representations of this group is only possible with 4 × 4-matrices, meaning this is really a
group in four dimensions. We will denote this group as H2×2.

3.2 The gamma matrices

One practical reason why H2×2 is of interest is that its elements are closely linked to the gamma matrices.
These are used in the Dirac equation, the generalization of the Schrödinger equation for relativistic particles
in space-time. The Dirac equation can be written on the following form:[

3∑
µ=0

(
iγµ

∂

∂xµ

)
−m

]
Ψ(x⃗) = 0 (4)

Here Ψ is a wavefunction in four-dimensional space-time. We describe space-time with the four-vector x⃗,
which has the components (x0 = t, x1, x2, x3). In this thesis, what we are really interested in are the gamma
matrices γµ. These matrices can be chosen in many different ways, as long as they satisfy the following two
conditions: They all have to anti-commute with each other, and they have to square to either −1 or +1
depending on if they are associated with a time-like or space-like dimension. Sadly there is no consensus
on which sign each type of dimension should be associated with - we will opt for associating the time-like
dimensions with a negative sign. For a concrete example, see Figure  2 on the next page.

3For this group, and in general, there are many ways to choose these generators.
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γ0 =


i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

 , γ1 =


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

 , γ2 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 , γ3 =


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0


Figure 2: One of many possible choices of gamma matrices for a four-dimensional
space-time where the first dimension is time-like, and the remaining three are space-
like. Feel free to verify that they all anti-commute, and that the first one squares to
−1 while the other three square to +1.

We can write both conditions very compactly using the anti-commutator and some tensor notation:

{γµ, γν} = 2ηµν1 (5)

The tensor η is called the metric, and is tied to the geometry of space-time. Since we will only consider η on
a surface level, we can ignore its tensor nature, and see it as a symmetric 4× 4-matrix where each element
ηµν is a number. The first condition (anti-commutativity) corresponds to all off-diagonal elements in η being
zero. The second condition (the gamma matrices square to ±1) correspond to the diagonal elements in η
being ±1. Thus, we can write η for our case as:

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (6)

Thus far we have been working with the 4d space-time we are familiar with, but mathematically there is
no constraint on how many space- or time-like dimensions there are. In order to classify the different cases
it is enough to consider the diagonal elements of the metric tensor, so we introduce the signature as the
n-tuple of the diagonal elements, i.e. (− + + +) in our case. The signature can also refer to the number of
positive elements minus the number of negative elements, i.e. 3− 1 = 2. 

4
 Since the order of the dimensions

is less important, these two definitions of the signature are more or less the same, and we will use them
interchangeably.

3.3 The gamma group

While the four gamma matrices themselves are of central importance, we also care about products of gamma
matrices. As it turns out, the gamma matrices are generators for the gamma group, whose elements are
listed in Table  1 below.

Elements Compact notation #

1 1

γ0, γ1, γ2, γ3 4

γ0γ1, γ0γ2, γ0γ3, γ1γ2, γ1γ3, γ2γ3 γ01, γ02, · · · 6

γ0γ1γ2, γ0γ1γ3, γ0γ2γ3, γ1γ2γ3 γ3γ5, γ2γ5, γ1γ5, γ0γ5 4

γ0γ1γ2γ3 γ5 1

Table 1: Elements in the gamma group. Since gamma matrices anti-commute, the
ordering of the matrices is unimportant up to a sign change. Formally the group
contains each element in the table twice (once with a negative sign), but we will not
go into this in detail.

4As mentioned, some conventions flip the signs, and thus get the space-time signature (+ − − −) or −2.
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The matrix γ5 has its slightly curious name from the time when the four gamma matrices in the Dirac
equation were numbered 1 through 4. The products γµγ5 are compact ways of writing the triple products
- effectively γµ cancels one of the four matrices in γ5, leaving three left. We also note that because of the
anti-commutation, γµν is often written (or even defined) as γµν = 1

2 (γµγν − γνγµ).

Now, since H2×2 is a complete basis for 4× 4-matrices, it is of course always possible to express any of the
16 matrices in the gamma group as a linear combination of elements in H2×2. But the fact that the gamma
group and H2×2 are of the same size (ignoring phase factors) hints at a deeper connection between them.
In fact, the two groups are essentially the same group, with some small difference in which phase factors are
allowed. Formally, we can obtain all the elements in the gamma group (regardless of how we chose our four
gamma matrices originally) by applying an appropriate change of basis 

5
 T to H2×2. For a proof of this, see

for instance Appendix A2 of Jauch [ 3 ]. Since ±1 remains unchanged under a change of basis, we can easily
see that the squares of the gamma matrices (and thus also the signature) is preserved during a basis change.

What this means is that in order to understand all possible ways we can choose our gamma matrices, it is
enough to investigate in which ways we can choose gamma matrices directly from H2×2. Since H2×2 includes
the phase factor variants of all matrices, it is also very easy to modify the signature of a gamma matrix set.
By multiplying one or more gamma matrices with i, the sign of their squares flip. Thus, as soon as you have
one set of gamma matrices, you can immediately generate sets with any signature you want.

There are however cases when one does not wish to work with the entirety of H2×2, and instead restricts
oneself to only the real elements. One such example comes from modern particle physics: In the standard
model, neutrinos are assumed to be mass-less, yet this has already been proven wrong experimentally. A
new equation including a neutrino mass term can have one of two forms: either a modified Dirac equation, or
a different equation known as the Majorana equation - for details see Ohlsson [ 4 ]. The Majorana equation,
among other things, requires that the gamma matrices be chosen purely real. The difference between Dirac
and Majorana can be tested experimentally - Majorana neutrinos would allow for a so called neutrinoless
double beta decay. The search for such a reaction is ongoing, see for instance the projects [ 5 ], [ 6 ], [ 7 ] and [ 8 ].

Regardless of the physical context, a restriction to real matrices has an important impact on the underlying
mathematics. We can no longer choose the phase factors freely, and thus the trick to generate all signatures
no longer works. In fact, using real matrices only allows for a fraction of all possible signatures:

sign ≡ 0, 1, 2 mod 8 (7)

The derivation of this formula is outside the scope of this thesis, but the interested reader can find it in
Freund [ 9 ]. Since we will only be dealing with even-dimensional space-times, all signatures we encounter will
be even. In practice we can thus ignore the case where the signature is congruent with one.

We see from the formula that the signature (− + + +) is still valid - however the alternate convention
(+ − − −) is not. To use the alternate convention, one must either use purely imaginary gamma matrices,
or rewrite the Dirac equation to include a factor i in front of all gamma matrices.

3.4 Higher dimensions: H2×2×2···

We can generalize the above discussion to dimension 2n by taking the direct product of n copies of H2, and
thus considering 2n×2n-matrices built by tensor products of n Pauli matrices. Most statements made above
generalize naturally, but some aspects require a little bit extra thought.

For four dimensions we did not need to make a distinction between the size of the gamma matrices, and
the dimension of space-time - both had the same value. For higher dimensions these two are not equal, and
we have to separate them out. The gamma matrices can either be seen as 2n × 2n matrices, chosen from
the Heisenberg group in 2n dimensions, or (more commonly) as the matrices that allow us to express the
Dirac equation in 2n space-time dimensions. The number of matrices you need for the Dirac equation is the
same as the space-time dimension, i.e. 2n. As an example, six-dimensional space-time requires six gamma
matrices that all are of size 8× 8.

5Note that we are here considering a basis change of the vector space C4, and not a basis change of the operator space.

7



3.5 Commutation relations

Let us consider the group structure of H2 in more detail. Since the general case is rather easy to obtain as
a generalization of the real case,  

6
 we will work with the real case. We introduce σ̃2 as the real version of σ2:

σ̃2 =

(
0 −1
1 0

)
(8)

If we ever want to re-obtain the usual Pauli matrix, we simply reapply a factor i (σ2 = iσ̃2). For the real
Pauli matrices, we obtain the following multiplication table: 
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× σ0 σ1 σ̃2 σ3

σ0 σ0 σ1 σ̃2 σ3

σ1 σ1 σ0 σ3 σ̃2

σ̃2 σ̃2 −σ3 −σ0 σ1

σ3 σ3 −σ̃2 −σ1 σ0

Table 2: Multiplication table for real Pauli matrices.

The important takeaways are these two properties:

(1a) (σ̃2)
2 = −1, the remaining matrices square to +1.

(1b) σ0 commutes with everything; σ1, σ̃2 and σ3 anti-commute with each other.

When we jump to H2×2 (or more generally H2n), we can apply this multiplication table and Property  1a &
 1b separately for each term in the tensor product. As an example, that looks something like this:

(σ0 ⊗ σ1) · (σ3 ⊗ σ̃2) = σ0σ3 ⊗ σ1σ̃2 = σ3 ⊗ σ3 (9)

This also means we can generalize the two properties to a general number of Pauli matrix factors:

(2a) A matrix has a square of −1 when its tensor product contains an odd number of σ̃2 factors, and
otherwise has a square of +1.

(2b) Compare the tensor products for two gamma matrices factor by factor, and count the number of
times the factors from the first and the second matrix anti-commute. If this number is odd, the
gamma matrices anti-commute, and if the number is even, they commute.

  

Figure 3: Examples for determining if two gamma matrices commute or anti-commute
according to Property  2b . Anti-commuting pairs of Pauli matrices are marked with
bold outlines. For γa and γb, the first pair of factors commute, and the last two
pairs anti-commute. We have an even number of anti-commuting pairs, and thus γa
commutes with γb. For γa and γc only the last pair of factors anti-commute with each
other, meaning we have an odd number of anti-commuting pairs. Thus γa and γc anti-
commute.

6One only needs to add phase factors at appropriate places.
7As a sidenote, multiplication tables like these highlight a more abstract perspective on the idea of a group. The real variant

of H2 can be seen as a set of 8 abstract objects (which we’ve happened to label ±σi in this case, but they might as well be
named ±a,±b, · · · ), and rules for combining these objects.
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4 Graphical representations of gamma matrices

4.1 Dimension four: Goodmanson’s graph

In order to better visualize the commutation relations in the four-dimensional case, we can use a very compact
graph representation by Goodmanson [ 1 ]:

  

Figure 4: Goodmanson’s graph. Each edge represents
a 4 × 4 gamma matrix, and two such matrices anti-
commute precisely when their corresponding edges
meet at a vertex.

Each edge  

8
 in this graph represents a gamma matrix in H2×2. In order to keep track of the order in the

tensor product, we introduce a second set of Pauli matrices {τi}. These are mostly equivalent to the σ:s - the
only important distinction is that whenever we take a tensor product it is always in the order σ⊗τ and never
τ⊗σ. As can be expected, edges in the graph that connect σi and τj correspond to their tensor product σi⊗τj .

This includes all elements except for those with σ0 or τ0 as a factor. Luckily we also have some edges left,
namely those that connect either two σ:s or two τ :s. The association made here is slightly more involved:
an edge connecting two σ:s represents the tensor product σi ⊗ τ0, where σi is the σ vertex not connected to
the edge in question. Thus for example the edge σ1σ̃2 corresponds to σ3 ⊗ τ0. The same logic applies for
edges connecting two τ :s.

Finally, the identity element σ0 ⊗ τ0 is not included in the graph. This is a very small problem however,
since it trivially commutes with all other gamma matrices, and thus typically doesn’t have to be considered.

The beauty of this graph representation is that Property  2b from Section  3.5 becomes very simple: two edges
anti-commute if they meet at a vertex, and commute otherwise. Using this, we can immediately see that
there can at most be five mutually anti-commuting matrices, since there are five edges sharing a single vertex.
We can also see that there can at most be three mutually commuting matrices (four if you count the identity
matrix), since there are six vertices in total, and each edge has to have two distinct ones. These examples
are illustrated in Figure  5 below. This type of relation is of course possible to find purely algebraically (see
for instance Eddington [ 10 ]), but it is clear that the speed and certainty with which one identifies them from
this graph is very valuable.

    

Figure 5: To the left: The largest possible set of anti-commuting gamma matrices; 5
edges meeting at a single vertex. To the right: The largest possible set of commuting
gamma matrices; 3 edges sharing no vertices.

8If the reader is unfamiliar with graph theory, the lines are called edges, and the points vertices or nodes.
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From one of these maximally anti-commuting sets, we can then pick four of the five matrices as our de facto
gamma matrices to use in the Dirac equation. 

9
 Since we’re working with real gamma matrices, where the

question of available signatures becomes important, we can mark in the graph which matrices have positive
and negative squares. This can be seen in Figure  6 below. We see that each anti-commuting 5-tuple contains
three positive, and two negative edges. When choosing our four gamma matrices we can thus end up with
the signatures (+ +−−) or (+ + +−). This is precisely the signatures we expect from Formula  7 .

  

Figure 6: Goodmanson’s graph, where the edges have
been marked to indicate the squares of their cor-
responding gamma matrices. Thick continuous edges
square to +1, whereas thin dashed edges square to
−1.

4.2 Higher dimensions: the polygonal representation

Now, let us introduce a more general graphical representation, that in principle works regardless of how many
Pauli matrices are included in the tensor product. To separate this from Goodmanson’s representation, we’ll
refer to this as the polygonal representation. The name has been chosen since the gamma matrices will be
represented with arbitrarily large polygons, and not only edges as in the Goodmanson case.

To obtain the polygonal representation, we first associate each gamma matrix σi ⊗ τj ⊗ · · · with the set of
its Pauli matrix factors {σi, τj , ...}. Then we remove all identity matrices (σ0, τ0, etc.) from these sets. The
resulting set is seen as a list of vertices, for which a polygon can be drawn. If the polygon has four or more
vertices there is some ambiguity in exactly how to draw it - but the important part is really the vertices it
visits, so this ambiguity is a visual problem rather than a mathematical one. See Table  3 below for some
examples of how the representation works.

Note that technically the Greek letter following τ is υ (upsilon), meaning that tensor products with three
factors should be σ ⊗ τ ⊗ υ. Given the risk of confusing υ with an italic v, we instead go backwards in the
Greek alphabet, and write the tensor products on the form ρ⊗ σ ⊗ τ .

Matrix Set of vertices Graph object

ρ0 ⊗ σ0 ⊗ τ1 {τ1}

ρ0 ⊗ σ1 ⊗ τ3 {σ1, τ3}

ρ̃2 ⊗ σ3 ⊗ τ1 {ρ̃2, σ3, τ1}

Table 3: Examples of how different 8× 8-matrices are represented in the polygonal graph.

9This method of finding four gamma matrices will in fact yield all possible choices.
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In Figure  7 below we’ve drawn the full polygonal graph for 4 × 4-matrices. Note the difference to Good-
manson’s graph: There are no edges between vertices of the same type, i.e between two σ:s or between two
τ :s. The gamma matrices those edges corresponded to, are here instead represented by the six individual
vertices, as indicated by the rings around them.

  

Figure 7: Polygonal graph. Here the gamma matrices are represented both by the
edges and the vertices, as indicated by the rings.

For the polygonal graph, the anti-commutation rule follows directly from Property  2b in Section  3.5 . Since
the position in the tensor product is represented by the vertex type (σ, τ , etc.), an anti-commuting pair of
factors here correspond to the two polygons visiting two anti-commuting vertices of the same type. However
by not having σ0 as a vertex, all vertices of the same type are anti-commuting. Thus what matters is really
whether the two polygons visit distinct vertices of the same type. If this occurs an odd number of times, the
polygons anti-commute. Examples of this rule can be found in Figure  8 :

      

Figure 8: Examples of anti-commutation relations. To the left we have two distinct
τ vertices, which form an anti-commuting pair. The gamma matrices associated with
these vertices thus also anti-commute. In the middle we have a similar situation, except
now one of the polygons also includes a σ vertex. Since only one of them visits a σ
vertex this doesn’t matter, and the two matrices still anti-commute. Finally, we have
the situation where both polygons visit σ vertices. Since they visit distinct σ vertices
we now have two anti-commuting pairs (one σ − σ and one τ − τ). This is an even
amount, and thus the two edges commute.

Specifically for 4× 4-matrices we can split the rule up into three cases:

(3a) Two vertices anti-commute if they are of the same type.

(3b) An edge and a vertex anti-commute if they do not intersect. 
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(3c) Two edges anti-commute if they intersect.

10We say that two edges intersect when they meet at the same vertex.
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When the anti-commutation rule is expressed like this, the similarity to Goodmanson’s representation is
hopefully apparent. As one can verify, if we now change back to representing all gamma matrices with edges,
the three cases above all result in ”two edges anti-commute if they intersect”, as we expect.

In four dimensions it is clear that Goodmanson’s graph is vastly superior to the polygonal graph - one
doesn’t have to keep track of both edges and vertices, and the anti-commutation rule is as simple as can
be. Thus the polygonal graph for 4× 4-matrices is more of a prototype, used to prove and/or generate the
Goodmanson representation. Maybe we could do the same in higher dimensions - first generate the relevant
polygonal graph, and then try to change the representation so that all gamma matrices are associated with
edges? Sadly, we encounter two important roadblocks already in six dimensions. These are illustrated in
Figure  9 below.

    

Figure 9: Two exceptions to the general rule, in a graph for 8 × 8-matrices. The two
triangles to the left anti-commute, despite sharing no vertices. The same applies to the
two edges to the right.

Firstly, the polygonal graph we start with now contains triangles in addition to the vertices and edges. Not
only can the triangles not be reduced to edges, but they also anti-commute with each other when sharing
zero or two vertices, instead of when sharing one vertex.

Secondly, the introduction of a new type of vertex (ρ) allows for more complex interplay between the edges.
For edges that connect the same pair of vertex types (e.g. two σ − τ edges) the rule is the same as before,
but for edges connecting different pairs of vertex types (as in Figure  9 ), they anti-commute when sharing no
vertices.

This means that even if we perform the Goodmanson trick and turn vertices into edges, we are still stuck
with at least two exceptions to the simple rule we have in four dimensions. 

11
 Either exception alone would

already be enough to ruin the main advantage of a graphical representation - one can no longer immediately
picture the structure, and no longer find maximally anti-commuting or commuting sets at a glance.

When looking at this failure from a larger perspective it is perhaps not that surprising. We know that the
fundamental rule (Property  2b ) is based on the number of anti-commuting pairs, or more loosely put, the
number of “un-intersections” in the graph. We might be able to twist this into an intersection-based rule in
four dimensions, but only because that graph is highly constrained. We can’t expect it to work in higher
dimensions where we have far more cases to work with.

Despite not being as good as Goodmanson’s graph, the higher dimensional polygonal representation might
still find some uses. It is possible to do calculations with it, albeit with an amount of work that approaches
the case of doing it purely algebraically. A a specific example, one can use graphical arguments to extend a
small set of anti-commuting gamma matrices into a larger one.

11There are other avenues, such as turning the triangles into hexagons, and the edges into quadrilaterals. However, of all the
possibilities investigated, some made the commutation rules more consistent, but none made them less complicated.
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A more interesting use is that the graph can serve as a visual aid for displaying sets of gamma matrices,
once they have been specified by other means. As an example, Figure  10 below shows all (meaningfully
distinct) maximally anti-commuting sets of 8×8-gamma matrices. In order to work with the Dirac equation
in a 6-dimensional space-time, one would pick six gamma matrices from one of these sets, which also would
determine the signature. For completeness, the available signatures turn out to be -6, 0 and 2, once again
precisely what we expect from Formula  7 .

A problem with drawing the polygonal graphs, is that in general polygons may share one or multiple sides,
and it isn’t always clear which polygons a specific edge belongs to. After having worked with them for a
while, one develops a visual intuition - but one can also make some aesthetic changes to make them more
readable. We’ve removed some of the shared sides - which is completely fine since what really matters is the
vertices each polygon visits. We’ve also erased parts of some edges, to better illustrate which edges connect
to form polygons, and which ones do not.

    

    

Figure 10: Polygonal graphs for all distinct maximally anti-commuting sets of 8 × 8
gamma matrices. In the two lower graphs some triangle sides have been removed to
make the graphs more readable: in the left one we’ve removed ρ3− τ1, and in the right
one σ1 − τ3 and ρ1 − σ3.
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5 Generalizing H2 via generators (the Weyl-Heisenberg groups)

Having now analyzed one way to generalize Heisenberg groups to higher dimensions, we turn to the other.
For H2, we noted that it could be built up using three generators. One generator was essentially a phase
factor (the mathematical term is that it generated the group’s center), and then we had two generators
which were “regular” group elements. When generalizing this generator definition to higher dimensions, we
obtain a different type of Heisenberg groups than we studied in Section  3 . These new groups are called the
Weyl-Heisenberg groups.

The Weyl-Heisenberg groups are defined in all dimensions d. This is more general than the generalization
from before, which only worked for powers of two. We will denote the Weyl-Heisenberg groups simply as Hd.
The three generators we use are named ω, X and Z - analogously to σ1 = σx and σ3 = σz in two dimensions.
They obey the following conditions:

ωd = Xd = Zd = 1, ZX = ωXZ, ωX = Xω, ωZ = Zω (10)

Since ω commutes with every element, it is effectively a (primitive 

12
 ) dth root of unity times the identity

operator. 
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 In the case of d = 4 we can choose ω = i1. Because X and Z commute up to a phase factor, we

can specify a standard form ωn1Xn2Zn3 , and as with H2 we can always rearrange any word into this form.
This also allows us to enumerate how many objects a Weyl-Heisenberg group contains. As an example, in
four dimensions X4 and Z4 reduce to identity, which means n2 and n3 can each only take on the four values
0,1,2 and 3. This means that H4 contains 4× 4 = 16 objects, ignoring phase. Interestingly, this is the same
amount of elements as in H2×2.

5.1 The standard matrix representation

Thus far, we’ve discussed X and Z abstractly, without giving them an explicit matrix representation. As is
usual with groups, there are many possible representations to choose from. A common choice (the standard
representation) is to make the representation unitary and irreducible, and make Z be a diagonal matrix
(similarly to the fact that we diagonalize σ3 when setting up the Pauli matrices from scratch in QM).

Since Z4 = 1, the eigenvalues, and thus the diagonal elements, must be chosen from the fourth roots of
unity. The choice of eigenvalues is heavily constrained by the following relation:

Z|λ⟩ = λ|λ⟩ ⇒ Z
[
X|λ⟩

]
= ωXZ|λ⟩ = iλ

[
X|λ⟩

]
(11)

If λ is an eigenvalue to Z, then iλ is also an eigenvalue. This forces us to include all four roots of unity as
the diagonal elements. Ordering them in order of increasing phase, we obtain:

Z =


1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i

 (12)

Diagonalizing Z greatly constrains what X can be as well. Just from equating ZX and ωXZ we find that
most of the elements in X have to be zero:

X =


0 0 0 a
b 0 0 0
0 c 0 0
0 0 d 0

 (13)

12The definition technically also contains that ωn ̸= 1 for all n < d.
13This hopefully seems rather intuitive - but for the nit-picky reader this follows from Schur’s lemma.

14



The remaining conditions (unitarity and X4 = 1) give that these four numbers must all have an absolute
value of 1, and that abcd = 1. All possible choices we make here will only differ up to a unitary transformation
- see for instance the argument in Weyl [  11 ] (they diagonalize X instead of Z, but the reasoning still applies
in our case). We choose the simplest option which is to set all non-zero elements to 1:

X =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 (14)

This then completes the description of the standard matrix representation of H4 - all other matrices can be
written as words in ω, X and Z, and are thus uniquely defined.

6 Finding a common representation

Now, having specified both Heisenberg groups, we would like to seek a common ground to work with both
of them simultaneously. We note that since the groups are defined independently, it is not possible to take
products of abstract group elements from the two different groups. We can however work with the explicit
matrix representations. However - those were also thus far chosen independently, and as might be expected
this turns out to not give the best result. We have to put some thought into how we represent the groups in
order to be able to work with both simultaneously in a way that connects them.

To start with, we should consider how much group structure the two groups have in common. More con-
cretely, we seek to identify some elements from H2×2 with some elements in H4, as grounds for building
a common representation. As might be expected, we are somewhat constrained in which elements we can
identify. All elements in H2×2 square to 1 (up to phase) - if we want a true identification, this also has to
apply to the elements we choose from H4. There are in fact only four such elements in H4: 1, X2, Z2 and
X2Z2. The best we can do is to identify these four elements with four elements from H2×2.

Which elements from H2×2 should we choose? It is clear that we should identify the identity element 1
with itself - it looks the same in any representation. For the remaining three elements, we note that they
should have the same internal structure as X2, Z2 and X2Z2 - in particular, they must commute. There
is still some freedom in which elements we choose, but fortunately all choices turn out to be functionally
equivalent 

14
 - we are free to pick any commuting set we wish from H2×2.

The four elements we identify turn out to have a very important property. They constitute a maximally
commuting set - i.e. there is no set of five or more commuting elements in either group. The reason this is
of interest, is that simultaneously diagonalizing the elements in a maximally commuting set fixes a complete
representation. 

15
 Thus by diagonalizing the four identified elements, we can create a representation for both

groups at the same time.  
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We can save on calculation time by choosing the commuting set from H2×2 with some thought. If we pick
σ0 ⊗ σ3, σ3 ⊗ σ0 and σ3 ⊗ σ3 as our elements, they are already diagonalized in the standard representation
for H2×2. Thus the common representation will represent all elements in H2×2 as we are used to. We do
however have to change the representation for H4 in order for X2, Z2 and X2Z2 to match. In the standard
representation for H4, they look like this:

X2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 = σ1 ⊗ σ0, Z2 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 = σ0 ⊗ σ3, X2Z2 = σ1 ⊗ σ3 (15)

14One can show that transforming one choice into another can be done via a change of basis for the entire group H2×2, thus
leaving the group structure itself unchanged.

15This is essentially the same thing as choosing a basis in QM by finding the largest number of simultaneously independent
measurements.

16We also have to require that the elements from H2×2 and H4 have the same eigenvalues - otherwise they would look different
when diagonalized. As long as we’re not adding any extra phase factors (for instance, we can’t use σ̃2 here), this requirement
is already fulfilled; all commuting sets from H2×2 have the same eigenvalues as the four elements we chose from H4.
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As luck would have it, they are already pretty close to what we want - all we need is to tweak the represen-
tation so that the first factor in X2 and X2Z2 is σ3 instead of σ1. Recall from section  2 that the Hadamard
operator accomplishes just that. Specifically, if we perform a basis change using H ⊗ 1, we can swap the
first factor, while leaving the second factor unchanged.

Performing this change of basis on the generators for H4 fixes the shared representation for the entire group:

X =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , Z =


0 0 1 0
0 0 0 i
1 0 0 0
0 i 0 0

 (16)

And, as was the intent, it diagonalizes the intersection of H2×2 and H4:

X2 = σ3 ⊗ σ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , Z2 = σ0 ⊗ σ3 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,

X2Z2 = σ3 ⊗ σ3 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


(17)

7 The mutual permutation of H2×2 and H4

7.1 Permutations and the Clifford group

For any set S of unitary operators, and some unitary operator U , we say that U permutes S under conjugation
when the following holds:

∀O ∈ S : UOU−1 ∈ S (18)

We can view this as a transformation parameterized by U , which takes elements from S to other elements
in S. Note that U is only defined up to a phase factor - if we multiply it by eiθ, the inverse gets multiplied
by e−iθ, and these factors cancel when used to permute O.

The set of all permuting operators, {U}, is a group. It is easy to see that two successive permutations yields
another permutation, and it is also trivial to verify the remaining group axioms.

In the specific case where S is a Heisenberg group, the permuting group is called the Clifford group, which
we will denote by Cl. Each Heisenberg group has its own Clifford group, so for H2×2 we have Cl2×2, and
for H4 we have Cl4. Don’t be tricked by the notation - we are not stating here that Cl2×2 = Cl2×Cl2, only
that Cl2×2 is the permuting group for H2×2. 
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An important observation is that when the set S is a group, it permutes itself. With this we mean that
every operator in S can be used as permuting operator U , or equivalently that S is a subgroup (subset and
group) to the permuting group {U}. The validity of this follows directly from S being closed: if U is chosen
as an element of the group S, then the product UOU−1 is a product of three operators in S, which must lie
in S as well. Applying this observation to the Heisenberg groups, we have that:

H2×2 ⊂ Cl2×2, H4 ⊂ Cl4 (19)

17In fact, Cl2 × Cl2 is a subgroup of Cl2×2. It is possible to split a Clifford group into a direct product of smaller Clifford
groups, but only if the smaller groups’ dimensions are coprime, i.e. contain no shared factors. For instance, Cl12 = Cl4 ×Cl3.
For a more in-depth discussion of this (and how it works analogously for the Heisenberg groups), see for instance Appendix B
in Appleby [ 12 ].
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7.2 The connection between H2×2 and H4

Now, we are finally ready to discuss the interesting connection between H2×2 and H4. They permute each
other, and thus are also subgroups of each other’s Clifford groups:

H2×2 ⊂ Cl4, H4 ⊂ Cl2×2 (20)

To be precise, this statement holds true in our shared representation. As we discussed in section  6 we can
choose the representations for both groups independently, and thus break this connection. Regardless of
representation, it is true that Cl4 contains a subgroup that is isomorphic to H2×2, and analogously that
Cl2×2 contains a subgroup isomorphic to H4.

The underlying mechanisms of why this holds true are not fully understood. Since the groups involved are
rather small, it is possible to prove Equation  20 by brute force. We will do this in Section  7.3 .

One potentially interesting consequence of this mutual permutation is the following: for all elements A from
H2×2 and all elements B from H4, the following expression has to lie in the intersection of the two groups:

ABA−1B−1 ∈ H2×2 ∩H4 (21)

The reason for this is as follows: since H2×2 permutes H4, ABA−1 has to be an element in H4. Thus the
whole expression is a product of two H4 elements, which in turn must also be in H4. An analogous argument
shows that BA−1B−1 is an element in H2×2, meaning the expression as a whole lies in H2×2.

As discussed when we built the common representation in Section  6 , the intersection contains only diagonal
elements:

H2×2 ∩H4 = {1, X2 = σ3 ⊗ σ0, Z2 = σ0 ⊗ σ3, X2Z2 = σ3 ⊗ σ3} (22)

Thus we can also state that ABA−1B−1 must be a diagonal matrix in our shared representation.

7.3 Proving the connection

The most explicit way to prove Equation  20 is to go through all elements A from H2×2, and all elements
B in H4, and check for each pair that ABA−1 ∈ H4 and BAB−1 ∈ H2×2. This would require doing
16 × 16 × 2 = 512 matrix calculations, and then checking that each calculation yields an element in the
appropriate group. By using the power of generators, we can reduce this number by a massive amount. This
approach is best introduced by means of two examples:

Assume the matrix B can be factorized as a product B1B2. For the cases ABA−1, where B is in the center,
we can rewrite the expression in the following way:

ABA−1 = AB1B2A
−1 =

(
AB1A

−1
)(

AB2A
−1

)
(23)

Here we see that if we’ve already done the calculations AB1A
−1 and AB2A

−1, and verified that they yield
elements in H4, we do not need to check the calculation ABA−1. More generally, any time the middle matrix
is a product, we can opt to do the calculations for all factors individually instead.

For the second example, we still assume B is a product, but this time we consider the cases BAB−1 where
B is the outer matrices. Here we can rewrite the expression like this:

BAB−1 = B1

(
B2AB−1

2

)
B−1

1 (24)

We see that if B2AB−1
2 and B1AB−1

1 yield elements in H2×2 (for all A:s), then this must also hold true for
BAB−1 as a whole. In general, any time the outer matrices are products, we can instead choose to do the
calculations for their factors.
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At this point it is hopefully clear how to proceed. We only need to do the calculations where both the outer
and inner matrices are generators for their respective groups. This guarantees that the remaining expressions
lie in the correct groups as well - since the matrices involved have to be products of matrices which we’ve
already checked.

What generators should we use for the two groups? Ignoring phase, H4 has by construction a generating set
containing only the two elements X and Z. For H2×2 it turns out that we can find generating sets with as
few as four elements, such as the following: 
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{σ0 ⊗ σ1, σ1 ⊗ σ0, σ0 ⊗ σ3, σ3 ⊗ σ0} (25)

We’ve now reduced the number of calculations to perform down to 2× 4× 2 = 16, but there is room for one
final optimization. We have chosen the generating set for H2×2 in such a way that it contains two elements
from the intersection H2×2 ∩H4 - namely σ0 ⊗ σ3 and σ3 ⊗ σ0. The reason for this is that any expression
containing these generators must lie in the correct group, as we can see in the following way:

In the cases containing these two special H2×2 generators, we can express the generators as elements in H4,
and thus write the triple products entirely in terms of X and Z. Recall that we can reorder the factors in
such an expression freely, at the cost of incurring a phase factor. But this means we can move the outer two
matrices in the triple product together, such that they cancel out. This means the expression is equal to
purely the middle matrix, potentially with some added phase factor. Regardless, it is trivially in the same
group as it started in.

What remains in the end then is to check only the 8 matrix calculations containing the other two generators
for H2×2, which gives a very compact way of verifying the connection between the two groups. We have
not been able to spot any interesting patterns in these equations - they appear almost random - but the
interested reader can find the calculations in Table  6 in the appendix.

8 The SL(2,Z8) perspective

This section will dive deeper into one half of Equation  20 , specifically the fact that H2×2 ⊂ Cl4. In Section
 8.1 we will explicitly express the elements in Cl4 on a standard form that involves a different important
group denoted as SL(2,Z8). Since H2×2 ⊂ Cl4 we will also be able to express all elements in H2×2 on this
standard form, which will be done in Section  8.2 . This way we will also explicitly express the subgroup of
Cl4 corresponding to H2×2.

8.1 Expressing Cl4 on the standard form

First, let us define the group SL(2,Z8). SL stands for special linear, denoting that the group consists of
matrices (linear) with a determinant of 1 (special). The 2 indicates the size, i.e. 2× 2-matrices. And finally,
the Z8 tells us the nature of the elements of this matrix; they are restricted to integers modulo 8, or equiv-
alently, the integers from 0 to 7. As a quick comment, this also means the determinant is to be calculated
modulo 8.

Now, we turn to establishing the connection between Cl4 and SL(2,Z8), and in the process define the stan-
dard form of Cl4. The underlying math is fairly complex and largely outside the scope of this paper - we
will summarize the important parts, while leaving out thorough justifications for some of the statements.
For a more in-depth discussion see for instance the earlier sections of Appleby [ 13 ].

The first step is to define the so called displacement operators. These are based on elements from the
Weyl-Heisenberg groups, but we’ve added a particular phase factor in front:

Di,j := τ ijXiZj (26)

18This is analogous to four gamma matrices generating the gamma group, as we discussed in Section  3.2 .
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The factor τ is, like ω, a phase factor times identity. We will fix precisely which phase factor we mean
shortly, but for now we leave it unspecified. Note that the superscript ij is not an indexation - we mean to
take τ to the power of the product ij.

The product of two displacement operators returns another, up to a phase factor:

Di,jDk,l = τ ij+klXiZjXkZl = ωjkτ ij+klXi+kZj+l = ωjkτ−jk−ilDi+k,j+l (27)

Now we specify that τ =
√
ω, which gives a determinant-like behaviour in the exponent:

Di,jDk,l = τ jk−ilDi+k,j+l (28)

At this point, a word of caution on the nature of τ is necessary. By the original definition of H4, it does not
contain an element which squares to ω, meaning τ doesn’t lie in H4. The displacement operators thus live
in a slightly extended version of H4, where we’ve extended which phase factors are allowed. In general, this

problem will occur for all even dimensions. (In odd dimensions one can use ω
d+1
2 as a square root of ω, and

thus avoid having to extend the group.)

The next step is to collect the indices of the displacement operators into a vector p = (i, j). The reason for
this is that we are going to introduce linear transformations F in the index space. In practice, we consider a
2×2 matrix F which operates on p, such that it takes a displacement operator Dp to a different displacement
operator DFp.

Now, we state an important property without proof. Each matrix F can be associated with a unitary
operator uF such that:

DFp = uFDpu
−1
F (29)

Effectively, there exists an uF which allows us to work with transformations in the space of the Dp them-
selves, instead of the index space.

In order for all this to work, we get some constraints on the matrix F . Firstly, the indices in p are only
defined modulo 8, 

19
 and the same applies to F . Secondly, the determinant-like exponent we obtain when we

take products of displacement operators (Equation  28 ) has consequences for the determinant of F itself - it
has to be congruent with 1 modulo 8. This means that the set of matrices F is precisely the group SL(2,Z8).

A quick comment on the nature of the unitary operators uF : just as for the permuting operators we dis-
cussed in Section  7.1 , they are defined only up to an arbitrary phase factor eiθ. The group structure of the
uF :s is equivalent to the group structure of the F :s themselves, in the sense that F = F1F2 corresponds
to uF = eiϕuF1

uF2
. Note however the added phase factor eiϕ - it is in general not necessary for the phase

factors between different uF :s to match up nicely. For odd (prime power) dimensions it is possible to choose
the individual eiθ in such a way that eiϕ vanishes (see for instance pp. 9–15 in Appleby [ 13 ]) - this is called
finding a faithful representation of the uF :s. For even dimensions this problem is more difficult, and as of
yet there seems to be no answer published in the literature.

Returning to the main discussion, we note that since the displacement operators are elements in (the extended
version of) H4, the set {uF } permutes elements in H4, and forms a subgroup to Cl4. This forms the backbone
of the standard form for Cl4, however the uF :s alone do not cover the entire group. If we multiply by elements
from H4, and a general phase, we do however obtain a standard form for all elements in Cl4:

τnDijuF (30)

19Since τ8 = X4 = Z4 = 1, increasing any index by 8 will leave the displacement operators unchanged.
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One final thing we have to go over is the connection F ↔ uF . The theory is involved, but in practice we can
work with an explicit formula from Appleby [ 14 ] in order to translate F matrices into uF operators:

F =

(
α β
γ δ

)
⇒ [uF ]r,s =

eiθ√
d
τβ

−1(δr2−2rs+αs2) (31)

The matrix indices r and s count from 0 to 3. The factor β−1 is the multiplicative inverse of β (mod 8). In
modular arithmetic, some integers will not have such an inverse, but we can always factor F into matrices
which have invertible β:s, and then use the above formula on each factor. Note that this formula gives uF

for the standard representation of H4, and that we thus have to perform a basis change in order to get uF

in the shared representation. Also note that we will for convenience always choose to set eiθ = 1. 
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8.2 Expressing H2×2 on the standard form

Now, since we’ve established that all elements in Cl4 can be written on the form τnDijuF , and that
H2×2 ⊂ Cl4, it is natural to examine how the elements of H2×2 look on this form. The method for finding
this out is straightforward, if a bit cumbersome.

First we seek to find which matrix F each element A in H2×2 corresponds to. In order to do that, we let
A permute D01 and D10, i.e. we calculate AXA−1 and AZA−1. This corresponds to letting F act on the
vectors (0, 1) and (1, 0) in the index space, which gives enough information to determine F .

Then we apply Equation  31 to transform F into uF , and perform a basis change using H⊗1 to represent uF

in our shared representation. Finally, we find which Dij we have to multiply with to get back the original
element A, up to a phase factor τn. Since the matrices involved are monomial (i.e. have only one non-zero
element per column and row), one can do this step reasonably easy by hand. The result is in Table  4 below:

⊗ σ0 σ1 σ̃2 σ3

σ0 τ0D00 u( 1 0
0 1 )

τ0D10 u( 3 0
0 3 )

τ6D12 u( 3 0
0 3 )

τ0D02 u( 1 0
0 1 )

σ1 τ0D03 u( 1 0
2 1 )

τ5D13 u( 3 0
2 3 )

τ7D11 u( 3 0
2 3 )

τ0D01 u( 1 0
2 1 )

σ̃2 τ6D23 u( 1 0
2 1 )

τ3D33 u( 3 0
2 3 )

τ1D31 u( 3 0
2 3 )

τ2D21 u( 1 0
2 1 )

σ3 τ0D20 u( 1 0
0 1 )

τ0D30 u( 3 0
0 3 )

τ2D32 u( 3 0
0 3 )

τ4D22 u( 1 0
0 1 )

Table 4: Expressing elements from H2×2 as products of displacement operators and
unitary operators representing SL(2,Z8). The arbitrary phase factor eiθ within uF has
been chosen as 1.

⊗ σ0 σ1 σ̃2 σ3

σ0 X0Z0 u( 1 0
0 1 )

X1Z0 u( 3 0
0 3 )

X1Z2 u( 3 0
0 3 )

X0Z2 u( 1 0
0 1 )

σ1 X0Z3 u( 1 0
2 1 )

X1Z3 u( 3 0
2 3 )

X1Z1 u( 3 0
2 3 )

X0Z1 u( 1 0
2 1 )

σ̃2 −X2Z3 u( 1 0
2 1 )

−X3Z3 u( 3 0
2 3 )

−X3Z1 u( 3 0
2 3 )

−X2Z1 u( 1 0
2 1 )

σ3 X2Z0 u( 1 0
0 1 )

X3Z0 u( 3 0
0 3 )

X3Z2 u( 3 0
0 3 )

X2Z2 u( 1 0
0 1 )

Table 5: Expressing elements from H2×2 as products of elements in H4 and unitary
operators representing SL(2,Z8). The arbitrary phase factor eiθ within uF has been
chosen as 1.

20For the interests of this paper, a non-faithful representation is sufficient. Since we are in an even dimension (d = 4) it is
not even known if a faithful representation is possible, as discussed earlier.
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Note that the phase factors are somewhat erratic when expressed like this. If we instead of Dij write out
the explicit powers of X and Z we get the much nicer relationship in Table  5 on the previous page.

The position of the minus signs in Table  5 is dependent on our choice of σ̃2. If we work with −σ̃2 instead,
the signs would appear in the second column instead of the second row. Working with the original σ2 would
instead have given anti-symmetrically distributed i:s and −i:s.

To end this section, we reiterate an important point from Section  7 - even if the identification between
elements from H2×2 and the elements from Cl4 is dependent on our common choice of representation, we
can still generally state that H2×2 is isomorphic to the specific subgroup of Cl4 which is illustrated in Table

 4 &  5 .

9 Conclusion

When working in a very reasonable shared representation, H2×2 and H4 permute each other’s elements, or
equivalently, lie in each other’s Clifford groups. Regardless of representation, the Clifford groups contain
subgroups isomorphic to each other’s Heisenberg groups. The subgroup of Cl4 has been explicitly defined in
terms of the shared representation.

Since this was essentially shown using a brute force method, much remains to be done in terms of under-
standing this connection. Is this relationship all there is - a mathematical fluke - or does it arise from some
even deeper connection between the two Heisenberg groups? How sensitive is the statement to the choice of
the common representation? Is it specifically a fact in four dimensions, or does it hold in higher dimensions
as well?

A specific question of interest, for which there wasn’t time in this thesis, is the existence of an analogue to
the SL(2,Z8) perspective. In the same way that the elements of Cl4 can be expressed on a standard form
τnDijuF , the elements of Cl2×2 can also be expressed on a standard form. Even if there is some difference
in the details, 

21
 we should still be able to express the elements of H4 on the standard form for Cl2×2, and

thus specify the precise subgroup of Cl2×2 which is isomorphic to H4.

On the topic of graphical representation of gamma matrices: There does not appear to be a fully satisfactory
way of extending Goodmanson’s graph to higher dimensions. The partial results obtained might be of help in
some applications, but we’ve been unable to replicate the key feature of immediately spotting anti-commuting
and commuting sets. Of course, the possibility of a radically different graph representation which retains
this property remains.
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10 Appendix

X (σ1 ⊗ σ0) X
−1 = −σ1 ⊗ σ3

X (σ0 ⊗ σ1) X
−1 = σ3 ⊗ σ1

Z (σ1 ⊗ σ0) Z
−1 = σ1 ⊗ σ0

Z (σ0 ⊗ σ1) Z
−1 = iσ0 ⊗ σ̃2

(σ1 ⊗ σ0) X (σ1 ⊗ σ0)
−1 = XZ2

(σ0 ⊗ σ1) X (σ0 ⊗ σ1)
−1 = X3

(σ1 ⊗ σ0) Z (σ1 ⊗ σ0)
−1 = Z

(σ0 ⊗ σ1) Z (σ0 ⊗ σ1)
−1 = iZ3

Table 6: The matrix calculations proving Equation  20 . Performed in the common
representation obtained at the end of Section  6 .
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