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Abstract

Trapped surfaces are the precursors of singularities in gravitational col-
lapse. In numerical simulations it has been found that trapped surfaces
can make sudden �jumps� from one location to another. When a lump of
matter hits a trapped surface it is believed that the trapped surface moves
outwards. This behaviour is di�cult to describe analytically in a 3+1-
dimensional spacetime because gravitational radiation is emitted. In this
master's thesis the problem is tackled in 2+1 dimensions where things be-
come simpler. By considering a toy model of a black hole in 2+1-dimensional
anti-de Sitter space, and letting a point particle fall into the black hole, an
exact description of this peculiar behaviour of the trapped surfaces is found.



Fångade ytor i 2+1 dimensioner

Fångade ytor förebådar singulariteter i gravitationskollaps. I numeriska
simulationer har det observerats hur fångade ytor kan göra plötsliga �hopp�
från en plats till en annan. När en fångad yta trä�as av en klump materia
tros den fångade ytan �ytta sig utåt. Detta beteende är svårt att beskriva
analytiskt i en 3+1-dimensionell rumtid eftersom det hela kompliceras av
gravitationsstrålning. I detta masterarbete närmas problemet därför i 2+1
dimensioner, vilket förenklar saken. Genom att betrakta en leksaksmodell av
ett svart hål i 2+1-dimensionella anti-de Sitterrummet, och låta en punkt-
partikel falla in i detta svarta hål, hittas en exakt beskrivning av detta lustiga
beteende hos de fångade ytorna.
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Chapter 1

Introduction

The existence of a black hole in a 2+1-dimensional spacetime with constant
negative curvature was �rst discovered by Bañados et al [1]. We call this a
BTZ black hole. In this thesis we look at such a black hole in 2+1-dimensional
anti-de Sitter space. It is a toy model of a real black hole which of course
exists in a four dimensional spacetime. The point of removing one spatial
dimension is to greatly simplify matters, but with the hope of being able to
illustrate something that can be useful in the full 3+1-dimensional spacetime.
The goal of this thesis is to study the behaviour of trapped surfaces which
are the precursors of singularities in gravitational collapse.

A trapped surface is de�ned as a closed spacelike surface such that both
families of light rays orthogonal to it converge. Since there must be two null
directions orthogonal to it, the dimension of the surface is two less than the
spacetime it lies in. In a 2+1-dimensional spacetime the trapped surfaces
therefore become one dimensional, so they appear as trapped curves rather
than surfaces. The concept of trapped curves might seem unintuitive. Con-
sider for example the closed curve of Fig. 1.1 in a �at spacetime. At each
point along the curve there are two null vectors orthogonal to it, one directed
inwards and one directed outwards. As we see in the picture the inwards di-
rected family of null vectors converges, while the outwards directed family
diverges. Hence the curve is not trapped. If we instead consider a curve
which is the intersection of two backward light cones, by construction the
curve will have the property that both families of light rays orthogonal to it
converge. However the curve is not closed, so by de�nition it is not trapped.
In fact there are no trapped curves in a �at spacetime.

Trapped surfaces appear in singular spacetimes and for that reason we
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Figure 1.1: Curves in �at space. The curve to the left is closed, but one of the

families of light rays orthogonal to it diverges. The curve to the right is constructed

so that both families of light rays converge, but it is not closed. Neither of the

curves is trapped.

turn our attention to black holes. A model of a black hole requires a singular-
ity that is hidden behind an event horizon. The event horizon is a boundary
in spacetime such that no event inside this boundary can be seen from the
outside. To tell if an event could be seen from the outside at any time, one
must know what spacetime looks like at all times. Thus the event horizon is
a global property since its de�nition requires a full description of spacetime.
A black hole is usually de�ned as the interior of this boundary. A trapped
surface on the other hand is quasilocal ; it only involves the surface itself and
its in�nitesimal surroundings. The hypothesis of cosmic censorship states
that no naked singularities exist; they are always made invisible by an event
horizon. Moreover, according to this conjecture, the event horizon lies out-
side the region containing trapped surfaces. Thus a trapped surface could
not be observed experimentally.

Nonetheless the concept of trapped surfaces is of importance in di�erent
areas. One of them is the �eld of quantum gravity. A possibility is that
quantum gravity modi�es the spacetime in a way such that it will not contain
singularities. Perhaps it is possible to send signals to the outside through the
classically singular region. In that case the event horizon can not be de�ned.
However, trapped surfaces would survive in such a theory. Even though
quantum gravity might eliminate singularities, we know that there is a region
of spacetime that behaves in a classical manner. A trapped surface, since it
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is quasilocal, could therefore be de�ned in such a region. Trapped surfaces
are also of interest in numerical relativity, where they are of a more practical
use. Given initial data one can numerically compute how a spacetime evolves
with time. Such a simulation can only cover a �nite time interval, hence it is
only possible to read o� local or quasilocal entities. The location of the event
horizon can not be found in the simulation since one must have information
about the in�nite future to know where it is. This is why trapped surfaces
become important. With the help of e�ective algorithms, it is possible to tell
if a spacelike hypersurface in the simulation contains a trapped surface. The
presence of a trapped surface indicates that a black hole has been created.
There are singularity theorems [2] that say that a singularity must occur in
the future of a trapped surface for every reasonable matter model. Assuming
that cosmic censorship holds, this singularity must be hidden by an event
horizon. Even though the event horizon can not be seen in the simulation,
the trapped surface indicates that this boundary has been crossed, since,
according to the cosmic censorship hypothesis, trapped surfaces can not exist
outside the event horizon. Thus the appearance of a trapped surface is the
only practical way to determine if a black hole has been created.

Figure 1.2: When a lump of matter hits a trapped surface, the surface moves

outwards.

In these simulations the trapped surfaces have been observed to some-
times �jump� from one location to another in a rather peculiar way [3, 4].
When a lump of matter hits a trapped surface, it is believed that the trapped

5



surface moves outwards. Not only at the point where it was hit, but along the
whole surface, see Fig. 1.2. This nonlocal behaviour explains why trapped
surfaces are quasi local rather than local. It is di�cult to �nd an analytic
description of this behaviour in 3+1 dimensions because gravitational radia-
tion would be emitted, making the spacetime metric hard to express in any
formula. But in 2+1 dimensions, where there is no gravitational radiation
[5], the problem becomes simpler. By letting a point particle fall into the
2+1-dimensional toy model of a black hole, we get an exact solution in which
the trapped curves make these jumps. We then have the full picture of this
behaviour, and do not have to rely on a given family of spacelike surfaces
covering a �nite time interval as in a simulation.
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Chapter 2

Anti-de Sitter space

Anti-de Sitter space is a spacetime with constant negative curvature and
it solves Einstein's equations with a negative cosmological constant λ. A
nonzero cosmological constant generates an extra force between particles.
This force is repulsive if λ > 0 and attractive if λ < 0. Although the
cosmological constant has been observed to be positive, anti-de Sitter space
is of interest for example in string theory. As we will see anti-de Sitter space
also is of use when making a model of a black hole in 2+1 dimensions.

Before we get to its de�nition it is perhaps a good idea to �rst consider
a simple example of a curved space. A very familiar example is the sphere,
which is a two dimensional surface with constant positive curvature. A sphere
with radius one can be de�ned as the surface

X2 + Y 2 + Z2 = 1 (2.1)

embedded in a three dimensional Euclidean space coordinated by X, Y, Z.
We think of this embedding in a higher dimensional space as the natural way
to view the sphere. A three dimensional sphere, or a 3-sphere, with radius
one is similarly de�ned as the hypersurface

X2 + Y 2 + U2 + V 2 = 1 (2.2)

embedded in a four dimensional Euclidean space coordinated by X, Y, U, V .
By adding an extra dimension we can no longer draw a picture of the sphere
in the embedding space, and for that reason the three dimensional sphere
might seem a bit more di�cult to fully grasp.
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By changing a sign in the quadric we obtain a hyperboloid rather than a
sphere. For example, the two-sheeted hyperboloid

X2 + Y 2 − Z2 = −1 (2.3)

is a two dimensional surface of constant negative curvature if embedded in
2+1 dimensional Minkowski space with metric

ds2 = dX2 + dY 2 − dZ2. (2.4)

The upper sheet of this hyperboloid is called the hyperbolic plane. It is
a spacelike surface, but unlike the sphere it can not be globally embedded
in a Euclidean space. Just like we de�ned the three dimensional sphere,
higher dimensional hyperbolic spaces can easily be de�ned by adding extra
dimensions.

Figure 2.1: The sphere and the hyperbolic plane.

After having considered spheres and hyperboloids, it is perhaps time to
get to know anti-de Sitter space. In 1+1 dimensions it is de�ned as the
surface

X2 − U2 − V 2 = −1 (2.5)

embedded in a �at spacetime with metric

ds2 = dX2 − dU2 − dV 2. (2.6)

It is easy to draw a picture of this surface in the embedding space, where
it looks like the one-sheeted hyperboloid shown in Fig. 2.2. Note that the
embedding space has two timelike dimensions, U and V . Closed curves going
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around the hyperboloid will be timelike, but this is not something we need
to worry about in this thesis. De�ning 2+1 dimensional anti-de Sitter space
is now straightforward. The de�ning quadric is

X2 + Y 2 − U2 − V 2 = −1, (2.7)

where X, Y , U and V are coordinates in a �at four dimensional spacetime
with metric

ds2 = dX2 + dY 2 − dU2 − dV 2. (2.8)

The embedding coordinates X, Y, U, V are convenient when performing cal-
culations, but are not the best choice for visualization since we can not draw
a picture of the spacetime using them. For this purpose, let us introduce the
sausage coordinates as invented by Holst [6].

Figure 2.2: 1+1 dimensional anti-de Sitter space.

2.1 Sausage coordinates

To derive the sausage coordinates set U = Z cos t, V = Z sin t. When Z
ranges from zero to in�nity and t ranges from, say, −π to π all of anti-de
Sitter space is covered. The de�ning quadric becomes exactly that of Eq.
(2.3) and the metric becomes

ds2 = dX2 + dY 2 − dZ2 − Z2dt2. (2.9)
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With dt = 0 the metric becomes that of 2+1 dimensional Minkowski space
(Eq. (2.4)). So, since Z was de�ned to be positive, we see that surfaces of
constant t are hyperbolic planes.

The next step is to map these hyperbolic planes at constant t to the XY -
plane. This is done by means of stereographic projection. The idea is to draw
a straight line from the point (X, Y, Z) = (0, 0,−1) to a given point on the
hyperboloid where Z > 0. The point on the hyperboloid is then projected
to the point where this line intersects the XY -plane, see Fig. 2.3. Lines
from the projection point (0, 0,−1) intersecting the hyperboloid will all be
timelike. As we approach spatial in�nity on the hyperboloid these lines will
come closer to being lightlike. Since lightlike lines through the projection
point intersect the XY -plane along a circle with radius one we see that the
whole hyperboloid is projected onto the interior of the unit disk. This is the
so-called Poincaré disk, on which we will use polar coordinates ρ and ϕ.

Figure 2.3: Stereographic projection of the hyperboloid in the XZ-plane. The

point (X, 0, Z) on the hyperboloid is projected to the point (x, 0) on the Poincaré

disk. In polar coordinates x = ρ cosϕ. Lightlike lines (dotted) through the projec-

tion point will not intersect the hyperboloid which is therefore projected onto the

interior of the unit disk ρ < 1.

The explicit relation between the embedding coordinates X, Y, U, V and
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the sausage coordinates t, ρ, ϕ is

X =
2ρ

1− ρ2
cosϕ,

Y =
2ρ

1− ρ2
sinϕ,

U =
1 + ρ2

1− ρ2
cos t,

V =
1 + ρ2

1− ρ2
sin t.

(2.10)

The metric becomes

ds2 = −
(

1 + ρ2

1− ρ2

)2

dt2 +
4

(1− ρ2)2
(dρ2 + ρ2dϕ2). (2.11)

The map that takes the hyperbolic plane to the Poincaré disk is conformal,
meaning that it preserves angles. In fact the projection point was chosen
such that this would be the case. However distances are distorted by the
projection. The metric on the Poincaré disk, given as the last term of Eq.
(2.11), is the �at metric multiplied by a factor. The e�ect of this factor
is small for small values of ρ, but as ρ approaches one it becomes larger.
It means that points close to the boundary ρ = 1 lie farther away from the
origin than one might expect just by looking at the picture. At the boundary
the factor in front of the metric diverges. But this can easily be helped by
multiplying the metric by a conformal factor Ω. For example we could choose

Ω =
1− ρ2

1 + ρ2
, (2.12)

and de�ne

dŝ2 = Ω2ds2 = −dt2 +
4

(1 + ρ2)2
(dρ2 + ρ2dϕ2). (2.13)

Even though this new metric does not give correct distances, it has the
advantage that it is well behaved on the boundary ρ = 1. The boundary
is referred to as conformal in�nity [2], or J (pronounced �scri�). Through
the projection of space onto the Poincaré disk, space has been conformally

compacti�ed, since it is possible to bring in�nity to a �nite distance from the
origin through a conformal rescaling.
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Another example of a conformal compacti�cation is the Riemann sphere

known from complex analysis. It is obtained by mapping the complex plane
to a unit sphere using stereographic projection. If the position of the sphere
is chosen such that the complex plane lies in the equatorial plane of the
sphere, or in a plane parallel to it, and the projection point is chosen to be
the south pole, then conformal in�nity will be at the north pole; it is just
a point. A conformal compacti�cation of the hyperbolic plane on the other
hand can not yield a conformal boundary that is just a point, it must be a
circle. The reason for this is that in some sense there is �more space� close
to in�nity in the hyperbolic plane than in the �at plane.

Getting back to anti-de Sitter space, we can now draw a compact picture
of it as a pile of Poincaré disks, where each disk corresponds to a surface
of constant coordinate time t, see Fig. 2.4. This cylinder might remind
of a salami, whose slices consist of Poincaré disks, hence the name of the
coordinates.

Figure 2.4: Anti-de Sitter space in sausage coordinates. A surface of constant t
is a Poincaré disk coordinated by ρ and ϕ. The surface of the cylinder at ρ = 1
represents conformal in�nity J .

Regarding the nature of J it is worth noting that it is timelike. In fact it
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can be shown that any spacetime that can be conformally compacti�ed will
have a timelike J if the cosmological constant λ is negative, while J will be
spacelike if λ > 0 and lightlike if λ = 0 [2]. This is something that we will
get back to, since it will turn out that the nature of J is of importance when
making a model of a black hole.

2.2 Geodesics

Let us now turn to the analogue of a straight line in a curved space, or a
geodesic. In a Euclidean space most of us think it is obvious what is meant
by a straight line, even though we may not know how to de�ne it. If one
thinks about it a straight line between two points can be de�ned as the
shortest path between these two points. This also holds in a curved space.
For example, there are no straight lines on a sphere since the surface of the
sphere is curved. But we can de�ne a geodesic on the sphere to be a curve
such that it follows the shortest path between two points on the curve, as long
as these points are not too far apart. The vague condition that the distance
between the points is small enough is not needed in a more careful de�nition
of a geodesic. A geodesic is always given as the solution of a di�erential
equation, see for example Schutz [7]. Given initial values, i.e. a point and a
direction, a geodesic will then be uniquely determined.

Geodesic paths on the sphere are great circles. A great circle on a 2-sphere
centered at the origin is obtained as the intersection of the sphere and a plane
containing the origin. On a 3-sphere such an intersection, an �equator�, is
in itself a two dimensional surface; in fact it is a 2-sphere. Geodesic paths
on this surface, i.e. great circles, are also geodesic paths on the 3-sphere.
This property makes the equator a totally geodesic surface. Also in anti-de
Sitter space the intersection of a hyperplane containing the origin and the
hypersurface X2 +Y 2−U2−V 2 = −1 is a totally geodesic surface, meaning
that geodesics on such a surface are also geodesics in anti-de Sitter space.
The equation of a hyperplane containing the origin in the embedding space
is

a ·X = 0, (2.14)

where a = (a1, a2, a3, a4) is the normal vector to the hyperplane and X =
(X, Y, U, V ) is a vector in the embedding space. An expression of a totally
geodesic surface in sausage coordinates is found using Eqs. (2.10) and (2.14).
This surface, which is a plane in the embedding space, will be timelike if
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a2 > 0, lightlike if a2 = 0 and spacelike if a2 < 0. Set

a = (a sinα, a cosα, b sin β, b cos β), (2.15)

where a, b, α and β are arbitrary constants, and we �nd that the two dimen-
sional plane containing geodesics is given by

2ρ

1 + ρ2
sin(ϕ+ α) =

b

a
sin(t+ β). (2.16)

Note that the ratio between a and b determines whether this plane is timelike,
spacelike or lightlike.

To �nd an expression of geodesics in planes of constant ϕ we simply let
ϕ be a constant in Eq. (2.16). With ϕ + α = π/2 we �nd that the geodesic
is given by

2ρ

1 + ρ2
= ξ sin(t+ β), (2.17)

where ξ = b/a. It is timelike if |ξ| < 1, lightlike if |ξ| = 1 and spacelike if
|ξ| > 1. Some examples with β = 0 are illustrated on the left hand side of
Fig. 2.5.

Figure 2.5: To the left geodesics in the ρt-plane in sausage coordinates. To the

right geodesics on the Poincaré disk.
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Let us also see what geodesics on the Poincaré disk look like. Letting t
be a constant, suitably chosen to be t = π/2− β, in Eq. (2.16) we �nd

2ρ

1 + ρ2
sin(ϕ+ α) = ξ, (2.18)

where in this case the absolute value of ξ must be less than one. The geodesics
described by Eq. (2.18) are arcs of circles on the Poincaré disk, which inter-
sect the boundary of the disk at right angles, see the right hand side of Fig.
2.5.

While a pair of points on the sphere can always be connected by a
geodesic, there are pairs of points in anti-de Sitter space that can not. This is
not something we will dwell more on, but it is perhaps an interesting remark.

2.3 Stereographic coordinates

Apart from embedding coordinates and sausage coordinates there are many
other choices of coordinates. In this section we consider stereographic coordi-
nates, which will be used in section 4. While sausage coordinates are good for
visualization, stereographic coordinates have the advantage that light cones
look like light cones.

Instead of making a stereographic projection of space, as in the previous
section, let us make a stereographic projection of the whole spacetime. We
choose to make the projection to the hyperplane U = 0, on which we use
the stereographic coordinates x, y, v. Choosing the projection point to be
(X, Y, U, V ) = (0, 0,−1, 0) means that we only cover the part of anti-de
Sitter space where U > −1. Following the same procedure as in the previous
section we �nd

X =
2x

1− s2
, Y =

2y

1− s2
, U =

1 + s2

1− s2
, V =

2v

1− s2
, (2.19)

where s2 ≡ x2 + y2 − v2 < 1. The part of anti-de Sitter space that is
covered by the projection is now represented as the interior of the one-sheeted
hyperboloid s2 = 1, see Fig. 2.6. The metric becomes

ds2 =
4

(1− s2)2
(dx2 + dy2 − dv2). (2.20)

Since this metric is conformally related to the Minkowski metric, in these
coordinates light cones will look just like light cones in Minkowski space.
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Figure 2.6: To the left is anti-de Sitter space in stereographic coordinates, repre-

sented as the interior of a one-sheeted hyperboloid. To the right is the correspond-

ing Penrose diagram, where the shaded region shows the part of anti-de Sitter space

covered by the projection.

2.4 Penrose diagrams

In section 2.1 where the sausage coordinates were derived, space was mapped
onto the Poincaré disk. This led to a conformally compacti�ed picture of anti-
de Sitter space, since we saw that in�nity could be brought to a �nite distance
by multiplying the metric by a conformal factor. The idea of this section is
to do something similar, but instead of a compact three dimensional picture,
we look for a compact two dimensional picture, a so called Penrose diagram.
It is possible to draw a two dimensional diagram of a higher dimensional
spacetime if each point in the diagram represents an orbit under a symmetry
transformation. For example, an orbit under a rotation is a circle in 2+1
dimensions and a sphere in 3+1 dimensions. Both a 2+1-dimensional and a
3+1-dimensional spacetime with rotational symmetry can be represented by
a two dimensional diagram if a point in this diagram represents a circle in the
�rst case, or a sphere in the second case. The task is to �nd a conformal map
that takes the spacetime into a �nite region of 1+1-dimensional Minkowski
space; even though it might not be easy to do this, there always exists such
a map of any two dimensional spacetime. Light rays will then be depicted
as lines with constant slope, conveniently chosen to be 45◦. The result is
a compact picture of the considered spacetime that captures its essential
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properties.
While we are at it, it might be a good idea to draw a Penrose diagram of

2+1 dimensional Minkowski space before we get to anti-de Sitter space. It
might come to use later. Letting x, y, t be the coordinates of the spacetime,
we switch to polar coordinates in the xy-plane so that

x = r cos θ

y = r sin θ
(2.21)

where r and θ has the usual range 0 ≤ r < ∞, 0 ≤ θ < 2π. Light rays at
constant θ are given by t ± r = constant. Now we introduce coordinates T
and R such that

T +R = 2 arctan(t+ r),

T −R = 2 arctan(t− r).
(2.22)

Light rays in these coordinates will then be given by constant T ±R, which
are lines with 45◦ slope as desired. Also, this map brings in�nity to a �nite
coordinate distance from the origin. The range of the coordinates is −π ≤
T ≤ π, 0 ≤ R ≤ π. By letting a point (T,R) represent a whole circle at
constant t and r in Minkowski space, we have obtained the desired Penrose
diagram, see Fig. 2.7(a). Past and future in�nity are represented by the
lines R − T = π and R + T = π respectively. These lines are lightlike as
expected in a �at space.

Now we want to draw a Penrose diagram of anti-de Sitter space. After
having derived the sausage coordinates this is actually not very di�cult. In
section 2.2 we saw that a lightlike geodesic in a plane of constant ϕ was given
by Eq. (2.17) with ξ = ±1. These are not straight lines with a 45◦ slope,
but introducing a coordinate r, with range 0 ≤ r ≤ π/2, such that

2ρ

1 + ρ2
= sin r (2.23)

we �nd that lightlike geodesics are given by t± r = constant. With t and r
as coordinates we now have our Penrose diagram of anti-de Sitter space; it
is shown in Fig. 2.7(b). In�nity is represented by the timelike line r = π/2.
Since the timelike coordinate t has a periodic nature, with the chosen range
of t we need to identify the lines t = ±π. Alternatively we could draw
the Penrose diagram as an in�nitely long strip instead of performing the
identi�cation. If we do so we will no longer have to worry about closed
timelike curves.
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Figure 2.7: (a) Penrose diagram of Minkowski space. J − and J + represents

past and future in�nity. (b) Penrose diagram of anti-de Sitter space. In the �at

Minkowski space J is lightlike, while it is timelike in anti-de Sitter space.

2.5 The group SL(2,R)

SL(2,R) is the group of all two by two matrices with real matrix elements and
determinant one. We can write an arbitrary group element g ∈ SL(2,R)) as

g =

(
U + Y X + V
X − V U − Y

)
, (2.24)

if
det g = −X2 − Y 2 + U2 + V 2 = 1. (2.25)

Thus we see that the group manifold of SL(2,R) actually is anti-de Sitter
space. As a comparison it might be familiar that the three dimensional sphere
is the group manifold of SU(2). Also the group SU(2) is locally isomorphic to
the rotation group SO(3); the group manifold of SO(3) is the 3 -sphere with
antipodal points identi�ed. Similarly there is a local isomorphism between
the group SL(2,R) and the Lorentz group SO(1, 2). This statement will be
justi�ed in section 3.1.

Later, when we will want to perform transformations in anti-de Sitter
space, the practical way to do this will be to use SL(2,R)-matrices. Just like
any group, the group SL(2,R) can act on itself in three di�erent ways. These
are left action g → g1g, right action g → gg−1

1 and conjugation g → g1gg−1
1 .
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There is then a group of transformations in anti-de Sitter space,

g → gLgg−1
R , (2.26)

and it is quite large since the group elements gL and gR of SL(2,R) can be
chosen independently. This is the group SL(2,R)×SL(2,R), and it has just
been shown that it is locally isomorphic to the anti-de Sitter group SO(2, 2).
The group has six parameters, so it is of the same size as the Poincaré
group in 2+1 dimensions. The Poincaré group is the group of isometries
of Minkowski spacetime, and it can be divided into Lorentz transformations
and translations in space and time.

Two group elements g1 and g2 are said to belong to the same conju-

gacy class if there is a g ∈ SL(2,R) such that g2 = gg1g
−1. Group elements

belonging to the same conjugacy class give rise to transformations with quali-
tatively similar properties. For example, when dividing SU(2) into conjugacy
classes it turns out that elements belonging to the same conjugacy class all
describe rotations through the same angle; this is Euler's theorem. Note that
Trgg1g

−1 = Trg1g
−1g = Trg1, so elements belonging to the same conjugacy

class all have the same trace. The fact that conjugacy classes are labelled by
the trace is something that will be of use later on.
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Chapter 3

Point particles and singularities

Now that we are familiar with empty anti-de Sitter space, let us introduce
matter. To avoid complicating the toy model more than necessary, we choose
matter in the form of a point particle. A simple way to do this is by cutting

and gluing. We begin with looking at an example in �at Minkowski space to
illustrate the procedure.

3.1 Point particle in �at space

The idea is to modify our space by identifying points in it. The identi�cation
is performed using an isometry, that is a map that leaves the geodesic distance
between two arbitrary points invariant. In other words the metric is left
unchanged by the isometry. An example of an isometry in Minkowski space
is a rotation. Consider two vertical planes intersecting along the t-axis. One
of these planes can be mapped onto the other under a rotation that leaves
the t-axis �xed. A wedge of spacetime is cut out by considering points that
are mapped into each other identical.

The e�ect is that a spacelike surface at constant t now looks like a cone,
as if we would have cut out a wedge of a �at piece of paper and glued the
sides together, see Fig. 3.1. On the cone space is still �at everywhere except
at the tip. This is where the point particle is. It can be seen as the limit of
a case where a small distribution of mass curves space in a small region. We
would then have a space that looks almost like a cone, but with a smooth
tip. If this small mass distribution is limited to one point we get a conical
singularity, assuming that we are in a two dimensional space. By the way,
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in three dimensional space the same method have been used to describe
in�nitely long cosmic strings.

Figure 3.1: A wedge is cut out from �at space through identifying points. The

result is a cone on which space is locally �at everywhere except at the tip where

there is a conical singularity.

An observer in the spacetime with the point particle, not crossing the
path of the particle, would not know about the particle's existence unless
he travelled around it. Then he would �nd himself being back at the same
point after turning an angle less than 2π. To be more precise, if a vector
is parallel-transported along a closed curve around the conical singularity,
this will cause the vector to be rotated. The angle it will be rotated by is
exactly the same angle as that given by the rotation we used to perform the
identi�cation. This is called the holonomy of the particle.

The particle just constructed is one at rest, since its world line lies along
the t-axis. But we could choose to identify points using any Lorentz trans-
formation and the line of �xed points of this transformation would be the
world line of the particle. Let us take a closer look at how we do this using
group elements of SL(2,R).

Each vector (t, x, y) in Minkowski space can be represented by a symmet-
ric matrix

x =

(
t+ x y
y t− x

)
. (3.1)

The length squared of the vector is the determinant of the matrix x:

det x = t2 − x2 − y2. (3.2)
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If g ∈ SL(2,R), we can transform this vector by letting

x→ x′ = gxgT. (3.3)

The transpose of g on the right hand side makes sure that x′ is a symmetric
matrix too, representing the transformed vector. Since det g = det gT = 1
we see that

det x′ = det x. (3.4)

Hence the length of the vector is unchanged, which is the de�ning property
of a Lorentz transformation. This shows the local isomorphism between
SL(2,R) and the Lorentz group SO(1, 2). Note though that if g ∈ SL(2,R),
then −g corresponds to the same Lorentz transformation, since x→ gxgT =
(−g)x(−g)T.

Now comes the important question of �xed points of such a transforma-
tion. Let

g =

(
a b
c d

)
(3.5)

be an arbitrary SL(2,R) matrix, i.e. a, b, c and d are real and ad− bc = 1.
The �xed points of the transformation x→ gxgT are given by

(t, x, y) = σ(b− c, b+ c, d− a). (3.6)

This de�nes a straight line through the origin, where σ is the parameter and
(b − c, b + c, d − a) the tangent vector. The length squared of the tangent
vector is

(b− c)2 − (b+ c)2 − (d− a)2 = (2 + a+ d)(2− a− d)

= (2 + Trg)(2− Trg), (3.7)

and we see that the trace of g determines whether the line of �xed points
is timelike, lightlike or spacelike. To create a particle with mass we choose
a group element g with |Trg| < 2 so that the world line of the particle is
timelike. For a massless particle we choose g such that |Trg| = 2 and the
world line will be lightlike. If we were to choose a g with |Trg| > 2, the
line of �xed points would be spacelike. The spacetime is then that of Misner

space [8].
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3.2 Misner space

In 1+1 dimensions Misner space is achieved by identifying points through a
Lorentz boost in the xt-plane. The �xed point of this transformation is at
the origin. Misner space can be generalized to 2+1 dimensions by simply
adding an extra dimension. Then there is a line of �xed points along the
y-axis. By tilting and rotating this picture using Lorentz transformations we
could map the line of �xed points onto any spacelike line in Minkowski space.
But let us stick to the frame we have.

Before we move on, let us introduce some terminology by looking at a
simple example. Instead of identifying points through a Lorentz boost in
Minkowski space, consider the real line on which points are identi�ed through
a translation. The real line is said to be the covering space. When points
are identi�ed in the covering space we obtain the quotient space. Now we
can choose a fundamental region in the covering space that represents the
quotient space. In this example a fundamental region is an interval between
two points that can be taken into each other by the given translation. Such
an interval can be chosen in an in�nite number of ways, so it is clear that the
choice of fundamental region is not unique. Every point on the real line can
then be taken to a point in the chosen interval through the given translation,
so the fundamental region contains exactly one representative of every point
in the quotient space. When identifying the two end points the fundamental
region turns into a circle, and this circle represents the quotient space.

Now let us get back to Misner space. To avoid the complication of closed
timelike curves, we limit the covering space to the shaded region of Fig. 3.2.
The quotient space is obtained by identifying points through a Lorentz boost
whose �ow lines are also shown in the �gure. The fundamental region can
be taken to be the set of points between two timelike planes intersecting
along the y-axis, as long as these two planes are taken into each other by the
Lorentz boost, see Fig. 3.3. A spacelike surface in there has the topology of
a cylinder, it is �at and free from singularities. Except at t = 0 where one
dimension suddenly disappears; something strange happens here. Obviously
there is something singular about the line of �xed points. It might seem
tempting to interpret this as the world line of a particle that moves faster
than light, a so-called tachyon, in analogy with the point particle constructed
in the previous section. But we can not do so, since a closer analysis shows
that this is not a conical singularity in the usual sense [8]. Instead we have an
example of a singular spacetime if we remove the singularity. This spacetime
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Figure 3.2: The xt-plane in Minkowski space can be divided into four quadrants

bounded by lightlike lines through the origin. By taking region I (shaded) as the

covering space and identifying points through a Lorentz boost, whose �ow lines are

shown in the �gure, we obtain a singular spacetime.

is geodesically incomplete, meaning that a geodesic in there ends after only
a �nite parameter time when hitting the singularity. This is in fact the
de�nition of a singular spacetime used in the singularity theorems mentioned
in the introduction. However this is not a construction of a black hole. Since
every lightlike particle in this spacetime will hit the singularity, there is no
event horizon.

To get a full understanding of Misner space it is useful to draw a Penrose
diagram. Let

t = τ coshσ

y = τ sinhσ
(3.8)

where −∞ < τ < 0, and the range of σ is determined by the choice of
identi�cation surfaces. Lines of constant τ and x are then �ow lines of the
identifying transformation, and are closed to a smooth circle by the identi�-
cation. Then introducing coordinates T and X such that

T +X = 2 arctan(τ + x)

T −X = 2 arctan(τ − x)
(3.9)

does the trick. We �nd that −π < X < π, −π < T < 0 and |X| − T < π.
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Figure 3.3: To the left is the chosen fundamental region of Misner space. To the

right is the corresponding Penrose diagram.

With each point (T,X) corresponding to a whole circle, Misner space is now
pictured as a triangle with the singularity at T = 0 and in�nity represented
by the lightlike lines |X| − T = π, see Fig. 3.3. With this visualization of
Misner space it is obvious that every particle coming in from J will hit the
singularity. In the Penrose diagram of Misner space we see that there are
two separate asymptotic regions, two past in�nities, while there was only one
such in the Penrose diagram of Minkowski space that we drew in section 2.4.

3.3 Point particle in anti-de Sitter space

To create a point particle in anti-de Sitter space we use the same trick as
in section 3.1. The procedure is thoroughly explained by Matschull [9]. As
we saw in section 2.5 a point in anti-de Sitter space is itself represented
by a group element of SL(2,R). Transformations in anti-de Sitter space can
therefore be performed by letting the group act on itself. As we already know
this can be done in more than one way, but for our purposes it is enough to
consider transformations that leave the unit element �xed. In other words
we choose to let the group act on itself by means of conjugation.

To create a lightlike particle we choose a group element g1, with Trg1 = 2.
This can for example be of the form

g1 =

(
1 2a
0 1

)
, (3.10)
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where a is an arbitrary real constant. Then we look for �xed points of the
transformation g → g1gg−1

1 , with

g =

(
U + Y X + V
X − V U − Y

)
. (3.11)

The solution is Y = 0, X = V . In sausage coordinates this is the curve

2ρ

1 + ρ2
= | sin t| ⇐⇒ ρ = | tan(t/2)|, (3.12)

with sinϕ = 0. Comparing this to Eq. (2.17) we see that this is a lightlike
geodesic as expected. The particle will come in from in�nity at time t =
−π/2. Then it traverses the Poincaré disk in the ρt-plane and leaves the disk
at time t = π/2, see Fig. 3.4.

Figure 3.4: A point particle in anti-de Sitter space. The picture shows Poincaré

disks at di�erent coordinate times t. The shaded region of the disk is cut away

by the identi�cation, and the particle is at the �xed point marked by a dot. The

particle enters the disk at t = −π/2 and leaves at t = π/2.

The next step is to identify points using the transformation governed by
g1. We choose a fundamental region by �nding two suitable identi�cation
surfaces. Since the world line of the particle is invariant under re�ections
in the ϕ-coordinate, let us see if we can �nd surfaces that are symmetric
with respect to the plane Y = 0. Let the two surfaces be represented by the
matrices w±, where w− is transformed to w+. Now we need to solve the
equation w+ = g1w−g

−1
1 . With the given Ansatz we �nd that the surface

Y = a(V −X) is mapped to the surface Y = a(X−V ). In sausage coordinates
these are given by

2ρ

1 + ρ2
sin(ε∓ ϕ) = sin ε sin t, (3.13)
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where a new parameter ε has been introduced, such that tan ε = a. Com-
paring to Eq. (2.18) we see that the identi�cation surfaces intersect surfaces
of constant t along geodesics on the Poincaré disk.

Just as we did in Minkowski space we now cut out the wedge bounded
by these to surfaces behind the world line of the particle. The result is a
spacetime which is locally anti-de Sitter everywhere except along the world
line of the particle. Again, the only way to detect the presence of the particle
without crossing its world line is by travelling around it. Then one would
�nd that the holonomy of the particle is g1.

Let us now leave this particle be for a while and instead concentrate on
how to construct a black hole spacetime in anti-de Sitter space. At a later
stage we will come back to the point particle when we send it into this black
hole.
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Chapter 4

The BTZ black hole

To construct a black hole we proceed in the same manner as before when
creating a point particle. We choose a group element g2 of SL(2,R), but
this time such that Trg2 > 2. For example we could choose

g2 =

(
coshµ sinhµ
sinhµ coshµ

)
, (4.1)

with µ being an arbitrary constant, and consider the transformation g →
g2gg−1

2 . This transformation takes the surface Y = V tanhµ to the surface
Y = −V tanhµ, and by identifying these two surfaces we can take the region
of anti-de Sitter space between them to represent the quotient space. In
sausage coordinates the identi�cation surfaces are given by the equations

2ρ

1 + ρ2
sinϕ = ± sin t tanhµ, (4.2)

and again we see that they intersect the disks of constant t along geodesics,
see Fig. 4.1. When the identi�cation is performed the region of spacetime
outside the identi�cation surfaces is cut away. At t = 0 nothing is left except
the singular line Y = V = 0 where the surfaces meet. This is where our
spacetime ends.

At a �rst glance the result seems quite similar to Misner space. One
dramatic di�erence though is that in Misner space J is lightlike, but here J
is timelike. The di�erence is clearly illustrated when comparing the Penrose
diagram of Misner space (Fig. 3.3) with the Penrose diagram of the BTZ
black hole (Fig. 4.2). While every particle in Misner space eventually ends
up at the singularity, it is possible to escape the singularity in the BTZ
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Figure 4.1: A sequence of Poincaré disks in the BTZ spacetime. The shaded

regions are cut away by the identi�cation and at t = 0 nothing is left but the

singular line. The dotted lines show the location of the event horizon. No event

between these two lines can be seen from J .

spacetime. In other words, there exists an event horizon, and that is what
makes this a model of a black hole.

4.1 The event horizon

The boundary of a region where every timelike or lightlike geodesic ends at
the singularity is what we call the event horizon. Or, the other way around,
the event horizon is the boundary of what can be seen from J . The last

point on J is the point where the singularity meets J . Everything that can
be seen from there lies on a backward light cone of this point. So the event
horizon can be de�ned as a light cone with its vertex at the last point on J ,
or a null plane through this point, since a null plane can be thought of as
a light cone with its vertex at in�nity. In the Penrose diagram of the BTZ
black hole (Fig. 4.2) the event horizon is drawn as the two lightlike lines
ending at the last points on J .

Using Eq. (2.14) we �nd that a null plane satis�es

X cosϕ0 + Y sinϕ0 − U cos t0 − V sin t0 = 0, (4.3)

or if we switch to sausage coordinates

2ρ

1 + ρ2
cos(ϕ− ϕ0) = cos(t− t0), (4.4)

where ϕ0 and t0 are the coordinates of the last point on J . In our example the
singularity meets J at the two points (t0, ϕ0) = (0, 0) and (t0, ϕ0) = (0, π).
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Figure 4.2: The BTZ black hole in sausage coordinates and the corresponding

Penrose diagram. In the Penrose diagram we see that, just like in the Schwarzschild

solution, there are two asymptotic regions.

The horizon then consists of the quotient of the two surfaces X = ±U by
the isometry used to identify points. It is shown as the dotted lines of Fig.
4.1. No event between these two surfaces can be seen from J .

But space itself does not look any di�erent at the event horizon. A
numerical relativist constructing this spacetime step by step in his computer
has no chance to locate the event horizon in the simulation, unless he has
knowledge about the future singularity and where it meets J . Were he to
�nd a trapped curve though, he would have a hint of what lies ahead.

4.2 Trapped curves

Consider a closed spacelike curve. Since it is spacelike there are two future
directed null vectors orthogonal to its tangent vector at each point along
the curve. If both these families of light rays converge, the curve is said
to be trapped. If one family of light rays converges and the other has zero
convergence, the curve is said to be marginally trapped. There are many
di�erent versions of trapped curves, and the terminology might be a bit
confusing. Table 4.1 might make things clearer.

When dealing with trapped curves in the BTZ spacetime it is most con-
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θ+ θ−
Trapped < 0 < 0

Marginally trapped 0 < 0
Outer trapped < 0 anything

Marginally outer trapped 0 anything

Table 4.1: Di�erent versions of trapped curves. θ± are the expansions of the two

families of light rays emanating from the curve.

venient to use the stereographic coordinates x, y, v, which were derived in
section 2.3. The fact that these only cover the region U > −1 is not a
problem, since we are mainly interested in the region −π/2 ≤ t ≤ 0 which
is covered by the stereographic projection. In these coordinates the iden-
ti�cation surfaces become the planes y = ±v tanhµ. They intersect along
the x-axis where the singularity is, see Fig. 4.3. Remembering that we are
con�ned to the interior of the hyperboloid x2 +y2−v2 = 1, we conclude that
the points (x, y, v) = (±1, 0, 0) are the last points on J . The event horizon
then consists of the two light cones with vertices at these points.

Figure 4.3: To the left is the BTZ spacetime in stereographic coordinates. Anti-

de Sitter space becomes the interior of a one-sheeted hyperboloid in which the

identi�cation surfaces are drawn. To the right is the picture of a trapped curve

as the intersection of two light cones with their vertices at the singular line. The

curve becomes closed and smooth by the identi�cation.

Finding examples of trapped curves is now easy. Consider the intersection
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of two light cones with vertices at the singularity, as in Fig. 4.3. Light rays
emanating from such curves obviously converge, and since they coincide with
�ow lines of the identifying transformation they are closed to smooth curves
by the identi�cation. Such curves are therefore trapped. These are not the
only trapped curves in this spacetime, since we can take one of them and by
wiggling it a bit obtain a new trapped curve. The light rays do not, as in
this example, have to converge to a point.

The intersection of a light cone with its vertex at the singularity and the
event horizon forms a marginally trapped curve. Remember that the event
horizon in stereographic coordinates looks like a light cone with its vertex
at the last point on J , but we refer to it as a null plane, since lightlike
geodesics on it have zero convergence. Unlike a trapped curve, a marginally
trapped curve can not just as easily be wiggled in order to obtain a new
marginally trapped curve; one must see to that it stays on the event horizon.
The explicit expression of the marginally trapped curves we found is given
by {

x = ±(1− k)
v2 − y2 = k2 , 0 < k ≤ 1. (4.5)

Since these lie on the event horizon, the event horizon is in this case referred to
as a marginally trapped tube. A marginally trapped tube is a surface foliated
by marginally trapped curves. We see that in this case the foliation is not
unique, since we can wiggle the marginally trapped curves we found in order
to get a di�erent foliation. The interior of the event horizon is �lled with
trapped curves, while there are none outside of it. The importance of the
marginally trapped tube is that it separates the region containing trapped
curves from the region free of them. For that reason, from now on we will
mainly focus on the marginally trapped curves.

A spacelike surface in this spacetime will typically not contain one of the
marginally trapped curves we found. This is not very practical in a computer
simulation in which a family of spacelike surfaces describes the evolution of
the spacetime. Unless these surfaces are chosen in a rather special way,
no marginally trapped curves will be found. However, as long as one of
these surfaces is smooth, it will always contain a closed curve on the event
horizon. Light rays on the event horizon emanating from this curve have zero
convergence. Such a curve, with no restriction on what happens with the light
rays in the other direction, is said to be marginally outer trapped. With the
same logic, a curve such that only one family of light rays converges, is said
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to be outer trapped, with no restriction on the other family of light rays.
Since a marginally outer trapped curve lies on the event horizon, it separates
the region containing trapped curves from the region not containing trapped
curves on the surface.

There is a theorem that says that a region of a spacelike surface bounded
by an outer trapped curve in one direction and by an outer untrapped curve
in the other direction must contain a marginally outer trapped curve [10]. In
our spacetime this is almost obvious from the picture we have, as discussed in
the previous paragraph. Note that the theorem would not be true if the word
outer was omitted. For this reason, much of the literature [4, 10] discusses
outer trapped surfaces.

To have the full picture though, we need to know if there are any other
marginally outer trapped curves in our spacetime, apart from those we have
already found on the event horizon. Raychaudhuri's equation [11] for a con-
gruence of lightlike geodesics in 2+1 dimensions becomes

θ̇ = −θ2 −Rabk
akb, (4.6)

where θ is the expansion of the congruence of geodesics, Rab is the Ricci
tensor and ka is the tangent vector of a given geodesic. Since we have that
Rab = λgab and k

2 = 0 for a lightlike geodesic Eq. (4.6) becomes

θ̇ = −θ2. (4.7)

This shows that a congruence of lightlike geodesics that have zero expansion
at one point, must continue to have zero expansion. Hence we conclude that
marginally (outer) trapped curves must lie on a null plane. It should perhaps
be remarked that this does not hold in 3+1 dimensions, since Raychaudhuri's
equation then will contain extra terms. But it holds in our spacetime, so let
us consider an arbitrary null plane in it. It is a light cone with its vertex at
a point (x0, y0, v0) on J and is described by

(x− x0)
2 + (y − y0)

2 = (v − v0)
2, x2

0 + y2
0 − v2

0 = 1. (4.8)

Suppose that a point (x, y, v) in this null plane also lies in one of the identi-
�cation surfaces, i.e.

y = v tanhµ. (4.9)

This point is identi�ed with the point (x′, y′, v′) = (x,−y, v), which does
not lie in the same null plane unless y0 = 0. This shows that a null plane
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with y0 6= 0 does not contain any closed curves. In the case with y0 = 0
the question now is if there is a curve in the null plane connecting the two
points (x, y, v) and (x′, y′, v′) such that it is closed to a smooth curve by the
identi�cation. If so, the tangent vector of this curve at the point (x, y, v) is
still tangent to the null plane at the point (x′, y′, v′) after it is transformed
by the identi�cation. A tangent vector t in the null plane given by Eq. (4.8)
(with y0 = 0) at the point (x, y, v) is of the form

t =

txty
tv

 , (x− x0)t
x + yty − (v − v0)t

v = 0. (4.10)

This is transformed into the vector

t′ =

t′xt′y
t′v

 =

 tx

ty cosh 2µ− tv sinh 2µ
tv cosh 2µ− ty sinh 2µ

 . (4.11)

The vector t′ is tangent to the null plane at the point (x′, y′, v′) if

(x′ − x0)t
′x + y′t′y − (v′ − v0)t

′v = 0. (4.12)

Using Eqs. (4.9) and (4.10) this simpli�es to

v0(t
′v − tv) = 0. (4.13)

This equation is satis�ed either if v0 = 0 (the considered null plane is then
the event horizon) or if t′v = tv. In the latter case the tangent vectors, which
are actually one and the same vector, lie in the identi�cation planes. A curve
with this tangent vector must stay in the same plane, heading towards J .
This is not the closed curve we were looking for. We have thus shown that all
marginally (outer) trapped curves in this spacetime lie on the event horizon.
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Chapter 5

How trapped curves jump

We are now ready to let a particle fall into the black hole of section 4. This
is easily done by taking the point particle of section 3.3 and placing it in the
BTZ spacetime. The point of this construction is that we will see how the
trapped region suddenly jumps outwards.

The holonomy of the particle is g1, given by Eq. (3.10), and the holonomy
of the singularity of the black hole is g2, given by Eq. (4.1). When combining
these two we �nd a new holonomy g1g2. If we choose the constants a and
µ such that |Trg1g2| > 2, the transformation g → (g1g2)g(g1g2)

−1 has a
spacelike line of �xed points. A new singularity has appeared. We can also
see how this happens using a graphical approach (see Fig. 5.1). Considering
the evolution on the Poincaré disk we see how the identi�cation surfaces of
the particle eventually begin to intersect the identi�cation surfaces of the
original black hole as the particle approaches the origin. These points of
intersection are �xed points under the combined transformation g1g2, and
they make up the new singularity. Using Eqs. (3.13) and (4.2), and switching
to stereographic coordinates, we �nd that the last point on J is

(x0, y0, v0) = A (a+ tanhµ,± a tanhµ, a), (5.1)

with

A = −
(

cothµ

2a+ (1 + a2) tanhµ

)1/2

. (5.2)

This seems to be two distinct points, but we need to keep in mind that
they are identi�ed with each other, and therefore Eq. (5.1) describes just
one single point. The singularity forms a line from this point to the origin,

35



and replaces the role of what used to be a singularity along the negative
x-axis. But in this construction the positive x-axis is still a singular line.
As before there are two last points on J ; one given by Eq. (5.1) and one
at (x, y, v) = (1, 0, 0). The new singularity comes with an event horizon
consisting of the two light cones with vertices at these points. The event
horizon will have a kink, it will not be smooth, before the particle crosses
it. We need not worry about this, but note that it therefore contains no
marginally trapped curves until the particle has passed. This kink, seen in
Fig. 5.1(a), nicely illustrates the teleological nature of the event horizon. It
has acquired a kink not because of something that has happened in the past,
but because of something that will happen in the future.

Figure 5.1: A sequence of Poincaré disks shows what happens when the particle

falls into the black hole. (a) The particle comes in from in�nity at t = −π/2.
At this point the event horizon has a kink and does not contain any marginally

trapped curves. (b) At a later time the particle meets the event horizon. (c) After

the particle has passed the event horizon, the horizon is turned into a smooth

surface by the identi�cation and now contains marginally trapped curves. (d)

When the identi�cation surfaces of the particle and the original black hole begin

to intersect a new set of �xed points appear.

The path of the particle lies on a light cone with its vertex at the origin.
This light cone actually splits into two by the identi�cation, but consider
the one where the x-coordinate is negative, since this is the surface on which
the particle travels. In the quotient space it really is a smooth cone, and
it divides the spacetime into two parts with di�erent properties. Inside the
light cone everything looks just like the BTZ spacetime. If restricted to
this region there is no way to distinguish it from the BTZ black hole, since
the holonomy g2 is the same. But what used to be the event horizon at
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(x + 1)2 + y2 = v2 is no longer the event horizon. We know this since we
have a complete picture of the spacetime. But the trapped curves remain.
Smooth curves on the old event horizon are still marginally outer trapped.
Light rays emanating from these curves still behave as if they were heading
towards the point (x, y, v) = (−1, 0, 0). They will not reach this point, since
we know that they will hit the singularity before they get there, but the only
thing that matters is that they have zero convergence. The old event horizon
is now referred to as an isolated horizon [12]. After the particle has crossed
it, it will no longer be smooth and therefore contain no marginally (outer)
trapped curves.

Outside the light cone on which the particle travels things look quite dif-
ferent. The holonomy is g1g2. After the particle has passed the event horizon,
which then will become smooth, marginally trapped curves will suddenly ap-
pear in this region. As before they consist of intersections of light cones with
vertices at the singular line and the event horizon.

Figure 5.2: Conformal diagram of the black hole spacetime obtained when a

particle falls into the BTZ black hole. The dotted lines show what used to be the

singularity and the event horizon when the particle was not present. The light

cone on which the particle travels is represented by the lightlike line ending at the

origin. Inside of this light cone the marginally trapped curves lie on the isolated

horizon and outside of the light cone they lie on the event horizon. This shows how

the trapped region �jumps� outwards.

It is clear that it can not be determined if a curve is trapped by looking
at it locally. For example, a curve on the event horizon which locally seems
trapped may not be genuinely trapped. It must be closed, and whether it
is closed or not is determined in a di�erent part of space. What used to be
the event horizon in the BTZ spacetime contains marginally trapped curves
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before it is hit by the particle. After it is hit it no longer contains closed
smooth curves, hence no marginally trapped curves. Instead other closed
curves that are marginally trapped appear in a di�erent region of space;
the trapped curves �jump�. The whole picture is quite nicely illustrated in
Fig. 5.2. It shows a conformal diagram [2] of this spacetime in which we
clearly see how the trapped region jumps outwards due to the particle. The
marginally trapped tube now consists of two parts. Inside the light cone on
which the particle travels it consists of the isolated horizon, and outside the
light cone it consists of the event horizon. The transition of the marginally
trapped curves from the isolated horizon to the event horizon shows how
they �jump�. This is in fact a reasonable illustration of the problem with a
particle hitting a trapped surface, mentioned in the introduction (Fig. 1.2).
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Chapter 6

Open ends

During the work of this thesis, new ideas and problems have naturally arisen.
There are at least two questions left unanswered, and a natural way to end
this thesis is by listing these.

• In the previous chapter we saw that the marginally trapped tube split
into two parts. One part being the isolated horizon and the other part
forming part of the event horizon. These could not be connected in
the model we had, since there was a singularity in the form of a point
particle in between. In a more complicated model, one could consider a
small mass distribution instead of a point particle [5]. The hope of doing
this would be to �nd a spacelike component of the marginally trapped
tube, a so-called dynamical horizon [12], connecting the isolated horizon
with the event horizon.

• An interesting complication encountered during the work of this thesis
is the three-body problem. How a black hole can be created by colliding
two particles was shown by Matschull [9]. It was later shown by Holst
and Matschull [13] how a spinning black hole can be created by let-
ting two particles pass each other without colliding. It turns out that
when doing something similar with three particles involved, the spin
of the black hole behaves in a seemingly counterintuitive way. This is
something that could be worth investigating further.
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