
Geometry and foundations of
quantum mechanics

Kate Blanchfield



Thesis for the degree of Doctor of Philosophy in Theoretical Physics
Department of Physics
Stockholm University
Sweden

c© 2014 Kate Blanchfield
c© 2011 Elsevier B.V. (papers)
c© 2012 American Physical Society (papers)
c© 2011 American Institute of Physics (papers)
c© 2013 Springer Science+Business Media New York (papers)
c© 2014 IOP Publishing Ltd (papers)
ISBN 978-91-7447-965-2
Printed in Sweden by US-AB, Stockholm 2014
Distributor: Department of Physics, Stockholm University



iii

Abstract
This thesis explores three notions in the foundations of quantum mechan-

ics: mutually unbiased bases (MUBs), symmetric informationally-complete
positive operator measures (SICs) and contextuality. MUBs and SICs are
sets of vectors corresponding to special measurements in quantum mechan-
ics, but there is no proof of their existence in all dimensions. We look at
the MUB constructions by Ivanović and Alltop in prime dimensions and
highlight the important role played by the Weyl-Heisenberg and Clifford
groups. We investigate how these MUBs are related, first invoking the third
level of the Clifford hierarchy and then examining their geometrical fea-
tures in probability simplices and Grassmannian spaces. There is a special
connection between SICs and elliptic curves in dimension three, known as
the Hesse configuration, which we discuss before looking for higher dimen-
sional generalisations. Contextuality was introduced in relation to hidden
variable models, where sets of vectors show the impossibility of assigning
non-contextual outcomes to their corresponding measurements in advance.
We remark on geometrical properties of these sets, which sometimes include
MUBs and SICs, before constructing inequalities that can experimentally
rule out non-contextual hidden variable models. Along the way, we look at
affine planes, group theory and quantum computing.
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“It’s very hard to talk quantum using a language originally designed
to tell other monkeys where the ripe fruit is.”

Terry Pratchett, Night Watch
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Sammanfattning på svenska
Under 60-talet reste den brittiska antropologen Mary Douglas runt världen
och studerade hur olika kulturer förhöll sig till ren- och orenhet. Hon lade
särskilt märke till hur folk förhöll sig till sådant som inte passade in i deras
fördefinierade kategorier. Som exempel, beskriver hon Lelestammen, som
delar upp djur i kategorierna däggdjur och fiskar, varefter de fattar viktiga
beslut som rör vilka djur man kan äta. De stötte på myrkotten (en fjällig
myrätare) som inte passar i någon av kategorierna. Douglas noterade att
Lelestammen, när de stod inför den besvärliga myrkotten, prisade den och
förklarade den det mäktigaste djuret av alla.

Kvantfysiker följer Lelestammens exempel. När vi står inför de mystiska
kvanttillstånden som inte passar i existerande kategorier så prisar vi dem.
Den här avhandlingen undersöker olika uppsättningar av kvanttillstånd.

En anledning till att undersöka kvanttillstånd är att de kan användas för
att dölja information på ett säkert sätt. Det tekniska namnet är ‘kvantnyck-
eldistribution’. Det är ett sätt för två personer, kalla dem Alice och Bob,
att skicka meddelanden till varandra som inte kan avlyssnas utan att Alice
och Bob får kännedom om det. I klassisk fysik skulle Alice och Bob inte
kunna vara säkra på att ingen lyssnade på deras samtal. Tillstånden som
används kallas ‘MUBs’.

En annan anledning till att dessa tillstånd är användbara är att de blott-
lägger information som gömts i ett kvantmeddelande. Om någon mottar
ett meddelande utan att ha en aning om vad det betyder, så finns många
procedurer för att försöka avkoda informationen. Den bästa metoden är
snabb och har störst sannolikhet att korrekt avkoda meddelandet. Två
uppsättningar av tillstånd kan användas för detta: ‘MUBs’ och ‘SICs’.

En sista anledning till att dessa uppsättningar tillstånd är användbara
är för att de tillåter oss att undersöka idén om en verklighet. Det är up-
penbart att ett klassiskt tillstånd motsvarar något som existerar i en verklig
värld—månen finns även om vi inte betraktar den för tillfället—men inom
kvantmekaniken är detta en subtil fråga. Har kvanttillståndet egenskaper
innan vi betraktar det eller skapar vi på något sätt dess egenskaper när vi
observerar det?





Chapter 1

Introduction

1.1 Overview

This thesis deals with the foundations of quantum mechanics. Foundational
aspects of quantum mechanics are often concerned with the rules of the
quantum world that make it so different from our familiar classical world.
One answer is that the state spaces are so different. States in classical
probability theory are represented by a simplex. In quantum mechanics, the
state space must take into account superpositions and so has a much richer
structure. While the classical probability simplex is understood, quantum
state space is largely uncharted territory.

One way to try to understand it is to look for sets of states that are
contained within the space. Mutually unbiased bases (MUBs) do this by
spanning sets of totally orthogonal simplices in the state space. This struc-
ture makes MUBs very important because it is the underlying mathematical
formalism of Bohr’s principle of complementarity [1]. Preparing a quantum
state in one basis and then measuring in a mutually unbiased basis tells you
nothing about the state; all outcomes are equally likely. This is analogous to
Heisenberg’s uncertainty principle in infinite dimensions and makes MUBs
very useful for a wide range of practical tasks. Symmetric informationally-
complete positive operator valued measures (SICs) provide another avenue
to investigate quantum states by forming regular polytopes in the state
space. Although they are also optimal for some practical tasks, their real
allure comes from the fact that they exist at all. The equations that gov-
ern them are over-determined and so we wouldn’t expect solutions. As the
dimension of a quantum system grows, the SICs become even less likely to
exist.
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Another major difference between classical and quantum physics is what
is commonly called realism. We are confident our classical state describes a
particular property of the world before we measure it—the moon exists in
the sky even when we’re not looking—but this is far more subtle in quantum
physics. The traditional (Copenhagen) viewpoint is that it is meaningless to
ask about properties of the state prior to measuring it: “unperformed mea-
surements have no results” [2]. Realism can be forced onto quantum mechan-
ics by introducing hidden variables. A theorem by Kochen and Specker [3],
itself a corollary of a theorem by Gleason [4], states that such hidden vari-
ables must be contextual, i.e. they must depend on the precise measurements
we make. This theorem can be translated into inequalities that put limits
on the predictions of non-contextual hidden variable theories. An experi-
mental test that violates these limits would agree with quantum mechanical
predictions and rule out the possibility of describing the world with such
hidden variable theories. The inequalities also put limits on the quantum
mechanical outcomes. This gives us another way to explore the foundations
of quantum mechanics, by asking why the results of such experiments should
produce the values they do. Like the second law of thermodynamics or the
constant speed of light, is there a physical principle that limits quantum
mechanics?

We shall find that two finite groups weave themselves through the thesis.
They are the Weyl-Heisenberg (WH) group and the Clifford group. They are
interesting in themselves, but here we shall follow the advice of Guillermo
Moreno (allegedly): “groups, as men, shall be known by their actions.” The
actions of the WH group and Clifford group construct MUBs and SICs.
MUBs can be thought of as sets of particularly short orbits under the WH
group, containing N elements in dimension N . In contrast, SICs are orbits
under the WH group of length N2. Orbits under the Clifford group contain
multiple sets of MUBs or SICs and are a useful way of classifying them. The
WH group appears in the area of contextuality through sets of vectors that
prove the Kochen-Specker theorem [5,6].

Although we have presented the ideas in this thesis from a foundational
perspective, they have definite physical implications. A major field is quan-
tum information, which is the overlap of quantum mechanics and informa-
tion theory, and examples of applications include dense coding [7], telepor-
tation [8] and cryptography [9]. In quantum cryptography, quantum key
distribution allows two users to share an encrypted key, from which they
can encode and decode secret messages. The huge advantage of quantum
cryptography over classical cryptography is its security. An eavesdropper
listening in to the message cannot do so undetected in the quantum scheme;
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she will leave some trace of her presence that can then be detected by the
two users. There are various schemes for quantum cryptography and the
most popular scheme uses mutually unbiased bases [10].

Another practical avenue is quantum computation [11]. This requires
many quantum states working together coherently, which poses a very great
experimental challenge. Consequently, a working quantum computer capa-
ble of outperforming a classical computer is still a long way off. The appeal
of quantum computers is the huge speed up they offer for certain tasks. The
most famous example is Shor’s algorithm [12]: a quantum computer will
factorise an integer in polynomial time, while a classical computer would
take exponential time. For example, factorising a 130-digit number would
take a network of hundreds of classical computers a matter of months. Fac-
torising a 400-digit number would take the network around 10 billion years.
A quantum computer could factorise the 130-digit number in seconds and
the 400-digit number in minutes. This is relevant because most classical
encryption schemes used today (for example, online banking) rely on the
difficulty of factoring large integers to guarantee security. Different pro-
posals for quantum computers exist, but arguably the most promising one
is magic state distillation, where a set of gates and states is enhanced by
adding so-called magic states [13–16]. This is also intimately connected with
mutually unbiased bases, specifically the Alltop MUBs. It is important to
know which quantum states can be distilled to magic states in this scheme
and it has been shown that contextuality plays a role here [141].

A final implementation is in quantum state tomography [17]. This is
the method of reconstructing an unknown, general quantum state given
many copies and the ability to perform measurements and record the re-
sults. Quantum state determination formed much of the initial motivation
for studying MUBs since they provide an optimal method to reconstruct
an unknown quantum state [18]. Another optimal strategy uses the SICs,
although this is considerably harder to carry out in practice [19].

It is clear that understanding the foundations of quantum mechanics lets
us develop practical tools that can offer big advantages over classical pro-
cedures. But developing practical tools is not the main motivation for this
thesis. Quantum mechanics has encountered many critics since its introduc-
tion around 100 years ago and, although it has become hugely successful at
predicting experimental results, many of its foundational curiosities linger
today. In this thesis, we investigate the foundations of quantum mechanics
and try to forge connections between different areas in the hopes of providing
new ways in which to grapple with an old problem.
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1.2 Outline
This thesis is split into two parts. The first part is a background and in-
troduction to my area of research and the second part is a collection of my
papers. Not everything in the papers is recapped in the thesis.

The first part of the thesis is organised as follows. Chapter 2 is an
overview of quantum mechanics. It introduces quantum states and the vec-
tor spaces useful for housing them. We give the usual example of the Bloch
ball in dimension 2 and also describe some finite geometries of particular
interest.

Chapter 3 contains group theory. It defines the Weyl-Heisenberg group
and the Clifford group, used through this thesis. We concentrate on the
groups as they are defined in prime dimensions and describe a useful iso-
morphism between the Clifford group and the semi-direct product of the WH
and symplectic groups. We also highlight certain elements in the Clifford
group that play a large role in later chapters.

Chapter 4 is about mutually unbiased bases. Our focus is on the explicit
form of sets of vectors forming complete sets of mutually unbiased bases
(MUBs). First we look two construction methods, resulting in what we
denote the Ivanović and Alltop MUBs, and then we explore their geometrical
features. This will take us to a finite affine plane, Grassmannian space and
probability simplices.

Chapter 5 covers symmetric informationally-complete positive operator
measures (SICs), a topic with similarities to mutually unbiased bases. They
are particularly nice measurements for certain tasks, although harder to
implement than the MUBs, and we again focus on their mathematical con-
struction and geometry. We investigate a connection between SICs and the
Hesse configuration.

Chapter 6 discusses contextuality, which follows from the Kochen-Specker
theorem. It is a statement about hidden variable theories and the outcomes
of simultaneous measurements. We look at sets of measurements that prove
the theorem and how we can form different types of inequalities that can
be experimentally tested. We also mention the recent progress made in this
area with graph theory and a proposal to explain the limits of quantum
correlations.

Chapter 7 holds our conclusions. We recap the new ideas presented in
this thesis and comment on the avenues for future work.
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States and Spaces

2.1 Pure states

A primary concept in quantum mechanics is the quantum state. It contains
enough information to describe the object we are studying by specifying
which property the object has when there is a choice of more than one
answer. For example, the state of an electron may specify whether the
electron has spin in the up or down direction, and the state of a photon may
specify whether it is polarised in the horizontal or vertical direction. We can
think of a lepidopterist who might describe a butterfly by specifying its size
or the pattern of its wings, because these properties differ among butterflies,
but not that it flies or fits in the palm of your hand, since all butterflies do.1
Mathematically, we refer to the quantum state via its wavefunction, the
state vector |ψ〉,

|ψ〉 ∼

α1
α2
α3

 . (2.1)

The ∼ symbol is because the vector components should be interpreted as
coefficients of some basis vectors,

|ψ〉 = α1 |e1〉+ α2 |e2〉+ α3 |e3〉 , (2.2)

for a particular basis |ei〉. This is like giving the position of Stockholm as
(59.32, 18.07). The numbers really refer to the coordinate system of latitude

1This doesn’t capture all the subtleties of the quantum state. We discuss these things
in Chapter 6, where we ask about the correspondence between “reality” and the quantum
state.
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and longitude on the surface of the Earth and are meaningless unless we
specify this. In this thesis, we shall work with finite quantum states only,
so the dimension of the state N will always be a finite number. This is
not a huge restriction. Many real-world examples of quantum states have a
finite number of mutually exclusive outcomes of an experiment and so can
be described in finite dimensions.

Despite its importance, or perhaps because of it, there is an ongoing de-
bate over exactly what the quantum state represents: does it describe a real,
physical state (ψ-ontic interpretation2) or does it describe our knowledge of
the state (ψ-epistemic interpretation)? In a rough analogy to classical me-
chanics, the former is like a point in phase space, while the latter more
closely resembles a probability distribution. This is an interesting discus-
sion and one with some serious consequences. For now, we shall consider
|ψ〉 as a mathematical description of the object of interest only, postponing
a deeper discussion to Chapter 6.

An important aspect of quantum states is the idea of a superposition.
It is at the heart of almost all of the weird and wonderful parts of quantum
mechanics. The fundamental unit in classical information theory is the bit,
which takes the values 0 or 1. In quantum information, the fundamental
unit is the quantum bit or “qubit”, which can take the values 0, 1 or one
of an infinite number of superpositions of the two.3 Conventionally, we
let the basis states |0〉 , |1〉 correspond to the computational basis, e.g. for
dimension 2,

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (2.3)

The superposition principle says that we can also have quantum states that
look like

|0〉+ |1〉 . (2.4)
This is a direct result of the linearity of the Schrödinger equation which
governs the evolution of quantum states. Superpositions of quantum states
lead naturally to the question of why we never see them in our everyday
lives. The lack of superposition states in classical physics is called, somewhat
dramatically, the “measurement problem” and was famously derided in a
thought experiment by Erwin Schrödinger involving a cat, a box and a vial
of poison [23].

We can always perform a unitary transformation so that the superposi-
tion can be expressed as one of the basis states. Think of the Earth again;

2Those with this viewpoint have been dubbed ψ-ontologists by Chris Granade.
3The term qubit was introduced by Schumacher in his 1995 paper Quantum coding [22].
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we can rotate the coordinates of latitude and longitude so that Stockholm,
not Greenwich, becomes (0, 0). In this sense, all states are equal: any state
can be written as superpositions of some basis. The curious thing is that,
given a basis whose states correspond to some definite description of the
world, quantum mechanics allows superpositions of these states. It is not
clear how we should think of such superposed descriptions.

Nonetheless, such states do exist and are routinely produced in laborato-
ries. They are incredibly fragile; physicists need to tread more carefully than
lepidopterists. The Nobel Prize in Physics in 2012 was awarded to Haroche
and Wineland “for ground-breaking experimental methods that enable mea-
suring and manipulation of individual quantum systems.” One consequence
of the high level of control in their experiments was the ability to study the
border between microscopic and macroscopic worlds. They created super-
posed quantum states using trapped ions [24] and photons [25] and studied
how they decohere over time to become a classical mixture of states.

One might wonder about the largest quantum superposition so far ob-
served. The term ‘largest’ can be defined in several ways here, such as
number of particles involved in a superposition or particles with the great-
est radius. A possible measure is the coherence time, during which the
quantum state remains in phase [26]. With this latter definition, the cur-
rent largest superposition state uses synthetic chemistry to create molecules
(containing ≈ 500 protons, ≈ 500 neutrons, ≈ 500 electrons) that then pass
through a double slit experiment and produce an interference pattern [27].
Testing where the superposition principle breaks down, if at all, has con-
sequences for the future of quantum mechanics. It would answer the ques-
tion of whether a sharp border exists between the quantum and classical
regimes—Heisenberg’s cut—or whether the boundary is more fluid, depen-
dent on the experiment one performs.

Associated to each vector |ψ〉 is a bra 〈ψ|. The notation, coined by Dirac,
is understood when we introduce the inner product, defined by combining
the bra-ket as in

〈ψ|ψ〉 . (2.5)

This is just a number. If we want any information from the state we must
measure it. A measurable property (e.g. position, spin, polarisation) is
called an observable. An observable is represented by a Hermitian operator
A which is self-adjoint,

A = A†, (2.6)

and thus has real eigenvalues. The eigenvalues correspond to the possible
outcomes of a measurement. An observable with a non-degenerate spec-
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trum has eigenstates that span a complete orthonormal basis. A crucial
difference between quantum physics and classical physics is commutability
of observables. In classical physics, all observables commute; it does not
matter in what order we measure two observables, we will find the same
result (to within some experimental uncertainty). In quantum physics, this
is not true. It is not simply the taking part that counts with observables;
it matters who comes first. Measuring two non-commuting observables in a
different order will give different results (on top of any experimental uncer-
tainty). Observables that commute can be measured simultaneously and are
called compatible. This distinction is crucial for the Kochen-Specker theo-
rem, where we divide sets of observables into different contexts, depending
on whether they commute or not.

The quantum states introduced so far are called pure quantum states.
They live in a Hilbert space, a complex vector space equipped with an inner
product. Quantum states are technically rays in Hilbert space, because
we cannot physically distinguish between |ψ〉 and eiθ|ψ〉, θ ∈ R. Note,
though, that this is a global phase. Any relative phase between states in
a superposition is important and cannot be explained away as physically
indistinguishable. We can associate the state |ψ1〉+|ψ2〉 with eiθ(|ψ1〉+|ψ2〉),
but not with |ψ1〉+ eiθ |ψ2〉. We also tend to normalise our vectors to have
unit length,

|〈ψ|ψ〉| = 1 (2.7)

and so remove another degree of freedom. All in all, when we talk about
the state |ψ〉, we are really considering the equivalence relation of states

|ψ〉 ∼ λ|ψ〉, λ ∈ C. (2.8)

The conclusion is that the real home of quantum states is complex projec-
tive space. We define complex projective space CPN−1 as the set of all
1-dimensional subspaces in CN . A projective point is then given by the
homogeneous coordinates

(z0, z1, . . . , zN−1) ∼ λ(z0, z1, . . . , zN−1), λ 6= 0. (2.9)

The language of projective space, like Euclidean space, is points, lines and
planes. It is very similar to Euclidean geometry, except in its treatment of
parallel lines. We shall return to this when we discuss finite geometries at
the end of this chapter.
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2.2 Mixed states
Not all quantum states are pure. Consider an ensemble of states coming
from a source that sometimes emits a state |ψ1〉 and sometimes |ψ2〉. This is
known as a mixed state and cannot be represented by the vector formalism
introduced in the previous section. Instead we need the concept of a density
matrix (also known as a statistical operator). It obeys three properties:

1. It is Hermitian: ρ† = ρ.

2. It is normalised: Trρ = 1.

3. It is positive semi-definite: ρ ≥ 0.

Density matrices can represent pure states, too. A density matrix for a pure
state |ψ〉 is given by

ρ = |ψ〉 〈ψ| . (2.10)

This has the additional property that ρ2 = ρ. A mixed state is written as
the convex sum of pure density matrices,

ρ =
∑
i

pi |ψi〉 〈ψi| . (2.11)

where pi is the probability of finding the system in state |ψi〉. Note that the
density matrix for a mixed state no longer fulfils ρ2 6= ρ. In fact

Tr(ρ2) < 1 (2.12)

for a mixed state. So the trace of ρ2 gives us a quick way to test the purity
of a quantum state.

The choice of pure states in Eq. (2.11) is not unique; different ensembles
of states can give rise to the same density matrix. In the terminology of
Süssman: “different blends give rise to the same mixture” [28]. Schrödinger
characterised all blends that lead to a given mixture and presented a mixing
theorem in 1936 [29]. It was rediscovered in 1993 [30] and thus is sometimes
called the HJW theorem after its later authors.

The space of all density matrices is a convex set, meaning that for any
two elements s1 and s2 in the set, the combination

(1− x)s1 + xs2 (2.13)

where x ∈ [0, 1] also lies in the set. It has an intuitive feel: shapes that are
convex (as opposed to concave) don’t have any parts that stick out from
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the rest of the shape. The extreme points of a convex set are those that
cannot be made from combining any other elements in the set. For the set
of quantum states, the extreme points are the pure states. If the set is a
square, then the corners are the extreme points. If the set is a circle, then
the entire circumference is comprised of extreme points. Points that are not
extreme can be decomposed in terms of the extreme points. Often, there
is more than one way to do this, as Schrödinger found for the set of all
quantum states.

The only convex set that has such a unique decomposition is the simplex.
Classical probabilities are always described by a simplex. A d-simplex is
the convex hull of d + 1 points in general position (which means we ignore
exceptional cases, e.g. when all the points lie in a line). Figure 2.1 shows
examples for the cases d = 2, 3 and 4.

Figure 2.1: The 2-simplex is a line segment; the 3-simplex is a triangle; and the
4-simplex is a tetrahedron.

We know that the pure states live in Hilbert space, but what about the
density matrices? It is more convenient to deal with traceless matrices since
they form a vector space while matrices with unit trace do not. We can
obtain a traceless matrix B from every density matrix ρ via

B = ρ− ρ∗ (2.14)

where we have used the maximally mixed state

ρ∗ = 1
N
1. (2.15)

Since taking linear combinations of traceless matrices gives another traceless
matrix and we can define the Hilbert-Schmidt scalar product between two
traceless matrices as

〈B1, B2〉 = 1
N

Tr(B1B2), (2.16)

the space of traceless matrices is a vector space. We call it Bloch space,
which is semi-standard terminology. It has ρ∗ at the origin and has N2 − 1
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dimensions. The convex set of all matrices corresponding to quantum states
in Bloch space is called the Bloch body. We can express a general density
matrix as

ρ = 1
N
1+B. (2.17)

If we want, we can introduce an orthogonal basis in Bloch space, that is a
set of traceless Hermitian matrices obeying 〈Bi|Bj〉 = 0. A general density
matrix is then

ρ = 1
N

(1+ riBi). (2.18)

where the Bi form a basis. This is analogous to Eq. (2.2), where now the
Bi play the role of the basis vectors |ei〉 and the coefficients ri play the role
of the coefficients αi. Because of this, some authors refer to ri as the Bloch
vector.

A useful concept is the outsphere of the Bloch body. This is the smallest
sphere such that every quantum state is contained inside it. Not every state
inside it corresponds to a density matrix though. Density matrices that lie
on the outsphere have just one non-zero eigenvalue. We can ask where the
pure states are in the Bloch body. Recall that for pure states the density
matrix satisfies

Tr(ρ2) = 1. (2.19)

Substituting in Eq. (2.17) and taking the trace gives

Tr(ρ2) = 1
N

+ rirjδij
N

= 1 + r2

N
. (2.20)

This equals unity when r2 = N − 1 and so density matrices corresponding
to pure states lie at a constant distance from the origin. The set of these
pure states has dimension 2(N − 1) and lies on a continuous sub-manifold
of the outsphere, which has dimension N2 − 2.

The ideas introduced in this section are not unique in housing quantum
states. One could choose another geometry for Bloch space, but the mea-
surements we study later in this thesis form regular geometric structures
with respect to the Hilbert-Schmidt inner product.

2.3 Bloch ball
Here we consider a 2-dimensional system, for which N = 2. This is the
only dimension small enough to visualise (the Bloch body for N = 3 is
already 8-dimensional) and so it is instructive to investigate further. It is
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also very accessible experimentally and many quantum information proto-
cols are carried out using qubits rather than higher dimensional states. On
the other hand, dimension 2 is a very limiting example. Many phenomena
only happen in higher dimensions; for example, Gleason’s theorem and the
Kochen-Specker theorem only hold when N ≥ 3 (see Chapter 6). Nonethe-
less, if we want to understand the space of quantum states, it makes sense
to start with the simplest case first.

The state space for a classical bit is simply the two points corresponding
to the values 0 and 1. It is given in Figure 2.2. We can look at the state
space for a real pure qubit or “rebit”, which is a qubit whose coefficients can
only take real values. An arbitrary pure rebit is written as

|ψ〉r = a |0〉+ b |1〉 , a, b ∈ R (2.21)

where |a|2+|b|2 = 1. This is parametrised by one real number (the coefficient
b/a, for example) and so its Hilbert space is 1-dimensional, namely a circle
with |0〉 and |1〉 at antipodal points as shown in Figure 2.2. An arbitrary
pure qubit in Hilbert space is

|ψ〉 = a |0〉+ b |1〉 , a, b ∈ C (2.22)

where |a|2 + |b|2 = 1. Given the basis states, we can parametrise this using

|ψ〉 = cosθ2 |0〉+ eiφsinθ2 |1〉 (2.23)

where θ ∈ [0, π] and φ ∈ [0, 2π]. The state space for a qubit is then a
2-dimensional sphere, as shown in Figure 2.2.

Figure 2.2: State space for N = 2 for a bit, (pure) rebit and (pure) qubit.

The real numbers θ and φ correspond to angles in the Bloch ball as
shown in Figure 2.3 and together they are enough to specify a unique pure
state. Note that basis states lie on antipodal points on the sphere (where,
conventionally, |0〉 and |1〉 lie at the North and South pole, respectively). A
basis defines a 1-dimensional simplex through the origin, which is simply a
line. This generalises to higher dimensions, where a complete basis spans
an (N − 1)-simplex centred around the origin.
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Figure 2.3: Hilbert space for N = 2: the Bloch ball. The basis states |0〉 and |1〉
and an arbitrary pure state |ψ〉 lie on the surface of the ball.

We can now ask how the mixed states fit into this picture. In the case
of N = 2, Bloch space has N2 − 1 = 3 dimensions and the Bloch body is
contained within the outsphere, which in this case is a 2-sphere. The set
of pure states happens to completely coincide with the outsphere and so
the Bloch ball provides a simple visualisation of mixed states, too: they
sit inside the Bloch ball. Following Eq. (2.18), an arbitrary 2-dimensional
density matrix can be written as

ρ = 1
2(1+ riσi), (2.24)

where σi are the Pauli matrices. In higher dimensions, we begin to see the
richness of the set of quantum states shine through. In N = 3, for example,
the space of traceless Hermitian matrices has dimension 8, the Bloch body
is bounded by an outsphere of dimension 7, while the set of pure states has
dimension 4. The pure states always lie on a sub-manifold of the outsphere
of measure zero in dimensions N > 2.

It is also easy to picture operations on the qubit using the Bloch ball.
Any qubit operation can be represented by a 2 × 2 matrix, and, in order
to ensure normalisation, the matrix must be unitary. This corresponds to
rotating an initial state on the surface of the Bloch ball into another state
somewhere else on the surface of the Bloch ball (assuming the states are not
left invariant by the unitary operator).

So far we have treated the quantum state as a purely mathematical
concept, but in order to do anything useful in the laboratory we need to
translate their mathematical description into a physical one. There are sev-
eral different systems that are used to implement qubits, and then several
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further methods to encode information. For example, electrons in an atom
with information encoded in spin direction (up or down); photons with infor-
mation encoded in photon polarisation (horizontal or vertical polarisation)
or time-bin encoding (early detection or late detection); NMR with informa-
tion encoded in nuclear spin (up or down); quantum dots with information
encoded in electron spin (up or down); or superconducting Josephson junc-
tions with information encoded in charge (uncharged superconducting island
or charged superconducting island) or energy (ground state or first excited
state).

2.4 Measurements

Given a quantum state, pure or mixed, how can we measure it? There are
some subtleties here, such as whether the state had a particular property
before we measured it (this is the question of realism discussed in Chapter
6) and what sort of information should we get out of the measurement
(this is relevant for the recent development of weak measurements [31,32]),
but here we shall skip these points and give a mathematical description of
measurements.

The simplest description of a measurement in quantum mechanics is the
projection measurement, often called a von Neumann measurement. For us,
it is a finite set of projectors Pi, formed from

Pi = |i〉 〈i| , (2.25)

that obey the conditions∑
i

Pi = 1, PiPj = δijPi. (2.26)

The second condition means the projectors are mutually exclusive. This is
equivalent to the requirement that the vectors onto which they project are
orthogonal. We see immediately that in a Hilbert space of dimensionN there
can be at most N projectors, since we cannot find more than N mutually
orthogonal vectors. Projectors are repeatable in the sense that a state after
measuring a projector will not change with subsequent measurements of the
same projector, since P 2 = P .

The observable from Section 2.1 is recognisable from all this as

A =
∑
i

λiPi, (2.27)



2.4 Measurements 15

where the eigenvalues of A are the λi’s, corresponding to possible outcomes
of the measurement. The same projector can belong to different observables,
e.g. we could imagine the observables

A = Pi + Pj + Pk (2.28)

and
A′ = Pi + Pm + Pn (2.29)

that both include the projector Pi. Let A and A′ be projectors along a given
direction inR3. Figure 2.4 shows what their vectors could look like, where |i〉
appears in both observables. Note that |j〉 and |k〉 cannot be orthogonal to
|m〉 and |n〉 because that would give us more than three orthogonal vectors
in R3. Observables that share projectors are crucial for proving the Kochen-
Specker theorem.

Figure 2.4: Observables whose projectors correspond to directions in R3.

From the projector and the state, we can calculate probabilities of ob-
taining different outcomes of measurements. The probability of finding the
outcome λi after measuring the observable A on the state |ψ〉 is given by

Prob(λi) = 〈ψ|Pi|ψ〉, (2.30)

where Pi is the projection onto the eigenspace of A associated to the eigen-
value λi. Or, alternatively, for a density matrix ρ, by

Prob(λi) = Tr(ρPi). (2.31)

This is the Born rule, named after Born who conjectured the relation be-
tween probability and the square of the wavefunction in a footnote of a
paper [33]. It is a powerful formula that highlights the statistical nature of
quantum mechanics and contributed to Born being awarded the Nobel Prize
in Physics in 1954. It also tells us something about the nature of measure-
ments. Note that the probability only depends on Pi regardless of whether
we measured the observable A or A′. This is known as non-contextuality
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(of probabilities) and is strongly related to Gleason’s theorem. We return
to this in Chapter 6.

Projective measurements don’t capture the whole picture. We get a hint
that something else is needed by thinking about detecting a photon. The
usual method uses avalanche photodiodes (APDs) which absorb the photon
and convert light into an electrical signal that is amplified and then recorded
by detectors. This is certainly not repeatable—the photon no longer exists
for us to measure again—and so we need something other than projectors
to describe it. The most general measurement in quantum mechanics is
described by a positive operator valued measure (POVM). A POVM is a
finite collection of positive, semi-definite operators Ei, satisfying

∑
i

Ei = 1. (2.32)

The operators are often called effects. They are not restricted by the condi-
tion of exclusivity, so a POVM can contain more than N effects. SICs, for
example, contain N2 effects.

It is always possible to express a POVM as a projection measurement
in a higher dimensional space. This result is Neumark’s dilation theorem
[34, 35]. It states that we can always extend the Hilbert space in which the
operators Ei are defined such that the extended Hilbert space contains a
set of orthogonal projectors Pi obeying

∑
i Pi = 1 and the projection of the

operators Pi from the extended Hilbert space to the original Hilbert space
gives the operators Ei. In practice, we usually expand the Hilbert space by
introducing an ancilla state which is coupled to the original system.

2.5 Finite geometries

In the previous few sections, we looked at spaces that are central to quan-
tum mechanics. This section expounds upon finite geometries that are not
essential to understanding the theory. Nevertheless, they give additional
structure to quantum states and will play a role when we discuss MUBs
and SICs. Finite geometries are simply a collection of a finite number of
points. The real line is not a finite geometry, for example, as it contains
an infinite number of points. We will look at the finite affine plane and the
finite projective plane.
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2.5.1 Affine plane

Affine space is a set of points on which we can perform translations. It is
essentially a Euclidean space with the distance metric removed so we are
left with a collection of points and lines and planes that intersect in certain
places. If we equip affine space with an origin, we recover a vector space. In
this thesis, we will only deal with affine planes. An affine plane obeys the
following three axioms:

1. Any two distinct points lie on a unique line. If pα and pβ are distinct
points, then there exists a line lµ such that pα, pβ ∈ lµ.

2. Given a point and a line not containing the point, there is at most one
parallel line which contains the point. If pα /∈ lµ, there is a unique line
lν such that pα ∈ lν and lµ ∩ lν = ∅.

3. There exist at least three non-collinear points. (Trivial cases are ex-
cluded.)

A finite affine plane of order N is formed from N2 points and N(N + 1)
lines. The lines can be collected into N + 1 sets of N parallel lines, where
parallel lines never meet and two non-parallel lines meet in exactly one point.
Think of a chess board where each square is a point. This is an affine plane
of order 8. It is easy to picture the 64 points but finding the 72 lines is a
non-trivial exercise. Finite affine planes exist when N is a prime or prime
power. In these cases, we can assign coordinates to the points in the plane
by using pairs of elements in the finite field FN . For some dimensions, such
as N = 6, 14, 18, . . ., it is known analytically that finite affine planes do not
exist [36], for others such as N = 10 [37], it is known numerically that finite
affine planes do not exist, while for others, such as N = 12, 15, 20, . . ., the
question of existence is still open.

A set of parallel lines on an affine plane defines a Latin square. There
are two obvious sets of parallel lines associated to an affine plane: the set of
N vertical lines and the set of N horizontal lines. We use these to orient the
affine plane and so don’t consider them as Latin squares. Then the question
arises: how many more are there? This is an open problem.

Once we have a set of parallel lines, we assign a Latin letter to each
line (hence the name Latin square). The construction of the affine plane
means that each row and each column only contain each letter once. This
is reminiscent of a Sudoku puzzle and actually a Suduko puzzle is a Latin
square with a few more constraints thrown in. For the affine plane of order
3, we assign the letters A, B and C to the set as shown in Figure 2.5. The
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left image shows a set of 3 parallel lines, while the right image shows the
corresponding Latin square after identifying letters with lines.

Figure 2.5: A set of parallel lines on the affine plane of order 3 (left) and the
corresponding Latin square (right). The letters A, B and C are assigned to each
parallel line.

The next set of parallel lines is given Greek letters, so we often call it a
Greek square. In the affine plane of order 3 example, we assign α, β and γ
to the different lines, as in Figure 2.6.

Figure 2.6: A second set of parallel lines on the affine plane of order 3 (left) and
the corresponding Greek square (right). The letters α, β and γ are assigned to each
parallel line.

The incidence rules of the affine plane ensure that picking one letter
from the Latin square and one letter from the Greek square defines a unique
point. For example, the choice (A, α) corresponds to the top left point in the
affine plane. If this is true for all combinations of letters then the squares
are called Graeco-Latin squares, or mutually orthogonal Latin squares. We
can work backwards, using the link between affine planes and Latin squares
to search for affine planes. Specifically, if a Graeco-Latin pair doesn’t exist,
then an affine plane cannot exist.

Though the idea is fairly simple, the problem of classifying all pairs of
Graeco-Latin squares is hard. Euler counted all pairs for N = 3, 4 and 5
but the case N = 6 was too numerous. He searched a subset of the cases
and then conjectured that no such pair existed [38]. It became known as the
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“36 officers problem” and was proved over 100 years later [39]. The topic
was of interest outside of mathematics, and was particularly important for
designing experiments in biology and agriculture that required randomisa-
tion processes [40]. Today Latin squares relate to designing experiments in
quantum mechanics, as we shall see in Chapter 5.

2.5.2 Projective plane

Finite projective space is in some sense an extension of finite affine space. It
is like an affine space with additional points at the “line at infinity”. It had
a big impact on Renaissance artists, who used projective geometry to begin
painting with realistic perspectives. A projective plane obeys the following
three axioms:

1. Any two distinct points lie on a unique line. If pα and pβ are distinct
points, then there exists a line lµ such that pα, pβ ∈ lµ.

2. Any two distinct lines intersect in exactly one point.

3. There exist at least three non-collinear points. (Trivial cases are ex-
cluded.)

A finite projective plane of orderN containsN2+N+1 points andN2+N+1
lines. Each line contains N + 1 points and each point lies on N + 1 lines.
Although the axioms are seemingly similar to those obeyed by the affine
plane, there is a crucial difference in their treatment of parallel lines. In the
affine case, parallel lines do not meet, but in the projective case every pair
of lines intersects at one point and parallel lines meet at the line at infinity.
In fact, an affine plane can be obtained from a projective one by removing
exactly one line (and the points on it).

2.5.3 Configurations

Sets of points and lines are known as configurations, a concept Hilbert
and Cohn-Vossen wrote was once “considered the most important branch
of all geometry” [41]. The affine and projective plane are therefore examples
of configurations. In general, configurations are combinatorial structures.
Combinatorics appear in numerous branches of mathematics, including de-
sign theory and graph theory, and they feature heavily in probability theory.
One of the earliest mentions of combinatorial problems comes from ancient
India, where it was shown that six different tastes can be combined in 63
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ways [42].4 Today this is recognisable as the binomial coefficient or “choose
function”.

We are particularly interested in the finite affine plane of order 3, known
as the Hesse configuration. It contains nine points and 12 lines, which
can be grouped into four sets of three parallel lines. Each set is called a
striation of the plane and they are given in Figure 2.7. We denote the
configuration (94, 123) to show there are in total nine points, each lying on
four distinct lines, and twelve lines, each containing three distinct points.
This is

(
N2
N+1, N(N + 1)N

)
for N = 3.

Figure 2.7: The four striations of the Hesse configuration in the finite affine plane
of order 3.

Configurations in affine space are typically an abstract concept; there
is no requirement of realisation. Nonetheless, it is interesting to ask for
realisations and quantum mechanics leads us naturally to sets of vectors that
realise configurations. The Sylvester-Gallai theorem5 states that a finite
collection of points in a real projective plane are either all on a line, or
else there is some line that contains exactly two of the points. As the
Hesse configuration does not possess either of these properties, it cannot be
reproduced using vectors in the Euclidean plane. However, it can be realised
in the complex projective plane. The nine points are the inflection points of
an elliptic curve—found by taking the Hessian of the cubic polynomial that
defines the curve—and the lines are those that pass through these inflection
points [43]. We return to this configuration when we discuss MUBs and SICs.
Paper I gives a link between the Hesse configuration and contextuality proofs
and we note that Aravind used another configuration, Reye’s configuration
(in RP3), in an earlier proof of contextuality [6]. Paper IV searches for

4The six tastes were sweet, sour, salt, bitter, pungent and astringent. The 63 com-
binations include six combinations of a single taste, 15 combinations using two tastes,
20 combinations using three tastes, 15 using four tastes, six using five tastes and one
combination using all six tastes.

5Named after Sylvester who posed the problem in 1893 and Gallai who solved it in
1944, showing that there are two different ways to have a theorem named after you.



2.5 Finite geometries 21

configurations whose realisations include SIC vectors in higher dimensions.
Paper VI forms configurations out of vectors from MUBs and interesting
subspaces whenever N = 1 mod 3.





Chapter 3

Groups and hierarchies

3.1 Group theory basics
A group G is a set of objects combined with a group operation (·) that
satisfies the following four properties, often called the group axioms:

1. Identity. There is an element in the group e such that e · g = g · e = g
for all g ∈ G.

2. Inverse. There is an element in the group g−1 such that g−1 · g =
g · g−1 = e for all g ∈ G.

3. Closure. For all elements g1, g2 ∈ G the element g1 · g2 is also in G.

4. Associativity. The relation g1 · (g2 · g3) = (g1 · g2) · g3 holds for all
g1, g2, g3 ∈ G.

A group is abelian if it satisfies the addition property that its elements
commute,

g1.g2 = g2.g1 (3.1)

for all g1, g2 ∈ G.
Rings and fields are natural extensions of groups. A ring is an abelian

group under addition that also has the operation of multiplication (though
it does not form a group under multiplication). Examples include the set
of integers, the set of real numbers and the set of square matrices (of the
same size) under matrix multiplication and matrix addition. The first two
are commutative rings while the last is a non-commutative ring. A field is
a ring that forms a commutative group under addition when the identity
element is removed. Essentially, it is a ring whose non-zero elements have
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inverses under multiplication. Examples include the real numbers and the
rational numbers, where the caveat about removing the identity element
under addition prevents us from dividing by zero. The integers are not a
field as they can’t be divided by one another to get another integer. It is
clear that every field is a ring but not every ring is a field.

The order of a group |G| is its ‘size’ or cardinality, i.e. the number
of elements in G. This can be infinite, but in this thesis we will only be
concerned with groups of finite order. We shall also be concerned with finite
fields, that is fields with a finite order. Finite fields only exist when the
order is a prime power and are typically denoted Fpk or sometimes GF (pk)
for Galois field. In the prime case, these are the set of all integers modulo
p but for prime powers these are field extensions. We can form a simple
field extension by taking an irreducible polynomial of order k, assigning the
symbol α to the solution of the polynomial and adjoining α to the ground
field of prime order (i.e. adding and multiplying α with all elements in Fp).
An example of this is the complex numbers which are an extension of the
real numbers, where the symbol i, defined as the solution to the polynomial
x2 + 1 = 0, has been adjoined to the ground field of real numbers. The
ground field of a finite field is always the field of integers modulo p.

A subgroup H is a subset of G that forms its own group under the same
group operation asG. So the subgroupH obeys the four axioms given above.
All groups have the trivial subgroup containing only the identity element.
Subgroups that will be of interest to us are cyclic subgroups. A cyclic group
(or subgroup) is generated by a single element g of the group. All remaining
elements can be expressed as some power of this element under the group
operation. The element g is called the generator of the group.

An extremely useful property of groups is their ability to be transformed
into one another. This is a group homomorphism (in ancient Greek ‘homos’
means same and ‘morphe’ means shape) and, in more technical language, it
is a mapping between two groups that preserves the group’s structure. If
a homomorphism admits an inverse then it is an isomorphism (‘iso’ means
equal). Thus a group homomorphism is an isomorphism if and only if it is
bijective, or one-to-one.

A group is an abstract concept and group theory isn’t concerned with the
particular elements in a group so much as with the relations between them.
We, however, are interested in what the group elements do, particularly
when applied to quantum states. To see this, we need a group representation
ρ, which is a homomorphism between the group elements and the group of
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n× n invertible matrices GL(n,C),

ρ : G→ GL(n,C). (3.2)

The group can now be thought of as a linear transformation on the vector
space Cn. The topic of representation theory is a large and important
one in mathematics but we will only state two more definitions here. A
representation is faithful when there is a one-to-one correspondence between
the matrices and the elements of the group that preserves group structure.
In other words, a faithful representation requires the group homomorphism
to be injective. A representation is irreducible when there is no subspace of
the vector space that the group elements act on that is left invariant under
the action of the group. Essentially, this means that we cannot shrink the
dimensions of the matrices in our representation.

Given the groups G and S, the normaliser NS of G is defined to be the
elements s ∈ S that relate the elements in G, i.e.

NS(G) = {s ∈ S | sG = Gs}. (3.3)

So acting with the group S does not move you out of the group G, since
G = s−1Gs. The group S could include G as a subgroup.

A set X can be partitioned into orbits under a group. The orbit O of a
point x ∈ X is the set obtained by acting with all g ∈ G on x, i.e.

O(x) = {g · x | g ∈ G}. (3.4)

The point x is known as the fiducial vector. The group properties of G mean
the set X is partitioned into orbits. It is a useful way of classifying sets and
we will use it for sets of interesting quantum states—MUBs and SICs—in
later chapters.

Finally, we mention fixed points of a group element. Again given g ∈ G
and x ∈ X, if g · x = x then x is a fixed point of g, or equivalently, g fixes
x. The stabiliser group S of x is the subset of all elements in G that fixes a
particular x, i.e.

S(x) = {g ∈ G | g.x = x}. (3.5)
This also turns out to be very useful for studying SICs and there are three
conjectures about the stabiliser group of SICs, given in Section 5.2.

3.2 Weyl-Heisenberg group
Heisenberg groups appear throughout quantum mechanics. The infinite-
dimensional case is connected with several foundational aspects of quantum
mechanics via Bohr’s principle of complementarity and the Wigner function.
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Heisenberg groups can be faithfully represented by upper triangular ma-
trices, 1 a b

0 1 c
0 0 1

 . (3.6)

These matrices form a group whenever the entries a, b, c belong to a ring,
where the unit element is represented by the unit matrix. The choice of ring
determines which Heisenberg group we have. For example, if they belong to
the set of real numbers we find a Lie group, whose Lie algebra is given by
[x̂, p̂] = i~.

We are interested in the finite group, known as the Weyl-Heisenberg
group or (generalised) Pauli group, in which the entries a, b, c belong to
ZN . A particularly nice case is when the dimension is prime N = p, as the
entries a, b, c belong to the finite field Zp. The group elements of the Weyl-
Heisenberg group can be exploited to construct MUBs and SICs. They also
provide a crucial resource necessary for quantum computing.

The Weyl-Heisenberg (WH) group is defined by the generators Z, X and
ω obeying the following relations

ZX = ωXZ , ZN = XN = ωN = 1. (3.7)

It has N3 elements. The generator ω commutes with everything, but the
operators X and Z do not commute. Thus the group is not abelian, but it
is nilpotent, which is as close to abelian as it can be. A group is nilpotent if
the set of all elements of the form g = g1g1g

−1
1 g−1

2 forms an Abelian group.
In quantum mechanics we work with unitary operators, so we would

prefer a representation of the WH group using unitary matrices. Every finite
group has a unitary irreducible representation and this is almost unique for
the WH group.1 The generators are represented by

Z |r〉 = ωr |r〉 , X |r〉 = |r + 1〉 , ω = e
2πi
N (3.8)

where N is the dimension and ket addition is modulo N . In dimension 2,
these are the Pauli matrices familiar from undergraduate quantum mechan-
ics, where X = σx and Z = σz. The WH group is then given by

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(3.9)

1The inequivalent unitary representations are obtained by choosing different primitive
roots of unity for ω.
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plus the identity element 1. A careful reader might note that this represen-
tation of σy is slightly contradictory. It involves the fourth root of unity,
which is not obtainable from any integer power of ω. It appears because σy
is usually defined by σy = iσxσz, in order to ensure that all group elements
are of order 2. If we instead set σy = σxσz, then we find σ2

y = −1. This is
a hint of complications in even dimensions that continue to plague the WH
group in higher dimensions.

To deal with this, it is convenient to introduce the phase factor

τ = e
iπ(N+1)

N = −e
iπ
N . (3.10)

Note that

τ2 = ω , τN =
{

+1 N odd
−1 N even (3.11)

In odd dimensions, τ is just an Nth root of unity and so is already included
in the definition of the group. However, in even dimensions we modify the
original definition so that τ is included.

Armed with this new phase factor, we can write a general group element
as a displacement operator

Dp = τ ijXiZj , (3.12)

where p is a 2-component vector whose entries i and j lie in ZN ×ZN . De-
spite our earlier concern with phase factors, we will often ignore phases and
deal with the WH group projectively (recall that quantum states essentially
live in complex projective space and there is no physical difference between
states that differ only by a phase factor). The WH group modulo its centre
leaves N2 elements in the projective WH group.

We can now express the group law as

Dp1Dp2 = τΩ(p1,p2)Dp3 , (3.13)

where p1 = (i, j), p2 = (k, l), their sum p1 + p2 = p3 = (i + k, j + l)
and Ω(p1, p2) = jk − il is the symplectic form. The symplectic form is
usually thought of as an anti-symmetric quadratic form. Much like the scalar
product in Eq. (2.5), the symplectic form takes two vectors and returns a
number. We can interpret the inner product as the angle between the two
vectors and the symplectic form as the oriented area they span (oriented
because it is anti-symmetric). It is the central object in symplectic geometry
and is hugely important in classical physics, where it underlies Hamiltonian
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mechanics. The adjoint of the displacement operator is also expressed nicely
as

D†p = D−p. (3.14)

It will be interesting to us later on to look for maximally abelian sub-
groups of the WH group. We note that in prime dimensions, we can par-
tition the WH group into N + 1 distinct maximally abelian subgroups, or
alternatively, the group “forms a flower with N + 1 non-overlapping petals.”
Every element in the WH group appears in only one subgroup (excluding
the identity element). In any dimension, the WH group will always form at
least three non-overlapping petals: they are the cyclic subgroups generated
by the elements X, Z and XZ. As the elements in each abelian subgroup
commute they will define a joint eigenbasis. These eigenbases are important
for a particular construction of MUBs, which is described in Section 4.2.

One of the reasons the WH group is so important in quantum information
theory is that is defines a unitary operator basis. To see this we look at the
space of all operators. It has dimension N2, since there are N2 complex
numbers in a unitary operator, and we can introduce the Hilbert-Schmidt
scalar product,

1
N

Tr(UaUb) = δab. (3.15)

The displacement operators form an orthonormal basis in this space, mean-
ing that any operator can be expressed as a sum of suitable displacement
operators. It is not immediately obvious that such a basis should exist at
all, because Eq. (3.15) is overdetermined. The problem of classifying unitary
operator bases is equivalent to other open problems in quantum information
theory, including classifying all teleportation schemes and all dense coding
schemes [44].

We remark that in N = 3, the WH group was studied by the mathemati-
cian Sylvester [45], long before it got the name of “Weyl-Heisenberg”. He
found explicit 3×3 unitary matrices that represented the group presentation
in Eq. (3.7) that he called the “nonions” and further noted that they form
a basis in the space of all 3× 3 unitary matrices.

Thus far, we have just considered the case of prime dimensions. Most of
our results concern prime dimensions, but we occasionally foray into prime
power dimensions. In prime power dimensions N = pk, we have a choice of
WH groups. The one we have been using, call it H(p), can be generalised
in two ways, either to

H(pk) or H(p)×H(p)× . . .×H(p). (3.16)
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In the first case, we let the entries in Eq. (3.6) come from the ring of integers
modulo p and proceed as normal. In the second case, they come from the
finite field Fpk . The group elements are then tensor products of k of the
2-dimensional Pauli matrices in Eq. (3.9). Both options give a group with
N2 elements when considered projectively. It turns out that the first WH
group is relevant for SICs and the second is relevant for MUBs and quantum
computation.

In prime power dimensions, we can also ask for maximally abelian sub-
groups. Recall these are relevant for MUB constructions, so we use the
tensor product WH group. Such subgroups exist, but are no longer distinct.
For example, in N = 4, the 16 elements in the WH group can be partitioned
into 15 maximally abelian subgroups.

3.3 Clifford group

The Clifford group is the normaliser of the WH group within the unitary
group: its action on the WH group permutes the elements. If we include
anti-unitaries, then we have the extended Clifford group. There is a Clifford
group associated to each WH group and thus, in dimensions N = p, there
is a single, well-defined Clifford group. When N = pk, we have a Clifford
group associated to the different WH groups. For the second WH group
described at the end of the previous section, i.e. the one formed from k
copies of the H(p) group, there are two possible Clifford groups. They are
referred to as the full and restricted versions of the Clifford group. The
restricted version has been characterised [46], while the other remains at
large (at least as far as this thesis is concerned). We avoid these difficulties
by limiting ourselves only to the Clifford group in prime dimensions. We
shall be especially interested in the case p = 1 mod 3 as these dimensions
have additional structure relating to MUBs and SICs. This is the focus of
Paper VI.

In Eq. (3.13) we saw the symplectic form. It was an early hint that
the symplectic group would be important and we shall see exactly how
important in this section. Disregarding complications with phases, the Clif-
ford group is isomorphic to the semi-direct product of the WH group and
the symplectic group. The symplectic group Sp(n,ZN ) is the set of linear
transformations of an n-dimensional vector space over ZN that preserves
the symplectic form. We will stick to the case where n = 2, that is 2 × 2
matrices. Though this seems like a huge restriction, two by two matrices
have a distinguished history in physics. The Lorentz group describes special



30 Groups and hierarchies

relativity and classical and quantum optics (coherent states and squeezed
states are both representations of the Lorentz group) and the special uni-
tary group SU(2) describes isospin symmetry in particle physics. Another
advantage of looking only at n = 2 is that the symplectic group is isomor-
phic to the special linear group SL(2,ZN ), the group of 2 × 2 invertible
matrices over ZN with determinant 1. This makes sense geometrically; the
symplectic form defines an (oriented) area and the determinant defines a
volume, and area and volume are equivalent in 2 dimensions. For larger n,
the symplectic group is a subgroup of the special linear group.

3.3.1 Symplectic unitaries

The special linear group (and therefore the symplectic group) consists of all
matrices

G =
(
α β
γ δ

)
(3.17)

with α, β, γ, δ ∈ ZN and determinant 1 (mod N). We take the case of prime
dimension, N = p. The order of SL(2, p) is |SL(2, p)| = p(p2− 1), verifiable
by a straightforward counting argument. The group is generated by the two
matrices

T =
(

1 1
0 1

)
, F =

(
0 −1
1 0

)
. (3.18)

The elements form p+ 4 conjugacy classes (see [47] for a nice proof of this),
labelled almost uniquely by the trace. The slight complication is for the unit
element 1 and its negative −1, which have traces 2 and −2 respectively. For
odd primes, the traces of elements in SL(2, p) and their corresponding orders
are given in Table 3.1.

Trace −2 −2∗ −1 0 1 2 2∗
Order 2p 2 3 4 6 p 2

Table 3.1: Selection of traces and corresponding orders of elements in SL(2, p) for
p > 3. The starred entries correspond to the matrices 1 and −1.

There are additional elements not shown in the table—those corresponding
to other values of the trace—but they vary with dimension and so are not
included.

For each element G, there is a corresponding unitary UG . We call them
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symplectic unitaries. Their unitary representation is given by

UG = eiθ√
N

N−1∑
u,v=0

τβ
−1(δu2−2uv+αv2) |u〉 〈v| β 6= 0 (3.19)

UG = ±
N−1∑
u=0

ταγu
2 |αu〉 〈u| β = 0 (3.20)

where eiθ is an arbitrary phase determined by the order of UG . It can be
chosen so that UG has the same order as G, which we will always assume
has been done. A recipe exists for the phase to ensure that the symplectic
unitaries are a faithful representation of the symplectic group [48].

As the symplectic matrices in SL(2, p) take orders up to 2p, the sym-
plectic unitaries also take orders up to 2p. We will be particularly interested
in symplectic unitaries of order 3 (for reasons having to do with SICs) and
symplectic unitaries of order N = p (for reasons having to do with MUBs).
If the dimension is prime, then a symplectic unitary UG is of order 3 if and
only if the trace mod N of G is −1 (this is sometimes called the Clifford
trace [48]). The case of p = 3 is slightly special, because the identity has
trace −1, but it is still true that a symplectic unitary UG is of order 3 only
if G has trace mod p equal to −1. In all other dimensions, a symplectic
unitary is of order 3 if the trace mod N of G is −1. In other words, there
may be order 3 symplectic unitaries that do not correspond to symplectic
matrices with trace −1. Symplectic unitaries UG of order p correspond to
symplectic matrices G with trace 2. Symplectic unitaries both of order 3
and of order p have degenerate spectra, which is not typical.

The unitary representation of the generators in Eq. (3.18) is

(UT )mn = ωm
2/2δmn , (UF )mn = 1√

N
ωmn. (3.21)

Note that UT is order p and UF is order 4. The unitary UF is more commonly
known as the Fourier matrix.

3.3.2 Clifford unitaries

Given the definitions of the WH group and the symplectic group, we can
introduce the Clifford group. Any Clifford group element can be written as

τkDpUG (3.22)

where k is an arbitrary integer and p is a 2-component vector whose entries
i and j lie in ZN ×ZN .. As with the WH group, we are mostly interested in
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the projective Clifford group, so we ignore the preceding phase factor. The
action of the Clifford unitaries on the WH group is

UGDpU
†
G = DGp. (3.23)

This relation actually imposes the form of the unitary UG given in Eq. (3.19)
and Eq. (3.20). The Clifford group is the normaliser of the WH group
within the unitary group so we expected the Clifford unitaries to relate WH
elements, but the remarkable part is the form of the target WH operator,
which corresponds simply to Gp in terms of the 2× 2 matrices. We can use
this to check that the symplectic group really is isomorphic to the special
linear group. Acting with a Clifford unitary on the group law in Eq. (3.13)
gives

DGp1DGp2 = τΩ(p1,p2)DGp3 , (3.24)

since the phase commutes with everything. Alternatively, substituting Gp
for p into the group law directly we obtain

DGp1DGp2 = τΩ(Gp1,Gp2)DGp3 . (3.25)

Thus we find the condition

Ω(Gp1, Gp2) = Ω(p1, p2)⇔ j′k′ − i′l′ = jk − il. (3.26)

In other words, the matrices G are those that leave the symplectic form
invariant. On the affine plane, the transformations should obey(

i
j

)
−→

(
i′

j′

)
=
(
α β
γ δ

)(
i
j

)
. (3.27)

These are precisely the linear transformations that have determinant 1. So
the special linear group SL(2, p) is indeed isomorphic to the symplectic
group Sp(2, p).

3.3.3 Zauner unitaries

We stated earlier that we would be interested in Clifford unitaries of order
3 and p. We turn first to the order 3 unitaries. Clifford elements of order
3 are known as Zauner unitaries UZ , named after Zauner who investigated
SICs and MUBs from the point of view of design theory [49]. As long as
N = p and N 6= 3 all order 3 Clifford unitaries are in the same conjugacy
class [50] and they all have degenerate spectra. In other dimensions, there
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may be more than one conjugacy class of Zauner unitaries. To deal with
this, let us define the Zauner matrix

Z0 =
(

0 −1
1 −1

)
. (3.28)

We denote the corresponding symplectic unitary UZ0 (i.e. with the WH part
Dp = 1). As we are mostly concerned with prime dimensions, we won’t go
into any more detail regarding conjugacy classes here. Note that the Clifford
trace of Z0 is −1 and so the corresponding unitary is of order 3. We call
any unitary with Clifford trace equal to −1 mod N a canonical unitary. We
are also interested in Zauner unitaries coming from the symplectic matrix

Z ′ =
(
α2 0
γ α

)
. (3.29)

This matrix belongs to SL(2, p) only when α3 = 1. When p = 2 mod 3
this only has one solution, namely α = 1, but when p = 1 mod 3 there
are 3 solutions. This gives an additional 2p3 Zauner unitaries in the latter
dimensions: a factor of p comes from the choice of γ for a given α, a factor of
2 comes from switching α and α2, and finally a factor of p2 comes from the
WH group. In total, there are p3(p+ 1) Zauner unitaries when p = 1 mod 3
and p3(p− 1) when p = 2 mod 3 [48, 51].

The eigenvalues of UZ are 1, η and η2, where we define η = e2πi/3. The
dimensions of the corresponding eigenspaces depend on the overall dimen-
sion. There is some freedom here regarding which eigenspace should be
associated to which eigenvalue, which is a direct consequence of the phase
factor in Eq. (3.19). It is conventional to associate the largest eigenspace to
the eigenvalue 1. This is often referred to as the Zauner subspace. We end
up with the dimensions given in Table 3.2.

p = 3k p = 3k + 1 p = 3k + 2
1 k + 1 k + 1 k + 1
η k k k + 1
η2 k − 1 k k

Table 3.2: Dimensionality of eigenspaces corresponding to the eigenvalues of UZ
for different overall dimensions.
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3.3.4 Order p unitaries

We now turn to the order p Clifford elements. There are p2(p2 − 1) order
p Clifford unitaries. A subset of these can be written as Weyl-Heisenberg
translates of the form

DpUGD
−1
p . (3.30)

The translates necessarily have the same degenerate spectra as UG . There
are p(p2 − 1) order p elements that can be written as WH translates. This
leaves p(p − 1)(p2 − 1) order p Clifford unitaries that cannot be written as
WH translates and have non-degenerate spectra [52].

The properties of the Clifford group when N = p and N = 1 mod 3
makes it interesting later in the thesis to focus on these dimensions. Paper IV
is concerned mainly with the prime case and Paper V with the p = 1 mod 3
case.

3.4 Clifford hierarchy

The WH and Clifford groups can be viewed as the first two levels in a
hierarchy [53]. The first level is the WH group and the second is the Clifford
group, which maps the WH group onto itself. What about the next level:
can we find a group that maps the WH group to the Clifford group? This
class of operators is defined as

C3 = {U |UC1U
† ⊂ C2} (3.31)

where we denote the WH group as C1 and the Clifford group as C2 to
represent their places in the Clifford hierarchy.

There is no group C3, but in prime dimensions we can find individual
operators that take elements of the WH group to elements of the Clifford
group. Since the displacement operators in the WH group are order p and
have non-degenerate spectra, the third level of the Clifford hierarchy must
relate them to Clifford elements that cannot be written as WH translates
(i.e. Clifford elements of order p that also have non-degenerate spectra).
One operator in C3 is

M =
∑
a

ωa
3 |a〉 〈a| . (3.32)

Its action on the displacement operators is

MDpM
† = ω−

p3
1
2 DqUG, (3.33)
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where
q =

(
p1

p2 + 3p2
1

)
, G =

(
1 0

6p1 1

)
. (3.34)

These operators are important for quantum computing, of which we give
a brief overview here. There are two important criteria for a quantum com-
puter: it must be fault-tolerance and universal. Being fault-tolerant means
the computer is able to cope with errors, both in storing and processing
information [54]. Being universal means that the computer is able to repro-
duce every computation any other quantum computer could perform [11].
Universal quantum computing was introduce by Deutsch, following the uni-
versal Turing machine. Deutsch was motivated by the many-worlds inter-
pretation of quantum mechanics, asking questions such as: “where does the
computation occur?”

Magic state distillation is a promising scheme for performing fault-tolerant
universal quantum computing [13–15].It uses the stabiliser states—eigenvectors
of the WH group—as states and Clifford operations as gates. This choice
permits fault-tolerant quantum computing. However, acting with Clifford
gates on stabiliser states does not outperform a classical computer. In or-
der to do this, magic state distillation defines so-called magic states2. The
first step is to distil pure magic states from non-magic states that lie out-
side of the stabiliser polytope and the second step is to use these magic
states as a resource in a quantum computer. The first step has been im-
plemented in the laboratory using NMR, where five qubits were distilled to
a single magic state of higher fidelity [55]. In N = 2, the magic states are
well-known. There are two types: eight T -type magic states and 12 H-type
magic states [13]. More recently, the magic states have been defined in prime
dimensions N = p [16].

2Some authors define anything that lies outside the stabiliser polytope—MUB polytope
in our language—to be magic states. The states we call magic are then called maximally
magic.





Chapter 4

Mutually unbiased bases

4.1 Complementary measurements
Mutually unbiased bases capture the important idea of complementarity,
described by Schwinger as “the essence of quantum mechanics” [57]. If
we prepare a state in one basis and measure it using a mutually unbiased
basis, each outcome is equally likely. Knowledge of the first basis implies
ignorance of the second. In the infinite dimensional case, the most famous
example of complementarity is Heisenberg’s uncertainty relation for position
and momentum. In the finite dimensional case, complementarity comes from
observables whose eigenbases are mutually unbiased.

This makes them incredibly useful in experimental scenarios and they
appear in many protocols, from quantum key distribution to entanglement
witnesses. Two bases are mutually unbiased if every vector from the first
basis |ei〉 and every vector from the second basis |fj〉 obey

|〈ei|fj〉|2 = 1
N

(4.1)

in dimension N . Simply put, each pair of basis vectors has the same overlap.
The actual value of the overlap is determined by the completeness relation
of the bases and does not depend on the vectors themselves.

One of the biggest questions around mutually unbiased bases is whether
a complete set of mutually unbiased bases (MUB) exists. In this thesis,
we will discuss complete sets often and so we use the acronym MUB for
these sets. A MUB consists of N + 1 mutually unbiased bases, which is the
maximum number possible. In prime and prime power dimensions, MUBs
exist and various construction methods are known (and are the subject of
the next section). When the dimension is not a prime or prime power,



38 Mutually unbiased bases

the question is still open. Dimension 6 has been studied in detail and a
combination of numerical [58,59], analytical [60,61] and computer-algebraic
methods [62, 63] strongly suggests that the maximum number of mutually
unbiased bases is three. In fact, we can always find a minimum of three
mutually unbiased bases in any dimension.

Complementarity is useful for many practical reasons. One of the early
motivations for looking at MUBs was quantum state determination. Given
an ensemble of quantum states, all prepared identically, how can we recon-
struct the density matrix that describes it? A general density matrix has
N2 − 1 real, independent parameters while a general projective measure-
ment gives N−1 real, independent numbers (assuming it is non-degenerate)
coming from the probabilities of each outcome. The probabilities sum to
one, which is why the Nth number from the measurement is not useful.
Clearly, we need N + 1 such measurements to fully determine the state, as
(N + 1)(N − 1) = N2 − 1. This is related to the “Pauli problem” [64],
in which Pauli wondered whether the probability distributions of x̂ and p̂
were enough to uniquely determine |ψ〉. Wigner showed, by introducing a
quasi-probability distribution known as the Wigner function, that more was
needed to completely reconstruct the state [65]. This result was extended
to the finite-dimensional case by Wootters using phase-point operators in
place of the Wigner function [66].

The requirement ofN+1 measurements for quantum state determination
does not single out MUBs as the best choice by itself; one could think of
many sets of N + 1 measurements whose eigenbases do not obey Eq. (4.1).
Nonetheless, the choice of MUBs minimises the statistical error and so is the
best option, provided one knows nothing about the state [67]. We sketch a
simple geometrical argument for this at the end of this chapter.

MUBs have other practical uses aside from quantum state determination.
A major application is quantum cryptography via quantum key distribution
schemes. If two parties—traditionally called Alice and Bob—want to share
information securely, they first need to set up a secure key that can be
used to encode and decode their messages. Several protocols are known
for this, but the famous BB84 protocol (named after its inventors Bennett
and Bassard in 1984) [10] requires Alice and Bob to perform mutually un-
biased measurements. These were initially designed for qubits, but higher
dimensional generalisations are known [68,69]. These have the advantage of
guaranteeing a theoretical higher security, meaning an eavesdropper gains
less information, although experimental inefficiencies become more notice-
able.

Where there is security one always finds hackers, and in quantum key
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distribution there are protocols designed to help an eavesdropper, tradition-
ally called Eve, listen in to a message. The simplest method is an “intercept
and resend” strategy in which Eve measures Alice’s original message in a
particular basis and then sends a replacement message to Bob. It is inter-
esting to note that the optimal measurements Eve should perform in N = 2,
defined by the intermediate basis or “Breidbart basis” [70, 71], relate to a
different MUB. Specifically, the usual measurements of Alice and Bob are
given by bases in the Ivanović MUB while those of Eve are given by a basis
in an Alltop MUB.

4.2 Constructions of MUBs

There are two MUB constructions of interest to us in this thesis. We shall
refer to the resulting MUBs as the Ivanović MUB and the Alltop MUBs
after the men who first discovered them. For each set, we give their original
construction method and then a more recent method, where the roles of the
WH and Clifford groups are more evident.

4.2.1 Ivanović MUBs

Ivanović found the first construction of MUBs for prime dimensions N = p
in 1981 [18]. He gave explicit expressions for N + 1 unitary operators whose
row vectors were mutually unbiased. The first basis is the computational
basis and the remaining bases can be constructed using

|ψ(r)
k 〉l = 1

√
p
e

2πi
p

(rl2+kl)
r, k, l ∈ Zp , r 6= 0. (4.2)

The basis is labelled by r, with the vectors in a basis labelled by k and the
components in each vector labelled by l. This MUB is a complete orbit under
the Clifford group. We can see this with the help of the operators defined in
Eq. (3.18) and Eq. (3.21). Acting with UF relates the computational basis
and second basis in the MUB, while acting with UT cycles through the p
bases excluding the computational one (an example of how this works in
N = 3 is given later in this section).

Wootters and Fields generalised Ivanović’s construction to powers of
prime dimensions N = pk by exploiting the theory of finite fields [67]. Their
construction uses the field extension Fpk in place of Zp. Again, the com-
putational basis is the first basis and the N remaining mutually unbiased
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bases are found from

|ψ(r)
k 〉l = 1

√
p
e

2πi
p
tr(rl2+kl)

r, k, l ∈ Fpn , r 6= 0. (4.3)

The trace operation for finite fields is defined as

tr(α) = α+ αp + αp
2 + . . .+ αp

n−1
, α ∈ Fpn . (4.4)

Though this can be time-consuming to calculate, the important point is that
the trace maps the extension field to the ground field, i.e. tr(α) ∈ Fp for all
α ∈ Fpk .

Different construction methods were subsequently found that realise the
same set of MUBs. For example, classifying Hadamard matrices [72] is
strongly tied to the problem of constructing MUBs. An especially illumi-
nating construction that highlights the role of the WH group comes from
Bandyopadhyay et al. [73]. They proved that a unitary operator basis that
can be partitioned into disjoint sets of commuting operators (with the ex-
ception of the unit element) gives rise to a MUB.

So the question of constructing MUBs comes down to classifying unitary
operator bases. These were discussed around Eq. (3.15). If the unitary
operator basis forms a group it is called a “nice error basis”. These have
all been classified and the only unitary operator basis to form disjoint sets
is the WH group when N = p or N = pk. In the former dimensions, we
use the usual WH group H(p), while in the latter dimensions, we use the
extraspecial WH group, H(p)×H(p)× . . .×H(p). In both cases, we recover
the MUBs found by Ivanović and by Wootters and Fields. What about
unitary operator bases that are not of group type? There are very many of
these and they have not been classified [44]. It is possible that MUBs could
arise from here, but the sheer number of possible unitary operator bases is
too large to search through.

We can look in a little more detail at Bandyopadhyay et al.’s construc-
tion. In prime dimensions, the WH group can be partitioned into N + 1
distinct maximally abelian subgroups, whose joint eigenbases are mutually
unbiased. In Section 3.2 we saw that we can always find at least three dis-
tinct maximally abelian subgroups of the WH group. In this way, we are
guaranteed at least three mutually unbiased bases for any N . We give the
example of constructing the Ivanović MUB in N = 3 below.
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Example 1. Ivanović MUB in dimension 3 (WH group construction)

For N = 3, Bandyopadhyay et al.’s construction involves partitioning
the WH group into four abelian subgroups. The WH group has 32 = 9 ele-
ments so each subgroup contains three elements, including the identity. The
subgroups are {1, Z, Z2}, {1, X,X2}, {1, ZX,Z2X2} and {1, Z2X,ZX2}.
Their respective (unnormalised) eigenbases are given below.1 0 0

0 1 0
0 0 1


1 1 1

1 ω ω2

1 ω2 ω


 1 ω2 ω2

ω2 1 ω2

ω2 ω2 1


1 ω ω
ω 1 ω
ω ω 1

 (4.5)

Recall that ω = e
2πi
N , so in this case is a third root of unity. This gives a MUB

in dimension 3. It is straightforward to check that the overlap between any
two vectors from different bases gives the required value after normalisation
of the vectors. Acting with elements in the WH group permutes vectors
within a basis, or, in the case of one particular subgroup, leaves the basis
vectors invariant. The Clifford unitaries UF and UT in dimension 3 look like

UF = 1√
3

1 1 1
1 ω ω2

1 ω2 ω

 (4.6)

and

UT =

1 0 0
0 ω2 0
0 0 ω2

 . (4.7)

The unitary UF relates the first and second bases and the unitary UT relates
the second, third and fourth bases, as shown in Figure 4.1. To get the
explicit form of the vectors given above, we occasionally need to multiply
by an overall phase and permute vectors within a basis. The unitary UF is
of order 2 (if we consider its action on bases rather than vectors) and the
unitary UT is of order 3, so we capture all the bases using these operators. It
is then clear that the Ivanović MUB is an orbit under the Clifford group since
UF and UT generate the symplectic group and the WH group just permutes
vectors within a basis. This argument holds for the Ivanović MUB in all
prime dimensions.
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Figure 4.1: The Ivanović MUB in N = 3. Each triangle is a basis and the arrows
show the action of the operators X, Z, UF and UT .

The MUB vectors from Bandyopadhyay et al.’s construction give pre-
cisely the same vectors as the constructions by Ivanović and Wootters and
Fields. But there are other constructions that reveal different explicit forms
of the vectors. This leads to the question of equivalence between different
MUBs. We say two MUBs are equivalent if they are related by a unitary
operator. It is known that in dimensions N ≤ 5 all MUBs are equivalent,
but the question is open in higher dimensions. Kantor has given an exam-
ple of two inequivalent MUBs when N = 32 [74]. Even if two MUBs are
equivalent, they may exhibit different properties. For example, unitarily
equivalent MUBs in N = 8 have different entanglement properties [75,76].

4.2.2 Alltop MUBs

We now turn to another construction, found by Alltop in 1981 in the lan-
guage of complex periodic sequences [77]. Its resulting vectors are unitarily
equivalent to those coming from Ivanović’s construction, but they exhibit
an interesting group structure and are important for quantum computing.
The Alltop construction also uses the WH group, but instead of looking at
eigenbases, it utilises an orbit of a particular fiducial vector under the action
of the WH group. In prime dimensions N = p, the fiducial vector is

|ψ〉l = 1
√
p
ωl

3
, (4.8)

where ω = e
2πi
N as usual. This time we only need the index l to label the

component in the vector. There is a slight caveat with dimension 3; in this
case, we need to use the phase σ = e

2πi
9 in place of ω = e

2πi
3 . We generate

an additional p2 vectors by acting with the WH group. These collect into
p mutually unbiased bases, which is not quite a MUB. If we also include
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the computational basis, which is mutually unbiased to every vector in the
orbit, then the Alltop construction produces a MUB.

A construction for dimensions N = pk, p 6= 2 was developed by Klappe-
necker and Rötteler [78]. There is no clear extension of Alltop’s construction
to the N = 2k case where the MUB vectors form orbits under the WH group,
although explicit fiducial vectors in the two lowest dimensions, N = 2 and
4, are given in Paper V.

Returning to prime dimensions, Alltop’s fiducial vector can be gener-
alised to produce additional sets of mutually unbiased bases. The fiducial
vector is then

|ψx〉l = 1
√
p
ωxl

3 (4.9)

where x ∈ [1, p − 1]. Once again, each WH orbit of the fiducial will give
p2 vectors that collect into p mutually unbiased bases. And once again, the
computational basis is mutually unbiased to every vector in the HW orbit, so
appending this basis to each orbit gives a MUB. With p− 1 Alltop fiducials
we find p − 1 MUBs. It is convenient to call the vectors in a Alltop MUB
that do not also appear in the Ivanović MUB “Alltop vectors”.

The behaviour of the Alltop MUBs under the action of the Clifford group
depends on dimension. When p = 1 mod 3, the Alltop vectors split into
three Clifford orbits. In this case, the Alltop vectors have some additional
symmetry: they are invariant under the Zauner unitaries that only exist
in these dimensions, given in Eq. (3.29). When p = 2 mod 3, the Alltop
vectors lie in a single Clifford orbit. This is given in more detail in Paper VI,
together with the configurations formed by the Alltop vectors and Zauner
subspaces.

Even more Alltop MUBs can be generated in this construction. So far,
the p−1 Alltop MUBs all include, or “overlap” at, the computational basis.
We can apply the familiar Clifford unitaries UF and UT to rotate the Alltop
MUBs into more Alltop MUBs. The new MUBs will overlap at a different
bases in the Ivanović MUB, in accordance with which unitary we apply. For
example, acting with UF on an Alltop MUB rotates it into a new Alltop
MUB that now includes the second basis in the Ivanović MUB. As the
Ivanović MUB contains p+ 1 bases, there are (p− 1)(p+ 1) Alltop MUBs in
total using p(p2 − 1) additional bases. We give an example of the situation
in N = 3 below.
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Example 2. Alltop MUB in dimension 3 (fiducial vector construction)

For N = 3, there are two fiducials in the Alltop construction. The first
fiducial vector, with x = 1, is

|ψ1〉 =

 1
σ
σ2

 . (4.10)

Recall that σ = e
2πi

9 . Acting with the WH group gives an orbit of nine
vectors. They collect into three mutually unbiased bases, where Z relates
vectors within a basis whileX relates vectors between bases. The first Alltop
MUB is shown below, where the first basis is the computational one.1 0 0

0 1 0
0 0 1


 1 1 1
σ σ4 σ7

σ2 σ8 σ5


 1 1 1
σ7 σ σ4

σ8 σ5 σ2


 1 1 1
σ σ4 σ7

σ8 σ5 σ2

 (4.11)

The second fiducial, with x = 2, is

|ψ2〉 =

 1
σ2

σ4

 . (4.12)

As before, the orbit under the WH group gives three mutually unbiased
bases. The Alltop MUB is given below, with the computational basis shown
first.1 0 0

0 1 0
0 0 1


 1 1 1
σ2 σ5 σ8

σ4 σ σ7


 1 1 1
σ5 σ8 σ2

σ7 σ4 σ


 1 1 1
σ2 σ5 σ8

σ7 σ4 σ

 (4.13)

Figure 4.2 shows the MUBs from the two Alltop fiducials given above to-
gether with the Ivanović MUB. They overlap at the computational basis
since it appears in all three MUBs. We can then fill out this picture, by
acting with UF and UT on the Alltop MUBs in Figure 4.2. This gives eight
Alltop MUBs, where two Alltop MUBs overlap at each basis in the Ivanović
MUB. This complete picture in N = 3 is shown in Figure 4.3.
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Figure 4.2: The Ivanović MUB (inside dashed lines) and two Alltop MUBs in
N = 3. Each triangle is a basis and the arrows show the action of the operators X
and Z.

We can now state more precisely how the MUBs are connected with
quantum computing. The Ivanović MUBs are precisely the stabiliser states.
This is clear because both are generated by taking joint eigenvectors of the
WH group. The role of Alltop MUBs is more specifically connected to magic
state distillation. In N = 2, there are three Alltop MUBs, comprised of 36
vectors. Of these, 12 are Alltop vectors, where Alltop vectors are vectors
that lie in an Alltop MUB and not in an Ivanović MUB. The Alltop vectors
coincide with the 12 H-type magic states in N = 2. In N = p, the Alltop
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Figure 4.3: The Ivanović MUB (inside horizontal dashed lines) and all eight Alltop
MUBs in N = 3. Each triangle is a basis and the dashed lines separate MUBs.

vectors also coincide with magic states, as pointed out in Paper VI.1.
This construction of Alltop MUBs can be translated into a similar lan-

guage to Bandyopadhyay et al.’s construction of the Ivanović MUB. Bandy-
opadhyay et al. turned a construction using quadratic functions into one
using eigenbases of the WH group. Similarly, we can turn Alltop’s construc-
tion from one using cubic functions to one using eigenbases of the Clifford

1The usual definition of magic states in N = p focusses on magic states that cannot be
reached via Clifford unitaries [16]. In MUB terms, these are Alltop vectors coming from
Alltop MUBs that overlap at the computational basis, not ones obtained by acting with
UF and UT .
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group. In Section 3.3 we wrote that the order p elements of the Clifford group
can sometimes be written as WH translates. There are p(p−1)(p2−1) such
elements that cannot be written as translates, which corresponds to p(p2−1)
subgroups. This is precisely the number of bases of Alltop vectors. We con-
clude, then, that the Alltop MUBs are eigenbases of abelian subgroups of
order p elements of the Clifford group that cannot be written as WH trans-
lates. We show how this works in N = 3 below; more details can be found
in Paper V.

Example 3. Alltop MUB in dimension 3 (Clifford group construction)

We can see how to generate the same Alltop MUB using the second
method, namely by taking eigenbases of certain elements in the Clifford
group. If we ask for the Clifford elements that leave the Alltop fiducials
from above invariant, we find

σ2X2UT =

 0 σ8 0
0 0 σ8

σ2 0 0

 (4.14)

for the first fiducial |ψ1〉 and

σ4X4U2
T =

 0 σ7 0
0 0 σ7

σ4 0 0

 . (4.15)

for the second fiducial |ψ2〉. Note that these operators permute vectors
between bases in the Ivanović MUB (with the exception of vectors in the
computational basis that are left invariant by UT ). This is important for
geometrical considerations in the next section.

4.2.3 Relating Ivanović and Alltop MUBs

As the Ivanović MUB is a Clifford orbit and the Alltop MUBs are a Clifford
orbit (or three), then any operator that relates the two MUBs will have to
come from outside the Clifford group. In fact, it will have to come from the
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third level in the Clifford hierarchy, since the Ivanović bases are eigenbases
of WH group elements and the Alltop bases are eigenbases of Clifford group
elements. We stick to our example case of N = 3 and show how the two
MUBs are related.

Example 4. Ivanović and Alltop MUBs in dimension 3

The unitary matrix that relates Ivanović and Alltop MUBs in dimension
3 is

UC =

1 0 0
0 σ 0
0 0 σ2

 . (4.16)

This is actually of order nine and so not only cycles through bases but also
vectors within the bases. The explicit transformation of the second basis in
the Ivanović MUB under the action of UC is1

1
1

→
 1
σ
σ2

→
 1
σ2

σ4

→
 1
ω
ω2

→
 1
σ4

σ8

→
 1
σ5

σ

→
 1
ω2

ω

→
→

 1
σ7

σ5

→
 1
σ8

σ7

→
1

1
1

 .
Comparing to the explicit MUBs given earlier, we see that it cycles through
every vector in the second basis of the Ivanović MUB and the two Alltop
MUBs.
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4.3 Geometry of MUBs

4.3.1 Bloch space

We can look at the geometry of MUBs in Bloch space. We saw in Chapter
2 that an orthonormal basis in Hilbert space corresponds to an (N − 1)-
simplex in Bloch space. Mutually unbiased bases span planes that are totally
orthogonal, i.e. every vector in each plane is orthogonal to every vector in
the other plane. This means a MUB forms a set of N + 1 totally orthogonal
planes in Bloch space. The convex hull of these planes gives a polytope [79].
In prime dimensions, it coincides with the stabiliser polytope—the convex
hull of the stabiliser states—which is relevant for determining which states
are useful for quantum computation schemes [80]. To see what this looks
like we consider the Ivanović and Alltop MUBs in N = 2.

Example 5. Ivanović MUB in dimension 2

In N = 2 we can see the MUBs on the Bloch ball. The Ivanović MUB
is given below. [

1 0
0 1

] [
1 1
1 −1

] [
1 i
1 −i

]
(4.17)

These are familiar to optics experimentalists as the quantum states |H〉,
|V 〉 (horizontal and vertical polarisation) for the first basis; |+〉 , |−〉 for the
second basis (diagonal and anti-diagonal polarisation); and |L〉, |R〉 for the
third basis (left and right circular polarisation). They lie on the surface of
the Bloch ball and vectors in a basis span a line through the origin. The
convex hull of the MUB vectors is a regular octahedron inside the Bloch
ball. The Ivanović MUB is shown (in blue) in Figure 4.4.
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Example 6. Alltop MUB in dimension 2

In N = 2 we can see the Alltop MUBs on the Bloch ball. There are
three Alltop MUBs, related by the Clifford elements that relate the bases in
the Ivanović MUB. The Alltop MUB that overlaps the computational basis
is given below. [

1 0
0 1

] [
1 1
µ µ5

] [
1 1
µ3 µ7

]
(4.18)

The latest phase is defined as µ = e
πi
4 . The Alltop MUBs lie on the surface of

the Bloch ball and their convex hulls are also a regular octahedron, slightly
rotated from the Ivanović one. The Alltop MUB above is shown in Figure 4.4
(in orange) together with the Ivanović MUB (in blue).

Figure 4.4: The Ivanović (blue) and an Alltop MUB (orange) on the Bloch ball
for N = 2 and the cross-section of the equatorial plane of the Bloch ball.

It is clear to see that the Ivanović and Alltop MUBs in Figure 4.4 are uni-
tarily equivalent since a rotation of the Bloch ball is enough to identify them.
We mentioned that the Ivanović MUB is used for quantum communication
protocols while the Alltop MUB is used for eavesdropping in intercept-and-
resend attacks. This can be quickly seen by looking at the equatorial plane
in Figure 4.4. Many quantum key distribution schemes only use two bases
in practice. If Alice and Bob use the bases in the Ivanović MUB, then Eve
should use a basis that doesn’t favour either Alice or Bob. The optimal
choice is one of the bases in the Alltop MUB, because they lies equidistant
from the two bases in the Ivanović MUB. We calculate this distance more
precisely later in this section.
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4.3.2 States that “look the same”

In Section 4.2 we saw that the Ivanović and Alltop MUBs were related by
a unitary operator from the third level of the Clifford hierarchy. We now
ask for the geometrical relationship between these sets of MUBs. We shall
address the problem in two ways: first we take projections of the Alltop
vectors onto the different bases in the Ivanović MUB, and second we ask for
the distance between bases in different MUBs.

These are related ideas, but we look first at the projections of Alltop
MUB vectors onto bases in the Ivanović MUB. A “MUB-balanced” state
|ψ〉 is one whose probability vector p = (| 〈ψ|e1〉 |2, . . . , | 〈ψ|eN 〉 |2) is the
same up to permutations for all bases |ei〉 in the MUB [81]. Such states are
said to “look the same” with respect to every basis. They are known when
N = 2 [82] and when N = 3 mod 4 [81, 83]. In a practical setting, these
states are such that after performing a measurement corresponding to one
of the MUB bases, the resulting statistics would not be enough to determine
which measurement was performed.

The Alltop vectors are close to MUB-balanced. They have the same
probability vectors, up to permutations, for N of the Ivanović bases, but
the Alltop vector will be mutually unbiased with respect to the final basis.
Thus, this basis will not “look the same” as the others.

The reason for this can be traced back to the order N Clifford uni-
tary operator UT . It leaves the Alltop vectors invariant (perhaps with some
accompanying displacement operator) as discussed in Section 4.2, while cy-
cling through N bases in the Ivanović MUB. These two properties mean
that the scalar products between a particular Alltop vector and the vec-
tors in an Ivanović basis are the same for each basis. Thus the probability
vector is the same up to permutations. Given an Alltop vector |A〉 and
Ivanović vectors |I(z)

a 〉, where a ∈ {0, 1, . . . , N − 1} labels the vector and
z ∈ {0, 1, . . . , N − 1,∞} labels the basis. Then we find the projections onto
the first basis from 〈

I(1)
a |A

〉
. (4.19)

There will be N values corresponding to the N basis vectors. The trick is
to realise that inserting the operator DpUT that leaves the Alltop vector
invariant will permute the Ivanović vector into another basis. We find〈

I(2)
a |A

〉
=
〈
I(2)
a |(DpUT )−1(DpUT )|A

〉
=
〈
I(1)
a |A

〉
. (4.20)

Thus we recover the same N values as for the first basis in the Ivanović
MUB. This holds for all bases in the Ivanović MUB except the one at which
the Alltop MUB overlaps.



52 Mutually unbiased bases

The case of N = 3 is simple enough to draw a picture the situation. Each
Ivanović basis can be thought of as a probability simplex and each Alltop
vector makes a single dot in each of the N + 1 simplices. Figure 4.5 shows
an Alltop vector from each Clifford orbit (blue dots come from the Alltop
fiducial with x = 1; orange dots from the Alltop fiducial with x = 2). The
first basis has a single dot in the centre, since every Alltop vector is mutually
unbiased to a basis in the Ivanović MUB. It therefore has the same scalar
product with respect to every vector in the basis. The remaining bases will
have three different scalar products, but the values will be the same for each
basis. Thus the dots in the remaining simplices all lie on a circle of constant
radius. The dashed circle shows where the dots would be expected to lie for
a true “MUB-balanced state”. The dots from Alltop vectors lie outside this
circle, to compensate for the central dot in the first simplex.

Figure 4.5: Projections of Alltop vectors onto bases in the Ivanović MUB. The
top image (blue dots) shows vectors from the Alltop MUB with fiducial x = 1 from
Eq. (4.10); the bottom image (orange dots) shows vectors from the Alltop MUB
with fiducial x = 2 from Eq. (4.12).

4.3.3 Grassmannian space

We now turn to examining the distances between entire bases in different
MUBs. In the dimension 2 example it is clear from Figure 4.4 that the
bases in the Alltop MUB are equidistant from the bases in the Ivanović
MUB. This can be calculated exactly by moving to a Grassmannian space
and using a relevant measure of distance [79,84]. Moving to a Grassmannian
space is a similar manoeuvre to moving from Hilbert space to Bloch space,
but instead of considering a vector space made out of matrices, we consider
a vector space made out of complete bases. This puts us in a much higher
dimensional space, where every point represents a basis in Hilbert space.
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Unfortunately, even for a Hilbert space of N = 2, the Grassmannian space
already grows to 5 dimensions, so a picture is out of reach. Still, we can
get some insight from the equations. We use the chordal Grassmannian
distance,

D2
c = 1− 1

N − 1

N−1∑
i=0

N−1∑
j=0

(
|〈ei|fj〉|2 −

1
N

)2
(4.21)

between two bases |ei〉 and |fj〉. This vanishes if the bases are identical and
reaches a maximum if the bases are mutually unbiased. The distance from
a basis in an Alltop MUB to a basis in an Ivanović MUB is constant for
all bases in the Ivanović MUB, with the exception of the overlapping basis
(i.e. the basis included in both the Alltop and Ivanović MUBs). In fact,
the distance is constant between bases that lie in overlapping MUBs and
constant (and slightly smaller) between bases that lie in non-overlapping
MUBs. The explicit distance between bases in overlapping MUBs is

D2
c = N − 1

N
(4.22)

while the distance between bases from non-overlapping MUBs is

D2
c = N − 1

N
− 1
N
. (4.23)

The proof of this is given in Paper V. It proceeds in two steps. The first
step relies on the observation from the MUB-balanced discussion, where
unitary matrices that leave bases from one MUB invariant have the property
that they permute bases in the other MUB. This ensures that the distance
between one basis in the Ivanović MUB and one basis in an Alltop MUB
is the same regardless of which basis in the Alltop MUB we look at. The
second step relies on MUBs being 2-designs [85, 86]. This ensures that the
distance between bases is the same regardless of which pairs of (overlapping
or non-overlapping) MUBs we look at.

4.3.4 A simple picture of tomography

Armed with this geometrical picture of quantum state space, we can look
again at why MUBs are optimal for quantum state tomography. Here we
present a simple geometrical argument first given by Wootters and Fields
[67]. MUBs are optimal when we know nothing about the quantum state and
don’t update our measurements upon the observed outcomes. Such schemes
have been implemented in the laboratory [87, 88]. We shall take the N = 2
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Figure 4.6: The set of all real, 2-dimensional quantum states where two mea-
surements specify a unique density matrix. The left image shows perfect resolution
while the right image shows some error in the measurement.

case and consider the space of real density matrices for simplicity, so Bloch
space has 2 dimensions. A general real density matrix lies on a disk with
the pure states on the circular boundary and a measurement corresponds to
a line through the centre of the disk. We need two lines to specify a point
on the disk uniquely, a reduction on the three we need for the complex case.

Assuming the number of measurements we make is finite, we will en-
counter some statistical error in our measurements, so the lines in Bloch
space corresponding to measurements gain a certain thickness depending on
the error. In the real N = 2 case, Figure 4.6 shows the Bloch body—the
disk—with two arbitrary measurements through it. The left image shows a
perfect measurement and the right image shows a more realistic measure-
ment, where the thickness of the lines corresponds to the uncertainty in the
measurement. Instead of the single point that the left image specifies, we
get a small area from our two measurements.

If the measurements are mutually unbiased then the lines will be orthog-
onal. In Figure 4.7, the left image shows the perfect case while the right
image again shows lines with a certain thickness, corresponding to measure-
ments with some uncertainty. The area is minimised for orthogonal lines
and thus the uncertainty is minimised for mutually unbiased measurements.

We have assumed that the lines always have the same thickness, when in
reality some measurements may be performed more precisely than others.
Nonetheless, if we don’t know which measurements are better, the uncer-
tainty is still reduced by choosing to make mutually unbiased measurements.

4.3.5 Affine plane

Here we outline the relationship between MUBs and finite affine planes,
defined in Section 2.5. We shall take the example of the Hesse configuration,
i.e. the affine plane of order 3, but the following can be generalised to all
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Figure 4.7: The set of all real, 2-dimensional quantum states where two mutually
unbiased measurements specify a unique density matrix. The left image shows
perfect resolution while the right image shows some error in the measurement.

finite affine planes of order odd N . We remind ourselves that the Hesse
configuration is denoted by (94, 123), meaning the plane contains nine points
and 12 lines, where each line contains three points and each point sits in
four lines. We then want a realisation of the Hesse configuration in Hilbert
space. The key is to interpret the lines in the configuration as vectors in
Hilbert space; we see there are 12 of them, coming from four sets of three
parallel lines, which is precisely the number of vectors in the Ivanović MUB.

But how should we interpret the points in the Hesse configuration? They
represent 2-dimensional subspaces in Hilbert space and, in fact, they cor-
respond to eigenspaces of the phase-point operators introduced by Woot-
ters [89]. A line passing a point in the Hesse configuration then means that
the MUB vector associated to the line lies in the 2-dimensional subspace
associated to the point. So the Hesse configuration becomes a statement
about MUB vectors lying in particular eigenspaces.

If we look back at the explicit vectors in the Ivanović MUB in N = 3,
we can find four vectors, one from each basis, that are linearly dependent.
This is clear to see in the affine plane picture, since each point lies in four
different lines. In other words, each subspace contains four MUB vectors.
Since the subspaces are 2-dimensional, the 3-dimensional MUB vectors must
be linearly dependent. This whole structure generalises to higher dimensions
where N is a prime. The affine plane will contain N(N + 1) lines that are
made up from N + 1 sets of N parallel lines. These lines can always be
realised as MUB vectors. In the case of N = 3, there is another way of
looking at the Hesse configuration that relates to SICs, but we shall cover
that in the next chapter.

In Section 2.5, we discussed Latin squares and their equivalence to finite
affine planes. To recap, a set of N −1 Latin squares that form Graeco-Latin
pairs is equivalent to a finite affine plane of order N . It is tempting to try
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to relate the existence problem of Latin squares to the existence problem of
MUBs, and there are some tantalising hints, such as the ability to always
find three mutually unbiased bases and the ability to always find one Latin
square (in addition to the two squares of horizontal and vertical parallel
lines) and the lack of both MUBs and affine planes in N = 6. Nonetheless,
no firm connection between the two problems is known.



Chapter 5

Symmetric POVMs

5.1 Symmetric measurements

Symmetric informationally-complete POVMs (SICs) are special measure-
ments in a similar vein to the MUBs. An informationally-complete measure-
ment must have at least as many effects as are needed to completely deter-
mine an unknown state. As discussed for the MUBs in the previous chapter,
this requires N2 − 1 independent parameters. Given that the effects in a
POVM sum to one, an informationally-complete measurement needs a min-
imum of N2 distinct effects. A POVM that has N2 effects is called minimal,
but we won’t bother with this term: when we mention an informationally-
complete POVM, we shall always mean a minimal informationally-complete
POVM. For a SIC then, we have N2 effects. Note that where a MUB was
composed of N + 1 POVMs (that were actually projection measurements),
a SIC is a single POVM.

The term symmetric refers to the constant pairwise trace of two projec-
tion operators. We will work with rank 1 projectors, but “general SICs”
with higher rank have been studied [90]. The defining equations for a SIC
are

N2−1∑
i=0

Πi = 1, Tr(ΠiΠj) = 1
N + 1 for i 6= j. (5.1)

The projectors themselves are sub-normalised, Πi = 1
N |ψi〉 〈ψi|. In terms of

the vectors, the SIC equations become

N2−1∑
i=0
|ψi〉〈ψj | = N1, |〈ψi|ψj〉|2 = 1

N + 1 for i 6= j. (5.2)
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As with the defining MUB equation in Eq. (4.1), the right hand side is
determined; the important point is that the overlap is constant. This
condition makes a SIC optimal for quantum state tomography out of all
informationally-complete POVMs [19]. We give a simple geometrical de-
scription of this at the end of Section 5.3.

Though a self-contained topic in themselves, SICs have links to many
areas in mathematics and physics. For example, they are studied under the
name equiangular lines, minimal 2-designs and tight frames. SICs appear
in foundational issues of quantum mechanics where they form a “standard
measurement” through which an arbitrary quantum state can be viewed
without resorting to Hilbert spaces [91, 92]. There is a particularly nice
connection to elliptic curves and the Hesse configuration in the affine plane
in dimension 3, which we discuss in Section 5.3.

Interest in SICs isn’t limited to the theoretical domain. Practically, they
are useful for quantum state tomography [19, 93], quantum communication
[94, 95] and quantum cryptography protocols [96, 97]. They are also used
in classical high presentation radar applications [98,99] and classical speech
recognition [100]. The measurements are harder to implement than MUBs
and so there are fewer experiments. However, SICs have been successfully
performed when N = 2 [101], 3 [102] and 4 [103] (using tensor products of
two 2-dimensional SICs).

The defining equation for a SIC, plus its application in state tomography
and cryptography, is very reminiscent of a MUB. There is another similarity:
the open problem of existence. The first construction of SICs was by Zauner,
where SICs, along with MUBs, were found analytically in dimensions 2 ≤
N ≤ 5 as examples of 2-designs [49]. Later, and independently, Renes et
al. also found examples in dimensions 2 ≤ N ≤ 7 (the solutions for the
latter three dimensions being numerical) [104]. Since then there has been
significant effort dedicated to finding higher dimensional SICs.

Numerical solutions are now known in all dimensions N ≤ 67 [105] and
analytical solutions are known in N = 2−16, 19, 24, 28, 35 and 48 [105–107].
Though it seems reasonable to believe that SICs exist in all dimensions, a
definite proof is still lacking. Even worse, the solutions we currently have
follow different approaches and use dimension-dependent tricks, e.g. a sim-
plified representation of the WH group in square dimensions or a larger
stability group in N = 19. The most successful method for numerical solu-
tions comes from Scott and Grassl, who exploit group theoretical properties
of SICs using a powerful computer program [105]. All this leaves us with-
out an overall coherent method of constructing SICs. In this regard, the
SICs are very different to the MUBs, where a clear recipe for construction
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is known in a subset of all dimensions.

5.2 Constructions of SICs
There is some hope that a clearer picture of SICs will emerge from the
current fog of solutions. There are some properties of the known SICs that
hint at an underlying structure. One is that the entries of the SIC vectors
for the analytical solutions all come from special number fields [108]. We
won’t go into that in this thesis, and instead we concentrate on two other
properties: WH group covariance and Zauner invariance.

5.2.1 Weyl-Heisenberg covariance

The first property is group covariance. Group covariance means that the
SIC vectors are an orbit under a group. Thus, once we have one vector
in the SIC—the fiducial vector—we can use the group to generate the rest
of the SIC. In principle, any group with order N2 could work but in the
overwhelming majority of known cases SICs are covariant with respect to the
WH group. In prime dimensions, this is in fact the only group possible [51].
We can therefore rewrite the SIC equation in Eq. (5.2) as

|〈ψi|ψj〉|2 = |〈ψi|Dp|ψi〉|2 = 1
N + 1 , (5.3)

where p labels the displacement operator from Eq. (3.12). There is one
example of a SIC that is not WH group covariant. It is in dimension 8 and
is instead covariant with respect to the extraspecial Heisenberg group (i.e.
the WH group made from tensor products) [109].

5.2.2 Zauner invariance

Zauner invariance comes from a conjecture made by Zauner in 1990 [49]. It
states that a SIC fiducial is left invariant under an order 3 Clifford unitary.
Mathematically, we express Zauner invariance as

UZ |ψ〉 = |ψ〉 , U3
Z = 1. (5.4)

There are in fact three conjectures of Zauner invariance, varying in strength.
They all conjecture the existence of SICs but they differ as to the Clifford
element that leaves the fiducial invariant. We remind the reader that a
canonical Clifford element is one whose Clifford trace is −1 mod N (and not
the identity matrix in the case of N = 3). We give the three conjectures
here.
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• Conjecture 1 (Appleby) SIC fiducials exist in every finite dimension,
and every SIC fiducial vector is an eigenvector of a canonical order 3
unitary.

• Conjecture 2 (Zauner) For every dimension, there exists a SIC fidu-
cial vector that is an eigenvector of the Zauner unitary UZ0 , i.e. the
symplectic unitary associated to the Zauner matrix Z0 defined in
Eq. (3.28).

• Conjecture 3 (Appleby) SICs exist in every finite dimension, and every
SIC fiducial vector is an eigenvector of a canonical order 3 unitary that
is conjugate to the Zauner unitary UZ0 .

In odd prime dimensions, the first and third conjectures are equivalent since
there is only a single conjugacy class of order 3 Clifford unitaries [50]. A
counter-example to the third conjecture was found by Grassl inN = 12 [110],
but this is the only known counter-example. We include the conjecture
here because it may still be true for a subset of dimensions. Why this
symmetry should hold is not known, but every SIC found so far exhibits
Zauner invariance.

5.2.3 Clifford orbits

There is more than one SIC in a given dimension. We can classify the
number of SICs by using the Clifford group and asking whether two SICs
are related by a Clifford unitary. In this way, we find the number of different
Clifford orbits of SICs. The known results are given in Table 1 in Ref. [105].
For example, dimension 2 has a single Clifford orbit (see the next section
for a picture); dimension 3 has an infinite number (this is very unusual);
dimensions 4, 5 and 6 have a single orbit; and dimensions 7 and 8 have two
orbits.
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5.3 Geometry of SICs

5.3.1 Bloch space

Like the MUBs in the previous chapter, the SICs form regular structures in
Bloch space. For a SIC in dimension N , its convex hull forms an (N2 − 1)-
simplex in Bloch space whose N2 vertices lie on the manifold of pure states.

Example 7. SIC in dimension 2

Let’s look at the Bloch ball for N = 2. The SIC has four vectors, given
by (
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where x =
√

(3 +
√

3)/6 and y =
√

(3−
√

3)/6. The simplex is simple; its
description in coordinates is not. The SIC forms a regular tetrahedron with
vertices on the surface of the Bloch ball, shown in Figure 5.1. We can clearly
see the constant overlap property in action, as the angle between each pair
of vectors is the same.

Figure 5.1: The convex hull of a SIC pictured on the Bloch ball for N = 2.

To what extent is this SIC unique? We saw in Chapter 2 that we can
always rotate the states in the Bloch ball by means of suitable unitary
operators. We can do the same here: rotate the tetrahedron and obtain a
new SIC. This is valid, but it means we must also apply the unitary operation
to the displacement operators in the WH group. But we have fixed the
representation of the WH group and so we don’t include the infinite other
SICs we get this way. We can look at Clifford orbits instead. Recall that
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the Clifford group is the normaliser of the WH group, so the WH group
elements are invariant under the action of the Clifford group. In the case of
N = 2, there is a single Clifford orbit and it contains two SICs. The vectors
from the SICs can be visualised as the eight vertices of a cube. They are
shown in Figure 5.2. The action of a Zauner unitary on the fiducial vector
rotates the tetrahedron around this vector, which results in permuting the
other three vertices. Now we can see the order 3 property in action, since
after three applications the vertices have returned to their original positions.

Figure 5.2: Two SICs (one with dashed lines and one with solid lines) in the same
Clifford orbit for N = 2. Acting with elements in the WH group permutes vectors
within a SIC, while acting with elements in the Clifford group permutes vectors
between SICs.

The eight vectors in the SICs inN = 2 also have a connection to quantum
computing. Recall from Section 3.4 that there were 36 magic states inN = 2,
divided into eight T -type and 12 H-type states. The T -type magic states
are the SIC vectors. This seems to be a special coincidence in N = 2 as no
SICs have been identified as magic states in higher dimensions.

This picture of SICs in Hilbert space generalises and the convex cover
of SICs in higher dimensions will form regular simplices in Bloch space. In
dimension N , the SIC will be an (N2 − 1)-simplex. This gives a hint as to
why the SIC problem is hard: we can always fit an (N2 − 1)-simplex inside
the Bloch body (which has N2 − 1 dimensions) but arranging the vertices
to lie on the manifold of pure states (which has 2(N − 1) dimensions) is
difficult.
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5.3.2 A simple picture of tomography

We can look at the probability simplices spanned by POVMs to get a clue
as to why the SICs are an optimal choice for state tomography. In gen-
eral, informationally-complete POVMs provide a restricted set of all possi-
ble probabilities since they are subnormalised projectors. The probability
simplex for an informationally-complete POVM will have N2 vertices, where
each vertex corresponds to an effect in the POVM. For simplicity, we shall
consider rebits, so we set N = 2 and declare that all entries must be real
numbers. This restriction means we can only find three “SIC” vectors; to-
gether, they are sometimes called a “trine”. Forming three effects from
the SIC vectors, we can calculate three probabilities via the Born rule in
Eq. (2.31). The probability simplex is therefore a triangle.

Figure 5.3 shows the possible probabilities when we measure with a SIC
(left image) compared with two other informationally-complete POVMs with
less symmetry (centre and right images). We see that probabilities coming
from informationally-complete POVMs land inside ellipses on the probabil-
ity simplex, but the special case of a SIC produces probabilities inside a
circle. Thus using a SIC for tomography maximises the possible probabili-
ties.

Figure 5.3: Boundary of probabilities for a pure, real state in N = 2 when
measuring with a SIC (left image) and two less symmetric informationally-complete
POVMs (centre and right images).

If we hadn’t restricted ourselves to rebits, the state space in N = 2
would have been the usual Bloch ball, given in Figure 2.3 and the probability
simplex would have been a tetrahedron, since an informationally-complete
POVM would have had four effects. The possible probabilities would then
sit inside an ellipsoid for a general informationally-complete POVM and
inside a sphere for a SIC.

5.3.3 Affine space

In dimension 3 there is a very clear connection between the Hesse configura-
tion and SICs, first noted by Hughston [111, 112]. We go through it briefly
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here and remark on some attempts to extend it to higher dimensions. We
want to realise the nine points of the Hesse configuration as vectors in Hilbert
space, and the 12 lines as the subspaces. This is the opposite way round
to our considerations for MUBs. The punch-line is that the realisation of
nine vectors is a SIC in N = 3 and the lines connect sets of three linearly
dependent vectors among the SIC vectors.

In dimension 3, there is a continuous, one-parameter family of SICs. The
fiducial vector is  0

1
−eiθ

 , (5.5)

parametrised by θ ∈ [0, 2π]. Clifford symmetry means we only need to
consider θ in the interval [0, 2π

6 ] as other fiducials give rise to SICs on the
same Clifford orbits [48]. The SIC generated from the fiducial with θ = 0
is on a Clifford orbit of its own (as the fiducial is left invariant under all
symplectic unitaries); the SIC generated from the fiducial with θ = 2π

6 is on
a Clifford orbit of four SICs; every other SIC is on an orbit of eight SICs.

We turn now to linear dependencies. We are interested in sets of three
vectors in the SIC that are linearly dependent. As there is a zero entry
in the fiducial, every choice of θ will result in three sets of three linearly
dependent vectors, coming from the vectors in the WH orbit related by
Z. For the two special choices of θ = 0 and θ = 2π

9 the SIC exhibits 12
sets of linearly dependent vectors. Linear dependencies in WH orbits is of
independent interest for signal processing reasons, where the aim is to find
orbits whose vectors are linearly independent. The question was solved first
in prime dimensions [113] and later in finite dimensions [114].

We can view the SIC as the points in the Hesse configuration. It doesn’t
matter exactly which points correspond to which SIC vectors as the picture
is symmetrical. If we draw lines through the linearly dependent sets we
have 12 lines on the plane, each line containing 3 points. Each affine plane
in Figure 5.4 shows one set of three linearly dependent vectors. This is
precisely Figure 2.7 again, which shows the four striations of the Hesse
configuration in the finite affine plane.

Another,related, way to look at the Hesse configuration in relation to
SICs in N = 3 is to let lines correspond to subspaces of Zauner unitaries.
Each Zauner unitary has three SIC vectors in its subspace (the eigenspace
associated to the eigenvalue +1). Let us we identify the SIC fiducial vector
with the point at the bottom left of the affine plane. We can then look at the
four Zauner subspaces that contain the fiducial vector by only considering
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Figure 5.4: A SIC as an affine plane of order N = 3. The points correspond to
SIC vectors and the lines correspond to linearly dependent sets of vectors.

those lines that pass through the this point. Figure 5.5 shows the these four
lines and the corresponding Zauner unitaries.

Figure 5.5: The Zauner unitaries that leave the SIC fiducial with θ = 0 invariant
for N = 3.

There is also a bonus connection to mutually unbiased bases. The 12 2-
dimensional (Zauner) subspaces in C3 define 12 vectors that are orthogonal
to these subspaces. These are unique up to a scalar. These 12 vectors are
precisely the vectors appearing in the Ivanović MUB in N = 3. The SIC
fiducial with θ = 2π

6 , plus the other seven SICs on the same Clifford orbit,
also form Hesse configurations. The 12 lines in these Hesse configurations
also correspond to the MUBs, where this time the 12 vectors come from one
of the Alltop MUBs. Recall that there were eight Alltop MUBs in N = 3,
which makes sense as the Alltop MUBs are a Clifford orbit and the eight
SICs are a Clifford orbit.

Given the SIC connection, it is natural to ask whether any configura-
tions are relevant to SICs in higher dimensions. This was investigated in
Paper IV. The conclusion is that configurations where SICs are points and
linearly dependent sets of N vectors are lines do exist whenever N = 3k for
integer k, although the connection to MUBs is lost. The major difference is
that these linear dependencies also arise when the WH orbit is not a SIC.
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Specifically, Paper IV shows that as long as the fiducial vector lies in the
Zauner subspace, the orbit under the WH group will have exactly the same
pattern of linear dependencies as if the fiducial vector was a SIC. There are
some small differences, but the configurations themselves do not single out
SICs in higher dimensions.



Chapter 6

Contextuality

6.1 Gleason’s theorem
Quantum mechanics is a theory about probabilities. Given a quantum state
and a measurement, we can calculate the probabilities of outcomes via the
Born rule. But is there another way? A powerful theorem by Gleason tells
us that in a Hilbert space with N > 2 the answer is no [4].
Gleason’s theorem. The only way to associate a probability pi to each ray
in Hilbert space such that 0 ≤ pi ≤ 1 and

∑
i pi = 1 for all orthonormal

bases is via the Born rule.
The Born rule, given in Eq. (2.31), associates a probability to a density

matrix and a projector. Note that it only depends on a single projector and
not on the observable that projector is from. This is sometimes expressed by
saying that probabilities are non-contextual in quantum mechanics; they do
not depend on any other measurements that could be made simultaneously.

Gleason’s theorem uses a minimal set of assumptions, including that the
Hilbert space formalism exists and that the probabilities associated to a
complete basis sum to one. We can ask a similar question with a strength-
ened second assumption: that the probabilities of all vectors associated to
all POVMs sum to one (this automatically includes all orthonormal bases).
In this case, the proof of Gleason’s theorem becomes much simpler and also
holds in N = 2 [115,116]. We might wonder what happens if we modify the
assumption again by letting only the probabilities of vectors associated to
SICs sum to one. This is a harder problem and it has been shown that a
Gleason-like theorem does not hold in N = 2 [116].

Bell used Gleason’s result to make a statement about hidden variables in
quantum mechanics [117]. Hidden variables were postulated to incorporate
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a physical reality into the theory, independent from observers. The hidden
variable corresponds to a particular property of a quantum state that exists
before we measure it.1 For example, a hidden variable of a photon could
be its horizontal polarisation, to be revealed later when we send the photon
through a polarising beam splitter and into a detector. This notion of some
definite value existing “out there” is often called realism.

Bell reasoned that, if hidden variables exist, then there must be a pre-
defined outcome of 1 or 0 corresponding to every possible projector. Con-
sidering vectors instead of projectors, the outcomes 1 or 0 must cover every
vector in Hilbert space. Using Born’s rule, this means that an arbitrary
density matrix must give only probabilities of 1 or 0 for all measurements.
Density matrices cannot be so restricted, thus an assignment of outcomes 1
and 0 to all vectors Hilbert space is impossible. The hidden variables were
implicitly assumed to be non-contextual, since the assignment of 1 and 0
didn’t depend on other projectors that could be measured at the same time.
Thus hidden variables, if they exist, must be non-contextual.

Bell’s line of argument involves assigning outcomes to the whole of
Hilbert space. Kochen and Specker produced a different proof that rules
out non-contextual hidden variables using only a finite set of projectors [3].

6.2 The Kochen-Specker Theorem

The Kochen-Specker theorem uses a finite set of projectors to show that
assigning the outcomes 1 and 0 cannot be done in a manner consistent
with quantum mechanics (sometimes these outcomes are called truth values,
where 1 corresponds to “true” and 0 to “false”). Again, we will work with the
vectors |i〉 rather than the projectors P = |i〉 〈i|. The trick is to find vectors
that lie in several different bases, since their hidden variables will have some
restrictions, and show that a non-contextual hidden variable assignment for
such vectors leads to a contradiction.

Both Gleason’s theorem and the Kochen-Specker theorem involve a some-
what unusual way of thinking. We talk about assigning all possible outcomes
of various measurements even though we only actually perform one measure-
ment (and discover one outcome). This is known as counterfactual reason-
ing, where counterfactual refers to something that could have happened, but
didn’t. In fact, Specker was inspired by the question: “can God know the

1Bell called this terminology “historical silliness” [118] and noted that it would make
more sense to call the wavefunction hidden and not the variable associated to a measure-
ment outcome, since this is the thing that we actually see in the end.
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outcome of events that didn’t happen but could have [119]?”
The vectors in Kochen-Specker discussions are commonly represented

in orthogonality graphs. In such a graph, each vector is a vertex of the
graph and two vertices are connected by a line if the vectors are orthogonal.
Figure 6.1 shows an orthogonality graph representing a basis in Hilbert space
with N = 3.

Figure 6.1: Possible graph in C3 for the three orthogonal vectors, |a1〉, |a2〉 and
|a3〉.

Orthonormal vectors correspond to commuting projection operators and
these sum to the identity element for a complete orthonormal basis of vec-
tors. We make a convenient theoretical assumption that commuting ob-
servables can be measured simultaneously as they have a joint eigenbasis,
although this can be considerably hard to achieve in practice.2

To prove the KS theorem, we assign hidden variables to the vectors. We
assume that the hidden variables obey the following constraints, called the
sum and product rule, respectively:

P1 + P2 = P3 ⇒ v(P1) + v(P2) = v(P3)
P1 · P2 = P3 ⇒ v(P1) · v(P2) = v(P3)

(6.1)

where P1, P2 and P3 are mutually compatible and v(P1), v(P2) and v(P3) are
their associated hidden variables. If we ask what values our three hidden
variables can take in the orthogonality graph in Figure 6.1, we find that
they are naturally subject to some constraints. The projectors are mutually
exclusive and so only one can give the outcome 1 at a time. Additionally, as
the projectors sum to the identity, their eigenvalues must also sum to 1 and
so we find that we must assign one 1 and two 0s. Orthogonality graphs are

2Many of the problems of experiments associated to the KS theorem stem from this
difficulty. Often, measurements are made sequentially rather than simultaneously, but
this introduces its own challenges.
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coloured depending on the assignment. Here we shall say that a vector is
coloured black if it is assigned the value 1 and white if it is assigned the value
0. Then the hidden variable constraints can then be expressed as colouring
rules:

1. Two vectors on a line may not both be coloured black.

2. Exactly one vector in a complete basis must be coloured black.

The three possible colourings of the orthogonality graph in Figure 6.1 are
shown in Figure 6.2.

Figure 6.2: Possible colourings for the orthogonality graph in Figure 6.1.

So far, we haven’t invoked the concept of non-contextuality. It arises
when we add vectors that are not orthogonal to the current ones. The
requirement of non-contextuality is that the hidden variable assigned to a
projector does not depend on what other projectors are being simultaneously
measured. In other words, the hidden variable assigned to the vector a3 in
Figure 6.3 is the same whether we measure P3 together with P1 or P4. Note
that [P1, P4] 6= 0 since they are not connected by a line. The collection of
projectors measured at the same time is called the context.

Figure 6.3: A non-contextual assignment of hidden variables requires the value
at a3 be independent of the measurement context, i.e. it does not change when we
measure P3 with P1 or P4.

Having introduced orthogonality graphs, colouring rules and non-contextuality,
we can now state the Kochen-Specker theorem.
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The Kochen-Specker theorem. In a Hilbert space with dimension N ≥ 3,
there exist finite sets of projectors that do not permit an assignment of non-
contextual hidden variables following the colouring rules.

Kochen and Specker originally proved their theorem using a set of 117
projectors made up from 132 bases [3, 120]. Attempting to colour all the
vectors in the corresponding orthogonality graph eventually leads to a con-
tradiction, where the final vector cannot be coloured either black or white
without breaking the colouring rules. The punchline is that non-contextual
hidden variables cannot be assigned to this set.

In Chapter 2 we introduced the quantum state while promising more
subtleties; they arrive here. The lepidoptorist can be sure that the butterfly
has a particular colour, even whilst examining the shape of its wings or the
size of its body. Life is not so easy for the physicist. The quantum state
will reveal a particular property depending on the set of questions we ask.
If we ask another set of questions, it could reveal a different property. It
is as though the butterfly appears white when we ask for the shape of its
wings, but black when we ask for the size of its body.

The Kochen-Specker theorem sparked a competition to find the smallest
set of vectors that is uncolourable according to the KS colouring rules. We
refer to these sets as “KS sets”, although this is not standard terminology.
The next section goes through some of these KS sets in more detail. More
recently, sets of vectors whose orthogonality graphs are colourable have been
shown to be useful for contextuality arguments. They do not form KS sets,
which we reserve for uncolourable sets of vectors. We discuss this further in
Section 6.4.

6.3 Kochen-Specker sets
The current record for the smallest KS set stands at 31 vectors in N = 3
found by Conway and Kochen [121] and 18 vectors in N = 4 found by
Cabello, Estebaranz and García-Alcaine [122]. There have also been several
computer searches, including an exhaustive search of up to 30 vectors in R3

and up to 24 vectors in R4 [123]. The question of the smallest set with
complex vectors remains unanswered. We return to the question of what we
mean by the “smallest” set at the end of this section.
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Peres: 33 vectors in 3 dimensions

Peres found a set of 33 vectors whose orthogonality graph is uncolourable
according to the KS colouring rules from the previous section [124]. The vec-
tors are determined by the directions in three interlocking cubes, shown in
Figure 6.4. They are reproduced in Escher’s famous waterfall print. This is
a cube in R3 and so two vectors pointing in opposite directions correspond
to the same quantum state. The directions are shown more explicitly in Fig-
ure 6.4. For each cube, they pass through the cube’s vertices (four vectors),
the midpoints of its edges (six vectors) and the centres of its faces (three
vectors). This gives 13 directions in each cube. There is some redundancy
as three vectors appear in all three cubes, so we find 13 × 3 − 3 − 3 = 33
different directions overall.

The orthogonality graph for the 33 vectors is given in Figure 6.4. The
shape is fairly self-explanatory: each triangle shows orthogonalities among
vectors within one cube and the dashed lines show orthogonalities between
different cubes. The three vectors that appear in all three cubes are in the
middle of the orthogonality graph.

Penrose: 33 vectors in 3 dimensions

The KS set by Penrose contains 33 vectors and was given in terms of
the Majorana (or stellar) representation of vectors [125]. Its orthogonality
graph is the same as for the Peres set, given in Figure 6.4, but the actual
vectors are unitarily inequivalent to the vectors in Peres’ set.

Gould and Aravind showed that the Peres and Penrose sets are spe-
cial cases of a more general 3-parameter family of sets [126]. The general
set found by Gould and Aravind can be reduced to a 1-parameter family
through suitable rotations. This free parameter in the Peres and Penrose
sets in 3 dimensions opens up the possibility of other sets having additional
parameters. Paper III investigates this for seven different KS sets and finds
no additional parameters; the pattern of orthogonalities completely deter-
mines the vectors. This suggests that the sets found by Peres and Penrose
are quite unusual in having this additional freedom.

Peres: 24 vectors in 4 dimensions

Peres found another KS set, containing 24 real vectors in 4 dimensions
[124]. The vectors form six different bases and they collect into two sets
of three mutually unbiased bases. The orthogonality graph is shown in
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Figure 6.4: The images show the three interlocking cubes (top left), the direc-
tions in separate cubes (top right), the orthogonality graph for Peres’ 33-vector set
(bottom left) and the orthogonality graph for Yu and Oh’s 13-vector set (bottom
left), discussed in Section 6.4.

Figure 6.5, where each basis is nestled together at the vertex of the overall
hexagon. The three bases whose vectors are coloured blue are mutually
unbiased and the three in orange are mutually unbiased. Note that no line
connects two vectors of the same colour (since they are mutually unbiased
and not orthogonal), except for vectors in the same basis.

Cabello, Estebaranz and García-Alcaine: 18 vectors in 4 dimensions

Cabello, Estebaranz and García-Alcaine reduced Peres’ set to one with
just 18 vectors [122]. Computer searches confirm that this is the smallest
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Figure 6.5: The orthogonality graph for Peres’ 24-vector set in 4 dimensions (left)
and Cabello, Estebaranz and García-Alcaine’s 18-vector set (right). For simplicity,
points lying on the same line are mutually orthogonal. Vectors coloured blue form
three mutually unbiased bases and vectors coloured orange form another three
mutually unbiased bases.

possible set in 4 dimensions [123]. It uses the same six bases as the previous
set but with one vector removed from each basis. The orthogonality graph
is shown in Figure 6.5. The vectors are coloured blue and orange as before
to indicate sets of (incomplete) mutually unbiased bases.

The way of counting the number of vectors reported so far is rather naive.
Larsson has suggested that we count all vectors generated by rotating the
vectors in a KS into one another [127]. He points out that we can think of
the KS theorem as colouring a (possibly incomplete) basis in Hilbert space
and then rotating it into a different (possibly incomplete) basis, which we
also colour and then rotating it again and so on. Sometimes these rotations
introduce additional vectors not included explicitly in the KS set. Larsson
counts all vectors included in such rotations.

Another suggestion comes from Held, who noted that the experimentally
relevant number is the number of contexts or bases [128]. In this case, the 18-
vector set implies the existence of the 24-vector set by completing the bases.
Lisoněk et al. have applied this way of counting to known KS sets [120]. We
give a quick summary of the counts of various KS sets using the different
definitions in Table 6.1.

It is clear from Table 6.1 that the smallest KS set, following either Lars-
son or Held, is the 33-vector set in N = 3 by Schütte [129]. The smallest
set in N = 4 is still the 18-vector set by Cabello, Estebaranz and García-
Alcaine according to Larsson, while Held’s count shows that this KS set and
the one by Peres both use nine contexts, so are equally small. Lisoněk et al.
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N No. vectors Larsson Held
Peres [124] 3 33 57 40
Conway & Kochen [121] 3 31 51 37
Schütte [129] 3 33 49 36
Peres [124] 4 24 24 9
Cabello et al. [122] 4 18 18 9

Table 6.1: The number of vectors in KS sets according to different counting
methods.

have found a KS set containing seven contexts in N = 6, which is the fewest
possible [120]. This makes it the smallest set according to Held’s criteria.

Recent developments have moved the emphasis away from KS sets to
other sets of vectors that can be used to violate certain inequalities, as we
shall see in the next section. However, these newer sets are always subsets
of KS sets [130] and so the idea of a KS set still rests crucially in the
background.

6.4 Inequalities
So far, we have considered contextuality from a purely theoretical domain.
It is possible to construct inequalities from KS sets, thus making the the-
orem accessible for experiments. We divide the resulting inequalities into
two categories: “Kochen-Specker (KS) inequalities” and “non-contextuality
inequalities,” and outline the main points of each here.

6.4.1 A simple example

A simple and illustrative example of building both types of inequality comes
from a set of only five measurements in dimension 3. The orthogonality
graph of the five projectors is colourable and so this set isn’t usually classed
as a KS set, although, as we shall see, colourability does not necessarily
mean that the set isn’t useful for contextuality reasons. We first discuss a
KS inequality, where we start with the classical version of these five mea-
surements and then go on to show how a quantum mechanical treatment
noticeably differs. Afterwards, we construct a non-contextuality inequality.

The vectors we are interested in form an orthogonality graph that is
a pentagon. This turns out to be a powerful example, first studied by
Wright [131], and we shall consider a classical experiment based on this
arrangement. Let each vertex on the pentagon label a possible “yes or no”
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measurement, say opening a box that may or may not contain a coin. We
are allowed to open any two adjacent boxes, i.e. any two boxes connected
by a line in Figure 6.6, in one run of the experiment.

Figure 6.6: The pentagon orthogonality graph. In our experiment, each vertex
corresponds to a box that could contain a coin and the five possible measurements
of two adjacent boxes are shown by the straight lines. The only possible number of
coins, in keeping with the rules, is 2, 1 or 0.

The coins and boxes have been prepared in advance following one rule:
opening two boxes will never reveal two coins. We set things up in this
rather specific way to imitate quantum mechanics. Our model is a hidden
variable theory because we assume the contents of each box (i.e. coin or no
coin) exist before we open the box and it is a non-contextual theory because
we assume that the contents of each box do not depend on which other box
we open simultaneously. We can, as in the KS theorem, assign truth values
to the vertices of the graph in Figure 6.6: a 1 for finding a coin and a 0
for not finding a coin. Now we can perform our experiment to look for the
possible assignments of coins. It is clear that the only possibilities for the
distribution of the coins are

1. Two coins inside non-adjacent boxes.

2. One coin inside one box.

3. No coins in any box.

Here, we have employed a statistical assumption—analogous to the fair sam-
pling assumption in Bell’s theorem—that there was no “conspiracy” in the
preparation of the boxes. Specifically, we assume the experiment never pos-
sessed an assignment of coins that broke the rule for adjacent boxes and
that we always managed to miss it.

After repeating the experiment many times, with different preparations
of coins and boxes, we can calculate the sum of the average number of coins.
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This gives us the upper upper bound of the KS inequality

Σc =
4∑
i=0
〈Ti〉 ≤ 2, (6.2)

where Ti are the truth values (i.e. the number of coins) from each measure-
ment. The upper bound of two means there was never an assignment with
more than two coins inside the five boxes. We could have arrived at this by
just looking at Figure 6.6 and asking for the maximum number of vertices
that could be coloured black in keeping with the KS colouring rules.

What about the quantum mechanical case? First we need to find five
vectors that obey the orthogonality conditions

〈ai|ai+1〉 = 0 i ∈ [1, 5] , (6.3)

with arithmetic modulo 5 understood. Following Klyachko, Can, Binicioğlu
and Shumovsky (KCBS) [132], we obtain these vectors from the pentagram
in Figure 6.7. Initially, picture the pentagram is lying flat on a plane and
each vector begins at the origin in the centre of the pentagram and ends
at one of the five vertices. To obtain vectors with the correct orthogonality
relations, we raise the vertices up from the plane by shrinking the opening
angle θ of the cone. To reflect this, we can draw the pentagram orthogonality
graph shown in Figure 6.7. It represents the same orthogonality graph as
Figure 6.6, containing five vertices and five lines.

Figure 6.7: The pentagram orthogonality graph (left) and the method of obtaining
the vectors with the correct orthogonalities (right).

Explicitly, we use the following five vectors after normalisation 1
0√
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The measurements in the quantum mechanical case correspond to acting
with projectors onto these vectors and the KS inequality becomes

Σq =
4∑
i=0

Tr (ρPi) , (6.4)

for some state ρ. In order to obtain a maximum discrepancy between
the classical result and the quantum mechanical one, we want to max-
imise Σq. This is achieved by taking the largest eigenvalue of the operator
Σ =

∑4
i=0 Pi, obtainable by using the qutrit state 〈ψ| = (0, 0, 1). Using this

state, the quantum mechanical result becomes

Σq =
4∑
i=0

Tr (|ψ〉〈ψ|Pi) =
√

5 ≈ 2.24. (6.5)

Note that this is a state-dependent inequality, meaning that we only obtain
a violation of the predictions of out non-contextual hidden variable theory,
given in Eq. (6.2), for a subset of all possible states.

A violation of the KS inequality in Eq. (6.2) shows that our non-contextual
hidden variable model of boxes and coins cannot accurately reproduce the
outcomes of quantum mechanics. However, this hidden variable model was
influenced by quantum mechanics. When we forced the coin to only be
present under at most one adjacent box, we were simulating the KS colour-
ing rules, which are a direct consequence of the quantum mechanical for-
malism. This reliance on quantum mechanics can be removed by looking
instead at non-contextuality inequalities. Such inequalities involve correla-
tions, where we average over measurements of two (or more) operators. The
KS colouring rules are abandoned completely and the hidden variables are
constrained only by the assumption of non-contextuality.

The five vectors from the KS inequality can also be used to construct
a non-contextuality inequality [132]. We refer to it later as the KCBS in-
equality. It is convenient to define the operators

Ai = 2Pi − 1 (6.6)

with spectra {−1,−1, 1}. Now, instead of assigning the outcomes 1 or 0
to the vectors, we assign the outcomes ai = ±1. In the hidden variable
model, there are no restrictions on the assignments and we can perform
all possible 25 of them to obtain an upper bound. Note that each vector
in the pentagram appears in two different contexts. The non-contextuality
inequality is then formed from looking at joint measurements of the Ai
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operators in every context. For a non-contextual hidden variable model we
find

κc =
4∑
i=0
〈AiAi+1〉 ≥ −3, (6.7)

where, as before, addition is modulo 5. The lower bound is saturated when
there are two −1 assignments given to vertices not linked by a line in Fig-
ure 6.7. Again, we need to make the assumption that taking an average
over many different ensembles is a fair reflection of all the assignments, and
does not hide some deeper assignment properties. The quantum mechanical
average, calculated using the same qutrit state as before, is

κq =
4∑
i=0

Tr (|ψ〉〈ψ|AiAi+1) = 5− 4
√

5 ≈ −3.94, (6.8)

which violates the non-contextuality inequality given in Eq. (6.7).
Any set of vectors providing a KS proof produces a correlation inequal-

ity [133]. Translating the KS theorem in this way has allowed several ex-
perimental verifications of inequalities, both of the KS [134–136] and non-
contextuality variety [136].

6.4.2 Variation on a theme

The previous example was state-dependent and only used five measurements.
Now we shall look at an example that is state-independent and uses 13
measurements, but still has the key feature that its orthogonality graph is
colourable. Such sets are a very recent development in the field. This set
was found by Yu and Oh in 2012 [137] and we shall show how it leads to a
KS inequality and a non-contextuality inequality.

The 13 vectors in Yu and Oh’s set are a subset of Peres’ KS set of 33
vectors. In fact, they are the 13 directions in the cubes in Figure 6.4. Their
orthogonality graph is also given in Figure 6.4. As this set is colourable we
denote it a “non-contextuality set”. The explicit vectors are given below. A
very similar set, which in some sense is a complex extension of Yu and Oh’s
set, is the topic of Paper I.

(1, 1,−1)ᵀ (1, 1, 0)ᵀ (1,−1, 0)ᵀ (1, 0, 0)ᵀ
(1,−1, 1)ᵀ (1, 0, 1)ᵀ (1, 0,−1)ᵀ (0, 1, 0)ᵀ
(−1, 1, 1)ᵀ (0, 1, 1)ᵀ (0, 1,−1)ᵀ (0, 0, 1)ᵀ
(1, 1, 1)ᵀ

.
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In the previous example, we formed a KS inequality by calculating the
average truth values for the five boxes. The more usual way of calculating
this value is by colouring the orthogonality graph and summing the truth
values (1 or 0) assigned to all the vertices. The KS inequality is formed
in a similar way here, but this time we only sum the truth values for four
of the vertices. Specifically, they are the four closest to the centre in the
orthogonality graph in Figure 6.4. The remaining nine vertices force these
four to have certain values through the colouring rules. The classical upper
limit for the KS inequality is then

Σc =
3∑
i=0
〈Ti〉 ≤ 1. (6.9)

It is not immediately obvious to see, but after colouring the orthogonality
graph in all possible ways according to the KS colouring rules, the sum
of the four truth values we are interested in is bounded by one. In other
words, only one of these four vertices can be coloured black. The quantum
mechanical result is given by

Σq =
3∑
i=0

Tr (ρPi) , (6.10)

where the first four projectors correspond to the four vertices summed in
Eq. (6.9). They are given by the vectors in the first column above. Calcu-
lating their sum gives

3∑
i=0

Pi = 4
31, (6.11)

and so the quantum mechanical result becomes

Σq =
3∑
i=0

Tr (ρPi) = Tr
(
ρ

3∑
i=0

Pi

)
= 4

3Tr (ρ) = 4
3 . (6.12)

This is a violation of the KS inequality. Note that Tr(ρ) = 1 for all quantum
states, so this KS inequality is state-independent. Whenever the sum of
the projectors is proportional to the identity, i.e. they form a POVM, the
inequality will be state-independent.

We turn now to the non-contextuality inequality, which is an inequality
where the KS colouring rules are relaxed. The non-contextuality inequality
is also slightly different from the previous example. This time individual
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terms appear in the sum. This sounds weird for an inequality that is sup-
posed to be concerned with making simultaneous measurements, but it is
not unheard of; in fact, single terms appear in the CH variant of Bell’s in-
equality [138]. To calculate the classical result, we form the 13 operators
Ai from the 13 vectors via Eq. (6.6). Again, we use the dichotomic hidden
variables ai that take the values ±1. We also need the adjacency matrix Γij ,
1 ≤ i, j ≤ 13, which is equal to one for commuting and distinct Ai and Aj ,
and 0 otherwise. This just ensures we look at measurements involving two
operators that are possible to measure simultaneously. The classical upper
bound for the non-contextuality inequality is then given by

κc =
12∑
i=0
〈Ai〉 −

1
4

12∑
i,j=0

Γij〈AiAj〉 ≤ 8. (6.13)

Taking the quantum mechanical expectation value gives

κq =
12∑
i=0

Tr (ρAi)−
1
4

12∑
i,j=0

ΓijTr (ρAiAj) = 25
3 . (6.14)

This is a violation, albeit a small one, of the prediction from non-contextual
hidden variable models. An experimental verification of this would rule out
non-contextual hidden variable models as alternatives to quantum mechan-
ics.

Weights could be adjusted in front of different terms in the inequality
to increase the violation. This was done in Paper II, which also proposed
an experimental scheme for implementing the inequalities. An optimised
version of the inequalities for the Yu and Oh set was later found [139].

Non-contextuality inequalities were recently shown to have a practical
application in quantum computing, where contextuality has been identified
as a necessary resource for quantum computing in odd dimensions [140,
141]. In the magic state distillation scheme, violating a non-contextuality
inequality has been proposed as a criterion to detect states that can be
distilled to pure magic states [141].

6.4.3 Graph theory

Graphs have played an important role in contextuality discussions and have
recently been shown to provide even more powerful insights into constructing
inequalities. Traditionally, we used an orthogonality graph to detect KS sets
by testing that the graph was uncolourable. The introduction of inequalities
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seemed at first to move us away from graphs, but recent work recaptures
their usefulness. Using an exclusivity graph, we have a recipe to calculate
the classical and quantum upper bounds for non-contextuality inequalities
[142,143].

In an exclusivity graph, each vertex represents an event—a particular
outcome of a particular measurement—and two vertices are connected by
a line if the events are exclusive. Exclusive events are those that can be
distinguished with a joint measurement. For example, one possible event in
a test of the KCBS inequality is the measurement A2A3 with outcome 0 of
A2 and 1 of A3. An exclusive event is then the measurement A2A4 with out-
come 1 of A2 and 1 of A4, because the outcome of a measurement of A2 will
distinguish the two events. The exclusivity graph for the KCBS inequality is
given in Figure 6.8. There are five measurements (given by AiAi+1, modulo
5), each with four possible outcomes, which gives 20 vertices on the exclu-
sivity graph. The lines connect events that perform the same measurement
but record different outcomes, since performing the shared measurement will
distinguish the events. One can roughly think of the orthogonality graph
as belonging to the theoretical domain (vectors, projectors, etc) and the ex-
clusivity graph as belonging to the experiment domain (events, outcomes,
etc).

Figure 6.8: Exclusivity graph for the KCBS inequality. For simplicity, events that
lie on the same straight line are mutually exclusive.

As mentioned in the previous section, we can include weights to indi-
vidual terms in an inequality, e.g. the factor 1/4 in Eq. (6.13). This is
represented by a weighted exclusivity graph, i.e. associating a weight wi
to each vertex, where wi > 0. The general form of the non-contextuality
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inequalities that the exclusivity graphs correspond to is∑
i

wip(ei), (6.15)

where p(ei) is the probability of event ei.
For a graph G, the classical upper bound of the corresponding non-

contextuality inequality is given by the independence number of the graph
α(G). This is the maximum sum over vertices that are not pairwise exclu-
sive, i.e. the maximum sum over unconnected vertices. For the exclusivity
graph for the KCBS inequality in Figure 6.8 we have α(G) = 2, which agrees
with our earlier considerations.

The quantum mechanical upper bound is given by the Lovász θ-function
of G [144]. To calculate this, we first need to define an orthogonal repre-
sentation of the graph G. This is a set of vectors in Euclidean space where
each vector corresponds to a vertex of G and where vectors are orthogo-
nal if their corresponding vertices of G are adjacent. Given this, we take a
different vector |ψ〉 in this space and calculate the Lovász θ-function

θ(G) = max
∑
i=1
| 〈ψ|vi〉 |2, (6.16)

where the maximum is taken over all vectors |ψ〉 and all possible orthogonal
representations of G in all dimensions. It is enough to consider real vector
spaces, since the complex space Cd will be covered by R2d. We can see that
this is exactly what we did earlier to find the largest quantum mechanical
result of the KCBS inequality. We chose five vectors in R3—the raised pen-
tagram in Figure 6.7—as our orthogonal representation and then maximised
over all possible states |ψ〉. We didn’t need to maximise over all possible
orthogonal representations as these five vectors already give the maximal
violation [145].

Finally, the exclusivity graph gives us a way to calculate the upper bound
for general probabilistic theories that satisfy something called the Exclusiv-
ity principle on a single copy of the graph. The Exclusivity principle is
simply the condition that the sum of probabilities of any set of pairwise ex-
clusive events cannot exceed one [119, 146, 147]. The upper bound for such
theories is given by the fractional packing number of a graph

α∗(G) = max
∑
i=1

wipi, (6.17)

where the maximum is taken over all probabilities pi ≥ 0 and for all cliques
C such that

∑
i∈C pi ≤ 1 (this imposes the Exclusivity principle stated
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above). A clique is simply a subgraph of a graph where all vertices are
mutually connected. This is in similar vein to Gleason’s theorem, but now
the probabilities can take values other than 1 or 0.

As an example of all this in action, we can look at the exclusivity graph
for the KCBS inequality. It has the following values,

NCHV : α = 2 (6.18)
QM: θ =

√
5 (6.19)

GPT : α∗ = 5
2 . (6.20)

These correspond to the non-contextual hidden variable bound of 2, the
quantum mechanical prediction of

√
5 and the general probability theories

obeying the Exclusivity principle bound of 5/2.
One may wonder why the Lovász θ-function, a graph theoretical prop-

erty, manages to pick out such a physically relevant value? The Exclusivity
principle tries give a physically motived reason for this surprising connection.
Applying the Exclusivity principle to experimental scenarios reproduces the
value of the Lovász θ-function for several well-known non-contextuality and
Bell inequalities [146, 149], plus other families of exclusivity graphs, such
as self-complementary graphs [148]. In several cases, the application of the
exclusivity principle must be applied to multiple copies of a graph. In this
way, the value of α∗ is reduced to the value of θ. This means we have to
assume we could perform an infinite number of measurements. For the case
of the KCBS inequality, applying the Exclusivity principle alone does not
recover the quantum mechanical prediction (in fact, it gives α∗ = 5

2), but
applying it to two copies of the graph does indeed give θ =

√
5 [146].

Calculating α(G) or α∗(G) for an arbitrary graph is an NP-hard problem,
although it simplifies in the latter case if we know the cliques in the graph
[150–152]. Calculating θ(G) is a P-hard problem [150, 152]. It is curious
that the simplest calculation, computationally speaking, is for the quantum
mechanical bound.

A graph where α(G) < θ(G) produces a non-contextuality inequality
that separates predictions of non-contextual hidden variable models from
the predictions of quantum mechanics. An experimental violation of the
inequality would rule out non-contextual hidden variable theories. In this
sense, such a graph provides a proof of contextuality. Similarly, a graph
where θ(G) < α∗(G) provides an inequality that separates quantum me-
chanical predictions from predictions of a general probability theory. An
experimental violation of such an inequality would rule out quantum me-
chanics!
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Conclusion

In this thesis, we looked at sets of quantum states relevant for studying
the foundations of quantum mechanics. We focused on mutually unbiased
bases, symmetric informationally-complete POVMs and contextuality, and
attempted to reveal connections between these three areas. The WH group
and Clifford group appear in many places though the thesis, heavily im-
pacting constructions of MUBs and SICs and emerging in the area of con-
textuality via quantum computing. All three topics deal with the space of
quantum states and all three are relevant for practical applications of quan-
tum mechanics, via quantum state determination, quantum cryptography
and quantum computing.

We looked at constructing two different MUBs in prime dimensions: the
Ivanović MUB and the Alltop MUBs. The former has a nice construction
method in terms of maximally abelian subgroups of the WH group. We
showed a similar trick can be applied to the Alltop MUBs, translating the
original construction using a fiducial vector under the action of the WH
group to one involving maximally abelian subgroups of the Clifford group
(using only those elements that cannot be written as WH translates). The
Ivanović and Alltop MUBs are unitarily equivalent and we showed that they
are related by an operator from the third level of the Clifford hierarchy. We
also calculated their geometrical relationship, finding that the bases in an
Alltop MUB are equidistant from the bases in the Ivanović MUB, when
considered in a Grassmannian space whose points correspond to bases in
Hilbert space. Both this result and details of the Alltop construction are in
Paper V.

Despite their unitary equivalence to the vectors from the Ivanoić MUB,
the Alltop vectors have interesting properties of independent interest. In
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N = 2, they are the optimal choice for an eavesdropper using the intercept-
and-resend strategy. They are almost MUB-balanced states, in that they
look the same when projected onto N of the bases in the Ivanoić MUB (the
exception being the basis that is mutually unbiased to the Alltop vectors).
The Alltop vectors also form configurations with the set of all Zauner sub-
spaces in N = 1 mod 3. This result wasn’t expanded upon in this thesis, but
it is presented in Paper VI. It provides a connection between Alltop MUBs
and SICs, namely that they contain vectors that lie in the same Zauner sub-
spaces in this class of dimensions. Lastly, and perhaps most interestingly,
the Alltop vectors are the magic states in prime dimensions, which are the
crucial resource for the magic state distillation scheme for fault-tolerant uni-
versal quantum computation.

We looked at two striking properties of (almost) all known SICs: WH
group covariance and Zauner invariance. Like the MUBs, the SICs form
regular polytopes in Bloch space and they can be classified by their Clifford
orbits. Despite their high symmetry and similarities to the MUBs, SIC
existence is a notoriously difficult problem. While we gave several MUB
constructions at a rather rapid pace in Chapter 4 in prime dimensions,
Chapter 5 contained no real help for anyone wanting to construct SICs.
This is because most SICs are found by powerful computer searches and the
fiducials that generate full SICs under the action of the WH group are often
given as long strings of decimals. For the SICs known analytically, the SIC
vectors take on a more reasonable form, being expressible in terms of special
number fields.

The case of N = 3 is unusual for SICs, where they form an infinite 1-
parameter family. For certain choices of this parameter, they are strongly
connected with the finite affine plane of order 3, called the Hesse configura-
tion, where we realise the nine points in the plane as SIC vectors in Hilbert
space. Then we can view the 12 lines in two different ways. Firstly, they can
correspond to sets of linearly dependent vectors within the SIC, such that
each line passes through three linearly dependent SIC vectors. This then
singles out the Ivanović MUB through orthogonality relations. Secondly,
the lines can be thought of as Zauner subspaces, such that each line passes
through the three SIC vectors lying in its subspace. Paper IV is a natural
extension of the first viewpoint, where we search for linear dependencies
among vectors in SICs in higher dimensions.

Finally, we investigated sets of vectors that show contextuality. These are
sets that rule out the possibility of describing the world with non-contextual
hidden variable models. Following the Kochen-Specker theorem, different
sets have been found in an attempt to reduce the number of vectors needed
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in the set. Paper III shows that most KS sets are uniquely determined by
their orthogonality relations. The introduction of inequalities—KS inequali-
ties and non-contextuality inequalities—allows experimental verifications of
contextuality. These inequalities give upper limits predicted by classical
hidden variable models that are violated by quantum mechanics. Paper II
proposes a method to experimentally violate the inequalities associated to
a particular 13-vector set and also shows that the same vectors can be used
to violate a Bell-type inequality. Paper I presents a KS inequality and a
non-contextuality inequality built up from a SIC and the Ivanović MUB in
N = 3. The three areas in this thesis—MUBs, SICs and contextuality—are
of independent interest, but we have demonstrated that there are power-
ful connections between them, which may help us to better understand the
foundations of quantum mechanics.
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