
The Levitron

Master’s thesis

Axel Erbing

Supervisor: Prof. Ingemar Bengtsson

Assistant supervisor: Prof. Emeritus Sven-Olof Holmgren

Assistant supervisor: Prime Engineer of Science Lars Thollander



Abstract

The Levitron R© is a toy consisting of a spinning-top magnet levitating over a
permanent-magnet base. This seemingly violates Earnshaw’s theorem which for-
bids the levitation using permanent magnets with fixed orientations. This master’s
thesis aims to explore the theory behind the Levitron both experimentally and by
numerical simulation. The working principle of the device and of a magnetic
driving system used experimentally are derived along with a simple model of air
resistance. Stable levitation is only possible within a certain spin-frequency inter-
val. The spin frequency of the top is measured experimentally to determine the
stable interval. The top’s precession frequency is observed in relation to the driving
system. The equations of motion are solved numerically and the result is analyzed
and compared to the experimental measurements. The agreement between theory
and experiment is satisfactory but not perfect.
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1. Introduction

There are some inventions that come as a surprise to the scientific community as
they seem to contradict fundamental results. One such example is the Levitron R©.
The Levitron is an advanced toy that consists of a small, magnetized spinning
top along with a permanent magnet base. By spinning the top on a lifting plate
and raising it to the appropriate height above the base, it is possible to achieve
stable levitation. This is done using only permanent magnets. Successful levitation
requires careful adjustments of the top mass and the alignment of the base as the
range of correct parameters is very small. The top can be kept floating for several
minutes until air resistance eventually slows down its spin too much causing it to
fall.

Figure 1.1: The Levitron toy with (a) top, (b) lifting plate and (c) magnetic base.

Before its discovery in 1983 by inventor Roy Harrigan, many physicists well-versed
in mechanics and electrodynamics would have claimed that levitation with per-
manent magnets is impossible as it violates Earnshaw’s theorem from 1842. The
theorem is an example of a no-go theorem, a theorem which forbids a physical
situation or condition. This may have discouraged many people from even trying
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out similar ideas and could be the reason why something that only relies on clas-
sical physics was not discovered until the 1980s. In order for levitation to take
place, the top has to be both light and strongly magnetized. The development of
strong, light-weight magnets in the later half of the 20th century, and the prior lack
of them, could also have held back the invention of the Levitron. Despite being
told that he was wasting his time, Harrigan continued his efforts and managed to
construct a top with the correct properties, to find a base magnet producing an ap-
propriate magnetic field, and to also design a method to bring the top to the right
height. Harrigan patented the device but was not able to make it commercially
available.

In 1993, Roy Harrigan began collaborating with Bill Hones to commercialize the
device but this endeavour did not produce any result and was soon ended. Shortly
after, Hones and his father applied for a similar patent for a levitating spinning
top above a square magnet base which was issued in 1995. The similarity between
the two patents resulted in legal dispute which eventually ended with the company
of Bill Hones winning the case and retaining all commercial rights. The details, as
presented by one side of the conflict, of this can be found in ref. [9]. The patent
by Hones led to the market launch of the Levitron which over time has been sold
in several different models and is still available in stores today. Originally, the
base was in the form of a magnetized square with a circular unmagnetized hole
in the middle. Other designs such as the ring magnet, which is be used in this
master’s thesis, were introduced later. A driving device to counteract air resistance
called the Levitron Perpetuator R© has also been invented. It consists of a solenoid
inside a rectangular box along with a pulse generator and switch. This provides
an alternating, horizontal field to the region of levitation which keeps the top
spinning at a constant rate. A modified version of the Perpetuator is used in this
project.

As the apparent violation of Earnshaw’s theorem suggests, the theory behind the
device is rather complicated. It is not hard to figure out that the upward magnetic
force on the spinning-top magnet must cancel out the downward gravitational
force. The gyroscopic stability from the spin of the top prevents it from flipping
but this is not enough to explain how it works. In the beginning of the next chapter,
Earnshaw’s theorem is stated and applied to a naive model of the Levitron to show
that the problem is more sophisticated than one might think. The Levitron has
been studied previously by several authors, most notably by Sir M. V. Berry who
published the first article [1] on the theory of the device. Other authors include
Simon et al. [10] who published a both theoretical and experimental study of the
device shortly after.

The purpose of this master’s thesis is to explore the theory behind the Levitron
and to construct an experimental setup to measure relevant quantities such as the
top’s spin and precession. The validity of the theory is then tested by comparison
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with the experimental result. The working mechanism behind the Perpetuator and
similar driving systems are also analyzed. Finally, the Levitron system is simulated
by solving the equations of motion numerically. This gives further opportunity to
evaluate both the theoretical and experimental results.

The thesis is divided in these three parts. Following the introduction, a chapter
devoted to the theory of the device as well as the necessary classical mechanics
to describe its rotational motion. The main points of this chapter is to show
under which circumstances levitation can be achieved and to derive the complete
equations of motion including frictional forces and the driving system. This chapter
is followed by a chapter on the experimental treatment which contains the different
setups, measured results and related practical topics. The third and final part is
a chapter consisting of the numerical analysis. The thesis is ended with a chapter
containing conclusions and future topics that could be explored.
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2. Theory

2.1 Magnetic levitation and Earnshaw’s theorem

For more than one hundred years, the idea of stable, static electromagnetic levita-
tion was thought to be impossible due to Earnshaw’s theorem [3], proved by the
English mathematician Samuel Earnshaw. The theorem states that it is impossible
to create a stable equilibrium for a point charge using any static charge or current
distribution, including permanent magnets. The same also holds for a magnetic
dipole which suggests that the theorem could be applied to the Levitron.

Let us see how Earnshaw’s theorem applies to a a magnetic dipole, µ, with fixed
orientation and constant magnitude in a time-independent, external magnetic field,
B, and gravity. The potential energy, U , is given by

U = −µ ·B +mgz (2.1)

with the corresponding force

F (x, y, z) = −∇U = −∇(µ ·B +mgz). (2.2)

For a stable equilibrium point, the potential energy U must have the property that
its symmetric Hessian matrix H with components Hij = ∂i∂jU is positive-definite,
i.e.

xTHx > 0, for all non-zero vectors x. (2.3)

This in turn implies that its eigenvalues are positive and that

0 < ∇2U = ∇2 (−µ ·B +mgz) = −(µx∇2Bx + µy∇2By + µz∇2Bz) (2.4)

However by vector calculus, the magnetic field components solve the Laplace equa-
tion,

∇2B = (∇2Bx,∇2By,∇2Bz) = ∇(∇ ·B)−∇× (∇×B) = 0,

where Maxwell’s equations in the absence of charges, currents and electric fields,

∇ ·B = 0, ∇×B = 0 (2.5)
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have been used in the last equality. This implies that U also solves the Laplace
equation as

∇2U = −(µx∇2Bx + µy∇2By + µz∇2Bz) = 0 (2.6)

which contradicts the inequality (2.4). Because of this, there cannot exist a stable
equilibrium point. This system is a naive model of the Levitron where the orienta-
tion of the top is kept approximately constant due to gyroscopic stability caused
by its spin. This model certainly contradicts the possibility of stable magnetic
levitation and because of this, the invention of the device came as a surprise to
many physicists. The theory behind it is non-trivial!

The reason why this model fails to predict stable levitation and how it can be
modified to do so is discussed in the latter parts of this chapter. Before moving
on to introduce the framework of rigid body mechanics, it is worth to point out
that there are certain kinds of systems that display electromagnetic levitation but
are not covered by Earnshaw’s theorem, many of which were discovered before the
Levitron was invented. For example the famous quadrupole ion trap [7] falls outside
its scope as the electric fields involved do not arise from a static charge and current
distribution. Magnetic levitation involving superconductors and diamagnets are
also not covered by the theorem. The latter includes the famous experiment [2]
where a live frog is put in stable levitation using very strong magnetic fields.

2.2 Rigid body mechanics

A rigid body can be defined in two ways. The first and simplest way is as a system
of N point masses where the distance between any two is fixed in time. This object
can move and rotate but will retain its shape. The second way is to consider a
continuous mass distribution within some volume whose shape does not change
with time. This can easily be visualized by letting the number of discrete points
masses become infinite, evenly distributed inside the body. The continuous model
is appropriate for describing the motion of the Levitron top. In this case, for a
mass density ρ(r), the total mass m is given by

m =

∫
d3rρ(r) (2.7)

where the integral is taken over all space. Note that ρ(r) is zero outside the
body. When working with rigid bodies under both rotation and translation, it is
convenient to introduce a body-fixed system which follows the movement of the
body and a space-fixed system which remains fixed in space. The origin of the
space-fixed system can be taken arbitrarily but for the body-fixed system, setting
the origin to be the center of mass simplifies many important formulas. The center
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of mass can be found from

R =

∫
d3rρ(r)r, (2.8)

and is taken as the origin of the body-fixed system.

In order to find the energy of a rigid body, the first step is to find the velocity
at any given point. For an infinitesimal translation dR of the center of mass and
rotation dθ counter-clockwise around n̂, any point r in the body moves by [8]

dr = dR+ dφ n̂× x (2.9)

where x is the point r in the body-fixed system. Thus, the velocity at any point
is

v(r) ≡ dr

dt
=
dR

dt
+
dφ

dt
n̂× x ≡ V + ω × x (2.10)

where the angular velocity vector ω has been introduced. In the continuous model,
the kinetic energy of the rigid body, T , can be shown to be [8]

T =
1

2

∫
d3rρ(r)v(r)2 =

1

2

∫
d3rρ(r)V 2 +

1

2

∑
i,j

∫
d3rρ(r)ωi

[
r2δij − xixj

]
ωj

=
1

2
mV 2 +

1

2
ωTIω

(2.11)

where r = |r|, δij is the Kronecker delta and I is the inertia tensor with compo-
nents

Iij =

∫
d3rρ(r)

[
r2δij − xixj

]
. (2.12)

In the case of the Levitron, ρ(r) is circularly symmetric and if one of the coordinate
axes is chosen along the axis of symmetry, the inertia tensor becomes diagonal.
Then the kinetic energy is simply

T =
1

2
mV 2 +

1

2

3∑
i=1

Iiω
2
i (2.13)

which can conveniently be separated into a translational and rotation part

Ttrans =
1

2
mV 2 =

1

2
m
(
ẋ2 + ẏ2 + ż2

)
,

Trot =
1

2

3∑
i=1

Iiω
2
i .

(2.14)

Another important quantity in rigid body mechanics is the angular momentum L.
It is related to the angular velocity vector by

L = Iω (2.15)
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where I again is taken as the matrix form of the inertia tensor. If there is no ex-
ternal forces on a rigid body, its angular momentum is conserved. In the presence,
of external forces,

L̇ = τ . (2.16)

where τ is the external torque.

The time evolution evolution of the angular velocity ω obeys Euler’s equations.
For a diagonal inertia tensor, the equations are [8]

I1ω̇1 + (I3 − I2)ω2ω3 = τ1

I2ω̇2 + (I1 − I3)ω3ω1 = τ2

I3ω̇3 + (I2 − I1)ω1ω2 = τ3

(2.17)

where the right hand side are the components of τ . Note that everything in
Equation 2.17 is given in the body-fixed system. These equations are very useful
when the orientation of the body (and thereby its body-fixed system) is unimpor-
tant. For the Levitron, the external torque depends on both the top orientation
and its position through the magnetic field of the base, making Euler’s equations
insufficient.

Because the angular velocity vector ω in itself is not enough, it is clear that some
new coordinates are needed to describe the rotational motion of the Levitron.
The number of coordinates required is not obvious. In two dimensions, a rotation
around a given point can be uniquely determined by one coordinate, normally
the angle of rotation. When working in three dimensions, one needs, in order to
specify a rotation, in addition to an angle a fixed axis with direction (unit vector).
Any unit vector is uniquely determined by a point on the unit sphere which means
that a total of three coordinates are needed. Instead of working with unit vectors,
a common parametrization are the Euler angles φ, θ and ψ. Let x, y and z be
the axes in the space-fixed system and x0, y0 and z0 be the axes in the body-fixed
system. The Euler angles relates to the orientation of the rigid body by three
consequent rotations performed according to

1. Rotation of φ rad around the original z0-axis

2. Rotation of θ rad around the intermediate x0-axis

3. Rotation of ψ rad around the final z0-axis.
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In terms of rotation matrices

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ,

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,

(2.18)

the total rotation R(t) can be expressed as

R(t) = Rz0(ψ)Rx0(θ)Rz(φ). (2.19)

The time-dependence of φ, θ and ψ has been suppressed for convenience. The
first rotation matrix Rz(φ) can be taken in the space-fixed system since the two
systems always can be chosen to be aligned at φ = θ = ψ = 0. The rotations
in the body-fixed system can be rewritten in terms of the space-fixed system by
a change of coordinates. Note that after a rotation of φ around the z-axis, the
rotation around the intermediate x0-axis can be written as

Rx0(θ) = Rz(φ)Rx(θ)R
−1
z (φ) (2.20)

and similarly for the rotation of ψ around the final z0-axis,

Rz0(ψ) = [Rx0(θ)Rz(φ)]Rz(ψ) [Rx0(θ)Rz(φ)]−1 . (2.21)

Combining this, the total rotation can be expressed using only the space-fixed
system as

R(t) = Rz(φ)Rx(θ)Rz(ψ)

=

cosφ cosψ − sinφ cos θ sinψ − cosφ sinψ − sinφ cos θ cosψ sinφ sin θ
sinφ cosψ + cosφ cos θ sinψ − sinφ sinψ + cosφ cos θ cosψ − sin θ cosφ

sin θ sinψ sin θ cosψ cos θ

 .

(2.22)
The time derivatives of the Euler angles are often identified by the following char-
acteristic motions of a top [4]. φ̇ is known as the precession which is the rotation

of the body-fixed z0-axis around the space-fixed z-axis. θ̇ is known as the nutation
which is the nodding or swaying motion of the body-fixed z0-axis relative to the
space-fixed z-axis. ψ̇ is known as the rotation which is the spinning of the top
around the body-fixed z0-axis. The above identification follows directly from the
geometric definition of the Euler angles. The angle θ is referred to as the precession
angle.

In order to write down the rotational part of the kinetic energy in terms of the
Euler angles and their time-derivatives, the components of the angular velocity
vector ω are needed. The two are related by [8]

ω1 = θ̇ cosψ + φ̇ sin θ sinψ, (2.23)
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ω2 = −θ̇ sinψ + φ̇ sin θ cosψ, (2.24)

ω3 = φ̇ cos θ + ψ̇. (2.25)

The rotational energy can then be found from (2.14) as

Trot = I1(θ̇ cosψ + φ̇ sin θ sinψ)2 + I2(−θ̇ sinψ + φ̇ sin θ cosψ)2 + I3(ψ̇ + φ̇ cos θ)2.
(2.26)

For a symmetric top, i.e. I1 = I2, this expression simplifies to

Trot =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
. (2.27)

Now that coordinates for both the translational and rotational movements of a
rigid body and the corresponding kinetic energy have been found, it is possible to
construct the Lagrangian function L. The Lagrangian is given by the difference
between the kinetic energy T and the potential energy U ,

L = T − U. (2.28)

From the Lagrangian, the equations of motion are found from the Euler-Lagrange
equations [4],

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (2.29)

For a rigid body, the coordinates qi range over the space coordinates x, y and
z as well as the Euler angles φ, θ and ψ meaning that (2.29) are a total of six
separate equations. In the next section, these equations are be written out more
explicitly.

2.3 Equations of motion

Now that the mechanics governing the rotations of rigid bodies have been found,
the equations of motion for the Levitron can be derived. The Levitron consists
of a permanent magnet in the form of a symmetric, spinning top along with a
permanent magnet base. There are different variants of the base shape and in this
project a ring magnet is used. The magnetized part of the top is a small cylinder
magnet and for the purpose of the theoretical analysis it will be regarded as a
magnetic dipole located at the top’s center of mass. Note that this involves two
distinct approximations and will as a whole be referred to as the top being small.
The validity of the dipole approximation is investigated later in Section 2.10.

The configuration space of the full system describing the Levitron is six-dimensional
consisting of three space coordinates x, y and z determining the position of the
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top and the three Euler angles φ, θ and ψ governing its rotation. Denoting the
magnetic moment of the top dipole by µ and the external field generated by the
base ring magnet by B(r), the potential energy of the system is given by

U = −µ(φ, θ, ψ) ·B(r) +mgz = − [R(φ, θ, ψ)µ] ·B(r) +mgz. (2.30)

In the last equality, the rotation matrix absorbs the angular dependence and is
multiplied with the constant dipole vector µ. With the potential energy known,
the Lagrangian of the system becomes

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
+

1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3

(
ψ̇ + φ̇ cos θ

)2
+ [R(φ, θ, ψ)µ] ·B(r)−mgz.

(2.31)

Here m is the mass of the top, Ii are the moments of inertia and g is the gravita-
tional acceleration. The equations of motion for all coordinates are obtained from
the Euler-Lagrange equations and are listed below:

mẍ = [R(φ, θ, ψ)µ] ∂xB(r),

mÿ = [R(φ, θ, ψ)µ] ∂yB(r),

mz̈ = [R(φ, θ, ψ)µ] ∂zB(r)−mg,
(2.32)

I1
d

dt

(
φ̇ sin2 θ

)
+ I3

d

dt

(
cos θ

[
ψ̇ + φ̇ cos θ

])
= [∂φR(φ, θ, ψ)µ] ·B(r)

I1

(
θ̈ − φ̇2 sin θ cos θ

)
+ I3 sin θ φ̇

(
ψ̇ + φ̇ cos θ

)
= [∂θR(φ, θ, ψ)µ] ·B(r)

I3
d

dt

(
ψ̇ + φ̇ cos θ

)
= [∂ψR(φ, θ, ψ)µ] ·B(r)

(2.33)

These equations are the basis of the simulation presented in Chapter 4 where the
explicit form of the magnetic field is used.

2.4 Stability

It is worth to point out that the stability regarded here is not around a static
equilibrium. Static stability would mean that the top is not only levitating in
space but also that it has no net rotation. This kind of behavior is excluded by
Earnshaw’s theorem and and will therefore not be expanded on further.

Since the equations of motion are too complicated to be treated analytically, two
further approximations are needed to simplify the theory. Following ref. [1], the
first is that the angular momentum of the top is parallel to both its angular velocity
vector as well as its symmetry axis. This approximation will be referred to as the
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top being fast. Using it, the equations of motion for the spin S can be expressed
as

Ṡ = µ×B(r) = Ωb× S (2.34)

where
Ω = −µB/S (2.35)

is the angular velocity of the precession, and the magnetic field has been split into
a direction b and magnitude B with

B(t) = B(t)b(t). (2.36)

The second and final assumption is that the precession is fast compared to center
of mass motion of the top, i.e. |Ω| � |ḃ|. Note that the change in the direction b
depends on the movement of the top. This assumption takes into account that the
system has two distinct time-scales. A fast time-scale which covers the dynamics
of the rotational motion and a slow time-scale which applies the translational
motion. The idea is to separate these two motions into two separate systems, and
is related to the quantum-mechanical Born-Oppenheimer approximation. The
above approximation implies that the component of S in the b-direction is an
adiabatic invariant and is approximately conserved. Since the magnetic dipole
vector µ is assumed to be aligned with the spin and thereby the symmetry axis,
the component

µB ≡ µ(t) · b(t) (2.37)

is also an adiabatic invariant and will be regarded as constant. The potential
energy, U , of the system can using this be expressed as

U = mgz − µ ·B(r) = mgz − µBB(r) (2.38)

where m is the top mass and g is the gravitational acceleration. Hence, the angular
dependence of the potential energy has been eliminated and the problem depends
only on the three spatial coordinates. This simplifies the system a great deal and
for stable equilibrium points the conditions{

∇U = 0 (equilibrium)

∂2i U > 0, i = 1, 2, 3 (stability)
(2.39)

must be fulfilled which gives restrictions to where a stable equilibrium can exist.
In the next section, the magnetic field B corresponding to the ring magnet base
is investigated.

Before moving on though, it is interesting to point out the similarities between
Equation (2.38) and Equation (2.1) used in the naive model in Section 2.1. In
that section, it was shown that due to the fact that B obeys the Laplace equation,
stable Levitation is impossible. However, the magnitude B(r) does not solve the
Laplace equation which will be demonstrated in the next section.
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2.5 Magnetic field of the base

The base magnet will be treated as a uniformly magnetized, hard ferromagnet
in the shape of a ring with inner radius a, outer radius b and height h. The
magnetization of a hard ferromagnet is fixed and independent of any externally
applied field, in this case the magnetic field from the top. This section follows the
analysis in ref. [1]. Above the base, Maxwell’s equations gives ∇ · B = 0 and
∇×B = 0 since no charges are present. This in turn implies that

B(r) = −∇Φ(r), ∇2Φ(r) = 0. (2.40)

where Φ(r) is the magnetic scalar potential. Taylor expanding the potential in

cylindrical coordinates around r =
√
x2 + y2 for each z we get

Φ(r, z) = Φ(0, z) +
1

2
∂2rΦ(0, z)r2 +

1

3!
∂3rΦ(0, z)r3 +

1

4!
∂4rΦ(0, z)r4 + ... (2.41)

which in order to fulfil the Laplace equation becomes

Φ(r, z) = φ0(z)− 1

4
φ2(z)r2 +

3

16
φ4(z)r4 + ... (2.42)

with φn(z) = ∂nz Φ(0, 0, z). Note that all terms odd in r vanishes since the linear
term in (2.42) is zero by symmetry. The symmetry also implies the angular in-
dependence. Hence, if the magnetic potential along the z-axis is determined, the
complete magnetic field can be found from (2.40). The magnitude of the magnetic
field B can be computed from this and up to the second order in r it is given
by

B(r) = φ1sgnφ1

[
1 +

r2

8

(
φ2
2

φ2
1

− 2
φ3

φ1

)]
... (2.43)

Before finding the explicit form of φ0(z), the conditions (2.39) can be now be
expressed using (2.43). The conditions become

µBφ2 sgnφ1 > 0 (equilibrium)

µBφ3 sgnφ1 < 0 (vertical stability)

µB sgnφ1(2φ3 − φ2
2/φ1) > 0 (horizontal stability)

(2.44)

which can only be fulfilled for µB < 0 since otherwise the third inequality is always
false. Inserting this, the conditions simplify further to

(a) φ1 and φ2 have the opposite sign (equilibrium)

(b) φ1 and φ3 have the same sign (vertical stability)

(c) φ2
2 − 2φ3φ1 > 0 (horizontal stability)

(2.45)
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Note that the first inequality from the equilibrium comes from the fact that the
gravitational force is negative and the magnetic force on the top must counter-act
it. For the actual position of the equilibrium the sum of all forces acting on the top,
which can be found from the energy, must be zero. However, these calculations
provide a region of potential stability which provides information without explicitly
inserting values of the constants.

The magnetic scalar potential of a hard ferromagnet is [6]

Φ(r) = −µ0

4π
∇ ·

∫
d3r′

M (r′)

|r − r′|
(2.46)

where µ0 is the free space permeability and M(r) is the magnetization. The
magnetization is defined as the dipole density of the material as a function of
position. Since the base magnet is assumed to be uniformly magnetized in the
z-direction, M(r) = (0, 0, ρ) with constant ρ inside the ring volume and zero
outside. The above integral can be simplified by approximating the base as thin,
i.e. the z′ component does not contribute to the length of r′ inside the volume.
Hence, along the z-axis,

|r − r′| =
(
R′

2
+ z2

)1/2
. (2.47)

where R′2 = x′2 + y′2. Inserting the above into (2.46), the potential on the central
axis becomes

Φ(0, 0, z) ≡ φ0(z) = −µ0ρ

4π

∫
A

dx′dy′

(
∂z

∫ 0

−h

dz′(
R′2 + z2

)1/2
)

=
µ0ρz

4πh

∫
A

dx′dy′
1(

R′2 + z2
)3/2 = zρ

∫
A

dx′dy′
1(

R′2 + z2
)3/2 (2.48)

where the all constants have been absorbed into ρ. Changing to polar coordinates,
the final result is

φ0(z) = 2πρz

∫ b

a

R′dR′

(R′2 + z2)3/2
= 2πρ

(
z√

a2 + z2
− z√

b2 + z2

)
. (2.49)

The higher order derivatives needed in (2.43) and can be computed by ordinary
differentiation:

φ1(z) = 2πρ

(
a2

(a2 + z2)3/2
− b2

(b2 + z2)3/2

)
φ2(z) = 2πρ

(
3b2z

(b2 + z2)5/2
− 3a2z

(a2 + z2)5/2

)
φ3(z) = 6πρ

(
a2(4z2 − a2)
(a2 + z2)7/2

− b2(4z2 − b2)
(b2 + z2)7/2

) (2.50)
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2.6 Region of stability

Using the criterion (2.45), a region of potential stability can be found now that
the magnetic potential along the axis is known. For the type of Levitron used, the
inner and outer radius of the base are related by b ≈ 2a. By this substitution the
functions φi become

φ1(z) =
2πρ

a

(
1

(1 + (z/a)2)3/2
− 4

(4 + (z/a)2)3/2

)
φ2(z) =

6πρ

a2

(
4z/a

(4 + (z/a)2)5/2
− z/a

(1 + (z/a)2)5/2

)
φ3(z) =

6πρ

a3

(
4(z/a)2 − 1

(1 + (z/a)2)7/2
− 16

(z/a)2 − 1

(4 + (z/a)2)7/2

) (2.51)

The functions (2.51) as well as φ2
2 − 2φ3φ1 are plotted in Figures 2.1 and 2.2.

Combining the plots, two intervals that fulfil the conditions (2.45) can be identified
as 0.458024 < z/a < 0.986858 and 2.45161 < z/a < 2.65165. The exact values are
found numerically by explicitly rearranging the inequalities.

1 2 3 4 5

-1.0

-0.5

0.0

0.5

1.0

Figure 2.1: The functions φ1, φ2 and φ3 over z/a in solid blue, long-dashed green and
short-dashed red respectively.

Note that the two regions where stability is possible does not depend on the top’s
mass or dipole moment. As previously stated, the correct mass is critical to achieve
levitation and it is interesting to find the mass range for which the equilibrium
lies in the stable range. To do this, it is important to see how changes in the top’s
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Figure 2.2: The combination φ22− 2φ3φ1 over z/a. Note the sign change at approximately
z/a = 2.65.

mass affect the energy. By rescaling the potential energy (2.38) as well as the
coordinates by

U → Ua

2π|µB|ρ
, z → z

a
, r → r

a
, (2.52)

U can be expressed with only one parameter, the effective mass

M =
mga2

2π|µB|ρ
, (2.53)

as

U(r, z) = Mz +
a

2πρ
φ1sgnφ1

[
1 +

r2

8

(
φ2
2

φ2
1

− 2
φ3

φ1

)]
. (2.54)

Note that the prefactor containing a and ρ is canceled by φ1(z) so the expression
as a whole is independent of these parameters. As discussed above, µB < 0, which
is why the absolute value is used.

The upper interval corresponds to the height of levitation seen using the Levitron
and will be focused on in the analysis. This does not mean that levitation in the
other interval is impossible and this possibility will be investigated further below.
The range of permissible top masses can be found by finding when the equilibrium
lies exactly on the interval end points. This is done by solving the equation

Fz(0, z0,M) = −∂zU(0, z0;M) = 0 (2.55)

where Fz is the z-component of the force along the z-axis and z0 is one of the end
points. For the upper interval, 2.45161 < z/a < 2.65165, this analysis gives the
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corresponding mass range of 0.0352 < M < 0.0363. The contours of the potential
energy function U around the upper interval are shown in Figure 2.3. The plots
predict the expected behavior of the top also if its mass is not chosen correctly.
A too light top will fly out to the sides and a too heavy top will fall down in the
center. The equilibrium can clearly be seen in subplot (b) at the expected height
of z/a ≈ 2.55.

Figure 2.3: Contours of U as function of z/a and x/a. The parameter M is chosen as
M = 0.0342 in (a), M = 0.0360 in (b) and M = 0.0378 in (c).

A similar analysis of the lower interval can be made and the potential energy also
has a minimum there given that the effective mass is chosen correctly. In fact, the
minimum is deeper in the lower interval, which is also larger. This suggests that
it should be easier to achieve stable levitation in this interval for a wider range of
masses. However, there are some problems. In this region, the magnetic field on
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the axis has the opposite sign compared to that in the upper interval. This means
that the top has to be spun upside down relative to its intended orientation. This
causes some practical problems as the Levitron top is designed to have a relatively
low center of mass which means that it can only be spun in one orientation. This
can however be solved by redesigning the top and does not explain why the upper
interval is chosen by the manufacturer.

Because the magnetic field is much stronger close to the base, the top cannot be
spun easily below the equilibrium. As the top dipole and magnetic field are anti-
parallel, it is hard to keep it in place as it will tend to flip and align itself with
the field. This could potentially be solved by spinning the top above the lower
interval where the magnetic field along the z-axis has the opposite sign and then
lowering it into the region of stability. This would however be more complicated
to implement than the simple lifting plate method. The lower interval also has
the problem that the equilibrium it very close to the base which means that both
the top and the lifting plate has to be very small to fit above the base. For the
Levitron used in the experiment, the inner radius a = 3.0 cm which implies that
the lower interval is located roughly 2 cm above the base.

These problems do not arise for levitation in the upper interval as the top is started
close to where the z-component of the magnetic field changes sign which weakens
the above effect considerably. It is also possible that the higher interval is chosen
by the manufacturer simply because it is more impressive with a high levitating
top.

2.7 Frequency limits

Levitation is only possible within a certain interval of angular velocities and in
this section, these limits is investigated. As no such limits were found in the above
analysis, in fact the spin frequency of the top is not treated directly, the loss of
stability must be due to the failure of the approximations employed in Section
2.4. The lower limit is related to the fast top approximation, i.e. that the angular
momentum is parallel to the angular velocity vector and the symmetry axis of the
top. This condition translates into [1]

ω3 = 2πν � |Ω| (2.56)

and by substituting Ω using the relation (2.35), this becomes

νmin ≡
1

2π

√
mg

I3

∣∣∣∣φ1

φ2

∣∣∣∣. (2.57)
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The lower frequency limit is chosen as the frequency when the inequality (2.56)
becomes an equality. This estimate is most likely lower than the actual limit as
the approximation fails before equality is reached. Intuitively, the lower frequency
limit occurs when the gyroscopic stability keeping the top upright becomes too
weak causing the precession angle to become large. The vertical magnetic force
acting on the top consequently becomes too small to sustain levitation. This
results in the top falling down. Using the measured quantities from Chapter 3,
the theoretical lower limit can be calculated to νmin = 14.005 Hz.

The upper frequency limit is related to the assumption that the precession is fast,
i.e. |Ω| � |ḃ|. From the relation (2.35) it is clear that Ω is decreasing as S = I3ω3 is
increasing which implies that the approximation becomes invalid for too large spin
frequencies. While the lower limit ensures vertical stability, the upper frequency
limit effects horizontal stability. In the limit of very large spin frequencies, the
direction of the top becomes fixed and Earnshaw’s theorem is applicable. This
suggests that as the frequency is increased, the depth of the energy minimum in
the horizontal directions is reduced and eventually the top escapes.

2.8 Magnetic driving system

The previous analysis has been for a friction-free system. Of course in reality, the
Levitron cannot be levitated perpetually due to primarily air resistance. After
some time, the spin of the top will become to low and it will fall down. As the
top is spinning, a weak gust of air can be felt by placing the finger close to it
which suggest that this has a significant effect. The slowing-down process could
also potentially be caused by eddy currents in both the top and the base but this
effect can be neglected since the magnetized material is ceramic and thereby not
conducting.

To counteract the air resistance, a magnetic drive system consisting of an alternat-
ing horizontal field proposed in [10] is used. This field is generated from a solenoid
placed under the base magnet with its length horizontally. The solenoid is fed
with a sine pulse with constant (but adjustable) frequency and amplitude. Since
the region of stability is rather small, the field generated will be approximated as
independent of position. The generated, time-dependent magnetic field Bd(t) is
therefore taken as

Bd(t) = B0 sin(ωdt)ex. (2.58)

Note that the direction is arbitrary as long as it is horizontal since the rest of
the problem is completely symmetric. The mechanism behind the driving will be
explored next.
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In the previous sections, the magnetic moment of the top was assumed to be
aligned with the symmetry axis. This is convenient for the theory but it makes
the proposed driving system impossible. This can be proven easily using the Euler
equations (2.17). As stated before, the form of the Euler equations makes them
unsuitable for most problem with some explicit direction dependence, such as the
direction of the driving field Bd. However in this case, an explicit solution is not
required. Assume that the magnetic moment is parallel to the body-fixed z-axis,
i.e. µ = (0, 0, µ). Then, in the body-fixed system, the Euler equations for a
symmetric top for the angular velocity in the z-direction gives

ω̇z = τz (2.59)

where τz is the z-component of the torque. The torque vector is

τ = µ×B(ω(t), t) (2.60)

and hence τz = 0 since µ in the z-direction. Therefore, ωz = constant for any
function B(ω(t), t) and the spin of the top can not be accelerated (or decelerated)
by a time-dependent magnetic field. Note that this result is independent of any
air resistance. Since this driving system can be observed accelerating the spin of
the top experimentally, the conclusion to be drawn is that that there must be a
small residual component of µ in the body-fixed xy-plane.

The driving system works by a coupling between the alternating field from the
solenoid field and the above motivated horizontal component of µ.

The easiest way to visualize the working mechanism is to consider a horizontal
dipole fixed in place but allowed to rotate around its center, in an horizontal
magnetic field. If the dipole is aligned orthogonally to the driving field at some
moment, a torque will act on the dipole to align it with the external field. If
the dipole is spinning and its frequency is synchronized with the frequency of the
external field, it is possible for the dipole to be accelerated continuously. This
analogy is applicable as the Levitron top is kept approximately upright during
levitation due to gyroscopic stability.

2.9 Model of air resistance

In order to simulate the entire system using the magnetic driving system, a fric-
tional model of the air resistance is needed. The force related to this is often
referred to as viscous torque. Because the z-component of the angular velocity is
dominating, it makes sense to only implement the air resistance on this component.
For a free top, this problem is straight forward using the angular velocity vector
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and the Euler equations (2.17). In this case, the frictional force is just proportional
to ωn3 for some number n [5],

ω̇3 = −Cωn3
ω3

|ω3|
= −Cωn3 sgn(ω3), C > 0. (2.61)

This formula is analogous to the viscous drag of an object in a fluid. Note that the
requirement C > 0 as well as the sign function are needed to make sure that the
friction is counter-acting the angular velocity and not the other way around. The
choice of n depends on the shape of the rigid body and also the fluid it rotates
in. The cases of n = 1 and n = 2 are called the Stokes’ and Newton’s model
respectively and are the most common choices. Stokes’ model is best applicable
to laminar flow while Newton’s model is better when the flow is turbulent. In
both cases, Equation (2.61) is separable and can easily be solved. For n = 1, the
solution is

ω3(t) = Ae−Ct (2.62)

and for n = 2, one obtains

ω3(t) =
1

−Ct+ A
(2.63)

where A is a constant found from the initial conditions. In the case of the Levitron
top, Stokes’ model with n = 1 is chosen and it will be justified by the experimental
results in Chapter 3. Now that it is known how the frictional force from air
resistance relates to the angular velocity, the next step is to translate this to the
framework of Lagrangian mechanics with the Euler angles.

When dealing with friction in Lagrangian mechanics, the standard way to im-
plement it is by adding the frictional forces directly to the equations of motion.
However, it is very hard to solve for the angular velocity ω3 in the first equation in
(2.33) so it is not obvious how this frictional torque in (2.61) should be added. One
way to add frictional forces in general is using the Rayleigh dissipation function,
F , for n = 1 defined as [4]

F =
1

2

N∑
i=1

Dij q̇iq̇j (2.64)

together with modified Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
+
∂F
∂q̇i

= 0. (2.65)

Note that the coefficient matrix Dij may depend on the position coordinates, in
this case φ, θ and ψ. The Euler-Lagrange equation for ψ for a free top, (2.33) with

B = 0, with the added Rayleigh dissipation function F = C
(
ψ̇ + φ̇ cos θ

)2
/2

is

I3
d

dt

(
ψ̇ + φ̇ cos θ

)
+ C

(
ψ̇ + φ̇ cos θ

)
= 0. (2.66)
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Using the relation between ω3 and the Euler angles (2.25), this equation is identical
to (2.61). Hence, it is clear that the the proposed F is the minimal function
producing the wanted air resistance since any other of friction is neglected. Now,
the equations of motion can be updated to incorporate the air resistance,

I1
d

dt

(
φ̇ sin2 θ

)
+ I3

d

dt

(
cos θ

[
ψ̇ + φ̇ cos θ

])
= [∂φR(φ, θ, ψ)µ] ·B(r)− C

I3
cos θ

(
ψ̇ + φ̇ cos θ

)
I1

(
θ̈ − I1φ̇2 sin θ cos θ

)
+ I3 sin θ φ̇

(
ψ̇ + φ̇ cos θ

)
= [∂θR(φ, θ, ψ)µ] ·B(r)

I3
d

dt

(
ψ̇ + φ̇ cos θ

)
= [∂ψR(φ, θ, ψ)µ] ·B(r)− C

I3

(
ψ̇ + φ̇ cos θ

)
.

(2.67)

2.10 Validity of the dipole approximation

The fact that the magnetized part of the top is regarded as a dipole may seem hard
to justify considering how large the magnetized part of the top is compared to the
top as a whole, see Figure 1.1. To investigate the validity of the approximation,
the energies of a dipole and a magnetized disc is compared. For this purpose the
top is assumed to be uniformly magnetized along the z-direction. The energy of a
uniformly magnetized volume in an external magnetic field is

U = −
∫
V

M ·B(r)d3r (2.68)

where M is the magnetization or dipole density. As a reminder, the energy of a
dipole in an external field is

U = −µ ·B(r) (2.69)

and if B is assumed to be constant inside the top, the energy the two equations
become equivalent. Therefore, the underlying assumption is that the magnetic field
B(r) varies only little over small volumes comparable to the size of the magnetized
part of the top.

The relevant quantities such as the size of the top are determined in Chapter 3 and
are used here to evaluate the approximation. The magnetization of the top M is
computed from the height of the equilibrium given the explicit form of B(r). Note
that the above energy equations depends on both the position and the orientation
of the top and for simplicity, only the z-axis, close to the equilibrium is considered.
Because of this, only the angle θ has to be treated due to the circular symmetry.
Numerical calculations shows that the difference in energy is less than 1 % for 6.5
cm < z < 8 cm and 0 ≤ θ ≤ π/2. The small difference justifies the approximation
which considerably simplifies the problem.
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3. Experiment

3.1 The Levitron

In this chapter, the different experimental setups and components used will be dis-
cussed. Before going in to details about the more advanced setups, it is important
to explain how the Levitron toy is used by itself.

As mentioned earlier, the mass range that permits levitation is quite narrow and
is dependent of magnetic field strength of the base as well as the dipole moment of
the top. This becomes a problem since the magnetization varies with temperature.
Higher temperature weakens the field strengths which requires a lighter top and
vice versa. A temperature change less than 1◦ C can be enough to make a previ-
ously levitating top too light or too heavy. The solution to this problem by the
manufacturer is two provide a set of washers with the device that can be attached
to the top using an O-ring. See Figure 3.1 below.

Figure 3.1: The Levitron top and washers where (a) O-ring, (b) washers and (c) top. The
magnetized part of the top is the disc-like cylinder in (c).

For the Levitron used in this project, the mass of the washers ranges from the
heaviest at 3.4 g to the lightest at ∼ 0.1 g. Because of the temperature sensitivity,
the top’s mass often has to be adjusted, sometimes several times per session.
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Levitation also requires the base to be highly horizontal. A slightly tilted base
will result in the top falling off to one side. The correct alignment is achieved by
raising or lowering the leg by turning them.

To start the device, the top is spun on the lifting plate which is then elevated a
few centimeters above the base. If the top has the correct mass, it should gently
lift from the lifting plate by itself just below the equilibrium. It may be spun by
hand but this is rather tricky and requires a combination of skill and luck. For
a more consistent result, a clever device called the Levitron Self Starter may be
used. It is a small battery-driven rod that is attached to the upper part of top,
spinning it up to the appropriate angular velocity while keeping it in place. The
Self Starter is included in some editions of the Levitron but may also be purchased
separately. A typical run lasts approximately 2 minutes.

To perform the numerical analysis of the equations of motion, (2.32) and (2.33),
and compare the results to the experiments, several quantities are needed. Some
measurements are therefore necessary. For the top, its mass m, moments of inertia
Ii and its magnetic dipole moment µ are needed. For the base, the inner radius
a and outer radius b as well as the dipole density ρ related to its magnetic field
are required. All masses are measured using a simple scale and any dimensions
are found using a calliper. To compute the moment of inertia using (2.12), the
washers, magnetized disc and the plastic stem are assumed to be cylindrical with
uniform mass distribution. The strength of the magnetic field from the base along
the z-axis is found using a Hall-plate magnetometer. This gives ρ as it is the only
parameter besides a and b. The magnetic moment is harder to measure as the
magnetic field of a magnetized disc differs from an ideal dipole, especially very
close to the disc. Instead, the location of the equilibrium is measured and the
magnetic moment is found from the force equation

Fz = mg − µ∂zBz(0, 0, z). (3.1)

For the simulation, it is not important for the measured quantities to be of the
utmost accuracy since the goal is to analyze the general behavior. This motivates
the rather imprecise method to determine the moment of inertia and the dipole
moment. Also, the frequency limits are not critically dependent on any of these
two quantities making them less important. The results are presented in the table
below. Note that I1 = I2 as the top is symmetric. The equilibrium height is
measured to 7.3 cm and the cylindrical magnetized part of the top is measured to
have a radius of 1.44 cm and height of 0.33 cm.

23



a b ρ I1 I3 µ m
(cm) (cm) (g cm−1 mT−1) (g cm2) (g cm2) (g cm2 mT−1) (g)

3.0 5.5 140.0 10.4 17.3 7.14 ·103 25.5

Table 3.1: Table of measured quantities of the Levitron top and Base.

3.2 Driving system

When every important property of the toy itself is known, it is time to move on
to the magnetic driving system. The Levitron Perpetuator as mentioned in the
introduction consists of a horizontal solenoid, pulse generator and switch, placed
inside a plastic, rectangular box large enough for the magnetic base to fit on top of
it. When turned on, the pulse generator and switch feeds a fixed-frequency, posi-
tive square signal into the solenoid which produces an alternating, approximately
horizontal magnetic field which is used to counteract air resistance.

For the average toy user, this setup is simple to use and enough to trap the top in
perpetual levitation. However, there are some problems that make it unsuitable
for experiments. The fixed-frequency means that the angular velocity of the top
will not change notably and therefore the two frequency limits cannot be tested.
The fact that the square signal has constant sign means that the driving system
cannot be turned off in the middle of a session. Doing so would result in the top
falling off to the side. The reason for this is that the horizontal field is not truly
alternating but oscillates between zero and some value, with the corresponding field
always pointing with the same direction. This have to be corrected by adjusting
the alignment of the base but this means that it will not be properly aligned if the
Perpetuator is turned off.

The square pulses by themselves are also a problem since their mathematical treat-
ment is much more complicated than for example a trigonometric function. Be-
cause of this, the pulse generator and switch of the Perpetuator are replaced with
an external, amplified pulse generator with adjustable frequency and amplitude
which permits both signs. The shape of the signal can be chosen from sine, trian-
gular or square waves. With this modified driving system, all the above problems
are solved and many of the interesting properties can be investigated.

In order for the driving system to work, the top spin frequency must be synchro-
nized with the driving. This is accomplished by spinning up the top to a frequency
faster than the driving frequency and letting it slow down to the correct one by
the air resistance. It is quite hard to achieve perpetual levitation and far from all
attempts are successful. The most fruitful method is found to be leaving the top
on the lifting plate until synchronization, which is shown by a prominent circular
precession and constant angular velocity, and then lifting it to the appropriate
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height.

3.3 Spin frequency counter

In this section, a setup to observe the spin of the top is described. The spin, or
more precisely the z-component of the angular velocity vector ω3, is important
when investigating the upper and lower stability limits and other relations. This
setup is similar to the one presented in ref. [10].

The idea is to use reflected light pulses to measure the spin. To do this, a piece
of white tape is attached to the upper washer of the top and a strong DC lamp is
set up above the base. A convex lens is placed at an angle so that light emitted
from a levitating top is focused into a phototransistor. The phototransistor is
connected to a frequency counter and an oscilloscope. The setup is visualized in
Figure 3.2.

Figure 3.2: A schematic diagram over the setup to measure the top spin frequency.

Once per revolution, the light from the overhead source is reflected into the pho-
totransistor. This gives rise to a periodic signal, whose frequency is measured by
either the frequency counter or the oscilloscope. The measured quantity is the

25



z-component of the angular velocity ω3, in terms of its frequency ν3. The two
quantities are related by

ω3 = 2πν3. (3.2)

This setup is straightforward but there are some important properties required
for it to work. The material of the reflective material attached to the top has
to be dull, i.e. it reflects diffuse light. The convex lens must also be placed so
that the levitating top is slightly closer than the focal length. Together, these two
conditions ensures that the transistor will receive the light pulses, even as the top
bobs around the equilibrium.

When trying out this setup, it was discovered that the washers were not rotating
with the rest of the top but instead slides on the magnetized part and on each
other. This reduces the measured frequency and leads to unexpected results,
especially the relation between the frequency of the driving field νd and the spin
frequency of the top. As concluded in Section 2.8, these two quantities should
be equal when equilibrium has been reached. To further add to the confusion,
the results of the attempt to measure the lower frequency was very close to the
results of the numerical analysis presented in Chapter 4 and also agreed with the
theoretical prediction in Section 2.7. This agreement delayed the discovery of the
gliding significantly and other causes were investigated instead. To prevent this
phenomenon, the washers were attached to top using glue. The behavior of the
top is changed significantly by this and the details as well as a possible explanation
is given in Section 3.6 below.

This setup is primarily used to determine the upper and lower stability limits
of the top. For the lower frequency limit, the top is spun and trapped at some
frequency using the driving system. When the translational motion has stabilized
after a few minutes, the driving field is turned off and the top is allowed to slow
down until it falls down. The minimum frequency recorded and the results of these
attempts are presented in Table 3.2. To measure the upper frequency limit, the
top is as before kept at a constant frequency using the driving system and allowed
to stabilize. By very slowly changing the driving frequency ωd, the frequency
of the top changes with it. Using this technique, the top is accelerated until
it flies off the base and the maximum frequency is noted. The measured lower

Measurement 1 2 3 4 5 6 7 8 9 10

ν3 (Hz) 21.7 21.4 21.7 21.9 21.8 22.3 21.8 22.0 22.1 21.9

Table 3.2: Table of measured lower frequency limits.

frequency limits have a mean value of 21.86 Hz. All measured values are higher
than the theoretical estimation of approximately 14 Hz. The results of upper
frequency-limit measurements are inconclusive. For high spin frequencies, the
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driving synchronization breaks down and the starts to slow down. There is no
reason for this to occur at the upper frequency limit which suggests that the
limit has not been reached. The largest observed synchronized spin frequency is
approximately 61 Hz, which at least provides a lower bound for the limit.

3.4 Precession frequency counter

An interesting relation in the Levitron system is the relation between the spin
of the top and its precession angular velocity Ω. Note that for a free top, the
spin (and thereby the angular velocity) is related to Ω by Equation (2.35). It
is not clear if this relation is preserved for a driven top and initial experimental
observations suggests that this is not the case. To investigate this, a helium-neon
laser is mounted on an adjustable platform at some distance from the base such
that the beam passes through the equilibrium point. The platform is calibrated so
that the beam passes precisely next to the upper stem of the top. A phototransistor
is placed on the other side of the top, connecting to the beam from the laser. This
setup is shown in Figure 3.3.

Figure 3.3: A schematic diagram over the setup to measure the top precession frequency.

When the top is somewhat stable in space, its precession periodically blocks the
beam which allows its frequency to be measured using the phototransistor con-
nected to the frequency counter and oscilloscope. The result is presented in Figure
3.4. The relation between the precession and the driving frequency, and thereby
the spin frequency, is linear which is very different form the inverse-proportionality
relationship of the undriven top. Note that the precession frequency is very close
to the driving frequency in all points and the two quantities can be considered to
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be equal or synchronized.
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Figure 3.4: Measured top precession frequency Ω/2π as a function of the driving frequency
νd in red. The dashed blue line is the least square linear fit with a slope of 1.05.

3.5 Air resistance

In this section, the setup to determine the frictional force from air resistance
responsible for slowing down the spin of the top is described. As stated in Chapter
2, the choice of model to describe this force is between Stokes’ model and Newton’s
model, Equation (2.61) with n = 1 and n = 2 respectively. Both models are fit
to the measured data to determine which is more appropriate which justifies the
choice for the numerical analysis in Chapter 4.

For each attempt, the top is accelerated to a frequency of 40 Hz using the driving
system. The driving system is subsequently turned off and the top is allowed
to slow down until it reaches the lower spin limit. Using the frequency counter,
the angular velocity is measured in ten second interval. Both models can be
linearized, by logarithmation in the case of Stokes’ model and inversion in the case
of Newton’s model. Because of this, a straightforward linear least square fit is
used to determine the proportionality parameter C as well as the constant given
by initial condition. A total of four attempts are performed and the results are
shown in Figure 3.5. From the four plots it is clear that neither of the models seem
to be a perfect fit but both are quite close to the experimental data. Because of
this, the Stokes’ model is chosen to be implemented in the simulational analysis
as the extra terms in Equation (2.67) are less complicated. The mean of the four
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values, C̄1 = 0.00318175, for the preferred model is taken for the simulation in
Chapter 4.

3.6 The effects of loose washers

It is interesting to consider how the sliding of the washers affect the general be-
havior of the Levitron. When the washers are loose, only held in place by the
o-ring, the top is easier to start and synchronize with the driving system. The
translational movement becomes smaller and after some time the top becomes al-
most fixed in place. It is also easier to accelerate the top by changing the driving
frequency and the range of frequencies that can be attained is greater, reaching
up to 66 Hz, if taking the driving frequency as the true spin frequency. A very
simple model that take at least part of this effect into account is to add a spin
dependence to the moment of inertia, i.e. I3 = I3(ω3). This means that as the
top is spinning faster, its moment of inertia becomes weaker as an effect of the
washers not rotating as fast. In order for the model to be implemented into the
equations of motion, the exact dependence must be known which makes this seem-
ingly simple addition rather complicated. Because of this, the effect is not explored
further. The washers are also not only sliding but also wobbling around slightly.
It is possible that this movement affects the stability but this kind of behavior is
even more complex.
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Figure 3.5: The measured z-component of the angular velocity, ω3 as function of time
for a non-driven top along with fitted models. The calculated proportionality constants are
C1 = 0.003199 and C2 = −0.00001760 for (a), C1 = 0.003134 and C2 = −0.00001707 for (b),
C1 = 0.003133 and C2 = −0.00001669 for (c) and C1 = 0.003261 and C2 = −0.00001772 for
(d)
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4. Simulation

In this chapter, the equations of motion (2.33) are solved numerically and from
the results, many of the properties previously discussed are investigated. As a
reminder, the equations of motion only rely on the assumption that the top is
small, i.e. that is can be approximated as a dipole located at the center of mass.
Because of this, the validity of the other approximations can be also studied.

The equations of motion are solved using Mathematica 10 with the built-in NDSolve-
function which solves ordinary differential equations numerically. With the default
settings, the function analyzes the equations and chooses a suitable method. How-
ever, for clarity, the Backward differentiation formula method is chosen for all
computations in this section. The Backwards differentiation formula is an exam-
ple of a linear multistep method which computes the next solution point using
the information of up to six previous steps. More detailed information about this
method is available in ref. [11]. A sample of the source code used in this chapter
is available in Appendix A.

4.1 Initial conditions

In order to perform a simulation, the initial condition of the system must be
completely specified. This includes all six coordinates and their first derivatives
giving a total of twelve values that must be chosen. The only restriction given is
that the coordinate θ must be non-zero to avoid division by zero during some step
of the method. Different initial conditions are necessary to make sure that the
simulated properties such as the lower stability limit are truly intrinsic. A total of
four initial conditions are chosen for the analysis in the first part of this chapter
and are shown in Table 4.1 below.

The first initial condition is chosen to be close to the experimental setup. The
top is initially slightly below the equilibrium close to the z-axis moving upwards
which corresponds to the top being lifted up using the lifting plate. The second
initial condition corresponds to a top very close to the equilibrium point and the
third represents a top far away both horizontally and vertically. In the fourth
initial condition, the values from the first initial condition is reused but with an
increased precession angle θ. In every case, derivatives of the first and third Euler
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Initial condition 1 2 3 4

x 0.10 0.01 0.50 0.10
z 7.10 7.30 7.25 7.10
ẋ -0.07 0.00 -0.20 -0.07
ż 0.20 0.00 0.05 0.20
θ 0.01 0.01 0.01 0.10

θ̇ 0.00 0.00 0.00 0.00

Table 4.1: Table of initial conditions used in the simulation. The units are in cm, cm s−1

and s−1 where appropriate.

angle, φ̇ and ψ̇, are chosen to be equal and such that

ω3 =
(
φ̇ cos θ + ψ̇

)
= 2πν3 (4.1)

where ν3 is the initial spin frequency. Hence,

φ̇ = ψ̇ =
2πν3

1 + cos θ
. (4.2)

The time-derivative of the precession angle, θ̇, is initially chosen as zero. The
initial values of φ and ψ are not important, even if the misalignment of the top’s
dipole and symmetry axis is implemented for the driven top. In all cases, both φ
and ψ are initially set to zero.

4.2 Undriven top without friction

The first and simplest case that is implemented in the simulation is the friction-free,
undriven Levitron. This case serves as a way to check that the method produces
reasonable results before any more complicated terms are added to the equations of
motion. This is also the system closest to the pure theoretical analysis. In Figure
4.1, the trajectory of the top projected on the xz-plane is shown for the four initial
conditions. The plots suggests that the simulation is working as intended as the top
is trapped close at the predicted height. As a reminder, in Section 2.6 the location
of the equilibrium was predicted to be in the interval 2.45 < z/a < 2.65 which with
the experimental value of the inner radius a = 3.0 cm becomes 7.35 < z < 7.95.
The amplitude of the translational oscillations are similar in size to those that can
be observed experimentally.

Note that the location of the stable equilibrium is just outside the predicted in-
terval. This is likely due to the fact that when deriving the interval, the relation
between the inner and outer radius were assumed to be 2a = b, which is not the
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Figure 4.1: The top’s position projected in the xz-plane. (a) corresponds to the first initial
condition, (b) to the second and so forth. All simulations are runs are carried out over 10
seconds.

experimentally measured relation of 11/6a = b used in the simulation. This dif-
ference is likely to slightly alter the location of the minimum. Note that in the
subplot (d), the equilibrium position seems to be located lower than in the other
plots. This is because that the initial precession angle θ is larger meaning that the
average horizontal magnetic force is lower.

By running the simulation with different initial spin frequency ν3, both the lower
and upper stability limits can be found. If the top escapes the equilibrium within
30 seconds, it is considered to be unstable and stable otherwise. Here, an escape
from the equilibrium is taken to be when√

x2 + y2 > 2 cm or z ≤ 0 cm (4.3)

which means that either the top has fallen to the ground or has flown away radially.
In Table 4.2, the upper and lower limits are presented for a four different initial
conditions. As seen in the table, the stability limits varies slightly with the initial
conditions. The increased precession angle seems to be the most important factor.
The time limit of just 30 seconds may affect the result, especially the second

33



simulation. Because the top is initially stationary and very near the equilibrium
in that case, it is likely that it takes longer for an unstable top to escape. The
calculated lower limits are slightly higher than the experimental results which is
to be expected. This is because if the top is unstable and falls down within 30
seconds without friction, it will have some additional time to slow down further
shifting the final values down.

Simulation 1 2 3 4

νlower (Hz) 22.06 21.78 22.27 23.02
νupper (Hz) 70.90 81.73 70.50 65.01

Table 4.2: Table of the simulated lower and upper limits for an undriven top without
friction.

The behaviour of the top just outside the limits are shown in Figure 4.2 below.
As expected with spin frequencies below the lower limit, the top eventually falls
down. As mentioned before, the precession angle becomes increasingly larger until
the upward magnetic force on the top becomes weaker than the gravitational force.
This can be seen in Figure 4.3 which corresponds to the left plot in Figure 4.2.

Figure 4.2: The top’s position projected in the xz-plane for a too slow and too fast top
respectively. In both plots, the first initial condition is used.
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Figure 4.3: The precession angle θ as a function of time for a top just below the lower
frequency limit. Note that θ becomes very large at approximately 3.4 s which forces the top
out of the stable region.

4.3 Undriven top with friction

By adding the frictional forces in the equation of motion (2.67), the undriven top
analogous to what is observed in the lab can be studied. This system is not suitable
to find the upper stability limit but the experiment to measure the lower stability
limit in Chapter 3 can be simulated. This is done by given the top an initial spin
frequency of 30 Hz and simulating it until it reaches a height of z = 6 cm. The top
will continue slowing down during its descent and if the spin frequency at z = 0
would be taken a lower limit slightly lower than the corresponding experimental
measurement would be obtained. The final spin frequency of is recorded and
presented in Table 4.3 below. The results are very close to the experimental
measurements, better than the friction-free case. As before, the initial condition
with the slightly larger initial angle θ has the most notable effect on the limit.

Simulation 1 2 3 4

νlower (Hz) 21.86 21.65 21.81 22.90

Table 4.3: Table of the simulated lower stability limits for an undriven top with friction.

As observed by ref. [10], if the magnetic moment is not purely axial, the top
should fall down sooner. This feature can be tested numerically with the included
frictional forces. Using the same initial conditions, the Levitron is simulated with
and without a small misalignment of the magnetic moment. The misalignment is
taken as approximately 1.5 degree towards the body-fixed x-axis, i.e.

µ = (0.03, 0, 0.97)µ. (4.4)
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In both cases, the top is started with a spin frequency of 30 Hz and simulated
until it falls down. By changing the direction of the magnetic moment while using
the same precession angle for the two runs, the magnetic force on the top will
be weaker. This implies that the mass of the top must be slightly lowered in the
tilted dipole case. With exception of the mass, all parameters are equal for the
two simulations. The z-components of the two simulations as well as the spin
frequencies are plotted in Figure 4.4 and 4.5.

Figure 4.4: The height of the top as a function of time with (b) and without (a) misalign-
ment between dipole moment and symmetry axis. The simulation is computed using the
first initial condition.

Figure 4.5: The spin frequency of the top as a function of time with (b) and without (a)
misalignment between dipole moment and symmetry axis. The same simulation is used as
in Figure 4.4.

As evident from the plots, the runtime is decreased but this is not caused by
the top slowing down faster but rather that the lower stability limit is higher.
The intuitive reason why this occurs is that for the same precession angle, the
misalignment causes the vertical force to be stronger or weaker depending on the
angles φ and ψ. This increases the amplitude of the vertical oscillatory motion,
see Figure 4.4, and hence reduces the stability. The transversal component of the
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dipole moment gives rise to some torque along the body-fixed z-axis but this effect
is negligible compared to the air resistance. However, it is visible in the plot as a
slight smearing of the curve.

The misalignment between the dipole moment and symmetry axis, which is re-
quired to magnetically control the spin frequency, decreases the runtime by ap-
proximately 35 % for an average initial spin frequency. This is quite significant
and means that a drivable top is less suitable for an undriven setup.

4.4 Driven top with friction

The final and most complete system that is simulated includes both the frictional
forces from air resistance and the magnetic field from the driving system. The
equations of motion used are the same as in the previous section but with the
additional driving component of the magnetic field from Equation (2.58). In Figure
4.6, the z-component of the top as well as the spin frequency is shown. The
two plots show that the implemented driving system works as expected as the
top is kept levitating while its spin frequency remain constant in an oscillatory
fashion.

In order to obtain the result it is necessary to slightly adjust the initial spin fre-
quency in order to synchronize the top with the driving frequency and thus achieve
perpetual levitation. This is similar to the experimental situation where perpetual
levitation often is obtained after several attempts. The oscillation amplitude of the
spin frequency is also consistent with what has been observed experimentally.

The relation between the precession frequency and the driving frequency is treated
experimentally in Chapter 3 and this can now be investigated numerically. In
Figure 4.7 precession frequency is shown. The specific time interval is chosen
at a high time to avoid the more irregular behavior at start. The derivative
changes rapidly and it is clearly not fixed around a certain value as could be
expected from the experimental result. However, by inspection the mean value of
the curve over the interval is close to 30 Hz which suggests that there may be some
kind of periodicity. By looking directly at the angle φ it is possible to find the
experimentally observed synchronization between the precession and driving field.
This is shown in Figure 4.8 below. The precession frequency is not strictly periodic
and has rather chaotic behavior at certain points but over the entire interval the
number of completed revolutions matches the driving frequency. The amount of
wiggles and bumps decreases for increased times but are still present at times
greater than 300 seconds.
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4.5 Animation

Solving the equations of motion yields the full time dependence of all coordinates
which means that the both the position and orientation of the top is known at
all times. However, it is hard to interpret the Euler angles and their derivatives
from plotted data. An amusing but also quite informative way to present the
solution is animation. This is a good reality check to see if the calculated re-
sult is qualitatively consistent with the experimental observations. Animations
are not very suitable in paper format and is thus not discussed any further in
this thesis. For the interested reader, a selection of animations will appear on
http://www.kiko.fysik.su.se/en/thesis.html.
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Figure 4.6: The z-component of the top as a function of time (a) and the corresponding
spin frequency (b) for the first initial condition. The driving frequency used is 30 Hz.
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Figure 4.7: The precession frequency φ̇/2π as a function of time.
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Figure 4.8: The Euler angle φ in blue over time. The dashed red line is the periodic part
of the driving field and is included for comparison.
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5. Conclusion and outlook

In this chapter the results from the previous chapters are discussed. The discussion
is followed by an outlook on how the work in this thesis can be continued and
expanded upon.

5.1 Conclusion

The theory, though not as extensively treated as in [1], predicts stable levitation
within a height interval that is in agreement with the experimental result as well
as the simulation. The theoretical lower stability limit is as previously mentioned
not very accurate. By construction, it is a lower bound and is in that sense in
good agreement with measurements and numerical data.

Instead of the theoretical lower limit, it is more interesting to compare the limits
from the experimental observations and the simulations. The computed lower
limits are very close to the experimental values, especially when air resistance is
included in the simulation. It is not clear if the numerical upper stability limit
would agree with a successful experimental measurement but the calculated values
are above the measured lower bound. The upper stability limit is more dependent
on the initial conditions than the lower limit which suggests that these results are
less reliable.

The relation between the top precession and driving frequencies for a driven Lev-
itron is also of interest. The experimental measurements show that the precession
frequency depends linearly on the driving frequency. The above relation could not
be reproduced convincingly in the simulation as the calculated precession frequency
is highly chaotic. By instead looking at the angle φ over several revolutions, the
mean precession frequency is found to be close to the frequency of the driving sys-
tem. However, φ is not periodic and inherits much of the chaotic behavior from the
precession and therefore the results can not be viewed as very trustworthy.
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5.2 Outlook

Though the Levitron is treated quite extensively in this thesis, there are several
possible ways of expanding upon the three main parts. The theory part could
naturally be developed by for example introducing more advanced topics such as
the geometric magnetism introduced in [1].

Measurements of the upper stability limit were not attainable using the experi-
mental setup and the question whether the experimental stability limit agrees with
the achieved numerical results is still open. This is important to make sure that
the mechanism behind the upper limit is contained in the derived equations of
motion. The experimental setup can be improved and expanded on to investigate
more properties. The translational motion of the top for example is not examined
at all and could potentially give some insightful information with the right setup.
Instead of the rather crude driving system which is employed in this thesis, a more
advanced system that uses feedback control would be preferable. For example, in
the method used in ref. [10] the measured spin frequency is fed into the driving
system. The amplitude of the produced magnetic field, instead of its frequency,
is then changed to accelerate the top. It is plausible that this method makes it
easier to reach high spin frequencies which means that the upper frequency limit
could be measured.

When it comes to the simulation analysis, practically any possible experimental
setup can be tested numerically. This include the above mentioned feedback con-
trol system or other magnetic fields. Some effect of having loose washers rotating
with lower speeds could potentially be studied numerically.
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6. Appendix A

6.1 The main program

ClearAll[“Global̀*”](*Clears preexisting variables*)ClearAll[“Global̀*”](*Clears preexisting variables*)ClearAll[“Global̀*”](*Clears preexisting variables*)

(*Declaration of functions*)(*Declaration of functions*)(*Declaration of functions*)

SetAttributes[{a, b, rho, I1, I2, I3,mu,m, c,miss,B0,W},Constant]SetAttributes[{a, b, rho, I1, I2, I3,mu,m, c,miss,B0,W},Constant]SetAttributes[{a, b, rho, I1, I2, I3,mu,m, c,miss,B0,W},Constant]

(* Declaration and fixing of parameters *)(* Declaration and fixing of parameters *)(* Declaration and fixing of parameters *)

Rx[v ]:={{1, 0, 0}, {0,Cos[v],−Sin[v]}, {0, Sin[v],Cos[v]}};Rx[v ]:={{1, 0, 0}, {0,Cos[v],−Sin[v]}, {0, Sin[v],Cos[v]}};Rx[v ]:={{1, 0, 0}, {0,Cos[v],−Sin[v]}, {0, Sin[v],Cos[v]}};

Ry[v ]:={{Cos[v], 0, Sin[v]}, {0, 1, 0}, {−Sin[v], 0,Cos[v]}};Ry[v ]:={{Cos[v], 0, Sin[v]}, {0, 1, 0}, {−Sin[v], 0,Cos[v]}};Ry[v ]:={{Cos[v], 0, Sin[v]}, {0, 1, 0}, {−Sin[v], 0,Cos[v]}};

Rz[v ]:={{Cos[v],−Sin[v], 0}, {Sin[v],Cos[v], 0}, {0, 0, 1}};Rz[v ]:={{Cos[v],−Sin[v], 0}, {Sin[v],Cos[v], 0}, {0, 0, 1}};Rz[v ]:={{Cos[v],−Sin[v], 0}, {Sin[v],Cos[v], 0}, {0, 0, 1}};

R[phi , theta , psi ]:=Rz[phi].Rx[theta].Rz[psi]; (* Rotation matrix *)R[phi , theta , psi ]:=Rz[phi].Rx[theta].Rz[psi]; (* Rotation matrix *)R[phi , theta , psi ]:=Rz[phi].Rx[theta].Rz[psi]; (* Rotation matrix *)

phi0[z ]:=2Pirhoz(1/(Sqrt[a∧2 + z∧2])− 1/(Sqrt[b∧2 + z∧2]) );phi0[z ]:=2Pirhoz(1/(Sqrt[a∧2 + z∧2])− 1/(Sqrt[b∧2 + z∧2]) );phi0[z ]:=2Pirhoz(1/(Sqrt[a∧2 + z∧2])− 1/(Sqrt[b∧2 + z∧2]) );

(* Magnetic scalar potential along the axis *)(* Magnetic scalar potential along the axis *)(* Magnetic scalar potential along the axis *)

phi1[z ]:=phi0′[z];phi1[z ]:=phi0′[z];phi1[z ]:=phi0′[z];

phi2[z ]:=phi1′[z];phi2[z ]:=phi1′[z];phi2[z ]:=phi1′[z];

phi3[z ]:=phi2′[z];phi3[z ]:=phi2′[z];phi3[z ]:=phi2′[z];

phi4[z ]:=phi3′[z];phi4[z ]:=phi3′[z];phi4[z ]:=phi3′[z];

Phi[x , y , z ]:=phi0[z]− 1/4phi2[z](x∧2 + y∧2); (* Magnetic scalar potential *)Phi[x , y , z ]:=phi0[z]− 1/4phi2[z](x∧2 + y∧2); (* Magnetic scalar potential *)Phi[x , y , z ]:=phi0[z]− 1/4phi2[z](x∧2 + y∧2); (* Magnetic scalar potential *)

B[x , y , z ] = −Grad[Phi[x, y, z], {x, y, z}]; (* Magnetic field *)B[x , y , z ] = −Grad[Phi[x, y, z], {x, y, z}]; (* Magnetic field *)B[x , y , z ] = −Grad[Phi[x, y, z], {x, y, z}]; (* Magnetic field *)

T = I1/2(theta′[t]∧2 + phi′[t]∧2Sin[theta[t]]∧2) + I3/2(psi′[t] + phi′[t]Cos[theta[t]])∧2+T = I1/2(theta′[t]∧2 + phi′[t]∧2Sin[theta[t]]∧2) + I3/2(psi′[t] + phi′[t]Cos[theta[t]])∧2+T = I1/2(theta′[t]∧2 + phi′[t]∧2Sin[theta[t]]∧2) + I3/2(psi′[t] + phi′[t]Cos[theta[t]])∧2+
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m/2(x′[t]∧2 + y′[t]∧2 + z′[t]∧2);m/2(x′[t]∧2 + y′[t]∧2 + z′[t]∧2);m/2(x′[t]∧2 + y′[t]∧2 + z′[t]∧2);

U = −(R[phi[t], theta[t], psi[t]].{missmu, 0, (1−miss) ∗mu}).B[x[t], y[t], z[t]]+U = −(R[phi[t], theta[t], psi[t]].{missmu, 0, (1−miss) ∗mu}).B[x[t], y[t], z[t]]+U = −(R[phi[t], theta[t], psi[t]].{missmu, 0, (1−miss) ∗mu}).B[x[t], y[t], z[t]]+

mgz[t]− B0Cos[2PiWt](R[phi[t], theta[t], psi[t]].{missmu, 0, (1−miss) ∗mu})[[2]];mgz[t]− B0Cos[2PiWt](R[phi[t], theta[t], psi[t]].{missmu, 0, (1−miss) ∗mu})[[2]];mgz[t]− B0Cos[2PiWt](R[phi[t], theta[t], psi[t]].{missmu, 0, (1−miss) ∗mu})[[2]];

L = T − U ;L = T − U ;L = T − U ;

(*Euler− Lagrangeequations*)(*Euler− Lagrangeequations*)(*Euler− Lagrangeequations*)

eqs = {eqs = {eqs = {

Dt[D[L, x′[t]], t]−D[L, x[t]] == 0,Dt[D[L, x′[t]], t]−D[L, x[t]] == 0,Dt[D[L, x′[t]], t]−D[L, x[t]] == 0,

Dt[D[L, y′[t]], t]−D[L, y[t]] == 0,Dt[D[L, y′[t]], t]−D[L, y[t]] == 0,Dt[D[L, y′[t]], t]−D[L, y[t]] == 0,

Dt[D[L, z′[t]], t]−D[L, z[t]] == 0,Dt[D[L, z′[t]], t]−D[L, z[t]] == 0,Dt[D[L, z′[t]], t]−D[L, z[t]] == 0,

Dt[D[L, phi′[t]], t]−D[L, phi[t]] == −c Cos[theta[t]](phi′[t]Cos[theta[t]] + psi′[t]),Dt[D[L, phi′[t]], t]−D[L, phi[t]] == −c Cos[theta[t]](phi′[t]Cos[theta[t]] + psi′[t]),Dt[D[L, phi′[t]], t]−D[L, phi[t]] == −c Cos[theta[t]](phi′[t]Cos[theta[t]] + psi′[t]),

Dt[D[L, theta′[t]], t]−D[L, theta[t]] == 0,Dt[D[L, theta′[t]], t]−D[L, theta[t]] == 0,Dt[D[L, theta′[t]], t]−D[L, theta[t]] == 0,

Dt[D[L, psi′[t]], t]−D[L, psi[t]] == −c(phi′[t]Cos[theta[t]] + psi′[t])Dt[D[L, psi′[t]], t]−D[L, psi[t]] == −c(phi′[t]Cos[theta[t]] + psi′[t])Dt[D[L, psi′[t]], t]−D[L, psi[t]] == −c(phi′[t]Cos[theta[t]] + psi′[t])

}//Simplify;}//Simplify;}//Simplify;

(*Parameters*)(*Parameters*)(*Parameters*)

a = 3; (* Inner radius *)a = 3; (* Inner radius *)a = 3; (* Inner radius *)

b = 5.5; (* Outer radius *)b = 5.5; (* Outer radius *)b = 5.5; (* Outer radius *)

miss = 0.03; (* Dipole missalignment *)miss = 0.03; (* Dipole missalignment *)miss = 0.03; (* Dipole missalignment *)

mu = −7140; (* Dipole moment *)mu = −7140; (* Dipole moment *)mu = −7140; (* Dipole moment *)

rho = 140; (* Dipole density *)rho = 140; (* Dipole density *)rho = 140; (* Dipole density *)

I1 = 10.4; (* Transversal moment of inertia *)I1 = 10.4; (* Transversal moment of inertia *)I1 = 10.4; (* Transversal moment of inertia *)

I3 = 17.31314; (* Vertical moment of inertia *)I3 = 17.31314; (* Vertical moment of inertia *)I3 = 17.31314; (* Vertical moment of inertia *)

m = 24.45; (* Top mass *)m = 24.45; (* Top mass *)m = 24.45; (* Top mass *)
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B0 = 0.4; (* Driving field strength *)B0 = 0.4; (* Driving field strength *)B0 = 0.4; (* Driving field strength *)

W = 30; (* Driving frequency *)W = 30; (* Driving frequency *)W = 30; (* Driving frequency *)

g = 982; (* Gravitational acceleration *)g = 982; (* Gravitational acceleration *)g = 982; (* Gravitational acceleration *)

c = 0.00318175 ∗ I3;c = 0.00318175 ∗ I3;c = 0.00318175 ∗ I3;

(* Frictional constant *)(* Frictional constant *)(* Frictional constant *)

(* Initial conditions *)(* Initial conditions *)(* Initial conditions *)

T = 30; (* Max simulation time*)T = 30; (* Max simulation time*)T = 30; (* Max simulation time*)

x0 = 0.1; (*Initialx− value*)x0 = 0.1; (*Initialx− value*)x0 = 0.1; (*Initialx− value*)

z0 = 7.1; (*Initialz − value*)z0 = 7.1; (*Initialz − value*)z0 = 7.1; (*Initialz − value*)

xpr0 = −0.07; (*Initialx′ − value*)xpr0 = −0.07; (*Initialx′ − value*)xpr0 = −0.07; (*Initialx′ − value*)

zpr0 = 0.2; (*Initialz′ − value*)zpr0 = 0.2; (*Initialz′ − value*)zpr0 = 0.2; (*Initialz′ − value*)

theta0 = 0.01; (*Initialtheta′ − value*)theta0 = 0.01; (*Initialtheta′ − value*)theta0 = 0.01; (*Initialtheta′ − value*)

nu0 = 30.03; (* Initial spin frequency *)nu0 = 30.03; (* Initial spin frequency *)nu0 = 30.03; (* Initial spin frequency *)

psipr0 = 2Pinu0/(Cos[theta0] + 1);psipr0 = 2Pinu0/(Cos[theta0] + 1);psipr0 = 2Pinu0/(Cos[theta0] + 1);

(*Latex− styleplotlabels*)(*Latex− styleplotlabels*)(*Latex− styleplotlabels*)

<< MaTeX̀<< MaTeX̀<< MaTeX̀

zlab = MaTeX[“z \\ (\\mathrm{cm})”,Magnification→ 0.9];zlab = MaTeX[“z \\ (\\mathrm{cm})”,Magnification→ 0.9];zlab = MaTeX[“z \\ (\\mathrm{cm})”,Magnification→ 0.9];

xlab = MaTeX[“x \\ (\\mathrm{cm})”,Magnification→ 0.9];xlab = MaTeX[“x \\ (\\mathrm{cm})”,Magnification→ 0.9];xlab = MaTeX[“x \\ (\\mathrm{cm})”,Magnification→ 0.9];

ylab = MaTeX[“y \\ (\\mathrm{cm})”,Magnification→ 0.9];ylab = MaTeX[“y \\ (\\mathrm{cm})”,Magnification→ 0.9];ylab = MaTeX[“y \\ (\\mathrm{cm})”,Magnification→ 0.9];

nulab = MaTeX[“\\nu 3 \\ (Hz)”,Magnification→ 0.9];nulab = MaTeX[“\\nu 3 \\ (Hz)”,Magnification→ 0.9];nulab = MaTeX[“\\nu 3 \\ (Hz)”,Magnification→ 0.9];

tlab = MaTeX[“t \\ (s)”,Magnification→ 0.9];tlab = MaTeX[“t \\ (s)”,Magnification→ 0.9];tlab = MaTeX[“t \\ (s)”,Magnification→ 0.9];

(* Solving the ODE numerically*)(* Solving the ODE numerically*)(* Solving the ODE numerically*)
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TMax = T ;TMax = T ;TMax = T ;

r = NDSolve[{eqs, x[0] == x0, y[0] == 0.0, z[0] == z0, x′[0] == xpr0, y′[0] == 0.0,r = NDSolve[{eqs, x[0] == x0, y[0] == 0.0, z[0] == z0, x′[0] == xpr0, y′[0] == 0.0,r = NDSolve[{eqs, x[0] == x0, y[0] == 0.0, z[0] == z0, x′[0] == xpr0, y′[0] == 0.0,

z′[0]==zpr0, phi[0]==0.0, theta[0] == theta0, psi[0] == 0.0, phi′[0] == psipr0,z′[0]==zpr0, phi[0]==0.0, theta[0] == theta0, psi[0] == 0.0, phi′[0] == psipr0,z′[0]==zpr0, phi[0]==0.0, theta[0] == theta0, psi[0] == 0.0, phi′[0] == psipr0,

theta′[0] == 0.0, psi′[0] == psipr0,WhenEvent[{z[t] == 0, x[t]∧2 + y[t]∧2 == 4},theta′[0] == 0.0, psi′[0] == psipr0,WhenEvent[{z[t] == 0, x[t]∧2 + y[t]∧2 == 4},theta′[0] == 0.0, psi′[0] == psipr0,WhenEvent[{z[t] == 0, x[t]∧2 + y[t]∧2 == 4},

{TMax = t, “StopIntegration”}]}, {x, y, z, phi, theta, psi}, {t, 0, T},Method->“BDF”];{TMax = t, “StopIntegration”}]}, {x, y, z, phi, theta, psi}, {t, 0, T},Method->“BDF”];{TMax = t, “StopIntegration”}]}, {x, y, z, phi, theta, psi}, {t, 0, T},Method->“BDF”];

(* Top 3D Graphics *)(* Top 3D Graphics *)(* Top 3D Graphics *)

rmitt = 0.34;rmitt = 0.34;rmitt = 0.34;

hmitt = 3.3;hmitt = 3.3;hmitt = 3.3;

rring = 1.44;rring = 1.44;rring = 1.44;

hring = 0.33;hring = 0.33;hring = 0.33;

rplatta = 1.23;rplatta = 1.23;rplatta = 1.23;

hplatta = 0.07;hplatta = 0.07;hplatta = 0.07;

rhole = 0.34;rhole = 0.34;rhole = 0.34;

rlplatta = 0.98;rlplatta = 0.98;rlplatta = 0.98;

rlhole = 0.38;rlhole = 0.38;rlhole = 0.38;

rlmplatta = 1.02;rlmplatta = 1.02;rlmplatta = 1.02;

h0ring = 0.7;h0ring = 0.7;h0ring = 0.7;

RCM = “0.831138”;RCM = “0.831138”;RCM = “0.831138”;

P = Cylinder[{{0, 0, 0}, {0, 0, hmitt}}, rmitt];P = Cylinder[{{0, 0, 0}, {0, 0, hmitt}}, rmitt];P = Cylinder[{{0, 0, 0}, {0, 0, hmitt}}, rmitt];

P2 = Cylinder[{{0, 0, h0ring}, {0, 0, h0ring + hring}}, rring];P2 = Cylinder[{{0, 0, h0ring}, {0, 0, h0ring + hring}}, rring];P2 = Cylinder[{{0, 0, h0ring}, {0, 0, h0ring + hring}}, rring];

P3 = Cylinder[{{0, 0, h0ring + hring}, {0, 0, h0ring + hring + hplatta}}, rplatta];P3 = Cylinder[{{0, 0, h0ring + hring}, {0, 0, h0ring + hring + hplatta}}, rplatta];P3 = Cylinder[{{0, 0, h0ring + hring}, {0, 0, h0ring + hring + hplatta}}, rplatta];

P4 = Cylinder[{{0, 0, h0ring + hring + hplatta}, {0, 0, h0ring + hring + 2hplatta}}, rplatta];P4 = Cylinder[{{0, 0, h0ring + hring + hplatta}, {0, 0, h0ring + hring + 2hplatta}}, rplatta];P4 = Cylinder[{{0, 0, h0ring + hring + hplatta}, {0, 0, h0ring + hring + 2hplatta}}, rplatta];
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P5 = Cylinder[{{0, 0, h0ring + hring + 2hplatta}, {0, 0, h0ring + hring + 3hplatta}}, rlmplatta];P5 = Cylinder[{{0, 0, h0ring + hring + 2hplatta}, {0, 0, h0ring + hring + 3hplatta}}, rlmplatta];P5 = Cylinder[{{0, 0, h0ring + hring + 2hplatta}, {0, 0, h0ring + hring + 3hplatta}}, rlmplatta];

P6 = Cylinder[{{0, 0, h0ring + hring + 3hplatta}, {0, 0, h0ring + hring + 4hplatta}}, rplatta];P6 = Cylinder[{{0, 0, h0ring + hring + 3hplatta}, {0, 0, h0ring + hring + 4hplatta}}, rplatta];P6 = Cylinder[{{0, 0, h0ring + hring + 3hplatta}, {0, 0, h0ring + hring + 4hplatta}}, rplatta];

P7 = Cylinder[{{0, 0, h0ring + hring + 6.5hplatta}, {0, 0, h0ring + hring + 8hplatta}}, 0.4];P7 = Cylinder[{{0, 0, h0ring + hring + 6.5hplatta}, {0, 0, h0ring + hring + 8hplatta}}, 0.4];P7 = Cylinder[{{0, 0, h0ring + hring + 6.5hplatta}, {0, 0, h0ring + hring + 8hplatta}}, 0.4];

P9 = Cylinder[{{0, 0, h0ring + hring + 4hplatta}, {0, 0, h0ring + hring + 5hplatta}}, rlplatta];P9 = Cylinder[{{0, 0, h0ring + hring + 4hplatta}, {0, 0, h0ring + hring + 5hplatta}}, rlplatta];P9 = Cylinder[{{0, 0, h0ring + hring + 4hplatta}, {0, 0, h0ring + hring + 5hplatta}}, rlplatta];

P8 = Cone[{{3rlplatta/4, 0, h0ring + hring + 5hplatta},P8 = Cone[{{3rlplatta/4, 0, h0ring + hring + 5hplatta},P8 = Cone[{{3rlplatta/4, 0, h0ring + hring + 5hplatta},

{3rlplatta/4, 0, h0ring + hring + 6hplatta}}, rmitt/5];{3rlplatta/4, 0, h0ring + hring + 6hplatta}}, rmitt/5];{3rlplatta/4, 0, h0ring + hring + 6hplatta}}, rmitt/5];

S = {P,P2,P3,P4,P5,P6,P7,P8,P9};S = {P,P2,P3,P4,P5,P6,P7,P8,P9};S = {P,P2,P3,P4,P5,P6,P7,P8,P9};

(* Example plots *)(* Example plots *)(* Example plots *)

Plot[Evaluate[z[t]/.r], {t, 0,TMax},AxesLabel→ {tlab, zlab},Plot[Evaluate[z[t]/.r], {t, 0,TMax},AxesLabel→ {tlab, zlab},Plot[Evaluate[z[t]/.r], {t, 0,TMax},AxesLabel→ {tlab, zlab},

PlotRange→ {{0,TMax}, {6.8, 7.8}}];PlotRange→ {{0,TMax}, {6.8, 7.8}}];PlotRange→ {{0,TMax}, {6.8, 7.8}}];

(* Top height as function of time *)(* Top height as function of time *)(* Top height as function of time *)

Plot[Evaluate[(phi′[t]Cos[theta[t]] + psi′[t])/.r][[1]]/(2Pi), {t, 0,TMax},Plot[Evaluate[(phi′[t]Cos[theta[t]] + psi′[t])/.r][[1]]/(2Pi), {t, 0,TMax},Plot[Evaluate[(phi′[t]Cos[theta[t]] + psi′[t])/.r][[1]]/(2Pi), {t, 0,TMax},

AxesLabel→ {tlab, nulab},PlotRange→ {{0,TMax}, {nu0− 1.5, nu0 + 1.5}}];AxesLabel→ {tlab, nulab},PlotRange→ {{0,TMax}, {nu0− 1.5, nu0 + 1.5}}];AxesLabel→ {tlab, nulab},PlotRange→ {{0,TMax}, {nu0− 1.5, nu0 + 1.5}}];

(* Spin frequency as function of time *)(* Spin frequency as function of time *)(* Spin frequency as function of time *)

ParametricPlot[{Evaluate[x[t]/.r][[1]],Evaluate[z[t]/.r][[1]]}, {t, 0,TMax},ParametricPlot[{Evaluate[x[t]/.r][[1]],Evaluate[z[t]/.r][[1]]}, {t, 0,TMax},ParametricPlot[{Evaluate[x[t]/.r][[1]],Evaluate[z[t]/.r][[1]]}, {t, 0,TMax},

AxesLabel→ {xlab, zlab},PlotStyle->{Blue,AbsoluteThickness[0.8]},AxesLabel→ {xlab, zlab},PlotStyle->{Blue,AbsoluteThickness[0.8]},AxesLabel→ {xlab, zlab},PlotStyle->{Blue,AbsoluteThickness[0.8]},

AxesOrigin→ {−0.4, 7.0},PlotRange→ {{−0.4, 0.4}, {7.0, 7.6}}];AxesOrigin→ {−0.4, 7.0},PlotRange→ {{−0.4, 0.4}, {7.0, 7.6}}];AxesOrigin→ {−0.4, 7.0},PlotRange→ {{−0.4, 0.4}, {7.0, 7.6}}];

(*Projectiononxz− plane*)(*Projectiononxz− plane*)(*Projectiononxz− plane*)

(*Animation*)(*Animation*)(*Animation*)

Manipulate[F1 =Manipulate[F1 =Manipulate[F1 =

GeometricTransformation[S,RotationTransform[Evaluate[psi[t]/.r][[1]], {0, 0, 1}]];GeometricTransformation[S,RotationTransform[Evaluate[psi[t]/.r][[1]], {0, 0, 1}]];GeometricTransformation[S,RotationTransform[Evaluate[psi[t]/.r][[1]], {0, 0, 1}]];

F2 = GeometricTransformation[F1,RotationTransform[Evaluate[theta[t]/.r][[1]], {1, 0, 0}]];F2 = GeometricTransformation[F1,RotationTransform[Evaluate[theta[t]/.r][[1]], {1, 0, 0}]];F2 = GeometricTransformation[F1,RotationTransform[Evaluate[theta[t]/.r][[1]], {1, 0, 0}]];

F3 = GeometricTransformation[F2,RotationTransform[Evaluate[phi[t]/.r][[1]], {0, 0, 1}]];F3 = GeometricTransformation[F2,RotationTransform[Evaluate[phi[t]/.r][[1]], {0, 0, 1}]];F3 = GeometricTransformation[F2,RotationTransform[Evaluate[phi[t]/.r][[1]], {0, 0, 1}]];
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R = GeometricTransformation[F3,TranslationTransform[{Evaluate[x[t]/.r][[1]],R = GeometricTransformation[F3,TranslationTransform[{Evaluate[x[t]/.r][[1]],R = GeometricTransformation[F3,TranslationTransform[{Evaluate[x[t]/.r][[1]],

Evaluate[y[t]/.r][[1]],Evaluate[z[t]/.r][[1]]− RCM}]];Evaluate[y[t]/.r][[1]],Evaluate[z[t]/.r][[1]]− RCM}]];Evaluate[y[t]/.r][[1]],Evaluate[z[t]/.r][[1]]− RCM}]];

Graphics3D[{EdgeForm[None], R},PlotRange→ {{−3, 3}, {−3, 3}, {0, 10}},Axes→ True,Graphics3D[{EdgeForm[None], R},PlotRange→ {{−3, 3}, {−3, 3}, {0, 10}},Axes→ True,Graphics3D[{EdgeForm[None], R},PlotRange→ {{−3, 3}, {−3, 3}, {0, 10}},Axes→ True,

AxesLabel→ {xlab, ylab, zlab}], {{t, 0}, 0,TMax,AnimationRate→ 1/10,AxesLabel→ {xlab, ylab, zlab}], {{t, 0}, 0,TMax,AnimationRate→ 1/10,AxesLabel→ {xlab, ylab, zlab}], {{t, 0}, 0,TMax,AnimationRate→ 1/10,

RefreshRate→ 120}, SaveDefinitions→ True,AutorunSequencing→ 15];RefreshRate→ 120}, SaveDefinitions→ True,AutorunSequencing→ 15];RefreshRate→ 120}, SaveDefinitions→ True,AutorunSequencing→ 15];
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