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Abstract

Quantum mechanical properties of finite dimensional quantum
systems are used within the field of quantum information. In this
thesis the set of states (density matrices) for such systems is studied
and described, largely in geometrical terms. The introductory part
also acquaints the reader with relevant background about majoriza-
tion, bistochastic matrices, mutually unbiased bases, Hadamard
matrices and entanglement, with the aim to make the papers at-
tached easier to read.

Paper I considers Peres’ criterion for separability, for two qubit
states. Paper II deals with the problem of how density matrices can
be mixed from pure states, especially what probability distributions
over pure states that are possible. In Paper III the set of bistochas-
tic matrices—Birkhoff’s polytope—and the subset of unistochastic
matrices is studied, with a detailed description in dimensions 3 and
4. In Paper IV it is seen how the states of a complete set of mutually
unbiased bases form a polytope in the set of density matrices, with
certain combinatorial properties. A search for mutually unbiased
bases in dimension 6 is presented in Paper VI, which includes a thor-
ough discussion on 6 by 6 Hadamard matrices. Paper V presents a
result about geodesics in the set of quantum states with respect to
the curved Bures-Uhlmann geometry.
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“I must apologize
for not having penetrated quantum mechanics

deeply enough.”

Albert Einstein [32]



Preface

This is my doctoral thesis in Theoretical Physics. It deals with quantum
states, also known as density matrices. I first came across density matri-
ces when I started my project as a Masters student. Gently guided by
my supervisor, my views were widened. I got to know about quantum
information, and working on concrete problems I came to appreciate the
algebra I never understood in my linear algebra course. (Why, oh why,
didn’t anyone tell us that matrices and eigenvalues actually mean some-
thing?) That there are some weird things going on in quantum mechanics
I learned in my first physics course, but I wasn’t aware that these mysteri-
ous features can be used in a marvelous way within quantum information.
(Admittedly the weirdness is also ‘in use’ when quantum mechanics mar-
velously explains plenty of physics.) For a beginner quantum info is not
only fascinating, it is also fairly accessible without first ploughing through
thick books. During my Masters project, I got the taste for it. I wanted
to continue with research. And I wanted to learn more of quantum infor-
mation.

I am happy I got the chance to go on as a grad student—it’s been
a privilege. I have now had five more years at Fysikum, Stockholms
universitet. The research I have done during this time is presented in this
theses. Six published papers, along with an introductory text containing
a lot of what I have learnt. So, am I now an expert? That’s not how I
feel. There is so much, much more I would like to know and master. At
the same time I have realized, while striving to write the introductory
text, that I have taken in quite a lot these years. Certainly more than I
can put down in print in this thesis.

I am very much indebted to Professor Ingemar Bengtsson. He is an
excellent supervisor, and without him I would not have been able to
carry this thesis to term. He has generously shared of his knowledge and
proposed problems to study, always interested in any of my progress and
willingly given of his time in discussions. I have much appreciated his
eagerness to tell me what’s on his mind and we have shared the joy of
illustrating physics with hand drawn pictures. With great patience he
has guided me, constantly encouraged me and given abundant advice—
especially during these last months when I have been struggling to finish
my thesis, often drained of creativity.

I will miss Ingemar. But he is not the only one who will be missed,
now that I am leaving Fysikum. I am grateful to many, who have con-
tributed to making our workplace such an enjoyable one. So thank you,
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all my friends in ‘kof’, ‘cops’, and former ‘fop’ groups. Many times, when
lacking inspiration to work, I’ve travelled to Fysikum just to meet peo-
ple whom I knew could cheer me up. We have had many lunches, coffee
and dinner breaks, discussing almost anything in the world, and we’ve
been watching movies—thanks, Maria!—as well as playing table tennis—
thanks, Emil and Narit!—and much more. Occasionally we’ve been work-
ing. Especially I want to thank Sören, with whom I have shared a room
during all my time at Fysikum. We have had many interesting discus-
sions, often disagreeing furiously. But he is always helpful and ready to
give advice (as he has been a student of Ingemar’s, too, he is the perfect
support whenever I actually don’t agree with my supervisor). During my
first years here I also benefitted from sharing a room with Johan, who
could help a novice in quantum oriented questions.

Besides working with Ingemar, I have also had the opportunity to
coauthor papers with Karol Życzkowski, Jan-Åke Larsson, Marek Kuś,
Wojciech Tadej, and Wojciech Bruzda. Thanks to all of you! For provid-
ing linguistic advice, in parts of this thesis, I thank Subhash Chaturvedi.

There are also people outside Physics in my life. I want to thank my
dear friend Sara, with whom most things can be chewed over. I am also
thankful to friends in my church: to everyone in my “cell group” and to
Maria for providing a shoulder to lean on in hard times. Finally I thank
my mom and dad for their constant support.

Åsa Ericsson

Stockholm, August 2007
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Chapter 1

Introduction

“One of the most fascinating aspects of recent work in funda-
mental quantum theory is the emergence of a new notion, the
concept of quantum information, which is quite distinct from
its classical counterpart. It provides a new perspective for all
foundational and interpretational issues and highlights new es-
sential differences between classical and quantum theory.”

Richard Jozsa [56]

1.1 A (very) brief history of quantum mechanics

In the beginning of the twentieth century the concept of the ‘quantum’
was invented to model physics that did not fit the classical theory. It
was the rise of a sweeping transformation that would renew physics in
the years to come. In the mid nineteen-twenties the theory of quantum
mechanics was formulated, essentially as we know it today. It was tremen-
dously efficient for describing various properties of the constituents of our
universe. But how should reality be understood if quantum mechanics is
the way to model it? The theory seemed so weird!

The determinism of classical physics were lost in favor of quantum
probabilities. In his 1927 paper on the uncertainty principle Heisenberg
said [48]:

“Even in principle, we cannot know the present in all detail.
For that reason everything observed is a selection from a plen-

1



2 Chapter 1. Introduction

itude of possibilities and a limitation on what is possible in the
future.”

This is interconnected to the complementarity of observables, the absence
of definite values of complementary quantities. As Bohr wrote [20]:

“[T]he indivisibility of the quantum of action is itself, from the
classical point of view, an irrational element which inevitably
requires us to forgo a causal mode of description and which
. . . forces us to adopt a new mode of description designated as
complementary in the sense that any given application of clas-
sical concepts precludes the simultaneous use of other classical
concepts which in a different connection are equally necessary
for the elucidation of the phenomena.”

Or with the words of Pauli [66]:

“One can see it with p-eyes and one can see it with q-eyes, but
if one opens both eyes then one goes astray.”

Not only was classical determinism superseded by quantum proba-
bilities, there were also these strange “spooky actions at a distance”, as
clarified in the famous “EPR-paper” [33]. This phenomenon was consid-
ered by Schrödinger, who was the first to call states ‘entangled’ [72]:

“When two systems . . . enter into temporary . . . interaction . . .
and when after a time . . . the systems separate again, then they
can no longer be described in the same way as before, viz. by
endowing each of them with a representative of its own. I
would not call that one but rather the characteristic trait of
quantum mechanics, the one that enforces its entire departure
from classical lines of thought. By the interaction the two
representatives [the quantum states] have become entangled.”

He comments upon the “EPR-paper”:

“Attention has recently been called to the obvious but very dis-
concerting fact that even though we restrict the disentangling
measurements to one system, the representative obtained for
the other system is by no means independent of the particular
choice of observations which we select . . . It is rather discom-
forting that the theory should allow a system to be steered or
piloted into one or the other type of state at the experimenter’s
mercy in spite of his having no access to it.”
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The strangeness of quantum mechanics was discussed and there were
struggles to try to intertwine quantum mechanics with classical concepts.
But to most physicists these abstrusenesses were, for a long time, re-
garded as subtleties no need to worry about. After all, quantum mechan-
ics was successful and there were so many discoveries to make, through
application of this new theory. With quantum mechanics the stability of
everyday matter could be explained. Quantum mechanics was also fruit-
fully applied to key properties of matter on all scales, from elementary
particles to stars.

But the oddities remained. Somehow, until the late twentieth century,
they did not enter the applications manifestly.

1.2 Quantum information
—exploiting the oddities

The advances of technology has lead to the possibility of manipulating
systems of single or a few atoms or photons with such a high precision that
the strangeness of quantum mechanics can be investigated experimentally.
Perhaps most famous are the Bell-experiments which display the non-local
character of entangled quantum states.

This capability of controlling single quantum systems has, together
with novel theoretical insights, given rise to the new field of quantum
information science. There has been a shift in perspective. Instead of
seeing the impossibilities resulting from quantum uncertainties and the
weirdness of entanglement one asks: How can the oddities of quantum
mechanics be employed?

The outgrowth is the discovery of many fascinating phenomena, where-
in quantum properties are utilized for information processing. Creative
scientists have figured out how, for example, entanglement can be used for
quantum teleportation and dense coding, how chryptography can benefit
from the limited distinguishability of quantum states which is a conse-
quence of complementarity, and how superpositions of quantum states
enable quantum computing. The stumbling blocks in the efforts of un-
derstanding the foundations of quantum mechanics have become indis-
pensable resources in quantum information science.

Several ideas have been successfully implemented experimentally. The
basic quantum system in most applications is a qubit, that is, a two level
quantum system. There are various physical realizations in use—photons,
electrons, ions, molecules, quantum dots and superconducting circuits—
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all having different advantages and different drawbacks.
To prepare one single qubit in an arbitrary state, to perform unitary

transformations and to measure it can, these days, be done without too
much trouble. But what is really new is the possibility to create interest-
ing states also in the higher dimensional Hilbert space of several qubits.
The interaction between qubits can be controlled so that superpositions of
product states can be prepared. We will have a look at just one example
of what can be done in the laboratory.

When ions are used as qubits the two relevant quantum levels are
the electronic ground state and one of the exited states, whereas the
rest of the energy levels are unoccupied. The ions can be trapped with
electromagnetic fields, they can be controlled with laser pulses and with
highly sensitive CCD cameras fluorescence light can be detected to mea-
sure the states of the ions. In our example the experimentalists used
calcium ions. As qubit levels the ground state S1/2 and the metastable
exited state D5/2 where employed. In one experiment they managed
to have up to eight calcium ions in a row in the same ion trap [45].
The dimension of the Hilbert space of states for all eight qubits is thus
28 = 256. With lasers and with the aid of electrostatic interactions
between the ions all eight have been prepared in a so called W-state:
|W〉 = 1√

N
(|D · · ·DDS〉+ |D · · ·DSD〉+ · · ·+ |SD · · ·D〉) . This is a highly

entangled state, where every ion is entangled with all the others. From
measurement results it has been successfully established that the prepared
state really is close to the W-state and that it is entangled.

Figure 1-1: Eight entangled calcium ions in a linear Paul trap.

When such things can be done in the laboratory, there is a need for
a deeper study of the properties of quantum states. Some technicalities
addressed in the youth of quantum mechanics, which did not get much
attention back then, have now become relevant not only for foundational
questions but primarily for their implications for quantum information
processing. A case in point is the discussion of mixtures of quantum states
by Schrödinger in the mid thirties, when he generalized the situation
of the EPR-paper. It is, for instance, of importance for the possible
transformations that might be realized between entangled states. This
work by Schrödinger is one thing that will be adressed in this thesis,
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along with ideas and concepts that have been introduced into quantum
mechanics only quite recently.

1.3 What will come—and what will not

What have been said here motivates investigations of the details in the
formalism of quantum mechanics. One central part are the states of the
theory. This is the issue where this thesis is hoped to give a modest
contribution. On the forthcoming pages aspects of the set of quantum
states will be explored.

Quantum systems used for quantum information processing are most
often those having a finite number of levels, by which I mean that the
relevant Hilbert spaces for the states are finite dimensional. We will
restrict ourselves to the states of such systems. Some facts can be gener-
alized to the infinite case, and also to the continuous case, but for others
the cautions needed when handling infinite dimensions might prohibit
straightforward generalizations.

In chapters 2 and 3 we will see that the set of quantum states make up
a convex set, conveniently described as a set in a vector space. A central
feature, which is also the theme of Paper II, is the multitude of ways
any mixed state can be obtained as convex combinations of pure states.
This is based upon Schrödingers work from the mid thirties. In the latter
part of chapter 3 a curved geometry on the set of quantum states is
introduced—it is the “geometry of distinguishability”. Geodesics of this
geometry appear in Paper V.

Chapter 4 explains the concepts of majorization and bistochastic mat-
rices—mathematics which finds its way into physics in various places. The
set of bistochastic matrices—Birkhoff’s polytope—is studied in Paper III.

In chapter 5 we encounter complementary observables in finite dimen-
sions, commonly called “mutually unbiased bases”. The central question
is: Can we find “complete sets” of mutually unbiased bases. Papers IV
and VI are also devoted to these bases.

And in chapter 6 we will have a glance on the “magical entangled
states”. They are a resource for quantum information processing. A
visualization of the set of entangled two-qubit states is found in Paper I.

In this thesis I will not try to say what quantum states are, in the
ontological sense, or how they shall (or not even how they can) be inter-
preted; it is certainly an interesting issue, but far too intricate for this
thesis. My ambition is to not presuppose any interpretation, and merely
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conciliate with an instrumentalistic view; still the attentive reader might
scent shortcomings.

I end this introduction by subscribing to the words of Weyl [87]:

“The development of quantum theory has only been made pos-
sible by the enormous refinement of experimental technique.
which has given us an almost direct insight into atomic pro-
cesses. If in the following little is said concerning the exper-
imental facts, it should not be attributed to the mathematical
haughtiness of the author; to report on these things lies out-
side his field. Allow me to express now, once and for all, my
deep respect for the work of the experimenter and for his fight
to wring significant facts from an inflexible Nature, who says
so distinctly “No” and so indistinctly “Yes” to our theories.”



Chapter 2

Quantum States

The concept of a state is central in theories of physics. To describe what
is meant by a state is in general not so easy, but one might say something
like this:

Every physical system is in some particular state, and depending on
which state that “is the case”, there are different predictions about what
will be observed. When the system is specified the state is supposed to
include all that can be said about the system, within the framework we
have chosen to work in. Framework here means theory but could also
include system dependent assumptions, like for example, Hamiltonians.∗

In quantum mechanics so-called pure states are given by complex
vectors in a Hilbert space associated to the quantum mechanical system.
These vectors can be combined to more general states, described by ma-
trices, and the space of these matrices is the state space for the quantum
mechanical system. This we will now explore.

†
2.1 Pure states and mixed states

“We . . . assume each state of a dynamical system at a particular time
corresponds to a ket vector . . . ”[30]. This or something similar is what you
learn in most textbooks on quantum mechanics. Such states, represented
by vectors |ψ〉 in a Hilbert space are called pure states. We will only
deal with states in finite dimensional Hilbert spaces HN of (complex)

∗ This obviously just gives a hint about what is meant by a state. One intricate aspect
I have avoided is what is meant by a system. Another remark is that also within the
same theory, ‘state’ can be dealt with quite differently—just think of the Schrödinger
and the Heisenberg pictures in quantum mechanics.

† A nice source of knowledge of these things is Preskill’s Lecture Notes [68].

7



8 Chapter 2. Quantum States

dimension N . Every vector c|ψ〉, for any c ∈ C, represents the same state
as |ψ〉, hence the one-to-one correspondence is between physical states
and rays in Hilbert space. This set of rays is the complex projective
space CPN−1. It has 2N − 2 real dimensions. We will choose our state
vectors to be normalized, |〈ψ|ψ〉| = 1 , always achievable because of the
arbitrary number c.

So, how can we make predictions about measurement outcomes from
a state vector |ψ〉? Every measurement that might be performed on a
quantum system can be described by a POVM, a positive operator val-
ued measure. This is a set of Hermitian operators Ei —called POVM-
elements—acting on the Hilbert space HN . The index i labels the mea-
surement outcomes. Every POVM-element must be non-negative, Ei ≥ 0,
and the full set must be complete, which means that

∑
iEi = 1l (the iden-

tity operator).‡ Upon measurement, the outcome labeled i will occur with
probability

Pi = 〈ψ|Ei|ψ〉 . (2-1)

The non-negativity of the POVM-elements ensures that the probabilities
are positive and completeness that they sum to one. Quantum mechanics
is a probabilistic theory: the best predictions we can get is the probabil-
ities for the possible outcomes of any measurement.

Although this is not the place to expand upon the theory of quantum
measurements I will use a few lines to relate POVMs with the more com-
monly known projective measurements, also called von Neumann mea-
surements. Such a measurement is what we get whenever the POVM-
elements are orthogonal one-dimensional projectors, Ei = |ei〉〈ei|. This
is often said to be a measurement of an observable, represented by the
Hermitian operator

O =
N∑

i=1

λi|ei〉〈ei| . (2-2)

Here the eigenvalues λi correspond to the values of the possible outcomes.
Any Hermitian operator can be written in the form (2-2)—the spectral
representation—with eigenvectors |ei〉 forming an ON-basis, and any such
operator corresponds to an observable that can be measured. If the oper-
ator has a degenerate spectrum some POVM-elements have higher rank.
They are projectors onto the eigenspaces corresponding to the degenerate
eigenvalues.
‡ This is enough as far as the outcomes are concerned. If one is also interested in
the state after the measurement, measurement operators Mi, with Ei = M†

i Mi, are
required.
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Figure 2-1: If a source emits particles described by states |ψk〉 with probabili-
ties pk, it will be possible to determine the statistics of any measurement from
the mixed state ρ =

∑
k pk |ψk〉〈ψk|.

Now consider a situation where we are given states from a set {|ψk〉}M
k=1.

Suppose each state |ψk〉 is given with probability pk,
∑

k pk = 1 ; this
might be the result of some preparation process in the lab. Then the
probability for the outcome i is

Pi =
M∑

k=1

pk 〈ψk|Ei|ψk〉 = Tr

(
Ei

M∑
k=1

pk |ψk〉〈ψk|

)
= Tr(Ei ρ) , (2-3)

where, in the last step, we defined

ρ ≡
M∑

k=1

pk |ψk〉〈ψk| . (2-4)

The operator ρ is called a density matrix. It represents a general state in
quantum mechanics: a mixed state. The density matrix includes all there
is to say about the probabilities for possible outcomes of measurements.§

From equation (2-4) it follows that density matrices ρ fulfill the fol-
lowing conditions:

(a) ρ† = ρ (hermiticity)
(b) ρ ≥ 0 (non-negative eigenvalues) (2-5)
(c) Tr ρ = 1 (normalization)

Also the converse is true: any Hermitian, non-negative operator on H,
with unit trace, is a density matrix. Moreover, this is the most general
quantum state one can have. It can always be written in the same form
as in (2-4). But this does not necessarily mean that the state has been
prepared by mixing pure states {|ψk〉}M

k=1 with probabilities pk, as will
be made clear later.
§ von Neumann’s original term for what is nowadays usually called a density matrix, or
density operator, was “statistical operator” [85]—in my opinion a term that conveys
more of what it stands for. Nevertheless I will use the more conventional term.
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If we have the state |ψk′〉 with probability pk′ = 1 for some k = k′ ,
we recover the formulas for pure states. The density matrix is then the
projector

ρ = |ψ′k〉〈ψ′k| , with ρ2 = ρ . (2-6)

All projectors fulfilling ρ2 = ρ and Trρ = 1 correspond to pure states
(since any unit trace projector has rank one).

Another way to look at density matrices emerges from considering
systems composed of two or more parts. A bipartite system has two
subsystems, A and B, and the pure states are rays in a tensor product
Hilbert space H = HA⊗HB. Let {| i〉A} and {|µ〉B} be orthonormal bases
in HA respectively HB. A general pure state can be expanded as

|Ψ〉 =
∑
i,µ

ciµ| i〉A⊗ |µ〉B , where
∑
i,µ

|ciµ|2 = 1 . (2-7)

If we only have access to subsystem A, all our POVM-elements will be of
the form Ei = EAi⊗1lB ; we can choose any POVM in HA but we cannot
act with anything in HB other than the identity operator. Let’s look at
the probabilities for the outcomes.

Pi = 〈Ψ|EAi ⊗ 1lB|Ψ〉 =
∑

j,ν,i,µ

c∗jν ciµ A〈j|EAi| i〉A B〈ν|1lB|µ〉B = Tr (EAiρA) .

(2-8)
In the last step we have introduced the reduced density matrix ρA. It
is defined as the partial trace over subsystem B of the density matrix
ρ = |Ψ〉〈Ψ| :

ρA ≡ TrB ρ ≡
∑

κ
B〈κ|ρ|κ〉B , (2-9)

which in this case is

ρA =
∑
i,j

(∑
µ

c∗jµ ciµ

)
| i〉A A〈j| . (2-10)

The conditions (2-5) are satisfied by ρA and this is really the density
matrix for system A, when considered as a system on its own, indepen-
dently of system B. ρA is the only operator for which Tr (EAiρA) would
give the correct probabilities for all POVM-elements Ei = EAi⊗1lB . Also
when the combined system is in a mixed state ρ, the states of the subsys-
tems are obtained by “tracing out” the other systems, according to (2-9).
Conversely, every mixed state ρ can be obtained by partial trace of some
pure state for a larger bipartite system; there exist “purifications” of ρ in
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Figure 2-2: The state of a subsystem is obtained from the state for the whole
system by taking the partial trace over the other subsystem(s).

the state space of the bipartite (perhaps imagined) system. We will come
back to purifications in section 3.2, where it will be explained how they
give rise to an interesting geometry.

Also entanglement will be considered later (in chapter 6), but let me
note one thing about the connection between entanglement and mixed
states. Whenever a combined system is in a pure state, the reduced state
of a subsystem will be pure if and only if it is not entangled with the rest
of the system.

A useful result for bipartite systems is the following. For every state
|Ψ〉 ∈ HN

A ⊗ HM
B , it is always possible to find orthonormal bases {| i′〉A}

and {|µ′i〉B} , in HN
A respectively HM

B , such that

|Ψ〉 =
min{N,M}∑

i=1

ci| i′〉A⊗ |µ
′
i〉B , with ci real ≥ 0 . (2-11)

This is called the Schmidt decomposition. Note that here we only have
a sum over one index, giving min{N,M} terms, while in equation (2-7)
there are NM terms. Using the bases of the Schmidt decomposition, the
formula for the reduced density matrix for system A simplifies to

ρA = TrB ρ =
∑

i

c2i | i′〉A A〈 i
′| . (2-12)

The reduced state for system B will be described by the same matrix,
except for some zero eigenvalues in the case where the systems A and B
have different dimensions.

2.2 Mixing density matrices

We have seen two different ways of arriving at a density matrix for de-
scribing the state of a quantum system. First it was through the idea of
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an ensemble, a mixture of pure states. With an ensemble I mean a set
of (different) pure states and associated probabilities: {(|ψk〉, pk)}M

k=1 ,
pk ≥ 0 ,

∑
i pk = 1 .¶ The corresponding density matrix is given by (2-4).

The second way was as a reduced density matrix for a subsystem, as in
equation (2-9). But we can use the spectral decomposition to see that
the state described by the reduced density matrix equally well could have
arisen from an ensemble in the subsystem: any density matrix ρ can be
seen as a mixture of its eigenvectors |ei〉 with the probabilities given by
the eigenvalues λi,

ρ =
N∑

i=1

λi|ei〉〈ei| . (2-13)

The ensemble {(|ei〉, λi)} is called the eigenensemble (or perhaps an eige-
nensemble, since it is not unique if the eigenvalues are degenerate). It fol-
lows that whatever ensemble we chose, with two or more non-orthogonal
states, there is another ensemble—the eigenensemble—giving the same
density matrix. Thus, there can be different ways to mix the same den-
sity matrix. But the state of the system is nevertheless fully determined
by the density matrix, from which the probabilities of the outcomes of
any measurement on the system can be calculated.

Since a quantum state, even if it is pure, does not predict with cer-
tainty the outcomes of most measurements, it is sometimes said that there
are quantum probabilities intrinsic to the quantum systems, in contrast
to classical probabilities which arise only because we don’t know every
detail. Using this language the probabilities pi in equation (2-4) are clas-
sical, and the states |ψi〉 “contain” quantum probabilities. But if every
mixed state can be considered as an ensemble in several different ways,
it is hard to make sense of this division of the probabilities. There is,
for example, no well justified way to say how much of the probability for
some measurement outcome is classical and how much is quantum. It is
thus reasonable to speak only of one sort of probabilities. The difference
is, that within quantum theory the probabilities have a more fundamen-
tal role, compared to that in classical theories. Thus, I believe, to better
understand and find satisfying interpretations of quantum states (if at all
possible—it might be highly dependent upon personal taste), one needs

¶ Unfortunately the term “ensemble” is used frequently with slightly different meanings
in quantum mechanics. In contrast to this mathematical definition it often refers to
a set of systems prepared in the same way or, at least, described with the same state
(density matrix). However, the two views are not contradictory, and they might
“coincide”.
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to know what one means by probabilities. And here I will stop this dis-
cussion, because probabilities is surely not an easy subject—and it is not
the target of this thesis.

Back to the possible ways to mix a quantum state: What mixings can
we have? What states and with what probabilities? This is the subject
being explored in Paper II [9]. Already Schrödinger wrote about it [73],
in 1936 when he considered a generalization of the EPR-scenario [33]. He
wrote an exciting paper showing how an experimenter can, with some
non-zero probability, force a subsystem into any pure state of her choice,
by only manipulating the other part of the system.‖ This possibility
hinges on quantum entanglement, which will be considered in chapter 6.
Schrödinger makes the comment: “The statement is hardly more than
a corollary to a theorem about ‘mixtures’ for which I claim no priority
but the permission of deducing it . . . for it is certainly not well known.”
Unfortunately this theorem about mixtures did not become well known
from then on either. That is why the theorem is often referred to as the
HJW-theorem, after Hughston, Jozsa and Wootters [52]. Their paper is
similar to Schrödinger’s, except that it was written in 1993, when the
interest in quantum entanglement and quantum information was on the
rise.

Here follows the theorem, as it is stated in Paper II. Remember that
|ei〉 stands for an eigenvector of ρ, while |ψi〉 can be some other state
vector.

Schrödinger’s Mixture Theorem:

A density matrix ρ having the diagonal form

ρ =
N∑

i=1

λi |ei〉〈ei| (2-14)

can be written in the form

ρ =
M∑
i=1

pi |ψi〉〈ψi| , pi > 0 ,
M∑
i=1

pi = 1 (2-15)

‖ This sounds really baffling, but already the formulation of the sentence presupposes
an interpretation of quantum states as some kind of property of a system. Within
other interpretations this phenomenon might seem less mysterious, although still out
of reach of classical physics.
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if and only if there exists a unitary M ×M matrix U such that

|ψi〉 =
1
√
pi

N∑
j=1

Uij

√
λj |ej〉 , i = 1, . . . ,M , M ≥ N . (2-16)

One should not mistake U to be an operator on the Hilbert space. Instead
U acts on the list of eigenvectors |ej〉, in such a way that the state |ψi〉
is a superposition of the vectors |ej〉 with coefficients c(i)j computed from
the i:th row of U ( c(i)j =

√
λj/pi Uij ). For more comments useful in

understanding Schrödinger’s mixture theorem consult Paper II. (Note,
however, that the meanings of M and N are reversed in Paper II—an
inconvenience turning up because here I have chosen N to denote the
dimension of Hilbert space.)

The probabilities with which the states |ψi〉 occur, in (2-15), are found
from (2-16). If we take the scalar product of

√
pi|ψi〉 with itself we get

pi =
M∑

j=1

Bij λj , where Bij = |Uij |2 . (2-17)

By construction B is a bistochastic matrix. This, and some of its conse-
quences, were noted by Uhlmann [78]. These matrices will be discussed
in chapter 4 and are also the subject of Paper III [11]. Here it suffices to
say that equation (2-17) gives a means of characterizing different proba-
bility distributions pi, consistent with a given density matrix. This was
studied by Nielsen, who also gave a procedure for finding state vectors
corresponding to a probability distribution pi [64]. However, the proce-
dure sometimes results in a set of state vectors, such that several vectors
actually give the same state. One could, for example, find a pure state

Figure 2-3: Illustration of Schrödinger’s mixture theorem.
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expressed as a mixture of itself with different probabilities.∗∗ To avoid
this, we need to impose the reasonable requirement that states in an en-
semble should be different. In Paper II [9] the difficulties are pointed out,
and a partial characterization of the possible probability distributions is
given.

Equation (2-17) gives the probabilities in terms of the eigenvalues of ρ
and information—encoded in the bistochastic matrix B—about the states
|ψi〉 of the ensemble. Let’s now examine the slightly different question:
With what probability can an arbitrary state |ψ1〉 be included in an en-
semble giving the density matrix ρ ? The first requirement for a non-zero
probability p1 is that |ψ1〉 lies in the span of ρ , since it has to be a super-
position of the eigenstates of ρ , in accordance with the mixture theorem.
To find an expression for p1 corresponding to a state |ψ1〉 we will once
again use (2-16), but this time we take the scalar product of

√
p1 |ψ1〉

with 1/
√
λk |ek〉. We get the following:

√
p1
〈ek|ψ1〉√

λk
= U1k ⇒ p1

〈ψ1|ek〉〈ek|ψ1〉
λk

= |U1k|2 (2-18)

⇒ p1 〈ψ1|

(
N∑

k=1

|ek〉〈ek|
λk

)
|ψ1〉 =

N∑
k=1

|U1k|2 (2-19)

The operator within parentheses on the left hand side is nothing but
the inverse of ρ. Thus

p1 =
1

〈ψ1|ρ−1|ψ1〉

N∑
k=1

B1k ≤
1

〈ψ1|ρ−1|ψ1〉
≤ 〈ψ1|ρ|ψ1〉 . (2-20)

The first inequality is an equality whenever the number of states M is
equal to the dimension N or when the last M − N elements of the first
row of B1k are zero. This is when |ψ1〉 is linearly independent of the
other states included in the ensemble. In this case, these other states do
not span the range of ρ and they cannot be used to replace |ψ1〉 in the
ensemble. The second inequality is an equality if and only if |ψ1〉 is an
eigenvector of ρ (as can be proved by remembering that ρ is positive with
unit trace).

From what is said here about mixtures, it is not easy to get an intuition
of how combinations of different pure states can give the same density

∗∗ This does not cause any problem in applications to entanglement transformation
considered by Nielsen [64].
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matrix. This is where the geometry comes in. In what follows we will
several times return to this problem. As a first step to gain more insights
into the mixed states, we will study convexity—one of the basic properties
of this set.

2.3 Convexity

For any two density matrices ρ1 and ρ2, we can construct mixtures of
them. Take the first with probability p and the second with probability
1− p. This yields a new density matrix ρ,

ρ = p ρ1 + (1− p)ρ2 , 0 < p < 1 . (2-21)

What we have done here is to take a convex combination of two density
matrices. Since this is again a density matrix, the density matrices form
a convex set; we denote this set S. When we talk of mixtures of quantum
states, what is meant is convex combinations. For example, the mixture
in equation (2-15) is a convex combination of several pure states.

The extreme elements of a convex set are those elements, which cannot
be written as a convex combination of any other. Among the density
matrices, this is exactly the pure quantum states. (One way to see this
is to consider the trace of ρ2 : Tr ρ2 = Tr ρ = 1 for pure states, but for
every mixture one gets Tr ρ2 < 1 .)

The convex set is the convex hull, that is, the set of all convex combi-
nations, of the extreme elements.∗ The extreme elements are part of the
boundary of the set, but they do not have to make up the whole bound-
ary. A condition for a density matrix to lie at the boundary ∂S of the set
S can easily be stated (although not easily checked, unless the dimensions
is low). Since the eigenvalues of density matrices are non-negative, the

Figure 2-4: ρ is a convex combination of ρ1 and ρ2.

∗ This is true for bounded convex sets, which will be our concern here. Unbounded
convex sets may contain elements that are not convex combinations of extreme ele-
ments.
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boundary of S consists of matrices which have at least one eigenvalue
equal to zero and hence have a vanishing determinant,

det ρ∂S = 0 . (2-22)

The natural midpoint of the set of quantum states is the maximally
mixed state

ρ0 ≡
1
N

1l . (2-23)

It can be obtained as the convex combination of all pure states with
equal weight.† ρ0 is also called the matrix of ignorance (and denoted ρ∗
in some places in the papers). It is the state such that no outcome of a
(non-degenerate) von Neumann measurement is more probable than any
other.

A convex set that has only a finite number of extreme elements, is
called a polytope. We will encounter polytopes later on. In Euclidean
space a polytope can be equivalently defined as a bounded intersection
of a finite set of half-spaces.‡ (A half-space is a hyperplane together
with every point on one side of the plane). Or differently phrased, and
perhaps easier to visualize: the polytope is what is left if one takes away
the complements to the defining half-spaces. As an example, a cube in
three dimensional space is the intersection of six half-spaces.

The smallest number of extreme elements, whose convex hull is a d-
dimensional polytope, is d + 1 . Such a polytope is called a simplex, or
more precisely a d-simplex. Equivalently a d-simplex is the intersection
of d + 1 half-spaces, which is the smallest number needed to give a d-
dimensional polytope. The 2-simplex is a triangle and the 3-simplex is a
tetrahedron. Within a simplex every element is a convex combination of
the extreme elements in a unique way. This is true only for simplicies.

Simplices turn up whenever one has probability distributions over a
finite number of outcomes. Any point in a probability simplex corre-
sponds to a probability distribution. The extreme elements correspond
to the cases where one outcome has probability one; see figure 2-5. In
fact, the set of states of a classical system is a probability simplex. The
extreme elements are “pure classical states” and every classical state, that

† A general sum over all pure states requires an integration over the unitary group
(usually using the Haar measure), but here it is enough to acknowledge that every
pure state is part of equally many orthonormal bases; the convex combination of
every basis gives ρ0.

‡ More generally, every convex set is an intersection of half-spaces, according to the
Hahn-Banach separation theorem [4].
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Figure 2-5: A probability simplex: all probability vectors ~p are convex combi-
nations of the extreme elements.

is, a point in the simplex, is a unique mixture of the pure states. There-
fore, the property of quantum states, that any mixture can be written as
a convex combination in several different ways (as described in the last
section), is in stark contrast to the classical case.

That any element in a d-simplex is a convex combination of d+ 1 ex-
treme elements is true by definition. However, this is true in any convex
set, according to Carathéodory’s theorem: Not more than d+ 1 extreme
elements are needed in a convex combination to give any element in a
convex set of dimension d. The set of quantum states is special, in that
so many pure states never are needed to give any convex combination.
N pure states are always enough to give any mixture in this set of di-
mension d = N2 − 1; just choose the eigenvectors. What is a little more
surprising is that if we start with any pure state, we can mix it with other
pure states, such that a mixture of them all will give any full rank density
matrix we might want—and it will always be enough with at most N − 1
added pure states. This is actually a consequence of the theorem about
mixtures. Equation (2-16) shows that any pure state can be part of an
ensemble yielding any given full rank density matrix.

We end this section with some additional terminology about convex
sets. At the boundary of a convex set there are faces. A face is the
convex hull of a subset of the extreme points, such that no point in the
face can be written as a convex combination including points not in the
face. This definition includes the extreme points and the whole set as
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faces, although most of the time when one uses this term it is the other
“proper” faces one is interested in. For the three dimensional cube, the
faces are (besides the whole cube and its corners) the twelve edges and
the six sides. The faces of dimension one less than the full convex set are
called facets. These things and some more facts on convex sets can be
found in ref. [12].

Figure 2-6: A cube is a polytope with 8 extreme elements, 12 edges and 6 facets.
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Chapter 3

Geometry of the Set of
Quantum States

We have seen that the set of quantum states is a convex set. If we
introduce a distance between states, we equip the set with a geometrical
structure. The set will have a definite “shape” and we can describe both
the set and single states in geometrical terms. Two different geometries
will be described here.

Furthermore density matrices can be regarded as vectors in a vector
space. If the Hilbert space has dimension N , the set of density matrices,
has dimension N2− 1. As soon as N > 2 this is so high that it is difficult
to see what the full picture is. Nevertheless, it can for many purposes be
convenient to view the set of quantum states as a convex set in a vector
space.

First we study the Hilbert-Schmidt geometry. It is the simplest case:
the set of quantum states is embedded in a flat Euclidean space. The
picture we obtain is advantageous, for instance, in understanding the
different ways a density matrix can be mixed from pure states. For the
qubit this picture is the well known Bloch ball.

Another important geometry is the Bures-Uhlmann geometry. Here
the geometry is curved, thus harder to visualize. But now the distances
have a physical meaning—they correspond to how well it is possible to
distinguish, through measurements, between pairs of quantum states.

21
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3.1 Hilbert-Schmidt geometry

The set S of all quantum states for an N -level system is the set of non-
negative Hermitian operators, with unit trace (equation (2-5)). For any
pair of Hermitian operators A and B, define the Hilbert-Schmidt distance
DHS to be given by

D2
HS (A,B) ≡ 1

2
Tr(A−B)2 , (3-1)

The Hermitian matrices then forms a Euclidean space, in which the set
of quantum states is a convex subset. We will describe some properties
of this set.

We noted earlier (in section 2.3) that ρ0 = 1
N 1l is a natural midpoint

of the set S. Here we will see more of what this means. The distance
between ρ0 and an arbitrary state ρ depends only on the eigenvalues λi

of ρ :

D2
HS (ρ0, ρ) =

1
2

N∑
i=1

(
1
N
− λi

)2

=
1
2

(
N∑

i=1

λ2
i −

1
N

)
. (3-2)

The more even (or equal) the eigenvalues are, the closer to the midpoint
ρ0 lies ρ. This statement can be made exact in terms of majorization, as
we will see in chapter 4.

The maximal distance from ρ0 is obtained for states with one eigen-
value equal to one and the rest equal to zero, that is, for the pure states.
Therefore all pure states lie on a hypersphere—the outsphere—with ra-
dius

Routsphere ≡ DHS (ρ0, ρpure) =

√
N − 1
2N

. (3-3)

The set S is the convex hull of the pure states on this outsphere.
The minimal distance to a boundary state is obtained when only one

eigenvalue is zero and all the rest are equal. These density matrices at the
boundary that are closest to ρ0 lie then on a hypersphere—the insphere—
with radius

Rinsphere ≡ DHS (ρ0, ρ∂Sclosest) =

√
1

2N(N − 1)
. (3-4)

Every matrix inside this sphere is a density matrix. And the boundary ∂S,
consisting of matrices with vanishing determinant (equation (2-22)), lies
between the two hyperspheres centered around ρ0.
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The two spheres coincide for dimension N = 2, having the same radius
DHS = 1/2. This is the Bloch sphere of pure states for a qubit, which
enclose all the mixed states. For higher dimensions the outer sphere will
increase with N , to a radius 1/

√
2 when the dimension goes to infinity,

while the inner sphere shrinks, and finally consists only of ρ0. In terms
of the dimension N , the radius of the outsphere is N −1 times the radius
of the insphere; Routsphere = (N − 1)Rinsphere. The set of pure states
(CPN−1), situated on the outsphere, is 2(N − 1) dimensional. Thus,
whenever N > 2, they form only a submanifold of the boundary, which
is N2 − 2 dimensional. Most of the outsphere does not correspond to
quantum states. And most of the boundary does not correspond to pure
states.

For every point in the boundary ∂S which lies on the outsphere, the
point in the boundary in the opposite direction from ρ0 lies on the in-
sphere. That is, opposite to a pure state is always a “closest state”,
and vice versa. This is so since ρ0 is a convex combination of the states
ρpure = diag(1, 0 . . . 0) and ρ∂Sclosest = 1

N−1diag(0, 1 . . . 1) . The lines be-
tween states such as these are the longest lines through the set of density
matrices via ρ0; the length is

√
N/
√

2(N − 1) . The shortest lines are
between states like ρ1 = 1

N diag(1 . . . 1, 2, 0) and ρ2 = 1
N diag(1 . . . 1, 0, 2);

the length is 1/N . This can be recognized by inspecting where the longest
and shortest lines go through the tetrahedron in figure 3-1. Some more
considerations gives that for an arbitrary boundary state ρ at a dis-
tance DHS the distance to the opposite boundary state is 1

Nλmax−1DHS ,
where λmax is the largest eigenvalue of ρ . The distances are equal when
λmax = 2/N .

At every point in the boundary ∂S there are some directions in which
∂S is curved and contains a circle [47]. For every pair of one non-zero
eigenvalue and one zero eigenvalue a state ρ∂S lies on a curve that can be
written

ρ(α) =


λ1 cos2α λ1 cosα sinα

λ2 . . .
λN−1

λ1 cosα sinα λ1 sin2α

 , 0 ≤ α < π .

(3-5)
This is a circle in the boundary (since det ρ(α) = 0). Moreover, inserting
phase factors e±iφ in the off-diagonal elements it becomes a full sphere in
the boundary.

There is also at every point in ∂S, except at the pure states, at least
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one direction in which the boundary is a straight line [47]. A non-pure
boundary state ρ∂S have at least two positive eigenvalues, say λ1 and λ2.
This state lies on a line since, for example,

ρ(p) = p

 1
0 . . .

0

+ (1− p)

 0
λ2

1−λ1 . . .
0

 , (3-6)

gives such a line, with ρ(λ1) = ρ∂S . A state of rank r can be seen as a
convex combination of r projectors |ei〉〈ei|, with |ei〉 eigenvectors of the
state. Thus, the boundary is straight in r orthogonal directions.

A special set of pure quantum states, used almost all the time, is an
orthogonal basis. How can we characterize it geometrically? The distance
between any pair of orthogonal states, for example |1〉 = (1, 0 . . . 0)T

and |2〉 = (0, 1, 0 . . . 0)T, is one (as can be found from (3-1)). Three
orthogonal states will form an equilateral triangle and four a tetrahedron.
The density matrices of the N basis states, sitting at the outsphere at unit
distance from each other, form a regular simplex. This simplex spans (is
contained within) anN−1 dimensional plane in theN2−1 dimensional set
of quantum states. Within the cross-section of this plane, all states sit in
the simplex. They are the states diagonal in the basis considered, possible
to express as mixtures of the basis states. These states are in some sense

Figure 3-1: An orthonormal basis forms a simplex in a subspace of Hermitian
unit trace matrices; for a 4-level system this is a tetrahedron. The circumscribed
and the inscribed spheres of such a simplex coincides with the outpshere and the
insphere of the set of quantum states.
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classical. For measurements of any observable with the basis vectors
as eigenvectors, the states correspond to probabilities in a probability
simplex.

The sphere inscribed in such a simplex coincides (within the cross-
section) with the insphere, as should be clear if one realize that it touches
states opposite to the pure basis states. Every density matrix, projected
to the subspace in question, lies in the simplex. In the center of the
simplex is the matrix of ignorance ρ0. Together with any two of the basis
states it gives a triangle (except when N = 2), with two sides equal to√

(N − 1)/2N (the radius of the sphere with pure states; equation (3-3))
and the third side equal to 1. The angle subtended at ρ0 is decreasing
from π for N = 2—this gives no triangle, only a straight line—to π/2
when the dimension goes to infinity.

Figure 3-2: The opening angle at the matrix of ignorance ρ0 of lines to two
orthogonal pure states decreases from π to π

2 when the dimension increases.

We can also say something more about the set of states orthogonal
to some basis states. If we choose all but two basis states, they will
be orthogonal to all superpositions, and all mixtures thereof, of the two
remaining basis states—this is like a Bloch ball with its pure states at unit
distance from the first N − 2 basis states. If we choose one basis state, it
will be orthogonal to all superpositions, and all mixtures thereof, of the
other basis states—this is like the set of states of an N − 1 dimensional
system. More generally in any dimension N : to n basis states, there is
a set of orthogonal states, equivalent to the set of states of an N − n
dimensional system. The pure orthogonal states all lie at unit distance
from the n first basis states. Conversely the first n basis states generate
themselves a set equivalent to the set of an n dimensional system. The
centers of these two orthogonal sets lie “opposite” each other, with the
maximally mixed state in between them; this is illustrated in figure 3-3.
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Figure 3-3: A sketch of the set of quantum states in dimension 5. Two basis
states generate a Bloch ball at the boundary, which is orthogonal to three basis
states generating a set equivalent to the set of states for a 3 dimensional system.

Without explicitly saying it, a vector space has been introduced above.
We have a distance, DHS (A,B) (equation (3-1)), and an origin, ρ0 (equa-
tion (2-23)). Thereby we get, using the polarization formula, the scalar
product

(A,B) =
1
4
[
D2(A+B, ρ0)−D2(A−B, ρ0)

]
=

1
2

[
TrAB − 1

N

]
. (3-7)

This expression might seem a bit strange, if you have seen the commonly
used scalar product TrAB of Hermitian matrices A and B. The difference
is that we have ρ0 as our origin, instead of the zero matrix. When studying
quantum states we are only concerned with unit trace matrices. In the
vector space with TrAB as the scalar product, these lie in a hyperplane
that does not contain the origin, and hence is not a subspace. But with
(3-7) as the scalar product for Hermitian matrices, the quantum states
will be situated in a subspace. Our studies take place within this subspace
of N2 − 1 dimensions. An equivalent way to put it is to use the simpler
form TrAB, but at the same time represent any density matrix ρ with
the traceless matrix σ = ρ− ρ0 instead.

This vector space with the convex set of density matrices, as described
in this section, is the scene for what is done in Papers I, II, IV and partly
in VI. In Paper III the set of bistochastic matrices is seen as a convex set
in a similar vector space.

We will look at a couple of examples of sets of density matrices, but
first we get back to the issue concerning mixing density matrices. With
the Hilbert-Schmidt geometry, a mass distribution with its center of mass
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Figure 3-4: With the scalar product TrAB traceless matrices σ form a sub-
space. This is not so for unit trace matrices ρ. These form a subspace if the
scalar product 1

2 (TrAB − 1
N ) is used.

gives a nice analogue of an ensemble giving a mixed state. An ensemble
{(|ψk〉, pk)}M

k=1 gives the mixed state,

ρ =
M∑

k=1

pk |ψk〉〈ψk| =
M∑

k=1

pk ρk . (3-8)

The density matrices are the position vectors of the states, and from this
formula we see that in this vector space, every ensemble {|ψk〉, pk} can be
thought of as a mass distribution, with the corresponding density matrix
at the center of mass. Masses pk should be placed at appropriate positions
on that part of the outsphere which consists of pure states |ψk〉〈ψk| , so
that it gives the right center of mass, that is, ρ . Figure 3-6, in the next
subsection, show examples of this in the qubit case,

3.1.1 The Bloch ball

An overwhelming majority of all quantum information experiments deal
with two-level systems—qubits—as its basic quantum systems. And al-
most all algorithms suggested for quantum computing, and other quan-
tum information processes, are based on qubits. To get interesting results,
several qubits are needed, but at the end one typically measures single
qubits. Thus, it is worthwhile to have a closer look at the set of pos-
sible states for a qubit. However, this is not the only reason why this
set, known as the Bloch ball, is quite familiar to most physicists. It is
exceptional in several regards. It is three dimensional, thus easy for us to
picture, and moreover just a round ball, and the whole boundary consists
of pure states. Furthermore, if one considers spin1

2 -particles the three
dimensions can be thought of as our three space dimensions. Or rather,
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the points on the Bloch sphere (that is, the boundary of the Bloch ball)
corresponds to directions in space. For example, consider silver atoms in
a Stern-Gerlach experiment [40, 70]. The internal angular momentum of
an atom in a pure state can be regarded as being in the direction corre-
sponding to the point representing the state on the Bloch sphere. Thus
if the Stern-Gerlach magnet is oriented along that direction the outcome
is certain to be “up” (and this is not the case for any other direction).

The pure states of a qubit lie on a sphere with radius 1/2, and con-
versely, every point on that sphere corresponds to a pure state (CP1 is
a sphere). Since there are only two eigenvalues, all boundary states are
pure. Inside the sphere are the mixed states. Any orthogonal basis will
correspond to two antipodal points, at unit distance from each other.∗

A nice expression for a general 2× 2 density matrix is given by

ρ =
1
2
1l + ~n · ~σ , (3-9)

where ~n is a vector in the Bloch ball, giving the position of the matrix,
and ~σ is a vector with the Pauli matrices as its element. The eigenvalues
of ρ are λ = 1

2 ±|~n| . We see that |~n| ≤ 1/2 for non-negative eigenvalues,
with equality for pure states.† If we consider a spin 1

2 system, a density
matrix given by a vector ~n on the sphere, is simply the state of spin up
in the direction of ~n .

Note that equation (3-9) is an expansion of the matrix ρ in an ON-
basis in the space of Hermitian matrices. {1l, σx, σy, σz} constitutes an
ON-basis and (1

2 , nx, ny, nz) are the expansion coefficients.
Special to two dimensions is that there exists a “universal NOT”

operation—an operation that take any pure state to an orthogonal state.
It has been proven that this is only possible for qubit states [84]. The or-
thogonal state is the antipodal point on the Bloch sphere, and hence the
universal NOT implements an inversion of the Bloch ball. This is given
by an antiunitary operator Θ. In any basis, to apply the NOT operation
on a state vector (a, b)T, take the complex conjugate and then multiply
with an antisymmetric matrix with unit determinant; the result is the
wanted state vector (b∗,−a∗)T (perhaps with some phase factor).

∗ It is interesting that Gleason’s theorem, which ascertains that states should be repre-
sented by density matrices, given some reasonable requirements on non-contextuality
of outcome probabilities, does not hold in two dimensions [42]. This is because there
is only one pure state orthogonal to any given pure state.

† Often a factor of one-half is included before ~n in equation (3-9), so that the maximal
length of the “Bloch vector” is one.
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Figure 3-5: Every qubit state corresponds to a point in the Bloch ball, conve-
niently represented by a Bloch vector ~n.

There is also a noteworthy property of mixtures, special to qubits.
Starting with an arbitrary pure state, there is always another pure state,
such that a mixture of them will give any (non-pure) density matrix we
might ask for. This is evident with the sphere in mind: a chord drawn
from the first given pure state, to the wanted density matrix, will end
at a second pure state. This is not true when N > 2, since in higher
dimensions most of the boundary consists of non-pure states.

Figure 3-6: Four ensembles giving the same mixed state; one “black” and one
“white” ensemble are shown on each Bloch sphere.
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3.1.2 The states of a qutrit

A three-level quantum system is sometimes called a qutrit. I will briefly
note some properties of the set of qutrit states. This might be regarded
as an example which summarizes properties discussed above.

The set of all qutrit states is 8-dimensional. The pure states forms a
4-dimensional subset on a 7-dimensional hypersphere with radius 1/

√
3 .

The rest of the boundary lies somewhere between this outsphere and an
insphere with radius 1/(2

√
3). On this insphere the boundary matrices

have the eigenvalues λ = 0, 1/2, 1/2.

The three points corresponding to an ON-basis in Hilbert space H3

are vertices of a triangle with unit side lengths. This triangle is inscribed
in the outsphere and has an inscribed sphere with the same radius as the
insphere. In such a subspace of an ON-basis all states are diagonal in
that basis and lie within the triangle.

Figure 3-7: A two dimensional cross section of the set of qutrit states, spanned
by an ON-basis.

The first state of a basis is orthogonal to any superpositions of the two
other basis states. These two states generate themselves a Bloch ball of
states. Thus, to any pure qutrit state there is a whole set, equivalent to a
Bloch ball, orthogonal to it. Figure 3-8 show a possible three dimensional
cross-section through the set, which includes first a basis, and also one
great circle of the Bloch ball generated by two of the basis states.
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Figure 3-8: Two basis states generate a Bloch ball orthogonal to the third
basis state. A disc of the Bloch ball together with the orthogonal state gives a
cone of states.

3.2 Bures-Uhlmann geometry

As opposed to the nice, flat Hilbert-Schmidt geometry, the curved, un-
wieldy Bures-Uhlmann geometry has an operational meaning.∗ It is
closely related to distinguishability of quantum states, as will be touched
upon later. But this was not clear when it was introduced. Instead it
begun with a generalization of “transition probabilities” for state vectors,
|〈ψ|φ〉|2, to mixed states. This was done in terms of “purifications”, and
this is where we will begin this survey. What will be explained here is
based upon work by Uhlmann [79, 80, 81].†

Consider a mixed state ρ—an operator on the Hilbert space H. We
want to “purify” ρ . That is, we want to find a pure state |Ψ〉 for a
composite system, such that the reduced state for one of the subsystems
is ρ. This is always possible with some state vector |Ψ〉 ∈ H ⊗ H . Let
|Ψ〉 be written in the Schmidt decomposition form (equation(2-11)),

|Ψ〉 =
∑

i

ci| i〉A⊗ |µi〉B . (3-10)

From the reduced state

ρ = TrB|Ψ〉〈Ψ| =
∑

i

c2i | i〉A A〈 i| , (3-11)

∗ At least the infinitesimal distances.
† My understanding of the Bures-Uhlmann geometry has also benefitted from lecture
notes by Uhlmann [82], and ref. [12].
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Figure 3-9: Purifications (fibres) on the unit sphere in Hilbert-Schmidt space
are projected to mixed states (unit trace positive matrices).

we see that |Ψ〉 is a “purification” of ρ whenever the basis states | i〉A are
the eigenvectors of ρ , and the Schmidt coefficients ci are the square roots
of the eigenvalues. The basis {|µi〉B} could be replaced by any basis,
{U |µi〉B}, for some unitary operator U , thus giving a set of purifications
as large as the set of all unitaries on H.

Now, let’s make use of a small trick. Exchange all “ket”-vectors | j〉B
with “bra”-vectors B〈 j|. This turns every pure state |Ψ〉 =

∑
i,j cij | i〉A| j〉B

into an operator W =
∑

i,j cij | i〉A B〈 j| on H. We call W a purification
of the reduced state ρ , now given by

ρ = WW † . (3-12)

In this formulation we again see that whenever W is a purification, so
is WU , for any unitary U . What we have here is a kind of fibre bundle
construction (except that not all fibres are isomorphic). Equation (3-12)
can be understood as a projection from a bundle space of operators W—
the Hilbert-Schmidt space—to a base manifold of positive operators ρ .
Right multiplication with the unitary group gives the fibres WU . Nor-
malization is not needed for this to work, but we are only interested in
normalized quantum states, thus we assume TrWW † = 1.
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In the bundle space we define distances D by

D2(W1,W2) ≡ Tr(W1 −W2)(W
†
1 −W †

2 ) ; (3-13)

this coincides, for Hermitian operators, with the Hilbert-Schmidt distance
DHS (equation (3-1)) we had between density matrices, except for a factor
of one half.

Distances between operators ρ1 and ρ2 in the base manifold are defined
as the length of the shortest path between the corresponding fibres of
purifications in the bundle space. And this is the Bures distance DB : ‡

D2
B(ρ1, ρ2) ≡ min

U1,U2

D2(W1U1,W2U2) = (3-14)

Tr ρ1 + Tr ρ2 −max
U

Tr(W1U
†W †

2 +W2UW
†
1 ) = 2− 2 max

U
Tr(W †

1W2U) .

It is enough to find the extremum over only one unitary, U = U2U
†
1 . The

extremum is attained if U is chosen so that the eigenvalues of W †
1W2U

are real and positive. To get an expression of the distance in terms of
the density matrices ρ1 and ρ2, use the polar decomposition W1 =

√
ρ1 V

(some unitary V ) and look at the square

(W †
1W2U)2 = W †

1W2U U
†W †

2W1 = V †√ρ1 ρ2
√
ρ1 V . (3-15)

If we take the square root of this, and then take the trace we get

max
U

Tr (W †
1W2U) = Tr

√√
ρ1 ρ2

√
ρ1 . (3-16)

The square of this trace is the generalized “transition probability” defined
by Uhlmann [79], perhaps more generally known as the fidelty F , as it
was named by Jozsa [55]. In terms of purifying state vectors, it can be
stated as follows:

F (ρ1, ρ2) ≡ max
purifications

|〈Ψ1|Ψ2〉|2 =
(

Tr
√√

ρ1 ρ2
√
ρ1

)2

. (3-17)

The Bures distance is thus given by

D2
B(ρ1, ρ2) = 2

(
1− Tr

√√
ρ1 ρ2

√
ρ1

)
= 2

(
1−

√
F (ρ1, ρ2)

)
. (3-18)

‡ This distance has been defined by Bures in a more general setting [24]. The corre-
sponding metric is often called Bures metric, but the infinitesimal distances are due
to Uhlmann, and it was Uhlmann who first used it for quantum states.
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This is an explicit formula for any pair of quantum states. But it is not
trivial to actually compute this distance—to find square roots of operators
one needs to diagonalize them.

The distance (3-18) between density matrices corresponds to the length
of a straight line between a special pair of purifications in the Hilbert-
Schmidt space of operators. However, we want to study only normalized
states, TrWW † = 1, which means a restriction to the unit sphere in the
Hilbert-Schmidt space. Therefore it makes sense to use the arc length be-
tween the operators instead. The minimal distance DB then corresponds
to a minimal arc length dB, called the Bures angle. With the help of fig-
ure 3-10 we readily find that the cosine of the angle is simply the square
root of the fidelity:

cos dB(ρ1, ρ2) =
√
F (ρ1, ρ2) . (3-19)

Let’s see what this is in those cases where the square root operators
are easily computed. First, let one of the states be the maximally mixed
state ρ0:

cos dB(ρ, ρ0) =
1√
N

Tr
√
ρ =

1√
N

∑
i

√
λi . (3-20)

Secondly, let one of the states be a pure state ρpure = |ψ〉〈ψ|:

cos dB(ρ, ρpure) =
√
〈ψ|ρ|ψ〉 . (3-21)

From anyone of these two formulas we find the distance from the center ρ0

to the pure states to be given by cos dB(ρ0, ρpure) = 1/
√
N . Thus, the

distance dB is π/4 for qubits and increases with the dimension N to π/2
when N goes to infinity. For boundary states closest to the center (3-20)

Figure 3-10: The relation between Bures DB distance and Bures angle dB .
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gives cos dB(ρ0, ρ∂Sclosest) =
√

1− 1/N . This distance is π/4 for qubits
and goes to zero when the dimension goes to infinity.

Next we will look at the restrictions to only pure states and to only
diagonal states. We give these cases sections by themselves.

3.2.1 Pure states and the Fubini-Study geometry

For a pair of pure states we obtain

cos dB

(
|ψ1〉〈ψ1|, |ψ2〉〈ψ2|

)
= |〈ψ1|ψ2〉| . (3-22)

The distance arccos |〈ψ1|ψ2〉| is called the Fubini-Study distance, and to
emphasize that we here only consider pure states we denote it dFS . It
can be defined in terms of vectors in the Hilbert space H as described
below. The construction is equivalent to the one of Bures distance, if
we confine ourselves to pure states. The Fubini-Study distance [38, 75]
predates Bures distance, which is a generalization thereof. First define

DFS

(
|ψ1〉〈ψ1|, |ψ2〉〈ψ2|

)
≡ min

φ
‖|ψ1〉 − eiφ|ψ2〉‖ , § (3-23)

where the norm is given by ‖|ψ〉‖=
√
〈ψ|ψ〉 . This is a distance in the set

of all “vectors modulo phases”, that is, rank one operators |ψ〉〈ψ|. The
phase φ is varied until the angle in Hilbert space between the two vectors
|ψ1〉 and |ψ2〉 is as small as possible. Evaluated for two normalized vectors
it becomes

DFS

(
|ψ1〉〈ψ1|, |ψ2〉〈ψ2|

)
=
√

2− 2|〈ψ1|ψ2〉| . (3-24)

This distance is the length of a curve including non-normalized vectors.
If we wish to measure distances within the normalized vectors, we want
the corresponding smallest angle, which is arccos |〈ψ1|ψ2〉| (see again fig-
ure 3-10). Once more we arrive at the expression (3-22). This makes it
evident that the path with the length given by (3-22) lies entirely within
the set of pure states. In differential geometry one would say that, with
respect to the Bures-Uhlmann metric, the set of pure states is a totally
geodesic submanifold.

One more remark about this. Consider the Hilbert-Schmidt dis-
tance (3-1) (for operators on the non-extended Hilbert space):

D2
HS = 1

2Tr
(
|ψ1〉〈ψ1|−|ψ2〉〈ψ2|

)2
= 1−|〈ψ1|ψ2〉|2 = 1−cos2 dFS . (3-25)

§ Sometimes it is this distance that is called the Fubini-Study distance.
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If we let |ψ1〉 and |ψ2〉 be close, and expand to second order in dFS we
obtain

D2
HS ≈ 1− (1− 1

2d
2
FS )2 ≈ d2

FS (3-26)

—for infinitesimal distances DHS coincides with dFS . Thus, if we use
Hilbert-Schmidt geometry to measure the length along curves within the
pure states we get the same as the Fubini-Study distances, which are
the distances for pure states according to the Bures-Uhlmann geometry.
But there is a significant difference: with the Bures-Uhlmann geometry
there are no shorter paths between pure states, whereas the geodesics
according to the Hilbert-Schmidt geometry take a short cut through the
mixed states.

3.2.2 Commuting states in hyperoctants

Commuting states, diagonal in the same basis, lie according to the Hilbert-
Schmidt geometry in a regular simplex (see section 3.1). What will this
set of states be like according to the Bures-Uhlmann geometry? For two
commuting states ρ1 = diag(p1, . . . , pN ) and ρ2 = diag(q1, . . . , qN ), the
distance is given by (from (3-19))

cos dB(ρ1, ρ2) =
N∑

i=1

√
qi
√
pi . (3-27)

Define vectors ~x and ~y in RN , by xi =
√
pi and yi =

√
qi . Then ~x and ~y

are positive vectors with unit length, and cos dB(ρ1, ρ2) = ~y ·~x . Thus, the
distance dB is the angle between the vectors ~x and ~y , which is the same
as the geodesic distance along the unit (N − 1 dimensional) sphere. We
see that for these states the Bures-Uhlmann geometry is locally that of a
sphere. The simplex of commuting states is deformed into a hyperoctant
of a sphere [51]. It is the hyperoctant since the diagonal elements pi are
mapped to positive components xi; see figure 3-11.

The distance between any two basis states, at “vertices” of the hype-
roctant, is π/2. This is the maximal possible distance.

3.2.3 Bures-Uhlmann geodesics

We will now have a look at the geodesics; these are used in paper V [36].
To any geodesic between a pair of density matrices there is a correspond-
ing preimage in the Hilbert-Schmidt space, having the same length. This,
too, is a geodesic, and since we are on the unit sphere it has to be (a
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Figure 3-11: The set of commuting 3-level quantum states: a flat simplex in
Hilbert-Schmidt geometry turns into a round hyperoctant in the Bures-Uhlmann
geometry.

part of) a great circle. Moreover we have to require that this curve is
everywhere perpendicular to the fibres, since it should be the shortest
path. Imagining the fibres to be vertical, the curve must be horizon-
tal. If we choose a representative W ′ (to determine the vertical height of
the preimage) for one point ρ′ on the geodesic, with ρ′ invertible, these
considerations will lead to a unique preimage, whose projection onto the
density matrices gives the geodesic.

Let’s turn this into formulas. We want an expression for the geodesic
ρ(τ) connecting ρ1 and ρ2 . To get this we start by constructing a general
formula for a geodesic ρ(τ), and then we require ρ(τ) to equal ρ1 and ρ2

for two values of τ .

• A geodesic on the unit sphere in the Hilbert-Schmidt space—a great
circle—is given by

W (τ) = W (0) cos τ + Ẇ (0) sin τ , (3-28)

where the operators W (0) and Ẇ (0) fulfill the following conditions:

(i) TrW (0)W †(0) = 1 ,
(ii) Tr Ẇ (0)Ẇ †(0) = 1 , (3-29)
(iii) Tr [W (0)Ẇ †(0) +W †(0)Ẇ (0)] = 0 .

The last condition is that W (0) and Ẇ (0) should be orthogonal. It
is obtained using the scalar product corresponding to the distance
in (3-13) (and the zero matrix as origin).

The parameter τ is nothing but the distance from W (0).
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• The condition for “horizontality” reads

Ẇ †(0)W (0) = W †(0)Ẇ (0) . (3-30)

Every vertical vector, parallell to the fibre W (0)U , is the derivative
of some curve W (0)U(σ) = W (0)eiHσ along the fibre. Here H
is Hermitian. Thus Ẇ (0) has to be orthogonal to iW (0)H, for
any H—this gives (3-30).

Together with (iii) it follows that TrW †(0)Ẇ (0) = 0.

Note that if the conditions (3-29) and (3-30) are satisfied for any point
on the geodesic, they are satisfied for every point.

• The geodesic in the set of density matrices is

ρ(τ) = W (τ)W †(τ) = W (0)W (0)† cos2 τ + Ẇ (0)Ẇ (0)† sin2 τ .
(3-31)

• Start the geodesic from ρ1 (assumed to be invertible) and let it go
through ρ2. The distance between them is the Bures angle dB. This
means that we set{

W1 = W (0) ,
W2 = W (dB) , where cos dB = Tr

√√
ρ1 ρ2

√
ρ1 .

(3-32)

• The geodesic (3-28) becomes

W (τ) = W1 cos τ + (W2 −W1 cos dB)
sin τ
sin dB

, (3-33)

if one solves for W (0) and Ẇ (0).

This gives an expression for the geodesic ρ(τ) in terms of the purifica-
tions W1 and W2. But these are not independent. If W1 is the chosen
representative for the fiber of purifications that maps to ρ1 then W2 will
be determined from the horizontality condition (3-30).

Instead of finding out directly what W2 should be, we will see how
the geodesic can be expressed in terms of ρ1 and a matrix M which can
be thought of as determining the direction from ρA. M is such that

W2 = MW1 . (3-34)
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We obtain, from (3-33),

ρ(τ) =
[
1l cos τ + (M−1l cos dB) sin τ

sin dB

]
ρ1

[
1l cos τ + (M−1l cos dB) sin τ

sin dB

]
.

(3-35)
This will be our final formula for the geodesic, except that we need to
determine dB in terms of ρ1 and M . We will find M in terms of ρ1 and
ρ2 , and from this the distance dB in terms of ρ1 and M .

From the “horizontality condition” (3-30) it follows that W †
1W2 =

W †
2W1, for all W1 and W2 on the geodesic in the Hilbert Schmidt space.

Thus W †
1W2 is an Hermitian operator, having real eigenvalues. Therefore,

since W †
1W1 = ρ1 is a positive operator, also W †

1W2 is positive if W2 is
sufficiently close to W1. If the points are continously separated we have

W †
1W2 > 0 (3-36)

until one of the operators will have one zero eigenvalue. This is when
either ρ1 or ρ2 is at the boundary of the set of density matrices.

Since W †
1W2 = W †

1MW1 is positive, so is M . And from W2 = MW1

we get:

ρ2 = Mρ1M ⇔ √
ρ1 ρ2

√
ρ1 =

√
ρ1Mρ1M

√
ρ1

⇔ √
ρ1 ρ2

√
ρ1 = (

√
ρ1M

√
ρ1)

2 (3-37)

Together with the positivity requirement this yields

M = ρ
−1/2
1

√
ρ
1/2
1 ρ2 ρ

1/2
1 ρ

−1/2
1 . (3-38)

Note that such an operator has a name: it is the geometeric mean of the
operators ρ−1

1 and ρ2 [3]. The distance dB in (3-35) is given by

cos dB = TrMρ1 . (3-39)

With this, the formula (3-35) for ρ(τ) is complete. If we want we can also
rewrite it in terms of the density matrices ρ1 and ρ2 using (3-38). (This
has been done also by Barnum [6], as I found out after the completion of
Paper V.)

In Paper V [36] it is explained how any geodesic in the Hilbert-Schmidt
space—a great circle—when projected to the set of density matrices will
reach the boundary N times (counting degeneracies), where N is the
dimension of the Hilbert space [81]. This means that the geodesic will
be reflected at the boundary and ‘bounce’ back into the set. After N
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bounces it will close itself. For commuting matrices we saw in the last
section that the geometry is a round hyperoctant. The cover illustration
shows what it looks like when N = 3. Normalized diagonal operators W
in the Hilbert-Schmidt space form a two-sphere, on which a great circle
in general will pass through six hyperoctants. Through the projection
W → ρ = WW † all these octants will be mapped to the same positive
octant and the great circle will give a triangle, which will be covered
twice. (This positive octant is the selfsame as in figure 3-11).

3.2.4 Distinguishability of quantum states

A pair, or a larger set, of quantum states that have orthogonal support
( Tr ρkρl = 0) are “one shot distinguishable”: there is a measurement such
that any of the states will with certainty result in a unique outcome and no
two state will give the same outcome. This possibility to distinguish such
states is reflected in the Bures-Uhlmann geometry. The Bures distance
between two states is maximal—equal π/2—if and only if the states are
one shot distinguishable. In figure 3-11 it is evident that the state at the
top of the simplex is, in the curved Bures-Ulhmann case, at the same
maximal distance from anyone of its orthogonal states lying on the ‘line’
between the other two vertices of the simplex. This is not so for the flat
Hilbert-Schmidt case.¶

This suggests that the Bures-Uhlmann geometry has a physical mean-
ing the Hilbert-Schmidt geometry does not have. In fact, for diagonal
states, the situation is the same as for classical probability distribu-
tions and the Bures-Uhlmann metric coincides with the Fisher-Rao met-
ric [37, 69]. The Fisher-Rao metric corresponds to a “statistical distance”,
which measures how well probability distributions can be distinguished.
Wooters gives a readable account on statistical distance [91]. He also
defines a statistical distance for pure quantum states, a definition later
extended to mixed states by Fuchs and Caves [39] (see also Paper V).
They showed that this distance is equivalent to Bures distance, thereby
giving an operational definition for the Bures-Uhlmann geometry.

The definition of statistical distance for quantum states recognizes
that the possibility to distinguish between two states depends on what
measurement one performs. Fuchs and Caves found what the best mea-
surement is for distinguishing between two states. This best measurement
is actually the observable given by the operator M in equation (3-38). In

¶ For two pure orthogonal states the distance is maximal, DHS = 1 , but mixed or-
thogonal states in dimension N can be as close as the distance DHS =

p
2/N .
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Paper V [36] I give a proof of how this measurement is fully determined
by the geodesic going through the two states. In fact, it is the ‘bouncing’
of the geodesic (mentioned in the last section)—itself a consequence of
the projection of geodesics in the Hilbert-Schmidt space of purifications—
that determines the best measurement.

We end these sketchy notes on distinguishability with an illustration
of Bures-Uhlmann geometry for qubits.

Figure 3-12: A flat disc in the Bloch ball (with Hilbert-Schmidt geometry)
will be half a sphere according to the Bures-Uhlmann geometry [51]. The figure
show how to find what a Bures-Uhlmann geodesic through two density matrices
ρ1 and ρ2 looks like in the Bloch ball. The geodesic meets the boundary in
antipodal points, corresponding to the eigenvectors of the best measurement for
distinguishing the two states.‖

‖ Note that the characterization of the best measurement is a bit more involved in
higher dimensions; see Paper V [36].
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Chapter 4

Majorization and
Bistochastic Matrices

Bistochastic matrices map probability vectors to new probability vectors.
We have seen an example of this: As a consequence of Schrödinger’s mix-
ture theorem a bistochastic matrix turned up which relates any possible
probability distribution for mixing pure states to the eigenvalues of the
density matrix: pi =

∑
j Bij λj (equation (2-17)). This is just one context

among many where bistochastic matrices—also called doubly stochastic—
show up. Paper III [11] is devoted to this kind of matrices. Here we will
see what majorization is—it is closely related to bistochastic matrices—
and we will discuss Birkhoff’s polytope, which is the set of all bistochastic
matrices.

An N ×N matrix B is said to be bistochastic if its matrix elements
obey

(i) Bij ≥ 0 ,

(ii)
∑

iBij = 1 , (4-1)

(iii)
∑

j Bij = 1 .

A matrix fulfilling conditions (i) and (ii)—positivity-preserving and trace-
preserving—is called stochastic. These are necessary and sufficient condi-
tions for a matrix to map any probability vector ~q, to another probability
vector ~p :

pi =
∑

j

Bij qj , qj , pi ≥ 0 ,
∑

j qj =
∑

i pi = 1 . (4-2)

43
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If also condition (iii) holds, the matrix is unital, which means that the
uniform distribution, pi = 1

N , is a fixed point of the map. A stochastic
map is a kind of contraction of a probability simplex. Bistochastic maps
contracts the simplex towards the uniform distribution.

The bistochastic matrix that comes out from Schrödinger’s theorem is
obtained from a unitary matrix U , by taking the absolute value squared
of the matrix elements:

Bij = |Uij |2 . (4-3)

A matrix B is said to be unistochastic if there exists such a unitary U .
Unistochastic matrices turn up in different contexts within quantum the-
ory; examples are mentioned in Paper III. To decide whether a given
bistochastic matrix is unistochastic or not is in general a hard problem,
solved completely only for N = 2 and N = 3 . In Paper III [11] we report
some new results regarding this question for the case N = 4 .

Working with bistochastic matrices is often cumbersome. Some of the
difficulties that arise have to do with the fact that the study of bistochastic
matrices is not really a part of linear algebra. Already the definition of a
bistochastic matrix presupposes a fixed basis—bistochastic matrices is a
part of “matrix analysis”.

4.1 Majorization

Majorization is a way to compare probability distributions. Let ~x and ~y
be two probability vectors, that is, their elements are non-negative and
sum to one: xi, yi ≥ 0 and

∑
i xi =

∑
i yi = 1 . Make sure that both vec-

tors have the same number N of components, by adding zero elements if
necessary. We will not care about the given order of the probabilities, but
arrange the elements in decreasing order, denoted ~x ↓. The majorization
relation is defined as follows (see for example [1, 2, 16]): ~x is majorized
by ~y—written ~x ≺ ~y—if

k∑
i=1

x ↓i ≤
k∑

i=1

y ↓i , k = 1, . . . , N . (4-4)

The largest probability in ~y should be larger than the largest of ~x. The
sum of the two largest probabilities in ~y should be larger than the sum
of the two largest of ~x. The sum of the three largest probabilities . . . and
so on. When the sum goes up to k = N , there should be an equality; the
sum of all the elements of ~y should equal the sum of the elements of ~x.
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Since we consider normalized probability vectors, this last requirement is
satisfied automatically.

Majorization provides a partial preordering on the set of probability
distributions: partial because any two vectors are not in general related
by majorization, and ‘pre’ because ~x ≺ ~y and ~y ≺ ~x does not imply
~x = ~y (it implies ~x ↓ = ~y ↓, that is, the vector ~y is obtained by permuting
the components of ~x ).

For any vector ~x we have(
1
N , . . . ,

1
N

)
≺ (x1, . . . , xN ) ≺ (1, 0, . . . , 0) (4-5)

—or in words: the uniform distribution ( 1
N , . . . ,

1
N ) is majorized by every-

thing and the pure distribution (1, 0, . . . , 0) majorizes everything. When
~x ≺ ~y the probabilities in ~x are “more even” than in ~y. There is “more
certainty” in ~y than in ~x.

Instead of the defining inequalities (4-4), majorization can be charac-
terized in terms of bistochastic matrices. This relation between majoriza-
tion and bistochastic matrices is given in the following theorem [46].

Theorem (Hardy, Littlewood, Polya):

~x ≺ ~y ⇔ ~x = B ~y , for a bistochastic matrix B . (4-6)

Thus, bistochastic matrices take probability vectors to majorized—“more
even”—vectors.

The simplest bistochastic matrices, except permutations, act trivially
only on two components. These are the so called T-transforms, for ex-
ample

T =

 t 1− t 0
1− t t 0

0 0 1

 , 0 ≤ t ≤ 1. (4-7)

The effect of this matrix is to make the first two components of a proba-
bility vector more equal. Any bistochastic matrix B can be obtained as
a product of a sequence of T-transforms, which in each step makes a pair
of probabilities more equal. Figure 4-1 indicates how T-transforms act in
the simplex of 3-dimensional probability vectors.

As already mentioned, majorization is only a partial order on the set of
probability vectors. Thus, we might ask: What probability distributions
can be compared? First note that the set of vectors ~x that are majorized
by a given vector ~p is convex. This follows from the fact that bistochastic
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Figure 4-1: The upper left area of the simplex contains probability vectors
with the components ordered decreasingly. The three T-transforms move these
probabilities in the directions indicated, and if the parameter t is no larger than
1/2 the components are still decreasingly ordered. Every T-transform moves a
probability closer (or not at all) to the uniform distribution 1/N(1, . . . , 1).

matrices form a convex set.

~x1 ≺ ~p and ~x2 ≺ ~p ⇒ ~x1 = B1 ~p and ~x2 = B2 ~p ⇒

p ~x1 + (1− p)~x2 = (pB1 + (1− p)B2) ~p ⇒ p ~x1 + (1− p)~x2 ≺ ~p .
(4-8)

Furthermore, any majorized vector ~x can be written as a convex combi-
nation of the vector ~p and all vectors with the components of ~p permuted.
Thus all majorized vectors form a polytope with N ! vertices, except in
those cases where some components of ~p are equal whence the permuta-
tions yields fewer vertices. Figure 4-2 shows an example of what it looks
like. The set of vectors that majorizes ~p is also depicted. What is left over
is a set of vectors which are incomparable to ~p . (From the figure it is also
easy to convince oneself that any bistochastic matrix can be obtained as
a product of T-transforms, since a sequence of T-transforms can move ~p
to any majorized probability distribution.)

Some readers might have come to think of entropy when we mentioned
that the probabilities in ~x are “more even” than in ~y if ~x ≺ ~y . And
yes, there is a relation between majorization and entropy. The entropy
function is an example of a more general concept, that we now describe.



4.1 Majorization 47

Figure 4-2: The striped convex set of probability distributions are majorized
by ~p, and the dotted set majorizes ~p. The blank areas are those probability
distributions that are incomparable with ~p in terms of majorization.

A real valued function φ on RN is called Schur-convex if

~x ≺ ~y ⇒ φ(~x) ≤ φ(~y) . (4-9)

The term “convex” is used because in the expression ~x = B ~y , B can be
understood as implementing a kind of averaging of ~y, which yields ~x. A
Schur-convex function decreases when it’s argument is averaged in this
sense. Moreover, for any real valued function f(x) on [0, 1] which is
convex in the usual sense,∗ the function φ(~x) =

∑
i f(xi) is Schur-convex.

And conversely, if φ(~x) =
∑

i f(xi) ≤
∑

i f(yi) = φ(~y) for every convex
function f(x), then ~x ≺ ~y [16, 62]. There are also Schur-convex functions
not stemming from an ordinary convex function. A simple example is the
function φ(~x) = −Πi xi . If −f is Schur-convex f is said to be Schur-
concave.

Since f(x) = x2 is convex, the function

φ(~x) =
∑

i

x2
i (4-10)

is an example of a Schur-convex function. In section 3.1 about the Hilbert-
Schmidt geometry we found that the distance between the center ρ0 and

∗ f is convex if f(txa + (1− t)xb) ≤ tf(xa) + (1− t)f(xb) , for all t ∈ [0, 1] (and any
xa, xb).
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any other density matrix ρ, depends only on the eigenvalues λi of ρ (equa-
tion (3-2)). In terms of the function φ this distance is (φ(~λ)− 1/N)/2. It
follows that density matrices with eigenvalues that are majorized by the
eigenvalues ~λ of ρ lie closer to the midpoint, and those with eigenvalues
majorizing ~λ lie further away.

An example of a Schur-concave function is the Shannon entropy,

H(~x) = −
∑

i

xi log xi , (4-11)

which is used as a measure of information. The entropy can be said
to measure the uncertainty of a random variable with probability dis-
tribution ~x, or, differently phrased, it measures how much information
that is gained on average when one learns the value of the random vari-
able. Since the entropy is Schur-concave, we have H(~x) ≥ H(~y) whenever
~x ≺ ~y—a majorized probability distribution, being more “even”, has a
larger entropy and corresponds to higher uncertainty. Note however, that
the converse does not hold. The Shannon entropy orders all probability
distributions whereas majorization is only a partial order. For exam-
ple, which one of the two vectors ~x = 1

9(4, 4, 1) and ~y = 1
9(5, 2, 2) is

“most even” and which one is “most mixed”? The Shannon entropies
are unequal—H(~x) = 1, 39 and H(~y) = 1, 44 (where the logarithm with
base 2 has been used)—but these vectors are not comparable in terms of
majorization.

According to the second law of thermodynamics the entropy of a
closed system increases during any process. But even if a process is
allowed by this criterion, it might not be possible for it to happen spon-
taneously. Consider, for example, three gas chambers of the same size
with doors in between them, possible to open so that any pair of the

Figure 4-3: Curves of constant Shannon entropy.
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chambers can be connected for some time. Assume the chambers con-
tain fractions of the gas corresponding to the components of the vector
~x above. Can this state evolve into a state with fractions given by ~y ?
Such a process would increase the entropy and are thus allowed by the
second law. But it is not possible to increase the fraction 4/9 of the gas
to 5/9 in the first chamber. Every possible process is stochastic, since
the amount of gas does not change. Moreover the processes have to be
bistochastic, since the homogeneous distribution (with one third of the
gas in each chamber) will never change. Hence we see that the probability
vector describing the final state should be majorized by the probability
vector describing the initial state. In our example ~x � ~y and there is
no process going from the distribution ~x to ~y. This issue is discussed
by Mead in ref. [62], where this majorization criterion, which is stronger
than requiring increasing entropy, is shown to be valid for a wide range of
processes. For quantum systems, the same is true for the eigenvalues of
the initial and final density matrices. There are also similar statements
about systems coupled to a heat bath.

Figure 4-4: It is impossible to open the doors between the gas chambers so

that the distribution ~x = 1
9 (4, 4, 1) evolves to ~y = 1

9 (5, 2, 2). Such a process
would increase entropy, but it would violate the majorization criterion.

Now we will, once again, return to the issue about mixing density
matrices. This is the main reason why majorization is studied in this
thesis. Compare equation (2-17),

pi =
M∑

j=1

Bij λj , where Bij = |Uij |2 ,

for the probabilities pi of some ensemble, with the characterization theo-
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rem, equation (4-6),

~x ≺ ~y ⇔ ~x = B ~y , for a bistochastic matrix B .

We see that if an ensemble {(|ψi〉, pi)} gives a density matrix with eigen-
values λi, then the vector ~p is majorized by the vector ~λ , ~p ≺ ~λ . Hence,
the mixing of non-orthogonal states is always with a “more even” prob-
ability distribution than that for orthogonal states (the eigenvectors). In
particular no probability pi can be larger than the largest eigenvalue.

However the converse—that there exists an ensemble {(|ψi〉, pi)}, giv-
ing ρ , for every probability vector ~p majorized by the eigenvalues ~λ—is
not a consequence. It is not true that such pure states |ψi〉, corresponding
to the probabilities pi, always are possible to find. Why this is a tricky
problem is described in Paper II [9]. However, for most cases this seems
to be possible. For the special case where all states should come with the
same probability it is not difficult to find an ensemble. One example is to
use the unitary Ukl = 1√

M
e

2πi
M

kl in equation (2-16), yielding the states

|ψk〉 =
N∑

j=1

e
2πi
M

kl
√
λl |el〉 , i = 1, . . . ,M , M ≥ N . (4-12)

Examples of ensembles giving a certain qubit state are shown in figure 3-6.

4.2 Birkhoff’s polytope

The set of bistochastic matrices is convex. This is easily seen by adding
two matrices B1 and B2 with the weights p and 1 − p . As the matrix
elements are non-negative and sum to one over each row and each column
the convex combination is again a bistochastic matrix:

pB1 + (1− p)B2 = B , 0 ≤ p ≤ 1 . (4-13)

The extreme points are those matrices with only one non-zero matrix
element in each row and each column. These are the permutation matri-
ces. Thus, the set of bistochastic matrices is the convex hull of the N !
permutation matrices. It is called Birkhoff’s polytope [17]. The dimen-
sion of the set is (N − 1)2; the last row and last column of every matrix
are constrained by the requirements (ii) and (iii) of (4-1), thus there are
(N − 1)2 parameters to specify. With Hilbert-Scmidt distances,

D2(B1, B2) ≡ Tr(B1 −B2)2 , (4-14)
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the set becomes a regular polytope in Euclidean space. From Cara-
théodory’s theorem (see section 2.3) it follows that it is enough to take
a convex combination of not more than N2 − 2N + 2 of the permutation
matrices, to get any given bistochastic matrix.

The point in the middle of the polytope is called the van der Waerden
matrix, B? (denoted JN in Paper III) It is the matrix with all entries
equal, that is,

B?ij ≡
1
N

. (4-15)

In Paper III [11], Birkhoff’s polytope is described and studied for
N = 3 and N = 4 . Birkhoff’s polytope for N = 3 has a simple descrip-
tion. The three permutation matrices with positive determinant forms
a regular triangle, as do the ones with negative determinant. These two
triangles sit in two totally orthogonal planes. All convex combinations of
the triangles forms the four dimensional polytope. Already for N = 4 it
becomes much more complicated. It is not easy to view nine dimensional
objects, but there are things that can be said to give a better understand-
ing and a hunch about the set, built on three-dimensional intuition. In
Paper III some new interesting results are reported.

One problem is to characterize the subset of the polytope that contains
unistochastic matrices (equation (4-3)). When N = 2 every bistochas-
tic matrix is unistochastic, but in all other dimensions this is not true
anymore. The extreme points are still unistochastic, whereas there are
non-unistochastic matrices in the polytope, so the subset of unistochas-
tic matrices is not convex. To further characterize this subset, becomes
quite involved—due to the diffuculty to decide whether a given matrix is
unistochastic or not—already for N = 4 , where we can tell only a part of
the full story. The van der Waerden matrix B? is unistochastic in all di-
mensions. When N = 3 every matrix close to B? is unistochastic—there
exists a ball around B? containing only unistochastic matrices. We have
found that this is not true when N = 4 . Infinitesimally close to B?, there
exist bistochastic matrices which are not unistochastic. For higher dimen-
sions it follows from results on so called defects for Hadamard matrices
that there is a ball of unistochastic around B? whenever N is a prime,
and also when N = 6 [77]. The result on defects in the six dimensional
case appear also in Paper VI [8].

Another problem is to establish to what extent a unitary U is deter-
mined by the bistochastic matrix B, where Bij = |U2

ij |. For a general
bistochastic matrix B the ambiguity is discrete. For special cases there
exists continous sets of unitaries U corresponding to the same bistochastic
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matrix B.
The unitary matrices giving rise to the van der Waerden matrix B?,

is a research subject of its own, studied already in the nineteenth cen-
tury [76] but still attracting a lot of attention. Those unitaries are the
Hadamard matrices, sometimes called complex Hadamard matrices, to be
more specific. In computer science real Hadamard matrices are used, for
example in error correcting codes. In quantum information theory also
complex Hadamards are interesting. This leads us to the next topic of
this thesis, because they can, for instance, be used to represent mutually
unbiased bases (as we will see in section 5.3).



Chapter 5

Mutually Unbiased Bases

One of the first things I learnt in quantum mechanics, which is very
difficult to digest, is this: If you know exactly where a particle is, you can
know nothing about its velocity, and if you know the velocity exactly it
is equally probable to find the particle at any place in the universe. This
is because the observables for position and momentum do not commute;
[q, p] = i~1l. In a similar way, for a spin 1

2 particle: If the spin is known
along the z-axis, nothing is known about the spin along the x-axis, or
along the y-axis. These three spin operators do not commute; [si, sj ] =
iεijksk.∗ Moreover, these observables are maximally non-commutative,
since every eigenstate in one of the three bases has equal overlap with the
eigenstates of the two other bases. The three bases are said to be mutually
unbiased—or mutually conjugate, or complementary. Such bases are the
concern of Papers IV and VI [10, 8].

More generally two orthonormal bases {|ei〉} and {|fi〉} in the Hilbert
space HN are said to be unbiased if

|〈ai|bj〉|2 =
1
N

, for all i, j . (5-1)

A whole set of bases is mutually unbiased if every pair of bases in the
set is unbiased. Also a set of observables whose eigenbases are mutually
unbiased, is said to be mutually unbiased. Such sets of several bases were
first considered by Wiesner —under the name “conjugate”— in his sem-
inal paper Conjugate coding. The paper “treats a class of codes made
possible by restrictions on measurement related to the uncertainty pric-
ipal”, and it was the starting point of quantum cryptography. Though

∗ In the finite dimensional case the commutator can never be proportional to the
identity, since Tr[A, B] = 0 6= Tr 1l , whenever the trace is well defined (N < ∞).

53
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he wrote it in the late sixties (according to ref. [?]), it was not published
until 1983 [88]. Wiesner explains: “Physically, if a system is in a state
described by ai, i = 1, ..., N , then it must have an equal probability of
being found in any of the states bi, i = 1, ..., N and vice versa, if it is in
a state bi it must have an equal probability to be found in any ai.”

Mutually unbiased bases—MUBs for short—have attracted a lot of
interest the last years. They are interesting for studies in foundations of
quantum mechanics (discussed, for example, in [22]) and they are used
in quantum cryptography.† The famous BB84-protocol for secure quan-
tum cryptography makes use of two unbiased bases for qubits [13]. The
possibility to use several mutually unbiased bases has also been consid-
ered, and it is found that the security is increased [23, 7, 27]. However,
it is noted that it comes with the cost of a lower rate for obtaining the
key [27]. MUBs are also central to the entertaining “The Mean King’s
Problem” [83, 34, 74].

However, the main reason for the avalanche of papers about MUBs
is probably related to the possibility to use MUBs for tomographic state
determination, because in this context there is an obvious question about
MUBs, not answered, despite a lot of effort. This is the question about
the existence of “complete sets of MUBs”, explained below.

Another reason for studying MUBs is their connection to discrete
phase space and the possibility to describe quantum states with Wigner
functions. I will say more about the quantum phase space later in this
chapter. In some respects, the Wigner function is like a classical proba-
bility distribution. This is interesting for understanding the foundations
of quantum mechanics, and its classical limit.

5.1 Complete sets of MUBs ?

Consider a source of quantum systems in a state ρ. The problem of state
determination is to find what measurements should be performed to col-
lect data from which the state can be estimated. We can start by mea-
suring one observable—on a large enough (finite) number of systems—to
obtain a probability distribution over N outcomes, where N is the di-
mension of the Hilbert space. This gives N −1 independent numbers. To
determine the state ρ we need N2−1 parameters. So we choose a new ob-
servable to measure, which gives us N − 1 new numbers. It is reasonable
† It is the key distribution, that is, building up a secret cryptographic key common
to sender and receiver, which can be made more secure using quantum mechanical
properties.
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to expect that it should be advantageous if the two chosen observables are
unbiased, because then the outcomes of the two measurements are uncor-
related and we would gain as much information as possible. That this is
so, has been shown by Wootters and Fields [93]. Their result is that, if
the measurements to be done should be chosen ahead of the experiment
and not adapted by and by, and if all measurements should be von Neu-
mann measurements, then the statistical error will be minimized if the
measurements are mutually unbiased. The number of observables/bases
needed to determine the state is N + 1: (N + 1) bases times (N − 1)
independent probabilities gives the N2 − 1 parameters needed.

In two dimensional Hilbert space we know that there are three MUBs:
the eigenbases of the spin operators along the x, y and z axes. This is
just what we need to do an optimal state determination. But what about
higher dimensional Hilbert spaces? Can we find MUBs there too? And
how many?

Yes, mutually unbiased bases can be found in any dimensions. But it
is not at all trivial to answer the question of how large a set of MUBs can
be. An upper bound is known: the number of MUBs cannot exceed N+1
(see Paper IV)—the number needed for optimal state determination. We
call a set of N + 1 MUBs a complete set of MUBs.

For prime dimensions, N = p, complete sets of MUBs were given by
Ivanović in the early eighties [53]. He was considering the state deter-
mination problem and realized that the measurements needed could be
found from “orthogonal decompositions of the set of Hermitian matrices
into commutative subsets”. In Paper IV [10] this fact is described in
simpler geometrical terms: MUBs lie in orthogonal planes in the set of
density matrices, and if the set is complete these planes span the set of
density matrices. In the late eighties, a generalization valid for prime
power dimensions, N = pn, was given by Wootters and Fields [93], when
they also showed the optimality of using MUBs for state determination.

In the last several years these same MUBs (or unitarily equivalent
ones) have appeared in several papers, written in new ways, with some-
what different approaches, see for example [5, 57, 31]. I think what for-
mulation to use is mainly a matter of taste, although these re-phrasings
can help to give some more insight into the problem. (That the bases
in ref. [5] and in ref. [57] are equivalent with Wootters’ and Fields’ bases
(ref. [93]) was shown by Godsil and Roy [43]. They pointed out that these
bases are equivalent to a construction of “orthogonal frames” by Calder-
bank et. al. [26]. In ref. [31] Durt shows himself that his MUBs in odd
dimensions, and in dimensions 2 and 4, are equivalent to earlier construc-
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tions, whereas this is not clear for higher even dimensions. And according
to ref. [26] there do exist inequivalent sets of MUBs in dimensions that
are odd and composite powers of two.)

These constructions of MUBs rely on the existence of finite number
fields FN , of order N = pn. For odd prime powers a complete set of MUBs
is given by the standard basis |vk〉l = δkl, together with the N bases [93]

|v(r)
k 〉

l
=

1√
N

e
2πi
p

tr(rl2+kl)
, r, k, l ∈ FN . (5-2)

The label r stands for the basis, k for the vector in that basis, and l
for the component of the vector. The field trace used in the exponent is
defined as

trx ≡ x+ xp + xp2
+ · · ·+ xpn−1

, x ∈ Fpn . (5-3)

This is always an element in the prime field Fp, and it is just a number,
modulo p. If N is a prime, ‘tr’ can be ignored, because then trx = x. We
will not use these explicit expressions, nor will we go deeper into finite
fields.

For complete sets of MUBs in even dimensions N = 2n, the same for-
mula does not work.‡ There is something special with even dimensions,§

which is somehow related to the fact that the unit root e2πi/p = eπi = −1 ,
is real. The formula (5-2) will only yield real vectors, and that is not
enough. For a solution of this I refer to Wootters and Fields [93] or
references [58, 57, 31].

The construction by Bandyopadhyay et. al. [5] yields the same MUBs,
but it reveals more of the structure of these bases. They use general-
ized Pauli-matrices X and Z, defined by their action on the standard
basis {|k〉}N

k :
X |k〉 = |k + 1〉
Z |k〉 = wk |k〉 , w = e

2πi
N

k (5-4)

For prime dimensions the eigenvectors of the following matrices form a
complete set of N + 1 mutually unbiased bases:

X , XZ , XZ2 , . . . , XZN−1 and Z . (5-5)

‡ Note, however, that Durt managed to write a single expression for MUBs in the odd
and even cases [31].

§ Or equivalently, there is something special with odd dimensions, if you prefer that
view!
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A basic feature of these operators is that any one of them permutes the
eigenvectors of any other. For prime power dimensions MUBs can be
constructed in a similar way, using tensor products of the operators above.

In non-prime power dimensional Hilbert spaces, no complete set of
MUBs has been found. Number fields can not be used here, since all finite
fields have prime power order. But a lower bound can be found, based
on the ideas used for construction of MUBs in prime power dimensions.
Factorize the dimension in prime powers: N = pn1

1 · · · pnr
r (all pi different).

One can then find at least pnm
m + 1 MUBs, where pnm

m is the minimum
of all the prime powers in the factorization of N (see for example [57]).

Since the eighties, not much progress has been achieved in the search
for larger sets of MUBs. Not until a couple of years ago, when a new
approach was found, by Wocjan and Beth [90]. They use so called ‘nets’
from design theory, together with Hadamard matrices, to find mutually
unbiased bases in square dimensions. Those nets can be found from mu-
tually orthogonal Latin squares. This is interesting discrete mathematics,
but what it is and how it works will not be described here. What is worth
noting, is that for certain dimensions their construction gives more mutu-
ally unbiased bases, than the construction using finite fields. The lowest
dimension where it is known to give more MUBs, is for N = 262, where it
gives 6 MUBs instead of 5 (the number here depends on how many mu-
tually orthogonal Latin squares that have been found.) It seems unlikely
that these sets of MUBs will be used for applications, but the result is
important since it shows that there can be alternative ways to find MUBs.
(Another example of new sets of MUBs are given in Paper VI, but those
sets are not larger than what have been found earlier.)

Let us summarize what is known for low dimensional cases. Using
the construction with finite fields we get complete sets of MUBs in the
dimensions N = 2, 3, 4, 5, 7, 8 and 9 ; these N are all primes or powers
of primes. The lowest dimension for which the problem is not solved is
N = 6 . Despite a lot of work it is not known if there exists a complete
set of MUBs, already for such a low dimension. A complete set requires
7 MUBs, while the finite field method gives only 2 + 1 = 3. In Paper VI
we search for MUBs in 6 dimensions, and find some new sets of three
MUBs; more about this in section 5.3. Since then, numerical work have
been performed which indicate that there can be no more than three
MUBs [25]; see again section 5.3. The lack of definite answers, also for
low dimensions, gives some indication on how difficult the problem is.
The role of prime factorization shows the importance of number theory,
when trying to understand finite dimensional quantum systems. The
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problem about MUBs is one example where discrete mathematics enters
in quantum information theory.

5.2 Discrete phase space and finite affine planes

From the density matrix ρ, we can calculate the probabilities for different
outcomes of any measurement, especially for measuring the observables
of a complete set of mutually unbiased bases—if they exist and we know
them. Conversely, we can determine what density matrix ρ that repre-
sents the quantum state we have, using the probability distributions ob-
tained by measuring N+1 mutually unbiased observables. Consequently,
the quantum state can equally well be described by the density matrix
ρ or by the set of probabilities for the MUB states. One way to “store”
these probabilities is in a Wigner function, defined on some sort of phase
space. In this way, a quantum state can equally well be described by a
density matrix or by a Wigner function.

The function Wigner [89] introduced on phase space for describing
quantum states is a quasi-probability distribution, in several regards sim-
ilar to a probability distribution although it may attain negative values.¶

Wootters has developed a way to define a similar Wigner function on a
discrete phase space for finite dimensional systems, provided a complete
set of MUBs exist [92]. More recently he has developed the idea together
with Gibbons and Hoffman [41]; see also [94] for a nice presentation. The
phase space they use is a finite affine plane. We will describe what affine
planes are, since they also turn up in Paper IV [10].

To get an affine plane, consider a set of points {aα}, together with a
set of lines {lω}. The lines are subsets of the set of points. If two such
lines have no points in common they are said to be parallel. These two
sets constitute an affine plane if the following axioms are satisfied [15]:

(A1) If aα and aβ are distinct points, there is a unique line lω such that
aα, aβ ∈ lω. – Two points define a line.

(A2) If aα /∈ lω, there is a unique line lσ such that aα ∈ lσ and lσ∩lω =Ø.
– Through any point not in a given line, there is a unique parallel
line.

(A3) There are at least two points on each line, and there are at least
two lines. – This excludes trivial cases.

¶ On the other hand, there are restrictions on the Wigner function not needed for
probability distributions. For example, the Wigner function can not be very peaked.
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Figure 5-1: Four copies of an affine plane of order 3, with the four pencils of
three parallel lines marked.

If the number of points is finite, then every line contains the same number
of points, say N . This is the order of a finite affine plane. The total
number of points is N2, and the number of lines is N2 +N . A pencil of
parallel lines is a maximal set of non-intersecting lines. There are N lines
in each pencil and N + 1 pencils in the affine plane.

It is known that finite affine planes exist of order N = pn (prime
powers). For these orders it is possible to get an affine plane coordinatized
by the elements in the field FN .‖ These orders are the same as those
dimensions where complete sets of MUBs have been found. But about
affine planes more is known. Some orders are known not to be possible;
these start with N = 6, 14, 18, . . . (because of a theorem [21]) and N = 10
(from computer calculations [28]). For other orders, starting with N =
12, 15, 20, . . . , the question is still open.

Wootters and co-workers use an affine plane, of orderN , coordinatized
by a finite field, as a phase space of a finite dimensional quantum system.
They associate lines in the plane with pure quantum states, and lay down
some other requirements. This results in a phase space where every pencil
of N parallel lines corresponds to a Hilbert space basis, and the N + 1
pencils give a complete set of MUBs. Their construction, taken together
with the striking similarity of what is known about the existence of MUBs
and of affine planes, makes it easy to guess that there might be some
close connection between the two problems, and that they perhaps are
equivalent. This may, however, be a rash conclusion. The way in which
the structure of affine planes turns up in Paper IV might be an indication
that the two problems are not that closely related after all. Certainly
nothing definite can yet be said.

In Paper IV [10] we investigate how the MUBs sit in the space of den-
sity matrices. This means that we move to a space of higher dimension—
to the mixed states instead of pure states. However, it does not necessarily

‖ In some of these dimensions there exists also other, so-called non-Desarguesian, finite
affine planes.
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make things more complicated—the MUB states are ordered in a nice way
in this vector space. There we define the complementarity polytope as the
convex hull of all the states in a complete set of MUBs.∗∗ This polytope
can be described, as a geometrical body, using only scalar products of the
vectors for the extreme points; there is no need for explicit expressions of
MUB states. Therefore, such a polytope can also be defined, regardless of
the existence of any MUBs. The question about the existence of complete
sets of MUBs can now be reformulated: there is a complete set of MUBs
if and only if our polytope can be fitted inside the set of density matrices.
Because, if this is possible, all the extreme points correspond to density
matrices, and these density matrices will form a complete set of MUBs.
We do not have an answer to when this is possible, but it is a new way
of attacking the problem, that might bear fruit in the future.

What about affine planes in this picture? Surprisingly we find the
following connection. It turns out that the problem of inscribing a regular
simplex, in a certain way, in our polytope, is equivalent to the problem
of finding N − 1 mutually orthogonal Latin squares of size N ×N (N is

Figure 5-2: The complementarity polytope for qubits is an octahedron, in-
scribed in two simplices; see Paper IV for notations, although in the paper the
simplices are instead inscribed in the polytope.

∗∗ For N = 3, if you take the convex combinations of two Birkhoff’s polytopes sitting
in orthogonal subspaces you will get the complementarity polytope. It is a nice
connection, but it most probably does not mean anything.
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Figure 5-3: A pair of orthogonal Latin squares. In a Latin square the numbers
1 to N are arranged in such a way that each number occurs once in every row
and in every column. Two Latin squares are orthogonal if the array of ordered
pairs of numbers, obtained “superposing” the two Latin squares, contains all
possible N2 combinations.

the dimension of Hilbert space; figure 5-3 show a pair of orthogonal Latin
squares). Furthermore, it is known that the problem of finding these
mutually orthogonal Latin squares is equivalent to the problem of finding
an affine plane of order N . Thus, the simplex can be inscribed in our
polytope if and only if there exists a finite affine plane.

This means that we have found the structure of an affine plane within
our polytope, for any N where an affine plane exists. How this is related,
if at all, to the possibility of arragning the polytope so that it fits in
the set of density matrices, is not clear. That is, the relation between
the affine plane and a complete set of MUBs remains to be understood.
Hopefully, further investigations will unveil the connection, and perhaps
yield a better understanding of finite dimensional quantum systems.

5.3 Hadamard matrices

Another route to mutually unbiased bases is to study Hadamard matrices.
If we begin with the standard basis, |vk〉l = δkl , every vector unbiased
with it must have elements of the form 1√

N
eiφ, φ ∈ R . To get an un-

biased basis, we need N such vectors, orthogonal to each other. This is
equivalent to finding a complex Hadamard matrix, if we let the vectors be
the columns of the matrix. An Hadamard matrix H is a unitary matrix
with all its elements having the same modulus:

|Hkl| =
1√
N

, k, l = 1, . . . , N . (5-6)

In some contexts Hadamard matrices are assumed to be real, but here we
always refer to the more general case where the matrix elements might
be complex. The MUB-states in equation (5-2) give us examples of
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Hadamard matrices: for every r ∈ FN there is an Hadamard matrix
H with elements

Hkl =
1√
N

e
2πi
p

tr(rl2+kl)
, k, l ∈ FN . (5-7)

Every basis mutually unbiased with the standard basis corresponds in
this way to an Hadamard matrix. Hence, finding Hadamard matrices is a
way of searching for MUBs. This is the approach in Paper VI [8], where
we seek for MUBs in six dimensions. All known Hadamard matrices are
presented and equivalences between them are discussed. Here part of
this work will be related; I refer to the paper for the full story. These
Hadamard matrices are the possible candidates to be included in sets of
MUBs. To get a set of bases, all of them mutually unbiased, one has
to make sure that any two chosen Hadamard matrices H1 and H2 will
correspond to a pair of unbiased bases. This requirement is that the scalar
product of any column in H1 with any column in H2 has the modulus
1/
√
N , that is, the product

H†
1H2 = H3 (5-8)

has to be an Hadamard matrix, too.
Using the construction for complete sets of MUBs in prime power

dimensions, at least three MUBs can be found in any dimension. To
get such a triplet of MUBs in six dimensions, take three MUBs in two
dimensions and three MUBs (out of the four possible) in three dimensions,
and combine them pairwise. Take the tensor products of pairs of the
two and three dimensional vectors to get a set of three MUBs in six
dimensions. This yields the standard basis 1l , the basis given by the
Fourier matrix F, with elements

Fkl =
1√
N
qkl , q = e2πi/N , (5-9)

and an enphased Fourier matrix, that is, the Fourier matrix multiplied
from the left with a diagonal unitary matrix, DF.

Instead of the last basis, DF, there are several other possibilities for
a third MUB. Grassl found all those, using an algebraic computer pro-
gram [44].†† Furthermore he established that none of these triplets—with
the standard basis 1l , the Fourier basis F and a third unbiased basis—can
†† The relevant computation had actually been done earlier, in a search for biuni-

modular sequencies [18, 19]. The connection to MUBs is pointed out in Paper VI [8].
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be extended to a larger set of MUBs. In Paper VI we have identified the
Hadamard matrices representing the bases of these triplets. It is seen that
the third basis in some cases are of another type of Hadamard matrices,
inequivalent to the Fourier matrix (equivalence of Hadamard matrices is
defined in Paper VI, section 2 [8]).

Unitarily equivalence for sets of MUBs is considered in section 3 of
Paper VI , where the conditions for equivalence of pairs of unbiased bases
are given. Let us here explicitly extend this to triplets of MUBs, and
thereafter list the equivalences of all known triplets; this is only partly
accomplished in Paper VI.

Acting with a unitary U on every basis vector in a MUB set gives
an equivalent set, since this merely corresponds to a change of coordi-
nates. Thus, if we always choose one of the bases to be the standard
basis, represented by the identity 1l , any triplet of MUBs might have the
potential of generating two other equivalent triplets. Via multiplication
with a unitary, any of the three bases can be chosen to be represented by
the identity:

{1l ,H1,H2} ≈ {H†
1 , 1l ,H

†
1H2} ≈ {H†

2 ,H
†
2H1, 1l} . (5-10)

(‘≈’ denotes the unitarily equivalence of MUB-sets.) However, when a
basis is represented by an Hadamard matrix H we can always multiply
from the right with any permutation P and any diagonal unitary D with-
out changing the basis: H ' HPD (‘'’ denotes equivalence of Hadamard
matrices). Employing this possibility it may turn out that some of the
three triplets above correspond to the same set of MUBs.

What happens then, if we represent a basis with H1PD instead of H1,
before applying the unitary transformation that brings this basis to the
standard basis? Since we start out with the same bases as before, it is
reasonable that unitary transformations give the same sets of MUBs as
above. What we get is

{1l ,H1PD,H2} ≈ {D†P †H†
1 , 1l , D

†P †H†
1H2} . (5-11)

It doesn’t look the same as in equation (5-10), however, if we act from
the left with the unitary PD on all bases and then apply D†P † from the
right on the standard basis, this brings us back to the second set in (5-10).
Admittedly the second triplet in (5-11) does not represent the same bases,
but it differs only with the special unitary transformation PD, which
entails that the bases at least remain in the same Hadamard equivalence
classes.



64 Chapter 5. Mutually Unbiased Bases

Now we turn to the six dimensional MUB-triplets found by Grassl.
Which of the triplets are equivalent? And are there new triplets to be
found exploiting equivalences? We denote the Hadamard matrices as in
Paper VI, section 2, where they are explicitly written out. Whenever a
matrix is enphased it will be indicated by a tilde atop, thus, DF = F̃.
In the list every triplet will be underlined the first time it appears. We
start with the MUB-triplets including the Fourier basis, and exploit equa-
tion (5-10). Some equivalences have been ascertained through straight-
forward matrix multiplication, others figured out from the previous ones
and remembering which matrices are circulant. The comments in the
list are rather sketchy—the list should be understood as a supplement to
Paper VI [8].

◦ {1l ,F(0, 0), F̃A(0, 0)} ≈ {F(0, 0), 1l , F̃B(0, 0)} ≈ {F(0, 0), F̃B(0, 0), 1l}

F̃A(0, 0) and F̃B(0, 0) stands for two Fourier matrices differently
enphased with 12th roots of unity. The two sets generated give the
same MUB-triplet.

◦ {1l ,F(0, 0), F̃T(1
6 , 0)} ≈ {F(0, 0), 1l , F̃T(1

6 , 0)} ≈ {F(1
6 , 0), F̃(1

6 , 0), 1l}

F̃T(1
6 , 0) stands for two possible matrices enphased with 12th roots

of unity. Letting the Fourier matrix transform to the identity they
transform into themselves. The last equivalence gives a new MUB-
triplet. It is the first without the Fourier matrix. Moreover, the
matrix F(1

6 , 0) has not been in use before.

◦ {1l ,F(0, 0), C̃} ≈ {F(0, 0), 1l , F̃(0,0)} ≈ {F(0, 0), C̃, 1l}

C̃ stands for six possible circulant matrices enphased with 12th
roots of unity. They generate six triplets which include Fourier
matrices enphased with both 12th roots of unity and the number d
(equation (10) in Paper VI).

This is all MUB-triplets including the Fourier basis. In conclusion we
found that pairs of these triplets are unitarily equivalent with each other,
but two of the triplets are also unitarily equivalent with a triplet includ-
ing the standard basis 1l and two Hadamard matrices not equivalent (as
Hadamard matrices) to the Fourier matrix, or any of the other bases
found by Grassl.

We continue the list with the other MUB-triplets from Paper VI.

◦ {1l ,F(1
6 ,

1
12), D̃(1

8)} ≈ {FT(1
6 ,

1
12), 1l , F̃(c1, 0)} ≈ {D(−1

8), F̃(c1, 0), 1l}
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Computer calculations, using some rational roots of unity as phase
factors, resulted in the first triplet. It generates two new triplets,
with a “MUB-friendly” number c1 (equation (66) in Paper VI).

◦ {1l ,D(0), F̃( 9
24 + c2, 0)} ≈ {D(0), 1l , F̃( 9

24 + c2, 0)}

≈ {FT( 9
24 + c2, 0), F̃T( 9

24 + c2, 0), 1l}
The first triplet here, found by computer search, includes a new
“MUB-friendly” number c2 (equation (67) in Paper VI). It generates
yet a new MUB-triplet, not reported anywhere before.

These are the known sets of three MUBs in six dimensions. Our work
shows that there exist MUB-triplets inequivalent to the triplets including
the Fourier basis. Unfortunately we have not been able to either prove or
disprove if the two new inequivalent triplets can be extended to larger sets
of MUBs. Anyhow it is interesting to see that there are MUBs that do
not—at least not in any apparent way—stem from a construction similar
to the one used in the prime power case. Besides, it is known in four
dimensions that there are pairs of unbiased bases impossible to extend to
three or more MUBs, despite the fact that a complete set of five MUBs
exists. Thus, it might be the case also in six dimensions that it is crucial
what set to begin with if it should be possible to extend it.

All this said we have to admit there is later work indicating that no
larger sets of MUBs than triplets exist in dimension six. In section 4 of
Paper VI we introduce the following distance between two orthonormal
bases B1 = {|ek〉} and B2 = {|fl〉} in Hilbert space:

D2
c (B1, B2) = 1− 1

N − 1

N∑
k=1

N∑
k=1

(
|〈ek|fl〉|2 −

1
N

)2

. (5-12)

This distance is a generalization of the Fubini-Study distance: the Fubini-
Study distance is a distance between one dimensional subspaces—every
pure state is a ray in Hilbert space—and the distance we have here is
a distance between N − 1 dimensional subspaces—every basis defines a
plane in Hilbert-Schmidt space [29]. The distance Dc can be thought of
as a measure of “how much unbiased” two bases are, since it attains its
maximal value, Dc(B1, B2) = 1, if and only if the two bases B1 and B2 are
unbiased. For seven bases to be mutually unbiased all pairwise distances
should be one and the function

f =
7∑

i,j=1

D2
c (Bi, Bj) =

7∑
i,j=1

1− 1
5

6∑
k,l=1

(
|〈e(i)k |e

(j)
l 〉|2 − 1

N

)2
 . (5-13)
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would attain its maximal value, fmax = 7. Thus, finding the maximum of
this function would answer the question whether a complete set of MUBs
exists or not.

Of course, one can equivalently minimize the function

f̃ =
∑

1≤i<j≤7

6∑
k,l=1

(
|〈e(i)k |e

(j)
l 〉|2 − 1

N

)2

. (5-14)

If a minimum of zero is attained a complete set of MUBs exists. Butterley
and Hall have recently pursued such a minimization numerically [25]. The
lowest value they reach is 1.584. Since their algorithm yields the minimum
zero in some other dimensions, this gives quite strong evidence that no
complete set exist. They also did a similar minimization for a set of four
bases. The best result is 0.0512—a persuasive indication that not even
four MUBs exist. However, one should be warned against taking this as
a proof of non-existence of four or more MUBs in six dimensions. There
can be other explanations of the numerical results. For example, it might
be that in the non prime power cases there are many more local minima
of the expression (5-14), thence the minimization will almost always get
stuck in a local minimum and will never reach a global minimum of zero.
It would be good to get more statistics. One check could be to consider
only three bases in six dimensions. Since such MUB-triplets exist it would
be good to see if the algorithm will find the minimum zero.

How does the minimum values of the function f̃ achieved numerically
compare with the best sets of four respectively seven approximately mu-
tually unbiased bases that occur in Paper VI [8]? We can obtain a set of
four bases with all pairs except one unbiased. The “best unbiasedness”
for the last pair corresponds to the distance D2

c = 0.95 (section VII of Pa-
per VI), which implies f̃ = 0.25. A set of seven “almost unbiased” bases
can be obtained with bases unbiased with the Fourier basis (section VI of
Paper VI; pick one basis from the square and four from one of the David’s
stars in figure 3). This set gives f̃ = 4.65. Both of these values are much
worse than what has been found numerically. However, it should hardly
come as a surprise, since our sets contain many pairs of unbiased bases,
and even several triplets of unbiased bases,‡‡ whereas the numerics most
likely correspond to sets of bases where no pair is unbiased.

‡‡ 5 unbiased pairs out of 6 and 2 unbiased triplets out of 4, in the case of a four-basis
set. 11 unbiased pairs out of 21 and 5 unbiased triplets out of 35, in the case of a
seven-basis set.



Chapter 6

Entanglement

Perhaps the most fascinating in the theory of quantum mechanics, is
the possibility of entanglement.∗ Correlations between subsystems in an
entangled state can be stronger than in any classical state. Such ‘quantum
correlations’ have been demonstrated in Bell-experiments.

Naturally, entanglement is often central in discussions on quantum
foundations. Entanglement is also central in quantum information theory
where it is seen as an important resource. Entangled states can be used
for dense coding, for quantum teleportation and in protocols for quantum
key distribution.

The most well known example of an entangled state is the singlet state
for a pair of qubits,

|Ψ−〉 =
1√
2

(
|0〉A⊗ |1〉B− |1〉A⊗ |0〉B

)
. (6-1)

The reduced density matrices of the singlet state are given by

ρA = ρB =
1
2

(
|0〉〈0|+ |1〉〈1|

)
=

1
2
1l . (6-2)

This is the maximally mixed state and, in particular, it is not a pure state.
Even though the combined system is described by a pure state |Ψ〉, there
are no state vectors describing the states of the two subsystems separately.
The subsystems are are said to be entangled. Moreover, these subsystems
are maximally entangled, since the reduced states equals the maximally

∗ I can’t refrain giving a comment to all Swedish speaking readers: The foremost
translation of the word ‘entanglement’ is ‘snärjelse’, which is certainly to be pre-
ferred to ‘sammanflätning’, ‘ihopflätning’, ‘ihoptrassling’, ‘intrassling’, ‘tilltrassling’
or ‘kvanttrassel’, all of which have been in use occasionally.

67
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mixed state. The correlations between the two spin1
2 -particles in a singlet

state is such that whenever the result of a measurement on one of the spins
is ‘up’ (respectively ‘down’) in some direction ~n, a measurement on the
other spin along the same direction will always yield the opposite result
‘down’ (respectively ‘up’).

6.1 Magical entangled states

The peculiarity of entanglement makes itself apparent if we analyse what
happens if a measurement is performed upon a subsystem of a bipartite
system. This was first done by Einstein, Podolsky and Rosen, in their
famous “EPR-paper” [33] and shortly thereafter by Schrödinger [72, 73].
The quotes by Schrödinger in the introduction, section 1.1, is from his first
paper on entanglement. His second is the paper where he explained how
density matrices can be seen as mixtures of different ensembles (see sec-
tion 2.2)—this has an impact on how the effects of the measurements on
a subsystem can be understood. Schrödinger shows how an experimenter
can, without direct interference with a system, “produce a non-vanishing
probability of driving the system into any state he chooses”.

Let’s see what this refers to. Consider a state |Ψ〉 ∈ HA⊗HB, written
in the Schmidt decomposition form (equation (2-11)):

|Ψ〉 =
N∑

i=1

ci |ei〉A⊗ |µi〉B . (6-3)

{(|ei〉A, |ci|2)} is the eigenensemble of ρA, the reduced density matrix for
system A. Using Schrödinger’s theorem about mixtures, we know that
there exists some other ensemble {(|ψi〉A, pi)}N

i=1 , also giving the density
matrix ρA. One of the states, say |ψ1〉A, can be chosen freely (within the
span of ρA). From equation (2-16) it follows that there is a unitary matrix
U such that

|ei〉A =
1
ci

N∑
j=1

U−1
ij

√
pj |ψj〉A . (6-4)

When inserted in equation (6-3), we get

|Ψ〉 =
N∑

j=1

√
pj |ψj〉A⊗

(
N∑

i=1

U−1
ij |µi〉B

)
=

N∑
j=1

√
pj |ψj〉A⊗ |µ

′
j〉B , (6-5)

with a new orthonormal basis {|µ′j〉B} in HB, defined by the last equality.
Measuring in this new basis in subsystem B, we have probability p1 for the
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outcome |µ1〉B .† The corresponding state for system A is |ψ1〉A—system
A has been “steered” into the state |ψ1〉A .‡ The experimenter can, just by
handling system B, choose any state for system A, with a non-vanishing
probability.

One can easily find this conclusion “disconcerting”, as Schrödinger
did. How disturbing it is depends probably on how you interpret quan-
tum states. Anyhow, this is a nonclassical feature and I think it is safe
to say that whatever it is that is ‘truly quantum’ in this, will influence
what interpretations that might be available. But this is completely ir-
relevant when it comes to the question on how these ‘magical’ entangled
states might be used. The usefulness of entanglement is not dependent
upon foundational matters. We will relate some results concerning this
usefulness, but first we ought to define which states are entangled.

6.2 Entangled or separable?

A bipartite quantum state is said to be entangled if it is not separable.
And it is separable if it is possible to write it as a statistical mixture of
tensor products of states for the two subsystems:

ρ =
∑

i

pi ρ
A
i ⊗ ρB

i . (6-6)

It follows that the set of separable states is a convex subset of the set
of all quantum states: convex combinations of separable states give new
statistical mixtures of product states. Although this is a definition easy
to state, it is in general a hard problem to determine whether a given
density matrix ρ is entangled or not.

For pure states in the composite Hilbert space, the state is entangled
if and only if the reduced density matrices are mixtures. Looking back at
equations (2-11) and (2-12), we see that a pure state is separable if and
only if there is only one term in the Schmidt decomposition.

For a general state, a necessary condition for separability is given by
Peres [67]: if ρ is separable, then the partial transposed matrix ρTB is a
density matrix (that is, it has non-negative eigenvalues; see ref. [67] or

† The POVM-elements of this measurement are Ej = 1lA ⊗ |µ′j〉B B〈µ
′
j | , j = 1, . . . , N .

‡ The careful reader might notice that we now talk about the state after the measure-
ment, and this is not given by the POVM. The post-measurement state is propor-
tional to UE1|Ψ〉, where we assume that the unitary U is of the form 1lA ⊗UB since
we do not interact with system A.
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Paper I [35] for definition of ρTB ). For 2× 2 and 2× 3 systems this con-
dition is also sufficient [50]. But for higher dimensional systems it is not
enough to guarantee separability. States with positive partial transpose,
ρTB ≥ 0 , are often referred to as PPT-states. Those PPT-states that are
not separable are always bound entangled, or undistillable, that is, states
from which it is impossible to obtain entanglement in the form of singlet
states only by means of local operations and classical communication.
The set of PPT-states is yet another convex set.

In the case of 2× 2 systems, what is this ‘partial transpose’? Which
states are entangled and which are separable? Some understanding can
be gained by a geometrical picture. In the 15 dimensional vector space of
Hermitian unit trace matrices, the transformation of partial transposition
is a reflection in an 11 dimensional plane. Every entangled state will be
reflected to somewhere outside the set of density matrices, where at least
one eigenvalue is negative. In Paper I [35] the set of separable states in
certain three dimensional cross-sections through the set of 2×2 states are
found. The four states of any orthonormal basis form a tetrahedron, in
a three dimensional subspace. The convex sets of separable states within
these tetrahedra are studied for a family of bases with varying ‘amount
of entanglement’. Figure 6-1 shows what it looks like for the maximally
entangled Bell basis.

Partial transposition is always a reflection in the vector space of Her-
mitian unit trace matrices. For two N -dimensional systems the dimension
of this vector space is N4 − 1. Under partial transposition 1

2N
3(N − 1)

dimensions are reflected and a subspace of dimension 1
2N

3(N + 1)− 1 is
fix. Even though transposition is a basis dependent transformation the
set of partial transposed density matrices does not depend on the basis
chosen, nor does it depend on the whether partial transposition is defined
with respect to subsystem A or B [59].

There is another view on partial transposition, leading to an allur-
ing reformulation of Peres criterion. Transposition of an Hermitian ma-
trix is the same as taking the complex conjugate of the matrix elements.
Complex conjugation is an anti-unitary operation, and the only (known)
anti-unitary operation with a physical interpretation is time reversal. So
transposition can be thought of as time reversal, up to unitary transfor-
mations. Hence, up to local unitary transformations, partial transposi-
tion is like time reversal of one of the subsystems. Of course, we cannot
realize time-reversal, anyway it is inviting to restate Peres criterion in
such terms: If a state is separable we can reverse time for one of the
subsystems and still have a physical state. But if the state is entangled,
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Figure 6-1: “Stella octangula”. This is a picture of the tetrahedron spanned
by the Bell basis, the reflected tetrahedron from partial transposition, and the
intersection of the two tetrahedra, which is an octahedron of separable states.
For further explanation, see Paper I.

reversing time for one of the subsystems will not give a physical state.§

For entangled states it is as if the time arrows for the two subsystems are
correlated.

For separable composite systems of higher dimension (N > 6) it is
still true that there is no such correlation between the time arrows for
the subsystems in an entangled state. A more general statement is the
following [71]: “This is what characterizes separable states: that any local
symmetry transformation, which obviously transforms local physical states
into local physical states, also transforms the global physical state into
another global physical state”. For entangled states this is not always
true.

Besides checking the partial transpose, there are other criteria that
can be applied to investigate whether a state is entangled or not. One is
stated in terms of majorization. For every undistillable state (separable
or bound entangled) the vectors of eigenvalues of the state is majorized

§ It might be tempting to write ρTB = (1lA ⊗ KB) ρ (1lA ⊗ KB), where K stands for
complex conjugation. But this does not make sense, as have been clarified by Leinaas
et. al. [59]—(1lA ⊗KB) is not an operator on Hilbert space.
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by the eigenvalues of the reduced states [49]:

~λ(ρAB) ≺ ~λ(ρA) and ~λ(ρAB) ≺ ~λ(ρB) (6-7)

An extreme case is when one of the reduced states is pure, thus having
only one non-zero eigenvalue, which gives a vector majorizing any other
vector.

The dividing line between those states that are entangled and those
that are separable is clear from the definition. But entangled states can
be more or less entangled. Several measures of entanglement are in use,
relevant in different contexts. (One example is the von Neumann en-
tropy of the reduced states, which is refered to in Paper I.) In this thesis
entanglement has been cosidered only for bipartite systems, but entangle-
ment can be defined also for multipartite states. When there are several
subsystems many partitions can be done and distinct types of entangled
states exists. Lots of work is being done to classify entanglement in the
multipartite case.

6.3 Useful entanglement

We saw in section 6.1, following Schrödinger, how it is possible to “steer”
a system without interacting with it directly. The quantum teleportation
protocol can be seen as a clever modification this idea [14]. For telepor-
tation (in the standard version) the entangled state in use is the singlet
state, equation (6-1), of two qubits. Let’s assume that Alice and Bob have
access to one qubit each. Instead of just measuring her qubit, Alice mea-
sures it together with another qubit in some state |ψ〉, perhaps unknown.
She measures in a basis of four maximally entangled states. It can be
shown that Bob’s qubit will then be “steered” into the state |ψ〉 or one
of three possible states Uk|ψ〉, k = 1, 2, 3, depending on what outcome
Alice’s measurement yields. Alice calls Bob to tell him the outcome and
Bob can perform the unitary transformation U−1

k if needed, to obtain the
state |ψ〉. The state |ψ〉 has thus been teleported from Alice to Bob.¶

In quantum information processing, teleportation can be used as a
quantum channel. Quantum information is stored in the states of quan-
tum systems. Instead of actually move the system from one place to an-
other the information can be teleported with the help of pre-established
quantum corrrelations.

¶ Details can be found in the seminal paper [14] or, for instance, in ref. [65].
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Not only maximally entangled states can be used for teleportation.
Every distillable entangled state‖ can be used as a quantum channel,
although the fidelity of the channel might be low. But using only bound
entangled states will do no better than a classical channel. Still it is true
that every entangled state is useful for quantum information processing.
Masanes has shown that bipartite bound entangled states can enhance
the teleportation power of other states [60]: Every entangled state can
be employed so that it together with some other state will give a channel
with higher fidelity than would be possible only with this other state. (For
multipartite entangled states a similar result is true. Every entangled
state can increase the “quality” of the entanglement distilled from other
states [61].)

A related problem that has been studied is how one can transform en-
tangled states of composite systems using only local transformations and
classical communication (LOCC). Nielsen found a condition in terms of
majorization, for when a bipartite state |Ψ〉 can be transformed into an-
other state |Φ〉, by LOCC [63]. The proof relies on Schrödingers mixture
theorem. Let pi and qi be the eigenvalues of the reduced density matrices
of |Ψ〉 and |Φ〉. Then the transformation can be done if and only if the
vector ~p is majorized by the vector ~q , ~p ≺ ~q . Note that the direction here
is towards reduced states whose eigenvalues are “less even”; in particular
it is always possible to get pure reduced states, which means that all en-
tanglement is lost. The algorithm for how the transformations should be
done utilizes the fact that there exists a bistochastic matrix B, such that
~p = B~q (equation (2-17)). Another algorithm uses a special way to write
the bistochastic matrix as a convex combination of permutation matrices,
that is, of the extreme elements of Birkhoff’s polytope [54]. With this al-
gorithm only a single measurement on one of the subsystems, followed by
local unitary rotation, are needed to accomplish the transformation.

6.4 Maximally entangled bases

We just saw that majorization is useful within entanglement theory. Also
other concepts dealt with in this thesis are employed there: Hadamard
matrices and Latin squares are used in the most general construction
known for bases of maximally entangled states.

For two qubits a basis consisting only of maximally entangled states

‖ Distallable states are those from which it is possible to obtain entanglement in the
form of singlet states only by means of local operations and classical communication.
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is the so called Bell basis, containing the singlet state and three triplet
states:

|Φ+〉 = 1√
2
( |00〉+ |11〉 ) , |Φ−〉 = 1√

2
( |00〉 − |11〉 ) ,

|Ψ+〉 = 1√
2
( |01〉+ |10〉) , |Ψ−〉 = 1√

2
( |01〉 − |10〉 ) .

(6-8)

( |xy〉 stands for the state |x〉A ⊗ |y〉B .) In many quantum information
protocols measurements in this basis are essential, one example being the
measurement to be done for quantum teleportation.

Generally a bipartite state is maximally entangled if and only if it
is pure and if the reduced states are proportional to the identity. An
equivalent requirement is that the number of terms in the Schmidt de-
composition (equation (2-11)) equals the dimensions N of the subsystems
and that all coefficients have the same modulus, 1/

√
N . An orthonormal

basis of N2 such entangled states can be obtained from any set of N
Hadamard matrices H(β), β = 1, . . . , N (the same Hadamard may be
used several times), together with a Latin square L of size N × N [84].
The state vectors are

|Ψ(αβ)〉 =
N∑
k,l

H
(β)
αk δl,Lkβ

|l〉A⊗ |k〉B , α, β = 1, . . . , N . (6-9)

Every coefficient have the same modulus, since they are elements of Had-
mard matrices. Of all possible products |l〉A⊗ |k〉B exactly N appear in
each state, because of the Dirac delta δl,Lkβ

(for every column β in the
Latin square the number l occurs in exactly one row k). Orthogonal-
ity of the states follows from the properties of the Latin square and the
orthogonality of the rows in the Hadamard matrices.

This construction does not only give bases of maximally entangled
states. It has been established that there is a one-to-one correspondence
between all of the following (with certain rather general definitions) [86]:
orthonormal bases of maximally entangled vectors, quantum teleportation
schemes, dense coding schemes, orthonormal bases of unitary operators
and depolarizing channels. Thus, there is a connection between mathe-
matical concepts dealt with in this thesis and several of the most central
ideas in quantum information theory.



Chapter 7

Concluding remarks

In this thesis properties of quantum mechanical states have been studied,
along with mathematical concepts that finds their use within quantum
information theory. Geometrical descriptions have had a central place.

The set of quantum states as described with the Hilbert-Schmidt ge-
ometry has been the scene for an investigation of complementarity for
states in a finite dimensional Hilbert space: Mutually unbiased bases are
placed in orthogonal higher dimensional planes and form a polytope with
an interesting combinatorial property. The scene is the same when the
sets of separable states and entangled states have been illustrated for two
qubit systems, although we are restricted to three dimensional subspaces
to draw concrete illustrations.

Also the understanding of the possible ways a density matrix can be
mixed from pure states is enhanced by thinking of the set of density ma-
trices as a convex set in Hilbert-Schmidt space. The different ensembles
are like different “mass distributions” giving the same “center of mass”.
With this picture in mind we could see that some probability distribu-
tions must be excluded, although they are majorized by the eigenvalues
of the density matrix—a condition which for most cases is sufficient.

Majorization is directly linked to bistochastic matrices, and all bis-
tochastic matrices sit in another similar vector space. They form Birkhoff’s
polytope, which has been given a detailed description in the three and
four dimensional cases. As a subset we have all unistochastic matrices—
a set more difficult to describe geometrically, but we have made some
progress.

The point in the middle of Birkhoff’s polytope is the van der Waer-
den matrix. It is always unistochastic and the corresponding unitaries—
Hadamard matrices—lead us back to mutually unbiased bases. We have

75
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studied the set of Hadamard matrices in six dimensions since they actu-
ally give us bases unbiased with the standard basis. From these we could
find several inequivalent triplets of mutually unbiased bases. Whether
there are larger sets of mutually unbiased bases in six dimensions is still
an open question, in particular it is not known if there exists a complete
set of seven mutually unbiased bases.

A somewhat related topic is that about distinguishability of quantum
states—or rather, limited distinguishability owing to complementarity. I
have described how the Bures-Uhlmann geometry is obtained from the
concept of purifications and proven that the geodesics determine the op-
timal measurements, in a statistical sense—for distinguishing between
states.

Several questions are left open. The one I am most eager to learn
the answer to is the question about the existence of complete sets of
mutually unbiased bases. Whenever an analytical proof or disproof of
the existence of a complete set of mutually unbiased bases in dimension
six—and other non-prime power dimensions—will be found, I think this
will tell us interesting things about the set of quantum states. It might
help us answer questions like: What does this set of quantum states look
like? What is the difference between prime power and non prime power
dimensions? What does this mean for quantum information processing?
What is complementarity and how large uncertainties can there be about
measurement outcomes in different bases?

Although the underlying physical theory of quantum information sci-
ence is nothing but quantum mechanics, as it was formulated already
in the mid nineteen-twenties, there is still much more to be explored. I
believe that among the huge variety of phenomena arising from the few
basic laws of quantum mechanics, new applications of quantum proper-
ties within information theory will be discovered, and this will also give
new insights into the foundations of quantum mechanics.
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