
Lukas König September 28th

Electrodynamics HT22
Assignment 2

1 Jackson, Problem 5.1
Starting with the differential expression

dB =
𝜇0𝐼

4𝜋︸︷︷︸
C𝑘

dI′ × x − x′

|x − x′ |3
(1)

for the magnetic induction at the point P with coordinate x produced by an increment of current
𝐼dI′ at x′, show explicitly that for a closed loop carrying a current 𝐼 the magnetic induction at
𝑃 is

B =
𝜇0𝐼

4𝜋 ∇Ω (2)

where Ω is the solid angle subtended by the loop at the point 𝑃. This corresponds to a magnetic
scalar potential, Φ𝑀 = −𝜇0𝐼Ω/4𝜋. The sign convention for the solid angle is that Ω is positive
if the point 𝑃 views the "inner" side of the surface spanning the loop, that is, if a unit normal
n to the surface is defined by the direction of current flow via the right-hand rule, Ω is positive
if n points away from the point 𝑃, and negative otherwise. This is the same convention as in
Section 1.6 (Jackson) for the electric dipole layer.

Solution
Let us write the differential equation in terms of vector components

𝑑𝐵𝑖 = 𝑒𝑖 · dB =
𝜇0𝐼

4𝜋 𝑒𝑖 ·
(
𝑑I′ × x − x′

|x − x′ |3

)
(3)

and then integrate both sides

4𝜋
𝜇0𝐼

𝐵𝑖 =

∮
𝑒𝑖 ·

(
𝑑I′ × x − x′

|x − x′ |3

)
. (4)

To evaluate the integral we need to use

x − x′

|x − x′ |3
= ∇′

(
1

|x − x′ |

)
. (5)

The integral becomes

4𝜋
𝜇0𝐼

𝐵𝑖 =

∮
𝑒𝑖 ·

(
𝑑I′ × ∇′

(
1

|x − x′ |

))
(6)

=

∮ (
𝑑I′ ·

(
∇′

(
1

|x − x′ |

)
× 𝑒𝑖

))
(7)

by the triple product rule a · (b × c) = b · (c × a). Then we use Stokes’s theorem
∮
𝜕𝑆

A · 𝑑l =∫
𝑆
(∇ × A) · 𝑑a to convert this to a surface integral,

=

∫
𝑆

(
∇′ ×

(
∇′

(
1

|x − x′ |

)
× 𝑒𝑖

))
· 𝑑a′ (8)

Next we simplify the curl of a cross product using ∇′ × (a×b) = a (∇′ · b) −b (∇′ · a) + (b · ∇′) a−
(a · ∇′) b.

∇′ ×
(
∇′

(
1

|x − x′ |

)
× 𝑒𝑖

)
= ∇′

(
1

|x − x′ |

)
(∇′ · 𝑒𝑖) − 𝑒𝑖

(
∇′ · ∇′

(
1

|x − x′ |

))
(9)

+ (𝑒𝑖 · ∇′) ∇′
(

1
|x − x′ |

)
−
(
∇′

(
1

|x − x′ |

)
· ∇′

)
𝑒𝑖 (10)
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Two of the terms from row one are zero because ∇′ · 𝑒𝑖 = 0 and (v · ∇′)𝑒𝑖 = 0, to get

= −𝑒𝑖
(
∇′ · ∇′

(
1

|x − x′ |

))
+ (𝑒𝑖 · ∇′) ∇′

(
1

|x − x′ |

)
(11)

The first remaining term is zero because

−𝑒𝑖
(
∇′ · ∇′

(
1

|x − x′ |

))
= −𝑒𝑖

(
∇′2

(
1

|x − x′ |

))
= −𝑒𝑖 (−4𝜋𝛿 (x − x′))
= 4𝜋𝑒𝑖𝛿 (x − x′)

(12)

where we used that 1/|𝑥 | is the Green’s function of the Laplace operator. Let us assume that
x ≠ x′, i.e. that the point 𝑃 is not on where the current runs, then the 𝛿-term is zero.
We are left with

4𝜋
𝜇0𝐼

𝐵𝑖 =

∫
𝑆

(𝑒𝑖 · ∇′) ∇′
(

1
|x − x′ |

)
· 𝑑a′ (13)

=

∫
𝑆

(
𝜕

𝜕𝑥′
𝑖

∇′
(

1
|x − x′ |

))
· 𝑑a′ (14)

=

∫
𝑆

(
− 𝜕

𝜕𝑥𝑖
∇′

(
1

|x − x′ |

))
· 𝑑a′ (15)

= − 𝜕

𝜕𝑥𝑖

∫
𝑆

(
∇′

(
1

|x − x′ |

))
· 𝑑a′. (16)

On page 33 in Jackson we find

𝑑Ω′ =
cos(𝜃)𝑑𝑎′

|x − x′ |2
= −𝑑a′ · ∇′

(
1

|x − x′ |

)
(17)

The sign of 𝑑Ω depends on the direction of 𝑛 as stated in the beginning. Altogether

4𝜋
𝜇0𝐼

𝐵𝑖 = − 𝜕

𝜕𝑥𝑖

∫
𝑆

(
∇′

(
1

|x − x′ |

))
· 𝑑a′ (18)

= − 𝜕

𝜕𝑥𝑖

∫
𝑆

−𝑑Ω′ =
𝜕

𝜕𝑥𝑖
Ω(x) (19)

In vector form this is
B =

𝜇0𝐼

4𝜋 ∇Ω(x). (20)

2 Linking Number
Consider two curves in space, 𝐶 : 𝑥𝑖 (𝑠) and 𝐶′ : 𝑥′

𝑖
(𝑠′). They are circles topologically. Define

the linking number 𝑚 as follows: Deform one of the curves to a circle, and count the number of
times the second curve passes through the disk spanned by that circle, counting +1 if it passes
in the direction of the normal of the disk and −1 if it passes in the other direction. Use your
knowledge of magnetostatics to prove that

𝑚 =
1

4𝜋 𝜖𝑖 𝑗𝑘
∫
𝐶

∫
𝐶′

(
𝑥𝑖 − 𝑥′

𝑖

)
𝑑𝑙 𝑗𝑑𝑙𝑘

|𝑥 − 𝑥′ |3
. (21)
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Solution
Gaussian units with 𝑐 = 1 are used here.
To connect these loops to electrostatics / magnetostatics, simply imagine we run a current 𝐼

through the loop 𝐶′, meaning
𝑗𝑖 (𝑥′) 𝑑3𝑥′ = 𝐼𝑑ℓ′𝑖 . (22)

Then we can use Ampère’s law, or Stokes’s theorem, which tells us that by integrating B along
a closed curve 𝐶, it equals the integral over the enclosed region of a current:∫

𝜕𝑆

𝑑ℓ · B = 4𝜋
∫
𝑆

𝑑S · j (23)

But of course we know the total current through the area: It’s current 𝐼 times the number the
wire 𝐶′ passes through, 𝐼 · 𝑚. So

4𝜋𝐼𝑚 =

∫
𝐶

𝑑ℓ𝑖𝐵𝑖 (24)

Now let’s use what we were given in the first exercise, to calculate 𝐵:

B =

∫
𝐶′

𝐼
dℓ × (x − x′)
|x − x′ |3

. (25)

Integrate this over 𝐶, and voilà, we’re done:

𝑚 =
1

4𝜋 𝜖𝑖 𝑗𝑘
∫
𝐶

𝑑ℓ 𝑗

∫
𝐶′

𝑑ℓ′𝑘

(
𝑥𝑖 − 𝑥′

𝑖

)
|x − x′ |3

(26)

Note that the previous exercise tells us that this is related to the solid angle. We can make this
intuitive, by realizing that, whenever one loop winds through another, that other loop spans
a solid angle of 4𝜋. The visualization of this is here: https://www.wolframcloud.com/obj/
d2ecc824-73b9-49fd-8639-8e53730ec324. I don’t know how long that stays online.

3 Aharonov-Bohm
Define a vector potential on a region of space strictly outside the 𝑧-axis, such that A(x) is
independent of 𝑧, gives a vanishing magnetic field outside the 𝑧-axis, and cannot be gauge
transformed to zero. Discuss the last point in some detail, and give a physical interpretation. 1

Solution
We want a vector field defined on 𝑉 = {(𝑥, 𝑦, 𝑧) | (𝑥, 𝑦, 𝑧) ≠ (0, 0, 𝑧)} that fulfills

A(x) = A(𝑥, 𝑦)
B(x) = ∇ × A(x) = 0
A′ (x) = A(x) + ∇𝜓(x) → A′ ≠ 0

(27)

From the first two conditions we obtain

B(x) = ∇ × A(x) =
(
𝜕𝐴𝑧

𝜕𝑦
−
𝜕𝐴𝑦

𝜕𝑧

)
𝑥 +

(
𝜕𝐴𝑥

𝜕𝑧
− 𝜕𝐴𝑧

𝜕𝑥

)
𝑦 +

(
𝜕𝐴𝑦

𝜕𝑥
− 𝜕𝐴𝑥

𝜕𝑦

)
�̂�

A(x) = A(𝑥, 𝑦) =
(
𝐴𝑥 (𝑥, 𝑦), 𝐴𝑦 (𝑥, 𝑦), 𝐴𝑧 (𝑥, 𝑦)

)
→ 𝜕𝐴𝑧 (𝑥, 𝑦)

𝜕𝑦
= 0, 𝜕𝐴𝑧 (𝑥, 𝑦)

𝜕𝑥
= 0

B(x) = 0 →
𝜕𝐴𝑦 (𝑥, 𝑦)

𝜕𝑥
=

𝜕𝐴𝑥 (𝑥, 𝑦)
𝜕𝑦

.

(28)

1Previous tutor Nadia recommends: When you are done, consult TT Wu and CN Yang, Concept of non-
integrable phase factors and global formulation of gauge fields, Phys. Rev. D12 (1975) 3845 .
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Therefore we know 𝐴𝑧 must be a constant, 𝐴𝑧 (𝑥, 𝑦) = 𝐶𝑧.
Poincaré’s lemma says that a covariant vector field 𝐴𝛼 (𝑥) can be written as the gradient of
a scalar if and only if its field strength 𝐹𝛼𝛽 is zero. This lemma holds for simply connected
spaces, i.e spaces where a closed curve can be deformed to a point without leaving the space.
For example, R3 is simply connected but our space 𝑉 , which excludes the 𝑧-axis is not. In 𝑉 a
closed loop around the 𝑧-axis cannot be deformed to a point without leaving the space.
For a vector potential that points around the 𝑧-axis the field strength can be zero while the
vector potential itself cannot be set to zero via a gauge transformation. Poincaré’s lemma does
not hold in this case.
Let us try a vector potential that points around the 𝑧-axis. In cylindrical polar coordinates we
can take

A =
1
𝜌
𝜙 (29)

which in regular Cartesian coordinates is

A =

(
−𝑦

𝑥2 + 𝑦2 ,
𝑥

𝑥2 + 𝑦2 , 0
)
. (30)

This has ∇ × A = 0. From the cylindrical coordinate form we can see that it looks to have the
form of a gradient,

A =
1
𝜌
𝜙

∇ 𝑓 =
𝜕 𝑓

𝜕𝜌
𝜌 + 1

𝜌

𝜕 𝑓

𝜕𝜙
𝜙 + 𝜕 𝑓

𝜕𝑧
�̂�

→ A =
1
𝜌
𝜙 =

1
𝜌

𝜕 𝑓

𝜕𝜙
𝜙

→ 𝜕 𝑓

𝜕𝜙
= 1 → 𝑓 (𝜙) = 𝜙 + 𝑐.

(31)

𝑓 (𝑥, 𝑦) is not well defined on the entire space, since the 𝑧-axis is excluded. The problem is that
𝑓 (𝜙) = 𝑓 (𝑥, 𝑦) is not single valued since at, for example, (𝑥 > 0, 𝑦 = 0) we have 𝑓 (𝜙) = 0 but if
we go one closed curve around to (𝑥 > 0, 𝑦 = 0) then 𝑓 (𝜙) = 2𝜋. Therefore 𝑓 is not single valued
and does not have a well defined gradient.
This is for the global case. If we consider a connected region, where all closed curves can be
deformed to points without leaving the space, in the space then locally the potential can be
gauge transformed to zero. But not globally.

A Complementary Notes on Aharonov-Bohm
The Aharonov-Bohm effect is a quantum effect on a charged particle. Say we have a cylinder
with a non-zero magnetic field inside but a zero magnetic field outside. We can still have a non-
zero vector potential outside, just as we calculated above. The Aharonov-Bohm effect shows
that, when considering quantum systems, not only the EM-field strength is enough to describe
electromagnetism, also the phase factor

exp
(
𝑖𝑒

ℏ𝑐

∮
𝐴𝜇𝑑𝑥

𝜇

)
(32)

is needed. The phase factor depends on the vector potential, not the magnetic field.
Since this is a quantum effect we need a quantum system to see it. When a charged particle
(wave function) travels in a region with zero electromagnetic field but non-zero vector potential
the particle is affected by the vector potential and it picks up the phase factor. However, the
phase factor does not affect how we observe the wave function, since for this only |𝜓 | matters.
To see the effect we need a quantum phenomenon, such as interference of wave functions.
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The Aharonov-Bohm experiment is done by sending a beam of electrons (charged particles)
towards a double slit experiment but with a cylinder near the double-slit screen. The cylinder
has a non-zero magnetic field inside it, however, outside where the particles travel the field is
zero and the potential non-zero. Say we send two of the particles and they take "different paths"
and pick up different phase factors. When they interact and form an interference pattern after
passing the double-slits we can measure the phase shift (difference between the phase factors)
that they picked up.
The interference fringes depend on the phase factor

exp
(
𝑖𝑒

ℏ𝑐

∮
𝐴𝜇𝑑𝑥

𝜇

)
= exp

(
− 𝑖𝑒

ℏ𝑐
Ω

)
(33)

where Ω is the flux in the cylinder. Two different fluxes can give the same interference pattern
if

Ω𝑎 −Ω𝑏 =
ℎ𝑐

𝑒
𝑛 (34)

where 𝑛 is an integer.
Say we want to find a gauge transformation from 𝑎 to 𝑏, i.e. 𝜓𝑏 = 𝑒𝑖𝛼𝜓𝑎. In terms of the vector
potential that is (

𝐴𝜇

)
𝑏
=
(
𝐴𝜇

)
𝑎
+ ℏ𝑐

𝑒

𝜕𝛼

𝜕𝑥𝜇
. (35)

We can write
Δ𝛼 =

𝑒

ℏ𝑐

∮ [(
𝐴𝜇

)
𝑏
−
(
𝐴𝜇

)
𝑎

]
𝑑𝑥𝜇 =

𝑒

ℏ𝑐
(Ω𝑏 −Ω𝑎) . (36)

If Ω𝑎 − Ω𝑏 = ℎ𝑐
𝑒
𝑛, holds then Δ𝛼 = 2𝜋𝑛, where 𝑛 is an integer, and the gauge transformation

𝑆 = 𝑒𝑖𝛼 is single valued, which means that 𝑎 and 𝑏 can be gauge-transformed into each other.
And the effect of the gauge transform cannot be physically measured since the interference
pattern is the same. This is as it should be since the gauge choice should not affect the physics,
neither classical nor quantum.

B Where does the first formula come from?
How do we get to the formula in Equation 1? Start from Ampère’s law,

∇ × B = 4𝜋J, (37)

and apply another curl to it. The curl of a curl simply is

∇∇ · B − ΔB (38)

a simple formula, which is further simplified since B is divergence free. Hence,

ΔB = −4𝜋∇ × J. (39)

Now we re-write J as another Laplacian:

Δ𝐵𝑖 (x) = −4𝜋∇ × j(x) (40a)

= −4𝜋∇ ×

∫
𝑑3𝑥′j (x′) 𝛿 (x − x′) (40b)

= ∇ ×

∫
𝑑3𝑥′j (x′) (−4𝜋𝛿 (x − x′)) (40c)

= ∇ ×

∫
𝑑3𝑥′j (x′) Δ′

(
1

|x − x′ |

)
(40d)

= ∇ ×

∫
𝑑3𝑥′j (x′) Δ

(
1

|x − x′ |

)
(40e)

= Δ

(
∇ ×

∫
𝑑3𝑥′j (x′) 1

|x − x′ |

)
(40f)
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which means that
𝐵𝑖 (x) = 𝜖𝑖 𝑗𝑘𝜕 𝑗

∫
𝑑3𝑥′

𝑗𝑘 (x′)
|x − x′ | (41)

since solutions to the Laplace equation are unique. Finally, evaluate the curl and find

𝐵𝑖 (x) = 𝜖𝑖 𝑗𝑘𝜕 𝑗

∫
𝑑3𝑥′

𝑗𝑘 (x′)
|x − x′ | = 𝜖𝑖 𝑗𝑘

∫
𝑑3𝑥′

𝑗𝑘 (x′)
(
−
(
𝑥 𝑗 − 𝑥′

𝑗

))
|x − x′ |3

(42a)

= −𝜖𝑖 𝑗𝑘
∫

𝑑3𝑥′
𝑗𝑘 (x′)

(
𝑥 𝑗 − 𝑥′

𝑗

)
|x − x′ |3

= −𝜖𝑖 𝑗𝑘
∫

𝑑3𝑥′
𝑗𝑘 (x′)

(
𝑥 𝑗 − 𝑥′

𝑗

)
|x − x′ |3

(42b)

= 𝜖 𝑗𝑖𝑘

∫
𝑑3𝑥′

𝑗𝑘 (x′)
(
𝑥 𝑗 − 𝑥′

𝑗

)
|x − x′ |3

(42c)

where we used

𝜕 𝑗

1
|x − x′ | =

−
(
𝑥 𝑗 − 𝑥′

𝑗

)
|x − x′ |3

(43)

and 𝜖𝑖 𝑗𝑘 = −𝜖 𝑗𝑖𝑘 . Altogether,

B(x) =
∫

𝑑3𝑥′
j (x′) × (x − x′)

|x − x′ |3
. (44)

Next note that the space integral over the current simplifies, because the current here lives on
a wire, so

𝑗𝑖 (𝑥′) 𝑑3𝑥′ = 𝐼𝑑𝑙′𝑖 (45)

to get
B(x) = 𝐼

∫
𝐶′

𝑑l × (x − x′)
|x − x′ |3

(46)
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