
Lukas König 14. September

Electrodynamics HT22
Assignment 1

1 Polynomial Orthogonalisation
Compute the first five Legendre polynomials by applying Gram-Schmidt orthogonalization to
the polynomials 1, 𝑥, 𝑥2, 𝑥3, 𝑥4.
We first have to understand that the polynomials are a vector space. Mathematically this is
straightforward;

R[𝑥] B span {𝑥𝑛 | 𝑛 ∈ N0} , (1)

and it is clear that multiplication by R-numbers, and addition of vectors exists and works as
expected. To make this more intuitive, you may think of 𝑥𝑛 as a meaningless symbol, like the
usual basis vectors 𝑒𝑛, or write the coefficients in a vector, i.e.

(𝑐0, 𝑐1, 𝑐2, . . .)𝑇 ↔ 𝑐0 + 𝑐1𝑥
1 + 𝑐2𝑥

2 + . . . . (2)

We have defined this vector space through a basis that is natural, 𝑥𝑛, but inconvenient. As you
have seen in Ingemar’s notes, we care about the integral∫ 1

−1
d𝑥 𝑃(𝑥)𝑄(𝑥) C ⟨𝑃,𝑄⟩ (3)

and our basis elements all interfere with one another if we plug a pair of them in here.
We know how to solve this problem as soon as we realize that ⟨., .⟩ is an inner product on this
space (discuss in ex.class if unclear). On a vector space with inner product, we can simply follow
the Gram-Schmidt procedure to obtain an orthonormal basis. (Countably infinite dimensions
don’t really make this harder.)
To summarize, we are trying to find a set of polynomials {𝑃𝑛}, such that

⟨𝑃𝑚, 𝑃𝑛⟩ = 𝑐𝑛𝛿𝑚,𝑛 (4)

Note that we are not aiming for an orthonormal basis, since historically, the basis elements are
chosen such that 𝑃𝑛 (1) = 1, or equivalently the constants above are 𝑐𝑛 = 2/(2𝑛 + 1).
We build this basis up one dimension at a time. Start with the vector

𝑃0 = (𝑎0, 0, 0, . . .)𝑇 (5)

in the notation of Equation 2. We see that 𝑎0 = 1 is the right normalisation.
In the next step we add in the 𝑥1-subspace. Define a basis vector

𝑃1 = (𝑏0, 𝑏1, 0, . . .)
(
↔ 𝑏0 + 𝑏1𝑥

)
(6)

and find the coefficients by requiring that it must be orthogonal to 𝑃0:

0 !
= ⟨𝑃0, 𝑃1⟩ =

∫ 1

−1
d𝑥 (𝑏0 + 𝑏1𝑥) = 2𝑏0 (7)

and we see 𝑏0 = 0, and 𝑃1 = (0, 𝑏1, 0, . . .)𝑇 . We fix the remaining coefficient using the normali-
sation condition, 1 = 𝑃1 (1) = 𝑏1, such that

𝑃1 = (0, 1, 0, . . .). (8)

Let’s step into the third dimension, where interesting stuff starts to happen, finally. Define

𝑃2 B (𝑐0, 𝑐1, 𝑐2, 0, . . .)
(
↔ 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2
)
, (9)
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and require orthogonality to both 𝑃0 and 𝑃1:

0 !
= ⟨𝑃0, 𝑃2⟩ =

∫ 1

−1
d𝑥 1 ·

(
𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2
)
= 2𝑐0 + 2

3𝑐2, (10a)

0 !
= ⟨𝑃1, 𝑃2⟩ =

∫ 1

−1
d𝑥 𝑥 ·

(
𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2
)
=

2
3𝑐1, (10b)

and we can see the solution
𝑃2 = (−1/2, 0, 3/2, 0, . . .)𝑇 , (11)

where we also again fixed the normalisation 𝑃2 (1) = 1.
Let’s do the same thing in four dimensions. To be a bit smarter this time, we name the constants
differently:

𝑃2 B 𝐷 · (𝑑0, 𝑑1, 𝑑2, 1, 0, . . .)
(
↔ 𝐷 · (𝑑0 + 𝑑1𝑥 + 𝑑2𝑥

2 + 𝑑3𝑥
3)

)
, (12)

0 !
= ⟨𝑃0, 𝑃3⟩ =

∫ 1

−1
d𝑥 1 ·

(
𝑑0 + 𝑑1𝑥 + 𝑑2𝑥

2 + 1 · 𝑥3
)
= 2𝑑0 + 2

3𝑑2, (13a)

0 !
= ⟨𝑃1, 𝑃3⟩ =

∫ 1

−1
d𝑥 𝑥 ·

(
𝑑0 + 𝑑1𝑥 + 𝑑2𝑥

2 + 1 · 𝑥3
)
=

2
3𝑑1 + 2

5 (13b)

0 !
= ⟨𝑃2, 𝑃3⟩ =

∫ 1

−1
d𝑥

(
−1/2 + 3/2𝑥2

)
·
(
𝑑0 + 𝑑1𝑥 + 𝑑2𝑥

2 + 1 · 𝑥3
)
= 𝑑2 · (−1/3 + 3/5), (13c)

and so
𝑃3 = 𝐷 (0,−3/5, 0, 1). (14)

For the normalisation we see that

1 !
= 𝑃3 (1) = 𝐷 (−3/5 + 1), (15)

and so
𝑃3 = (0,−3/2, 0, 5/2, . . .). (16)

The same computation goes through for 𝑃4, just with more constants to keep track of. The final
solution is

𝑃4 = 1/8(3, 0,−30, 0, 35, 0, . . .). (17)

At the end of exercise 1, I did a recap of why we like Legendre polynomials:

1. Green’s functions: Tools to solve linear ODEs for general inhomogeneity. (More mathe-
matically, they are the inverse to the differential operator. That’s also a good intuition to
have.)

2. For our equation the relevant Green’s function is |𝑥 |−1.

3. In practice it occurs as |𝑥 − 𝑥′ |−1, which you can expand as a Taylor series. This makes
particular sense if you care about the field far away from a given charge combination. It
turns out that a given order of the expansion in the distance, |𝑥′ |/|𝑥 | in that series comes
with a specific angle dependence given by a Legendre polynomial.

This is mainly me re-telling Ingemar’s notes and Jackson, so look there for more details.
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2 Generating function
Show that you recover the first five Legendre polynomials by expanding the generating function

𝑔(𝑡, 𝑥) =
(
1 − 2𝑥𝑡 + 𝑡2

)−1/2
(18)

to fourth order in 𝑡.
The hands-on way of doing this is through Taylor expansion of 𝑔 around 𝑡 = 0,

𝑔(𝑡, 𝑥) =
∞∑︁
𝑛=0

1
𝑛!

𝜕𝑛𝑔(𝑡, 𝑥)
𝜕𝑡𝑛

���
𝑡=0

𝑡𝑛 =

∞∑︁
𝑛=0

𝑃𝑛 (𝑥)𝑡𝑛 (19)

which, if you compare the terms in the sums, leads to an explicit form of 𝑃𝑛 in terms of the 𝑛-th
partial derivative of 𝑔. To low orders we can do this directly,

𝑔(𝑡, 𝑥) =
(
1 − 2𝑥𝑡 + 𝑡2

)−1/2
(20)

= 𝑔(𝑥, 0) + 𝜕𝑔

𝜕𝑡
(𝑥, 0)𝑡 + O(𝑡2) (21)

= 1 + 𝑥𝑡 + O(𝑡2) (22)

and we can identify 𝑃0 (𝑥) = 1 and 𝑃1 (𝑥) = 𝑥.
We can go on like this indefinitely but higher derivatives are messy, so we instead use a recursion
relation. This lets us avoid all mention of 𝑡. Differentiate Equation 18 with respect to 𝑡 to find

𝜕

𝜕𝑡

(
1 − 2𝑥𝑡 + 𝑡2

)−1/2
=

𝜕

𝜕𝑡

∞∑︁
𝑛=0

𝑃𝑛 (𝑥)𝑡𝑛 (23a)

=⇒ 𝑥 − 𝑡(
1 − 2𝑥𝑡 + 𝑡2

)3/2 =

∞∑︁
𝑛=0

𝑛𝑃𝑛 (𝑥)𝑡𝑛−1 (23b)

=⇒ 𝑥 − 𝑡(
1 − 2𝑥𝑡 + 𝑡2

)1/2 =

(
1 − 2𝑥𝑡 + 𝑡2

) ∞∑︁
𝑛=0

𝑛𝑃𝑛 (𝑥)𝑡𝑛−1 (23c)

Now we use Equation 18 once again to replace the fraction on the l.h.s. with the series containing
Legendre polynomials, and find

=⇒ (𝑥 − 𝑡)
∞∑︁
𝑛=0

𝑃𝑛 (𝑥)𝑡𝑛 =

(
1 − 2𝑥𝑡 + 𝑡2

) ∞∑︁
𝑛=0

𝑛𝑃𝑛 (𝑥)𝑡𝑛−1 (23d)

=⇒
∞∑︁
𝑛=0

𝑃𝑛 (𝑥)
(
𝑥𝑡𝑛 − 𝑡𝑛+1

)
=

∞∑︁
𝑛=1

𝑛𝑃𝑛 (𝑥)
(
𝑡𝑛−1 − 2𝑥𝑡𝑛 + 𝑡𝑛+1

)
. (23e)

Now we only need to compare the coefficients of 𝑡𝑚 on the two sides. We find

𝑡0 : 𝑃0𝑥 = 𝑃1 (24)
𝑡1 : −𝑃0 + 𝑃1𝑥 = −2𝑃1𝑥 + 2𝑃2 (25)
𝑡2 : −𝑃1 + 𝑃2𝑥 = 𝑃1 − 4𝑃2𝑥 + 3𝑃3 (26)
...

𝑡𝑚 : −𝑃𝑚−1 + 𝑃𝑚𝑥 = (𝑚 + 1)𝑃𝑚+1 − 2𝑥𝑚𝑃𝑚 + (𝑚 − 1)𝑃𝑚−1 (27)

and the last expression is the recursion relation. Rewriting it slightly, we get

(𝑚 + 1)𝑃𝑚+1 (𝑥) = (1 + 2𝑚)𝑥𝑃𝑚 (𝑥) − 𝑚𝑃𝑚−1 (𝑥). (28)
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Inserting our expressions for 𝑃0 and 𝑃1 we find

𝑃2 =
1
2 (3𝑥𝑃1 (𝑥) − 𝑃0 (𝑥)) =

1
2

(
3𝑥2 − 1

)
(29)

𝑃3 =
1
2

(
5𝑥3 − 3𝑥

)
. (30)

We find, just like we did in the previous exercise, the first four Legendre polynomials,

𝑃0 = 1 (31)
𝑃1 = 𝑥 (32)

𝑃2 =
1
2

(
3𝑥2 − 1

)
(33)

𝑃3 =
1
2

(
5𝑥3 − 3𝑥

)
(34)

and we can generate higher-order Legendre polynomials from lower-order ones. Note that we
know the relation between derivatives of 𝑔 and 𝑃𝑛, hence this is also a recursion for these
derivatives.
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3 Spherical Conductor in Constant Electric Field
Find the electric field outside a spherical conductor placed in a constant electric field in two
ways: using the method of images, and using an expansion in spherical harmonics.

Figure 1: A conducting sphere in a constant electric field

Image Charges Let the constant electric field be in the positive 𝑧-direction, ®𝐸 = 𝐸0 �̂�. We can construct this
field by placing two opposite charges +𝑄 and −𝑄 on the 𝑧-axis at distances 𝑅 from the origin
and letting 𝑅 → ∞. Next, we center the conducting sphere, with radius 𝑎, at the origin. At
the surface of the sphere the potential is zero, since it is a conducting sphere, and inside it
the electric field is zero. To make sure this condition holds we introduce two mirror charges
𝑞1 and 𝑞2 inside the sphere at positions 𝑟1 and 𝑟2. See Fig. 2 . The strength of the electric
field is in terms of 𝑄

Figure 2: The mirror charges 𝑞1 and 𝑞2 are added to the inside of the sphere. The charges
+𝑄,−𝑄 are there to give the electric field 𝐸 = 𝐸0 �̂�

𝐸0 =
1

4𝜋𝜖0

2𝑄
𝑅2 . (35)

We want to find 𝑞1, 𝑞2, 𝑟1, 𝑟2 so that Φ(𝑟 = 𝑎) = 0. Due to the symmetry of the system we
can assume that 𝑞1 and 𝑞2 are of the same strength but opposite charge, 𝑞1 = 𝑞, 𝑞2 = −𝑞, and
that they are symmetrically placed 𝑟1 = −𝑟2. We also note that in spherical coordinates the
system has azimuthal symmetry, i.e. it is independent of the angle 𝜙.
The potential of a point charge 𝑞 at position 𝑥0 is

Φ(𝑥) = 1
4𝜋𝜖0

𝑞

|𝑥 − 𝑥0 |
. (36)

The potential of the total system is therefore

Φ(𝑥) = 1
4𝜋𝜖0

(
− 𝑄

|𝑟𝑟 − 𝑅�̂� | +
𝑄

|𝑟𝑟 + 𝑅�̂� | +
𝑞

|𝑟𝑟 − 𝑟1 �̂� |
− 𝑞

|𝑟𝑟 + 𝑟1 �̂� |

)
, (37)

where 𝑥 = 𝑟𝑟, and 𝑟 is the unit vector in the radial direction, with 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2.
We know from Ingemar’s notes how we need to place the mirror charges in order to fix a
potential on the sphere,

𝑄

𝑅
=

𝑞

𝑎
,
𝑟1
𝑎

=
𝑎

𝑅
. (38)

Now we can write Φ(𝑥) in spherical coordinates. Next we cheat a bit: Instead of using the
two charges ±𝑄 to write the constant electric field we can use

𝐸 (𝑥) = −∇Φ(𝑥)
𝐸 ( �̄�) = 𝐸0 �̂� ⇒ Φ(𝑥) = −𝐸0𝑧 = −𝐸0𝑟 cos(𝜃).

(39)
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This works because we chose the charges such that later when we push them far away, 𝑅 → ∞,
they will give the constant background field. We don’t really evaluate the limit yet for the
mirror charges, that’s why it’s a cheat. We have

Φ(𝑥) = −𝐸0𝑟 cos(𝜃) + 1
4𝜋𝜖0

𝑄𝑎

𝑅

©­­«
1���𝑟𝑟 − 𝑎2

𝑅
�̂�

��� − 1���𝑟𝑟 + 𝑎2

𝑅
�̂�

��� ª®®¬
= −𝐸0𝑟 cos(𝜃) + 1

4𝜋𝜖0

𝑄𝑎

𝑅

©­­«
1√︃

𝑟2 − 2𝑎2

𝑅
𝑟 cos(𝜃) + 𝑎4

𝑅2

− 1√︃
𝑟2 + 2𝑎2

𝑅
𝑟 cos(𝜃) + 𝑎4

𝑅2

ª®®¬ .
(40)

To get the final expression we let 𝑅 → ∞,

lim
𝑅→∞

Φ(𝑥) ≈ −𝐸0𝑟 cos(𝜃) + 1
4𝜋𝜖0

𝑄𝑎

𝑅𝑟

(√︂
1 + 2𝑎2

𝑅𝑟
cos(𝜃) −

√︂
1 − 2𝑎2

𝑅𝑟
cos(𝜃)

)
= −𝐸0𝑟 cos(𝜃) + 1

4𝜋𝜖0

𝑄𝑎

(𝑅𝑟)2 2𝑎2 cos(𝜃)

= −𝐸0𝑟 cos(𝜃) + 𝐸0𝑎
3

𝑟2 cos(𝜃).

(41)

In the first row we removed 𝑅2 terms in the parenthesis, in the second row we used a Taylor
expansion and in the final row we wrote 𝑄 in terms of 𝐸0

𝑄 =
4𝜋𝜖0𝑅

2

2 . (42)

The final step is to calculate the electric field, for 𝑟 > 𝑎,

𝐸 (𝑟, 𝜃) = −∇Φ(𝑟, 𝜃) = −∇
(
−𝐸0𝑟 cos(𝜃) + 𝐸0𝑎

3

𝑟2 cos(𝜃)
)

= −
(
𝜕

𝜕𝑟
𝑟 + 1

𝑟

𝜕

𝜕𝜃
𝜃 + 1

𝑟 sin(𝜃)
𝜕

𝜕𝜙
𝜙

) (
−𝐸0𝑟 cos(𝜃) + 𝐸0𝑎

3

𝑟2 cos(𝜃)
)

= 𝑟𝐸0 cos(𝜃)
(
1 + 2𝑎3

𝑟3

)
− 𝜃𝐸0 sin(𝜃)

(
1 − 𝑎3

𝑟3

) (43)

Spherical harmonics To get the same solution via a direct spherical harmonics calculation, we place the conducting
sphere at the origin and once again have the constant electric field in the 𝑧-direction, 𝐸 (𝑥) =
𝐸0 �̂�. We can use the general axisymmetric solution (see Jackson Eq. (3.33)) of the Laplace
equation, ∇2Φ = 0, which is

Φ(𝑟, 𝜃) =
∞∑︁
𝑙=0

(
𝐴𝑙𝑟

𝑙 + 𝐵𝑙

𝑟 𝑙+1

)
𝑃𝑙 (cos(𝜃)), (44)

to find the potential. The conditions we want Φ(𝑟, 𝜃) to obey are: Φ(𝑟 = 𝑎, 𝜃) = 0 and
Φ(𝑟 → ∞) = −𝐸0𝑟 cos(𝜃). The second condition is that infinitely far away from the sphere
the only potential is from the electric field. Using the first condition we find

Φ(𝑎, 𝜃) =
∞∑︁
𝑙=0

(
𝐴𝑙𝑎

𝑙 + 𝐵𝑙

𝑎𝑙+1

)
𝑃𝑙 (cos(𝜃)) = 0

→ 𝐴𝑙𝑎
𝑙 + 𝐵𝑙

𝑎𝑙+1 = 0 → 𝐵𝑙 = −𝐴𝑙𝑎
2𝑙+1

(45)

The potential is now

Φ(𝑟, 𝜃) =
∞∑︁
𝑙=0

𝐴𝑙𝑟
𝑙

(
1 −

( 𝑎
𝑟

)2𝑙+1
)
𝑃𝑙 (cos(𝜃)). (46)
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Next, we use the second condition

Φ(𝑟, 𝜃) = −𝐸0𝑟 cos(𝜃) + 𝑜(1) (47)

𝐴0
(
1 − 𝑎

𝑟

)
+ 𝐴1𝑟

(
1 −

( 𝑎
𝑟

)3
)

cos(𝜃) (48)

+𝐴2𝑟
2
(
1 −

( 𝑎
𝑟

)5
)
𝑃2 (cos(𝜃)) + · · · = −𝐸0𝑟 cos(𝜃) + 𝑜(1).

This gives 𝐴0 = 0, 𝐴1 = −𝐸0, 𝐴𝑙 = 0 for 𝑙 ≥ 2, since 𝑃𝑙 (𝑥) is proportional to 𝑥𝑙. The final
expression for the potential is therefore

Φ(𝑟, 𝜃) = 𝐸0𝑎
3

𝑟2 cos(𝜃) − 𝐸0𝑟 cos(𝜃), (49)

which is the same as we obtained using the method of images, therefore we will have the same
expression for the electric field.

4 Multipoles
Compute the first non-vanishing multipole moments for i) two charges 𝑞 at (±𝑎, 0, 0), charge −2𝑞
at (0, 0, 𝑏) ii) four charges 𝑞 at (±𝑎,±𝑎, 0), two charges −2𝑞 at (0, 0,±𝑏). Check your results.
The expansion of the potential in terms of the multipole moments is

Φ(𝑥) = 1
4𝜋𝜖0

[
𝑞

𝑟
+ ®𝑝 · ®𝑥

𝑟3 + 1
2

∑︁
𝑖, 𝑗

𝑄𝑖 𝑗

𝑥𝑖𝑥 𝑗

𝑟5 + . . .

]
(50)

=
1
𝜖0

∞∑︁
𝑙=0

(
𝑙∑︁

𝑚=−𝑙

𝑞𝑙𝑚

2𝑙 + 1
𝑌𝑙𝑚 (𝜃, 𝜙)

𝑟 𝑙+1

)
. (51)

Here, the last row is the general formulation in terms of spherical harmonics 𝑌𝑙𝑚. Since the
charges we are given here are not spherically symmetric, we will mostly use the Cartesian
formulation in terms of 𝑞, ®𝑝, 𝑄𝑖, 𝑗 . These multipole moments are given by

𝑞 =

∫
d3𝑥 𝜌(®𝑥) (52a)

®𝑝 =

∫
d3𝑥 𝜌(®𝑥)®𝑥 (52b)

𝑄𝑖, 𝑗 =

∫
d3𝑥 𝜌(®𝑥)

(
3𝑥𝑖𝑥 𝑗 − 𝑟2𝛿𝑖 𝑗

)
(52c)

These integrals simplify further for a charge distribution that consists of a collection of discrete
point charges, 𝜌(𝑥) = ∑𝑁

𝑘=1 𝑞𝑘𝛿 (𝑥 − 𝑥𝑘):

𝑞 =
∑︁
𝑘

𝑞𝑘 (53a)

𝑝 =
∑︁
𝑘

𝑞𝑘𝑥𝑘 (53b)

𝑄𝑖, 𝑗 =
∑︁
𝑘

𝑞𝑘

(
3 (𝑥𝑘)𝑖 (𝑥𝑘) 𝑗 − 𝑟2𝛿𝑖 𝑗

)
, (53c)

where 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2 and 𝑖, 𝑗 = 1, 2, 3 (corresponding to 𝑥, 𝑦, 𝑥).
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Figure 3: The three point charges considered in exercise 4 part i: Two charges 𝑞 at (±𝑎, 0, 0)
and one charge −2𝑞 at (0, 0, 𝑏).

a) I show the first setup in Figure 3. The monopole moment is

𝑞 =
∑︁
𝑖

𝑞𝑖 = 𝑞 + 𝑞 − 2𝑞 = 0. (54)

The dipole moment is

𝑝 =
∑︁
𝑖

𝑞𝑖𝑥𝑖 = 𝑞(𝑎, 0, 0) + 𝑞(−𝑎, 0, 0) − 2𝑞(0, 0, 𝑏) = (0, 0,−2𝑞𝑏). (55)

Therefore, the dipole moment is the first non-vanishing multipole moment. To check if this is
correct we insert the 𝑝 into the potential and then check if the Laplace equation ∇2Φ(𝑥) = 0
holds. The potential is to its lowest order

Φ(𝑥) = 1
4𝜋𝜖0

𝑝 · 𝑥
𝑟3 =

−2𝑞𝑏
4𝜋𝜖0

𝑧

𝑟3 . (56)

Inserting this into the Laplace equation we find

∇2Φ(𝑥) = ∇2
(
−2𝑞𝑏
4𝜋𝜖0

𝑧

𝑟3

)
=
−2𝑞𝑏
4𝜋𝜖0

(
𝜕2

𝜕2
𝑥

+ 𝜕2

𝜕2
𝑦

+ 𝜕2

𝜕2
𝑧

) ( 𝑧

𝑟3

)
= · · · = 0. (57)

We also know that since the dipole moment was not zero the dipole would turn in the presence
of a uniform electric field. If we consider the charge distribution it is clear that it has a positive
and a negative side, which means it would turn in an electric field to be parallel to that field.

b) See Figure 4 for the setup.
The monopole moment is

𝑞 =
∑︁
𝑖

𝑞𝑖 = 4𝑞 + 2(−2𝑞) = 0. (58)

The dipole moment is

𝑝 = 𝑞(𝑎, 𝑎, 0) + 𝑞(𝑎,−𝑎, 0) + 𝑞(−𝑎, 𝑎, 0) + 𝑞(−𝑎,−𝑎, 0) − 2𝑞(0, 0, 𝑏) − 2𝑞(0, 0,−𝑏)
= (0, 0, 0).

(59)
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Figure 4: The six point charges in the second part of exercise 4. Four charges q at (±𝑎,±𝑎, 0),
two charges −2𝑞 at (0, 0,±𝑏).

The quadrupole moment tensor is computed one element at a time.

𝑄𝑖 𝑗 =
∑︁
𝑘

𝑞𝑘

(
3 (𝑥𝑘)𝑖 (𝑥𝑘) 𝑗 − 𝑟2𝛿𝑖 𝑗

)
𝑄12 =

∑︁
𝑘

𝑞𝑘3 (𝑥1)𝑖 (𝑥2) = 3
(
𝑞𝑎2 + 𝑞

(
−𝑎2

)
+ 𝑞

(
−𝑎2

)
+ 𝑞

(
𝑎2

))
= 0

𝑄13 = 0
𝑄23 = 0

𝑄11 =
∑︁
𝑘

𝑞𝑘

(
3 ((𝑥𝑘)1)2 −

(
𝑥2

1 + 𝑥2
2 + 𝑥2

3

))
= 4𝑞

(
3𝑎2 − 2𝑎2

)
+ 2(−2𝑞)

(
−𝑏2

)
= 4𝑞

(
𝑎2 + 𝑏2

)
𝑄22 = 4𝑞

(
𝑎2 + 𝑏2

)
𝑄33 = 4𝑞

(
−2𝑎2

)
+ 2(−2𝑞)

(
2𝑏2

)
= −8𝑞

(
𝑎2 + 𝑏2

)
.

(60)
To check if this is correct we insert 𝑝 = 0 and 𝑄𝑖 𝑗 into the potential expansion

Φ(𝑥) = 1
4𝜋𝜖0

1
2

∑︁
𝑖, 𝑗

𝑄𝑖 𝑗

𝑥𝑖𝑥 𝑗

𝑟5 =
1

4𝜋𝜖0

1
2𝑞

(
𝑎2 + 𝑏2

) 4𝑥2 + 4𝑦2 − 8𝑧2

𝑟5 (61)

and test this potential in the Laplace equation, which turns out to be

∇2Φ(𝑥) = ∇2
(

1
4𝜋𝜖0

1
2𝑞

(
𝑎2 + 𝑏2

) 4𝑥2 + 4𝑦2 − 8𝑧2

𝑟5

)
= · · · = 0. (62)

This charge distribution had no dipole moment, since 𝑝 = 0, which means in an electric field
there would be no torque applied to it. Looking at the positions of the charges in the charge
distribution we can see that, unlike in case i), there is no clear positive and negative side to
the distribution.
Recall also that the first non-vanishing multipole moment is invariant (under shifts of the
origin only of course).
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5 Building Blocks for Moments
You have a supply of point charges ±𝑞. We are given positions in which we may put charges,
and we try to make the monopole, dipole, quadrupole moments vanish.

8-hedron A regular octahedron has 6 corners, see Figure 5. One way of placing the octahedron, with
side length 𝑎, in a coordinate system puts the corners at positions:

(±1, 0, 0), (0,±1, 0), (0, 0,±1) (63)

Figure 5: A regular octahedron

For the monopole moment to be zero we require

𝑞 =
∑︁
𝑘

𝑞𝑘 = 𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 + 𝑞6 = 0 (64)

where 𝑞𝑘 is the charge in corner 𝑘. We see that we any configuration of equally many +𝑞 and
−𝑞 charges satisfies this.
The dipole moment is

𝑝 =
∑︁
𝑘

𝑞𝑘𝑥𝑘

= 𝑞1 (1, 0, 0) + 𝑞2 (0, 1, 0) + 𝑞3 (−1, 0, 0)
+ 𝑞4 (0,−1, 0) + 𝑞5 (0, 0, 1) + 𝑞6 (0, 0,−1)

= (𝑞1 − 𝑞3, 𝑞2 − 𝑞4, 𝑞5 − 𝑞6) .

(65)

For that to be zero we need 𝑞1 = 𝑞3, 𝑞2 = 𝑞4 and 𝑞5 = 𝑞6, but this would give the monopole
moment 𝑞 = 2𝑞1 + 2𝑞2 + 2𝑞5. Thus 𝑞 cannot be zero if we want 𝑝 = 0. This makes sense, since
if we have the same number of corners with +𝑞 and −𝑞, as required by 𝑞 = 0, the system will
move in a constant electric field no matter how you place the charges, and therefore have a
dipole moment.
Sneaky surprise twist: We could salvage this by choosing to not have any charges in one
direction!
For the quadrupole, let’s use instead the 𝑞2,𝑚 form of the multipole expansion. We find

𝑞2,𝑚 =


(factor · (𝑞1 + 𝑞2 − 𝑞3 − 𝑞4))

0
(factor · (𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 − 2𝑞5 − 2𝑞6))

0
(factor · (𝑞1 + 𝑞2 − 𝑞3 − 𝑞4))

𝑚
(66)

Page 10 of 14



Lukas König 14. September

To make quadrupoles vanish, we must cancel all square formations of charges.
Pairs of opposing charges have no quadrupole and no monopole, but full dipole.
All charges being the same has no dipole, and no quadrupole, but of course full monopole.
Can we gain something by removing charges? No, removing a pair of charges doesn’t help in
killing all moments simultaneously.

Cube For the cube (Figure 6), with side length 2𝑎, we can place charges at all eight possible
combinations of signs in (±𝑎,±𝑎,±𝑎).

Figure 6: In case you forgot what a cube looks like.

Setting the monopole to zero we get the condition

𝑞 = 𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 + 𝑞6 + 𝑞7 + 𝑞8 = 0. (67)

Calculating the dipole

𝑝 =
𝑎

2 (𝑞1 − 𝑞2 − 𝑞3 + 𝑞4 + 𝑞5 − 𝑞6 − 𝑞7 + 𝑞8,

𝑞1 + 𝑞2 − 𝑞3 − 𝑞4 + 𝑞5 + 𝑞6 − 𝑞7 − 𝑞8,

−𝑞1 − 𝑞2 − 𝑞3 − 𝑞4 + 𝑞5 + 𝑞6 + 𝑞7 + 𝑞8) .

(68)

Setting 𝑝 = 0 we get the system of equations

𝑞1 − 𝑞2 − 𝑞3 + 𝑞4 + 𝑞5 − 𝑞6 − 𝑞7 + 𝑞8 = 0
𝑞1 + 𝑞2 − 𝑞3 − 𝑞4 + 𝑞5 + 𝑞6 − 𝑞7 − 𝑞8 = 0
− 𝑞1 − 𝑞2 − 𝑞3 − 𝑞4 + 𝑞5 + 𝑞6 + 𝑞7 + 𝑞8 = 0

(69)

which combined with the condition 𝑞 = 0 is solved by

𝑞4 = −𝑞1 − 𝑞2 − 𝑞3

𝑞6 = −𝑞1 − 𝑞2 − 𝑞5

𝑞7 = 𝑞1 − 𝑞3 + 𝑞5

𝑞8 = 𝑞2 + 𝑞3 − 𝑞5

(70)

These equations hold, for example, if each corner has the opposite charge of its neighbors. So
it is possible to have 𝑝 = 0 and 𝑞 = 0 for this system in the shape of a cube. The system, with
this placement of charges, does not "look like a dipole" since each +𝑞 has a −𝑞 opposite and
beside it.
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The quadrupole moment is

𝑄𝑖 𝑗 =
∑︁
𝑘

𝑞𝑘

(
3 (𝑥𝑘)𝑖 (𝑥𝑘) 𝑗 − (𝑟𝑘)2 𝛿𝑖 𝑗

)
, (71)

where 𝑟𝑘 =
√

3𝑎/2 for all 𝑘. Calculating the quadrupole moment we obtain

𝑄11 = 𝑄22 = 𝑄33 = 0

𝑄12 = 3
( 𝑎
2

)2
(𝑞1 − 𝑞2 + 𝑞3 − 𝑞4 + 𝑞5 − 𝑞6 + 𝑞7 − 𝑞8)

𝑄23 = 3
( 𝑎
2

)2
(−𝑞1 − 𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 + 𝑞6 − 𝑞7 − 𝑞8)

𝑄13 = 3
( 𝑎
2

)2
(−𝑞1 + 𝑞2 + 𝑞3 − 𝑞4 + 𝑞5 − 𝑞6 − 𝑞7 + 𝑞8) .

(72)

Setting them equal to zero we find that they can all be fulfilled if

𝑞6 = 𝑞3 − 𝑞4 + 𝑞5

𝑞7 = −𝑞1 + 𝑞3 + 𝑞5

𝑞8 = −𝑞2 + 𝑞3 + 𝑞5.

(73)

Combining these equations with the ones for the vanishing dipole moment, eqs. (55), we find
that

𝑞1 = −𝑞2 = 𝑞3 = −𝑞4

→ 𝑞1 = −𝑞5 = 𝑞6 = −𝑞7 = 𝑞8.
(74)

In this configuration each corner has the opposite charge as its neighboring corners. Therefore,
we can have 𝑞 = 0, 𝑝 = 0 and 𝑄𝑖 𝑗 = 0.
What this exercise is meant to illustrate is that only the first non-vanishing multipole moment
is in dependent of the choice of origin. As an example let us shift the origin of the dipole
moment and see what happens. We take 𝜌(𝑥) and change it to 𝜌 (𝑥 + 𝑥0), then the dipole
moment 𝑝 changes to

𝑝new =

∫
𝑥𝜌 (𝑥 + 𝑥0) 𝑑𝑉 =

∫
(𝑥 − 𝑥0) 𝜌(𝑥)𝑑𝑉

=

∫
𝑥𝜌(𝑥)𝑑𝑉 − 𝑥0

∫
𝜌(𝑥)𝑑𝑉 = 𝑝 − 𝑥0𝑞.

(75)

Here we see that if the monopole moment is zero the dipole moment is unchanged. If 𝑞 ≠ 0
then 𝑝new depends on the location 𝑥0 of the dipole moment.

6 The Dipole Field
For a dipole field, locate those points in space where the field points in a direction orthogonal
to the dipole vector.
The potential of a dipole 𝑝 is

Φ(𝑥) = 1
4𝜋𝜖0

𝑝 · 𝑥
𝑟3 (76)

and to find its electric field we can simply apply 𝐸 (𝑥) = −∇̄Φ(𝑥). The electric field at 𝑥 of a
dipole at 𝑥0 is

𝐸 (𝑥) = 1
4𝜋𝜖0

3𝑛(𝑝 · 𝑛) − 𝑝

|𝑥 − 𝑥0 |3
(77)

Page 12 of 14



Lukas König 14. September

where 𝑛 is a unit vector from 𝑥0 to 𝑥. Let us place the dipole at the origin, 𝑥0 = 0, then
𝑛 = 𝑥

|𝑥 | =
𝑥
𝑟
, where |𝑥 | = 𝑟.

We want to find the points where the dipole vector and its electric field are orthogonal to each
other, i.e. where 𝐸 (𝑥) · 𝑝 = 0. Therefore, we evaluate 𝐸 (𝑥) · 𝑝 and set it to zero.

𝐸 (𝑥) · 𝑝 =
1

4𝜋𝜖0

3𝑛(𝑝 · 𝑛) − 𝑝

𝑟3 · 𝑝 = 0

→ (3𝑛(𝑝 · 𝑛) − 𝑝) · 𝑝 = 0

→ (3𝑛(𝑝 · 𝑛) − 𝑝) · 𝑝 =
3
𝑟2 𝑥(𝑝 · 𝑥) · 𝑝 − 𝑝2 =

3
𝑟2 (𝑝 · 𝑥)2 − 𝑝2

=
3(𝑝 · 𝑥)2 − 𝑟2𝑝2

𝑟2 = 0

→ 3(𝑝 · 𝑥)2 − 𝑟2𝑝2 = 0.

(78)

Expanding the last line we find

3(𝑝 · 𝑥)2 − 𝑟2𝑝2 = 3
(
𝑥𝑝𝑥 + 𝑦𝑝𝑦 + 𝑧𝑝𝑧

)2 −
(
𝑥2 + 𝑦2 + 𝑧2

) (
𝑝2
𝑥 + 𝑝2

𝑦 + 𝑝2
𝑧

)
= 𝑝2

𝑥

(
2𝑥2 − 𝑦2 − 𝑧2

)
+ 𝑝2

𝑦

(
2𝑦2 − 𝑥2 − 𝑧2

)
+ 𝑝2

𝑧

(
2𝑧2 − 𝑥2 − 𝑦2

)
+ 6

(
𝑝𝑥 𝑝𝑦𝑥𝑦 + 𝑝𝑥 𝑝𝑧𝑥𝑧 + 𝑝𝑦 𝑝𝑧𝑦𝑧

)
= 0.

(79)

This is zero if two of the 𝑝𝑖 are zero. Let us specify the direction of the dipole, say 𝑝 = 𝑝𝑧 �̂�.
Inserting 𝑝𝑥 = 𝑝𝑦 = 0 into the above equation gives us

2𝑧2 = 𝑥2 + 𝑦2 (80)

This is the equation of a cone centered on the 𝑧-axis. I show this cone in Figure 7.

Figure 7: Plot of the electric field around a dipole, shown as arrows on a plane containing 𝑝.
On the cone shown in the figure, the field is orthogonal to the dipole moment. The field and
the cone are rotationally symmetric around the dipole axis.
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