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1. INTRODUCTION

Supersymmetry has been a subject of intense interest among particle
physicists since 1974 or thereabouts. So | cannot cover the whole subject
in these lectures. It is difficult to make selections however, because
there is no experimental evidence whatsoever that supersymmetry is
relevant for particle physics. Hence | do not know which parts of the
subject that may be important in the future. | will simply choose some
topics according to fancy.

You are supposed to know what a symmetry is, and also that the
properties of a symmetry - apart from some global details - are
succinctly summarized by a Lie algebra, i.e. a vector space equipped with a
bilinear, antisymmetric bracket operation obeying the Jacobi identity.
Schematically,

[E.E}=E, (1)

where E is a generic symbol for the elements of the vector space. We will
call them even elements, and then introduce odd elements O which obey
what is called a super-Lie algebra, of the generic form

[E.E=E
[E,0]=0 ' @
{0.0)=E .

The curly bracket operation is postulated to be bilinear and gsymmetric - if
[ .]is a commutator, { ,} is an anti-commutator - and one requires a
generalization of the Jacobi identity, namely

[[E4.E2lE3l + [[E3.E41.E] + [[E2E3l.E4] =0

@)
[{01.02},E] +{[E,01].02} - {[O2,E].O1} =0

(and a few more, which should be obvious - eq. (3) is fairly obvious too,
once you learn how to keep track of the sign; there is one each time you
interchange the order of two odd elements).

As you know, all compact Lie algebras were classified by Cartan, and you
now learn that all compact super-Lie algebras were classified by Kac™. We
will not go into that, since we are interested in a very particular kind of

* V.G. Kac, A Sketch of Lie Superalgebra Theory, Comm. Math. Phys. 53 (1977) 31.
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supersymmetry. Remember that the Hamiltonian is a symmetry generator
for all isolated physical systems, and moreover that it is bounded from
below in healthy models. This suggests that one should try to express it as
a sum of squares, which is achieved if there is a supersymmetry generator
Q in the model, such that

{QQ)=H. _ @

It is such supersymmetries that | will talk about. They were first
considered by Goilfand and Likthman in 1971*.

It is not too hard to give an example of a quantum mechanical model
which has this property. Consider a non-relativistic particle of spin 1/2,
moving on a line. The wave function will be a two component spinor ¥. For
Q, we simply make a guess, and then we will define the Hamiltonian as 2

Q2. So: J
Q= 172(1,p + LW(x) ) ®)

. d . . .
where p = -ih gy , W(x) is some arbitrary function and the t; are the Pauli
matrices. We find that

H=1/2(p2+W2+ht3§1%l) (6)

If we look closér, we find that there actually are two supersymmetry
generators;

Q=12(tp +1,W)

@)
Q,=12(1,p-1yW) '

obey the algebra

{Q,Q) = 8;H

(8)
[HQ]=0.

So now we have a simple quantum mechanical model which has N=2 super-
symmetry, of the kind we wanted. It has some quite interesting
properties, but for now it will be enough to make a single remark: One
could change the coefficients in the Hamiltonian without destroying its

*Y.A. Gol'fand and E.P. Likkthman. Extension of the Algebra of Poincaré Group Generators and
Violation of P Invariance, JETP Lett. 12 (1971) 323.
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positivity, but then supersymmetry would be lost - hence supersymmetric
Hamiltonians are very special. Since this is so, one can study
supersymmetry for various reasons: )

1. Supersymmetric quantum field theories may be so special that one can
construct them - this would be interesting in the same sense that two-
dimensional quantum field theories are interesting, as toy models.

2. The mere fact that a theory admits a supersymmetric extension may
allow conclusions to be drawn, just as one can prove theorems about real
functions by going out in complex plane.

3. There may be very special physical systems - in statistical physics,
say - which exhibit supersymmetry.

4. If there is a unified field theory, it is presumably very special. Per-
haps it is supersymmetric.

2 and 3 have been justified already (the most dramatic instance of the
former is an alternative proof of the positive energy conjecture in general
relativity), while 1 and 4 remainehopes. Anyway, we have seen that a
supersymmetric model exist. However, in particle physics we want our
models to be Poincaré invariant, and this means that the Hamiltonian H =
P,is part of a four vector. As a result, some extra cleverness has to go

into the construction of the supersymmetry algebra. It is necessary to
decide how the supersymmetry generator is to transform under the
Poincaré group. Eq. (4) is too simple; a suitable substitute is in fact

{Q,.Qb} = 2(y, P3) b @)

Here Q, is a spinor with suitable properties, and the Yis a gamma-
matrix.
You do not have to learn much mathematics to understand an average

paper on supersymmetry, but there are some things you have to learn.
Spinors, and gamma-matrices, come first.

2. SPINORS.
2.1 Spinors in four-dimensional space-time.
2.1.1 Geometric theory of spinors.

You are supposed to know what vectors, and tensors, are. Spinors are
similar in some respects, but they are very different in others (and they
do not exist on an arbitrary manifold - to admit a "spinor structure" is a
non-trivial property for a manifold). Their detailed properties depend very
much on the dimension and signatur‘e of the space. For this reason | will
first describe how they work in a four-dimensional space-time, and then
mention only briefly what happens elsewhere. The standard treatise on
spinors in space-time is the book by Penrose and Rindler*.

We begin by looking at the sky. We observe the celestial sphere. A little
thought will convince you that we are looking out along the light cone
from the point P, and that all the stars can be regarded as laying at some
fixed distance d from P, as far as the visual impression is concerned. We
can draw a picture’ of the situation, with one space dimension suppressed,
as follows (actually, spinors in a three-dimensional space-time are
similar in some respects to those in four, so you can take the picture to be

accurate and change some of the words, if you like - | leave that as an
exercise).
P
&—The celestial . .
~————— sphere Plane of simultaneity
Light ray

Suppressing one more dimension for clarity, and performing a Lorentz
boost, the plane of simultaneity - i.e. in this context the location of the
celestial sphere on the light cone - changes as shown in the second figure.
A little thought will convince you that this amounts to a projective trans-
formation of the sphere. So do rotations, obviously. In fact, there is a
one-to-one correspondence between Lorentz transformations in spacetime

*R. Penrose and W. Rindler, Spinors & Space-Time, Vol. 1, Cambridge U.P. 1984.
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and projective transformations of the sphere. Now if we think of the
celestial sphere as the Riemann sphere, the projective transformations
are given by Mobius transformations:

'Zm:’:—.fé—l‘—g- ; ob-Py=1. )

In projective geometry, it is often useful to introduce homogeneous
coordinates. For us, who are studyjng CP! (i.e. the Riemann sphere), which
is the space of lines in the two complex dimensional space C2, this means
that we should study the latter space directly. So we now have two
complex coordinates, and we can recover the single complex coordinate on
the Riemann sphere by forming the quotient

z=-§; _ . )

To every Mobius transformation of z corresponds exactly two trans-
formations in the group SL(2,C):

(11) (2'1‘ (a ﬁ) (21) (3)

Y =

2, 2’ Y 8l \z] .

These two component objects are called spinors, and the two complex
dimensional space in which they live is called gpin-space. We have seen
that every spinor determines a lightlike direction in space-time; actually
four real numbers are needed to specify a spinor completely, and only two
to determine the direction of a light ray, so there are two extra pieces of
information in the spinor to account for. It is clear that one should be able
to define some kind of modulus for the spinor, which will correspond to
the length of some light like vector. There will then be a phase factor left,
so that to every light like vector corresponds a one-parameter family of
spinors.

In some sense, then, spinors are more "fundamental” than vectors, since
they can be used as building blocks for the latter. Moreover, they represent
the "end of the road": We have established that SL(2,C) gives a two-fold
covering of the Lorentz group, and the process ends there, since SL(2,C) is
simply connected. It is called the universal covering group of the Lorentz
group, and spinors give linear representations of the universal covering
group.

2.1.2 Algebraic theory of spinors.

Let me now develop the theory of spinors purely algebraically, as the
theory of linear representations of SL(2,C). First of all, starting from
two-component objects ‘A, where the index A runs from 1 to 2, we can
form multi-component spinors WAB--T just as we would form tensors
from vectors. There will also be a dual spin space, which gives rise to
spinors with indices downstairs, and contraction of spinor indices can be
performed, just as with tensors. Moreover, there is an invariant two-index
spinor which, because it is invariant, can be used as a "metric” in spin
space:

LAC LBD EC[/) = CAB (1)

where the L's are SL(2,C) matn‘cés and

0= (-oc :9) @

It is a "symplectic" metric, since it is anti-symmetric. We can use this
metric, and its inverse, to raise and lower indices, i.e. to establish an
isomorphism between spin space and its dual. Since €AB is anti-
symmetric, it is important to get the conventions clear at this point. We
define

VA= fByy ¥, = ¥B egp 3)
(where ¢,g is the transpose of the inverse of e*B). Note that

— efBy, . BAW __yA
ph= W g =- AW pg=- ¥y

(4)

€= - eBy=5,8.

Since spin space is two dimensional only, the theory of multi-component
spinors will be very simple. It will be enough to consider totally
symmetric objects, since all anti-symmetric pieces can be separated out
using

AB = lAB) ;. WIAB] = \P(AB) 4 126 AB Y C . ®)

This is a very useful formula.
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There is one further opefation that we can perform on our spinors, which
has no analogue in a real vector space, and that is to take the complex
conjugate of a spinor. The result of that operation can pot be another
element of spin space, because if it was, we could define real and
imaginary spinors, and so the spinors would cease to be on an equal
footing - the SL(2,C) covariance would be lost. Hence the complex
conjugate of a spinor ¥Ais an efement ¥A' - with a primed index - of a
new space, anti-isomorphic to spin space in the sense that

WA + zoh = WA + 20~ (6)

The theory of primed spinors is of course exactly analogous to the theory
of the un-primed ones; there is an e-spinor, we can form multi-component
spinors, and so on. We can also form multi-component spinors with mixed
indices, as follows:

WAB.. .TAB'...S' (7)

(the order between a primed and an un-primed index does not matter,
unless we are thinking in terms of explicit matrices.) Contractions
involving one primed and one un-primed index is not allowed.

Of particular interest are multi-component spinors with an equal
number of primed and un-primed spinors, since such spinors can be defined
to be real. The subspace of real spinors with one index of each sort is a
four dimensional vector space which turns out to be isomorphic to the
space of real Minkowski space vectors (with timelike metric - the
anti-hermitian subspace has a spacelike metric, and some authors prefer
that). In fact, we will identify these spaces. Schematically,

ya nor VAA' , T‘ab n_n eAB eA‘B' . (8)

We could have developed the theory of spinors "abstractly”, in which
case the equality signs in equation (8) would be true equalities. However,
we have been thinking in terms of specific coordinate systems in spin
space, and explicit components of the spinors, and so we have to take the
equality signs here as something of a metaphor only. Or, to phrase it in
another way, there is only one space of world vectors, but it admits
different bases. One in which the vector appears as a four component
column vector, and one in which it appears as a two by two hermitean (due
to the reality condition) matrix. Both ways of thinking about a vector are
equally correct.

To exhibit the announced isomorphism, we introduce the Infeld-van der
Waerden symbols

-8-
oarlt @ - - oaefot -
OghB'= 212 (o ‘) =c%g=0%p o° =2"‘,(l °)=01AB'=°1A'B
©)

. 0. - . nfto -
02”3‘-'2"2(.::; =?ag=C%p 03AB=2"2(0-I)=°3A8'=03A'8

These matrices obey
0 AB gbpg. =50 Goag 0700 = 5,0 550 (10)
Now we can rewrite eq. (8) as

Vaz VAR Ga, . , TNab = €ac € gpr 028 6,00
. (11)
VM‘ =V O'ZM‘ . EAB eC‘D'= nab O'aAc- GbCD'
All tensors can be converted to multi-spinors in this way. If one makes
use of eq. (5), it is a convenient way to decompose a tensor into its
irreducible parts. As an (important 1) example, an anti-symmetric tensor
with two indices can be reexpressed by means of a symmetric two index
spinor, as follows:

Flab] v F(AB) gAB | ¢AB F(AB) (12)
The "self-duality” condition

*Fab = 1/2 g3 4 Fd = j Fab (13)
becomes simply

Fab_ ¢AB yAB (14)
(which is necessarily complex - in Euclidean four dimensional space one
can have real self-dual tensors, however).

For later use, we note that
0,ACTycp + 0,0 Tcp = Nap 8"
(15)

Baac OpC8  + Tpac 0,08 = ngp 548

Finally, we return to the connection between lightlike vectors and
spinors. Obviously, every vector of the form



+ PAPA (16)
is real and lightlike, because
YAy, =0 (17)

(provided the spinor is made out of commuting numbers - later we will
deal a lot with spinors made out of anti-commuting numbers, for which
this does not hold).

Conversely, every real lightlike vector can be written in this form (with
an obvious phase ambiguity), since

det VA = 172 V2 (18)

and when the determinant vanishes, the two-by-two matrix splits in an
outer product, as claimed. The sign ambiguity in (16) is also important;

Tr VAA =2 PO, (19)

Hence the choice of sign determines whether the lighlike vector points
into the future or into the past. This clearly requires that space-time is
time-orientable, otherwise spinors could not exist. Here we have an
example of a condition that a manifold has to fullfill in order to admit a
spinor structure (there are further conditions).

-10-
2.1.3. The four-component formalism.

The spinor formalism that | developed above is called, for obvious reasons,
the two component formalism. That such a formalism exists is closely
related to the fact/that SO(4) is locally isomorphic to a direct product of
two SU(2)'s - as will become obvious when we come to spinors in
Euclidean spaces later - and this in its turn is an important and absolutely
unique property of four dimensional manifolds. (Partial analogues of the
two-component formalism exist in some special higher dimensional
cases.) There is another formalism available, however, which generalizes
more smoothly to higher dimensions, and which is called the four
component formalism. Moreover, it was in this formalism that spinors
were originally discovered, by Dirac. You are actually supposed to know
this already, but | will run through it quickly.
We start by writing down the Clifford algebra

(Yo Yob =27z | )
This can be represented in terms of four by four matrices; for instance
b2 [0 ™ 2
(WL=2(e ) )

These matrices are to act on the four-component spinors. Two further
matrices of interest are yg

: 9 0)
Y5=1%Y1Y2Ya= (o 1 3

and the charge conjugation matrix C3% (which is the analogue of the e-
spinor; we will use it to raise and lower the y-matrix indices a,b...):

- Epg O
Ccab= (4)
0 €A
They obey respectively
(s Yak=0 . Y52 =1 ; CvC'=-(va)T. ()

The charge conjugation matrix is always antisymmetric, whatever the
representation.

The spinor is a column "vector" with complex entries. The Lorentz group
acts on the spinors through the Lorentz generators
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Sab =21 Yap =1l Yar Yol (6)
which obey
[SabScal = i (NpaSac - NacSpd + NadShe ~ MbcSad) @)

(this can be shown directly from the Clifford algebra (1)). In the y-matrix
representation that we use, we can write

¥, = . Syp= (8)

where the I's are SL(2,C)-generators. There is also a conjugate spinor
Pa= ¥y = (w0, ¥¥) ©

We have seen that the spinor formalism can be developed with objects
that have only two components. In the four-component formalism this
means that it is possible to impose algebraic conditions on the four-
component spinors, without destroying the linearity of the representation.
One such condition is the Weyl condition

(1- ¥ %=0 (10)
(or the anti-Weyl condition, with the sign reversed). This takes us back to
the two-component formalism. Another possibility is the Majorana
condition

(P)T=Cv¥. ) (1)

In our representation, this means that

YA
Y= (12)

With slightly different conventions (e.g. spacelike metric) it is possible to
find a real representation of the y-matrix algebra; the Majorana condition
then means that the spinor is real.
Finally we come to the sine qua non of supersymmetry in the four-
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component formalism: Fierz identities. The starting point is the
observation that any four-by-four matrix can be expressed as a linear
combination of the sixteen matrices

Lo Ya Y= Yap Yas= Ya¥s Vs (13)
all of which, except for the identity matrix, is traceless. In particular,

Y, AP 1AW 5.0 14X P(1R) 0 + 1A XYL (YD) +
_ _ (14)
+ V4 XY (s) - 14 RYsY(Ys) -

This is a Fierz identity. To prove it, take the trace of both sides, then
multiply with Y , and again take the trace, and so on. | have assumed that
the spinors are anti -commuting. For commuting spinors, change signs.

For Weyl spinors you have to be careful with factors of 1/2; also some
of the terms on the right hand side go away. Simplifications also occur for
Majorana spinors. To see this you need to know that

Cb, (Cy,5)3, (Cys)2 are antisymmetric in a,b.
(15)
(CY,)3, (Cy,,)3 are symmetric in a,b.
For anti-commuting Majorana spinors, this means that
A=-2,C8% ¥, =- ¥, Cba), =¥
(16)
AY,Y = - Py

and so on. The Fierz identity, and some elementary y-matrix algebra, can
then be used to prove the useful identities

Ta'¥y P P¥g + ¥ 1P, + 1,2 Farty =0 a7
for aﬁti-commuting Majorana spinors, and
T PP =0 (18)

for commuting ones (which is spinors and lightlike vectors all over again).
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2.2 Spinors In Euclidean spaces.
~ 2.2.1S0(4) spinors.

The geometric picture of spinors that | presented above required a
Lorentzian space-time, but spinors exist whatever the signature of the
space. Moreover, the subject still has a strong flavour of projective
geometry. Easiest to generalize, however, is the algebraic theory, in which
we simply look for linear representations of the universal covering group
of SO(n,m). We will look at spinors in Euclidean space only briefly, since |
will not use them much in these lectures.

To see how spinors in space-time are related to spinors in Euclidean
space, it is instructive to begin with complex vectors in a four complex
dimensional space C#*, which we will write in matrix form

x00 xOr

XAA (1)
X100 It

We introduce a norm, namely the one we used in Minkowski space earlier:
IxAN |2 = 2 det xAX 2

The group which preserves this norm is obviously SL(2,C)XSL(2,C), acting
through matrix multiplication

x ~ AxB 3)

where A and B are independent St(2,C)-matrices. Clearly, space-time is a
real slice of C4, consisting of the subspace of hermitean matrices. Its
symmetry group is the "diagonal subgroup™ SL(2,C), where the matrices in
eq. (3) are subject to the condition B = A'. It is related by analytic
continuation to Euclidean space, which is a different real slice of C* (i.e. a
set left. invariant by a mapping t which obeys t2 = -1, but | will skip the
details). In fact, x belongs to Euclidean space if it is a matrix of the form

z Yy
XA =( o ) (4)
¥ zl.

As you can check, the subgroup of SL(2,C)XSL(2,C) which preserves this
form is SU(2)XSU(2), which is the universal covering group of SO(4).

Much of the algebraic theory of space-time spinors can then be carried .

over directly to Euclidean space; the difference is that the primed and the
unprimed indices are now completely unrelated, whereas they were

-14-

related by complex conjugation in the space-time case.

Perhaps it is as well to remark that the simple relation between
Euclidean and Lorentzian spaces that | have described holds for topo-
logically trivial spaces only - in general, the complexification of a real
manifold with Euclidean signature does not possess a different real slice
with a Lorentzian metric.
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2.2.2 SU(2) spinors.
Let me now describe "spatial® spinors, i.e. SU(2) spinors (SU(2) is the
covering group for the rotation group). Such spinors will be useful for
Hamiltonian formulations, so it is natural to approach them through a "3+1

decomposition” of SL(2,C) spinors.
Begin by fixing a timelike vector of length v2:

nA-A = 'J2 OOA-A B R (1)
The normalization is such that

nMn,g = 8g8. (2
The subgroup of SL(2,C) which leaves n,,. invariant is precisely SU(2). We
can use it to define a positive definite hermitean inner product for the
spinors:

<@, ¥>= PAny WA (3)

Because of this extra structure, we can convert all primed indices to
unprimed indices via

YAy =¥,. (4)

Hence only one kind of indices is needed for SU(2) spinors.
The space of hermitean two index spinors which obey

XAA =0 (5)

is a three dimensional vector space isomorpic to, and to be identified
with, E3. The metric is

q;=Tro;0;=0;g 08 ' (6)

xy = Xigyyl = xAgy8By . %)
The epsilon-tensor is

gk =2 Tro;o0 (8)

-16-
2.3 Spinors in higher dimensions.

Unlike tensors, spinors care about the dimension of space-time. For this
reason, one might expect that spinors for spaces of dimension higher than
four have nothing to do with physics. Nevertheless, much research in
supersymmetry has been concerned with higher dimensional
"space-times”, and a smattering of knowledge about spinors in higher
dimensions is desirable if you want to learn about supersymmetry. (There
are many readable summaries®.) In even dimensions, the four component
formalism becomes a 2 D/2-formalism, where D is the dimension of
space-time. (The two-component formalism does not exist outside four
dimensions.) The Weyl condition can always be imposed, but the Majorana
condition is available only in some cases. If the dimension of space-time
is 1+1 modulo eight (9+1 for instance), one can impose both conditions at
once.

Odd dimensions are quite different, since the SO(2N) groups are quiie
different from the SO(2N+1) groups. The Ys-matrix becomes an ordinary 7y -
matrix, and hence the Weyl condition is no longer available.

The connection between spinors and lightlike vectors holds true in 3, 4,
6 and 10 dimensions. The reason is that eq. (18) on page 13 holds in these
dimensions, if the spinor is taken to be Majorana (3 and 4), Weyl (6), or
Majorana-Weyl (10), respectively. Eq. (17) holds under the same
conditions, and is of importance in supersymmetry, as | will explain later.
The underlying reason why these equations hold is the existence of the
four "Hurwitz algebras” - real numbers, complex numbers, quaternions and
octohions. These are "number fields" which can be used to define a plane on
which a projective geometry can be set up. The result is that partial
analogues of the two-component formalism can be set up in 6 and 10
dimensions, using quaternions and octonions, respectively. However,
quaternions do not commute and octonions do not associate, and this tends
to diminish the flexibility of the formalism in 6 and 10 dimensions.

* T. Kugo and P. Townsend, Supersymmetry and the Division Algebras, Nucl. Phys. B221
(1983) 357.



-17-

3. SPACE-TIME SUPERSYMMETRY.
3.1 No-go theorems.
3.1.1 All possible even symmetries of the S-matrix.

Since the supersymmetry that we are looking for is a non-trivial
extension of the Poincaré group, it is only fitting to begin by describing
known results that severely constrain the possibilities in this direction. A
physicist conditioned by unification might try to find a comprehensive
group containing both the Poincaré group and the internal symmetry groups
of elementary particle physics as subgroups. (A symmetry is called
internal if all matrix elements connecting states with different momenta,
or spins, are zero.) There are various no-go theorems in the way, however.
If, for the moment, we restrict ourselves to symmetries generated by even
generators (obeying commutators), then these symmetries have to
commute with all Poincaré transformations - in other words, the
symmetry group of a relativistic “system always splits (locally) into a
direct product of space-time symmetries and internal symmetries. This
does pot mean that the internal symmetries in Nature have nothing to do
with space-time symmetries; the existence of the internal symmetry
group in Yang-Mills theory, for instance, is basically forced upon you by
Lorentz invariance if you try to introduce self-interactions for massless
spin one-fields. Moreover, there may still be some mixing between
internal symmetries and rotations, for instance, since the group does not
have to be a direct product globally. Nevertheless, the restrictions are
real, and now | will describe how they come about.

The two most famous no-go theorems concerning the unification of
internal and space-time symmetries are O'Raifeartaigh's’ theorem and the
Coleman-Mandula theorem®. The former states that any two particles that
belang to a symmetry multiplet of some kind must have the same mass.

(This is still true for supersymmetry multiplets, as we will see.) The

latter, which is an even more powerful result, is stated as a theorem
about S-matrices. This means that it is hard to speak with absolute
confidence about massless particles, since the asymptotic states may be
difficult to define in that case. Probably, the conclusions go through
unaffected in the massless case as well (at least if "Poincaré group” is
replaced with “"conformal group”), but for definiteness | will discuss
theories with a massgap only in this section.

The basic idea behind the Coleman-Mandula theorem is this: Consider
two particles that scatter against’each other. When conservation of linear
and angular momentum is taken into account, only the scattering angle is

* S. Coleman and J. Mandula, All Possible Symmetries of the S-Matrix, Phys. Rev. 159 (1967)
1251,
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left as an undetermined parameter. It is then easy to imagine that the
existence of a further symmetry with non-trivial space-time properties
might constrain the scattering process so severely that no solution exists,
except for the trivial solution of no scattering at all. To make this idea
precise, one defines a symmetry of the S-matrix as a -symmetry which
transforms one-particle states into one-particle states, and transforms
many-particle states as tensor products. It is not obvious, but true, that
these assumptions imply locality; attempts have been made to derive a
version of the theorem also for non-local symmetries, but as yet the
conclusions are not quite definitive. Also the generator of the symmetry is
assumed to commute with the S-matrix, and it has reasonable continuity
properties. The S-matrix is taken to be an analytic function of the
Mandelstam variables. Analyticity is in fact necessary in the proof; there
are counterexamples to the theorem, in which non-trivial scattering
occurs, but only in the backward and forward directions. In particular, the
theorem fails completely for 1+1 dimensional models, for which the
S-matrices are not analytic. A non-trivial S-matrix in 1+1 dimensions
simply involves a few phase shifts.

Next comes an assumption which is perhaps questionable, namely that
the number of one-particle states with mass less than any given number M
is finite. Perhaps it could be derived from the requirement that empty
space should have finite heat capacity. If it is dropped, one can find
counterexamples to the theorem. (A possibly interesting theory which
would violate particle finiteness, if it exists, is massless higher spin
theory.) It is further assumed that the symmetry group of the S-matrix
contains the Poincaré group as a supgroup (if the Galilei group is chosen
instead, the theorem fails), and that the S-matrix is non-trivial in the
strong sense that any two particles scatter against each other, except
possibly for isolated values of the momenta. From these assumptions it
can be proved that the most general symmetry group possible is, locally, a
direct product of the Poincaré group with some internal symmetry group.

A similar theorem could probably be proved in classical field theory as
well; the "S-matrix" of the classical theory would be a transformation of
free field data in the remote past to similar data in the remote future.

The Coleman-Mandula theorem is obviously very important. It is common
belief that it kills all hopes to find integrable relativistic field theories
in 3+1 dimensions. In an integrable model on a 2n-dimensional phase
space, one can find n conserved charges that commute with the
Hamiltonian. For a field theory to be integrable, one would need an infinite
set of conserved. currents, and the S-matrix of such a theory could
probably be proved to be trivial by means of Coleman-Mandula type
arguments, except in 1+1 dimensions, where integrable field theories are
known. Still, there is no theorem that precludes field theories from being
integrable in some sense; there is in fact a supersymmetric field theory,
called N=4 supersymmetric Yang-Mills theory, which seems to share
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certain properties with integrable models. | will return to this topic.
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3.1.2 All possible odd symmetries of the S-matrix.

Now we are ready to write down the super-Poincaré algebra. The even part
will consist of the Poincaré algebra, together with some internal
symmetry group. The most general form of the odd part of a super-
symmetry algebra which is to be a symmetry algebra of a relativistic
S-matrix was written down by Haag, Lopuszanski and Sohnius*. For
theories with a massgap, it is

{Q, @B} = ¢AB ZW {QA. Q) =er%Z,

PO 4 p3 P! +iP2
{Q4, QA =238, PA = §lj212
P!-ip2 PO p3

~ (1)
[PA%, QB) = [PAM, Q8] = 0

[Jab. QA] = g AB Q8
[B, Q] = 5% QKA

Here the Z's are called central charg'es, since they commute with every-
thing, 1,J are internal symmetry indices running from 1 to N, and the B's
are generators of the internal symmetry, which can be as large as U(N)
unless the Z's are non-zero, in which case it is some subgroup of U(N)
(since the requirement that the B's commute with the Z's gives a condition
on the former). The s's and c's are representation matrices for the B's and
the Lorentz generators, respectively. The algebra is called, for obvious
reasons, the N-extended supersymmetry algebra.
Note that

Tr{QA QA = 2V2 PO, 2

and since the left hand side can be written as a sum of squares, this is
really a supersymmetry of the kind we were looking for. We also see that
the odd part of the algebra, given above, in fact strings together the
Poincaré group with an internal symmetry group in a non-trivial manner.
However, it is hard to see what such an internal symmetry group might
have to do with the internal symmetry groups that we actually know about
from experiment.

Let me also stress what Haag, Lopuszanski and Sohnius found to be
impossible. First, one cannot get the Lorentz generators on the right hand

* R. Haag, J.T. Lopuszanski and M. Sohnius, All Possible Generators of Supersymmetries of the
S-Matrix, Nucl. Phys. B88 (1975) 257.
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side of some anti-commutator. Second, the only odd elements that are
allowed in a symmetry aigebra of the S-matrix are spinors of rank 1;
spinors of higher rank cannot appear. | should say that in the massless
case, a somewhat tighter structure, namely the superconformal algebra,
could in principle appear as a symmetry group of the S-matrix. | will not
go into this; normally one would say that any non-trivial quantum theory
has non-vanishing B-function, and therefore conformal symmetries are
always broken by anomalies. Actually, there are counterexamples to this
among supersymmetric theories, so maybe | ought to discuss
superconformal symmetries, but an}lway I will not.
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3.2 Representations of supersymmetry.

So what is the particle content of a supersymmetry multiplet ? You are
supposed to know how one gets the unitary irreducible representations of
the Poincaré group. All these representations are infinite-dimensional, a
typical representation space being the space of positive frequency
solutions to Maxwell's equations, and at first sight it seems like a
difficult task to classify all such representations. But Wigner figured out
how to do it. The idea is to fix a particular momentum vector - timelike,
lightlike or spacelike - and then work out the unitary representations of
the ."little group™ of Lorentz transformations that leave this vector
invariant. One then relies on the theory of induced representations -
developed by Wigner especially for the purpose - and concludes that the
representations of the Poincaré group stand in one-to-one correspondence
with the representations of the little groups. The representations of the
supersymmetry algebra can be obtained in the same way.

Let us begin with the algebra (1)* with the central charges Z=0. In the
massless case, we choose a lightlike stability vector P2=P+ (where | use
"light front notation” P * = 2-V/2(P0+ P3)). The supersymmetry algebra (for
N=1) that pertains to the little group is simply

{@,Q" =2pP+ (@, @1=0
{QA, QB} = {Q*, @B} = 0. 1)
2, QY)=-12Q" U2, Q"= 12Q"

(and a few more, which need not concern us). So the Q's behave like a pair
of creation- and annihilation operators. This means that if we start from a
state with helicity A;

J12s = Al (2

we get one more state, with helicity A + 1/2, when we act on that state
with Q'. Since the Q's are odd, it stops there, and we conclude that a
supersymmetry multiplet consists of two massless states, with helicity
differing by a half-integer. For N>1, we evidently get N independent
creation- and annihilation operators, and hence we get 2N states, with
helicities ranging from X to A + N/2. A table of all supersymmetry
multiplets with maximum helicity equal to one is given below. For such
multiplets, N<4. In the table | have added the PCT-conjugate multiplet as
well, since field theories are always PCT-invariant. Hence they contain
irreducible supermultiplets only if the latter are PCT-self conjugate. For
representations with maximum helicity equal to two - i.e. multiplets
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N=1 N=2 N=1 N=2 N=3 N=4

Helicity=1 1 1 1 1
Helicity=1/2 1 | 1 2 |3+1]4
Helicity=0 1412 141 [3+3] 6
Helicity=-1/2 1] 1+43| 4
Helicity=-1 1 1 11

Helicity content of & few massless supermultiplets (with
CPT-conjugate multiplets added where sppropriate).

which include gravitons, but no higher spins - the maximum value of N is
8.
So much for massless representations. If the stability vector is taken to
be timelike, we obtain massive representations (tachyonic
representations of supersymmetry do not exist). For the little group, we
get

1 0
{QA QA) =212 p° 3)
0o 1

So we get two independent pairs of creation- and annihilation operators
for each supercharge. Hence the esnumber of states in a massive super-
multiplet is 22N,

Representations of the algebra when the central charges do not vanish
are always massive, since the central charges have dimension of mass. To
work out the representations in, this case, one has to perform linear
combinations of the supercharges in a suitable way. It turns out that for
particular values of the central charges, the phenomenon of "multiplet
shortening” occurs; this means that the number of states, and the range of
spins, is less than in a generic massive multiplet. This fact is of some
importance in connection with symmetry breaking in gauge theories.
Suppose that we have a supersymmetric gauge theory in which the gauge
symmetry is broken 'via the Higgs mechanism, while supersymmetry
remains intact. Then the number of states in the theory should remain the
same as in the massless phase, and yet they are required to fill qut some
massive supermultiplet, which generically contains more states than the
massless one. The paradox can be evaded if the algebra develops a central
charge when the symmetry breaks”.

* E. Witten and D. Olive, Supersymmetry Algebras That Include Topological charges, Phys. Lett.
788 (1978) 97.
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4. SUPERSYMMETRIC ACTIONS.

4.1 The nature of supersymmetry.

In this chapter | will give some simple examples of field theoretic models
which exhibit supersymmetry. It is useful to sit back and think first,
because certain features of these models can be guessed without
calculation. First of all, it is clear from the supersymmetry algebra, for
instance from

{@'.Q"}=2pr+ . ()
(where | am using "light front notation”;
V2Pt = POt P3, V2P = P +iP2, V2P = P! - iP2) )

that two supertranslations in succession result in a translation along the
light cone, forwardg in time. This means that supersymmetry is a
dynamical symmetry, which depends on the equations of motion in critical
way. (Other dynamical symmetries are generated by the Lorentz boost
generators and the Hamiltonian itself.) Symmetries which only result in a
reshuffling of initial data, on the other hand, are called kinematical
(rotation and translation in space are examples, together with various
internal symmetries). The canonical generators of dynamical symmetries -
in interacting, non-linear theories - differ from generators of kinematical
symmetries in an important respect, namely that they contain non-linear
terms. From Noether's theorem we know that this can happen only if the
Lagrangian of the model transforms into a total derivative under a
dynamical symmetry transformation, since that is the only way in which a
Noether charge can get non-linear terms. The symmetry is truly a
symmetry only if the boundary conditions are such that this total
derivative integrates to zero, of course.

Another property of dynamical symmetries is that, in general, one
expects that the transformations that they generate close to the
appropriate algebra only if information-about the time development of the
dynamical variables is supplied, i.e. only if the equations of motion hold.

We will see in this chapter that the supersymmetric actions that we
study do have these properties. In chapter 5 we will see that it is possible
to add auxiliary fields to the models in such a way that linear
representations of supersymmetry are obtained, and the algebra closes
also "off-shell", i.e. when the equations of motion do not hold.

It is of course much more awkward to deal with non-linear symmetry
generators, than with kinematical ones. Going back to eq. (1), we see that
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there is a way of making some of the supersymmetry charges kinematical.
The way to do it is to use what Dirac called "the front form of dynamics”,
which is what | call "light front dynamics” and everybody else,
incorrectly, call "the light cone gauge". The point is that, in relativistic
theories, there is some freedom in choosing the surface on which initial
data for the relativistic equations are set. The usual choice is a space like
suiface, defined by x © = 0, say. Dirac called this "the instant form of
dynamics”, and if this is what you do, the supercharges are indeed
dynamical, since they transform the system out of the initial data surface.
However, another possible choice of surface is a surface tangent to the
light cone.

Two possible initial data surfaces:
XO

T .

x0=0
N X+ o0
( Boundary conditions)
The instant form of dynamics The front form of dynamics

The coordinate x* then plays the role of "time". If we use such an initial
data surface, P*, together with Q' and Q' become kinematical symmetry
generators. This is one reason why light front dynamics is useful for
certain questions in supersymmetry*. This kind of initial value problem
also has advantages for gauge theories in general (it is possible to solve
all constraints explicitly, and express the whole theory in terms of free
initial data); unfortunately, there are drawbacks, since it is difficult to
deal with the boundary conditions at x* — e in a rigourous way. Light
front dynamics is especially useful for theories that are formulated in
first quantized language (i.e. strings). | will not use the light front
formulation in these lectures, but you, should know that it is there for you
to use.

It is perhaps worth noting that in the non-relativistic limit, when the
light cone "collapses outwards”" and merges into the “instant" initial data
surface, all the supersymmetry generators become kinematical. Super-
symmetry becomes like an ordinary internal symmetry.

*L. Brink, O. Lindgren and B.E.W. Nilsson, N=4 Yang-Mills Theory on the Light Cone, Nucl.
Phys. B212 (1983) 401.

4.2 The Wess-Zumino model.

Now it is time to present an actual example of a supersymmetric action.
Looking through the list of representations on page 23, it is clear that the
easiest example must be a model which contain two scalar states, and two
spin 1/2 states (spin up and spin down). For this we need an action which
contains one complex scalar field, and one two-component spinor (or one
Majorana spinor, if we work in the four component formalism). In the free,
massless case, the action will be

Sy =] AOA 1A 9, 0 )

(I will be careless about surface terms throughout this chapter). It is
rather simple to see that there actually is a symmetry here, which
connects bosons and fermions, namely

SA=-g A 5= -2i 9ME,. AL (2
The action is invariant, up to a surface term, under this transformation:
8Sg=J3,(FA 0y 92A-e, MR 32A + A d3g,0R). ®)

Moreover, the transformations do close to the supersymmetry algebra,
provided that we use the equations of motion for the spinor field:

(8, 8,]A=2I A E XA - (162)

“)
[3,, 8] AB=2ie,A dp0 €A AB + A A 04 A0 - (162).

This is so far so good, but not yet exciting, since free theories always
have a large number of symmetries "that are completely uninteresfing,
because they are not shared by any interaction terms. A symmetry is of
interest only if it'can be realized in some model with a non-trivial
S-matrix. It is not particularly easy to find interaction terms which
exhibit supersymmetry, since the very form of the supersymmetry
transformations has to change in the interacting theory (that is to say,
unless we take the approach of the next chapter, and add suitable auxiliary
fields). It is not particularly hard, either, provided you are convinced that
it is possible. Suppose we look for a renormalizable interaction. Then,
there can be no derivatives in the interaction terms, which means that
there will be no scalar field momenta in the canonical supercharges. This
means that the transformation of the scalar field will be the same in both
the free and the interacting model. Experimenting a bit, you find that the
action
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S=S,- | g?A2A2 + 1N2g(AA, WA+ ANAR,) 5)
is invariant, up to surface terms, under the transformation

5A =-gyMA BMA = - 2 AR, A + V2geh A2, (6)

These transformations close to the supersymmetry algebra provided that .

you use the equations of motion that follow from the action (5). This
model certainly appears to have a non-trivial S-matrix (assuming it has an
S-matrix at all, which, of course, might be disputed by a constructive
field theorist). We will study it in detail later. It exhibits already what,
perhaps, is the most interesting property of supersymmetric field
theories, namely some rather remarkable cancellations among ultra violet
divergent Feynman diagrams. It is called the Wess-Zumino model, because
it was first studied by Wess and Zumino, in a paper which touched off an
explosion of interest in the subject”.

Actually, the way in which | constructed the action for the Wess-Zumino
model here is much inferior to the superspace method that | will describe
in the next chapter. The latter method has its limitations, though, in that
it is not applicable to all possible models. The method used here, clumsy
as it is, has the advantage that it always works.

* J. Wess and B. Zumino, Supergauge Transformations in Four Dimensions, Nucl. Phys. 708
(1974) 477.
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4.3 Supersymmetric Yang-Milis theories.

4.3.1 All possible N=1 models.

Now we turn to supersymmetric gauge theories with maximum helicity 1°.
According to the group theoretical analysis, there ought to be four models
of this kind, with N = 1,2,3 and 4 supersymmetries respectively. However,
since a field theory always has a CPT self conjugate spectrum, we see
from the table on page 25 that the N=3 model has the same particle
content as the N=4 model, so these two ought to be identical when
considered as field theories.

Begin by looking for the N=1 model. First we write down an action
containing massless spin 1 and 1/2 fields, working in four component
formalism for a change, because we want to keep the dimension of space
time arbitrary for the time being. Since the supersymmetry commutes
with the internal colour symmetry, it is clear that the spinor field has to
transform under the same (i.e. the adjoint) representation of the colour
group as the vector field does. So, the action is

S=] - 14 FrgpFrab 4 i Afy-DAf 1)
where r,s,t... are colour indices and
F'ap = 0,Ay - 0,AT; + frstAs Aty

e
D" = 3 A7 - frStAsAl,

If this action .is to be supersymmetric, there is almost no choice
involved in the form of the transformations. On dimensional grounds, they
have to be

AT, = Qe Y A" - iMfye M= y,,FraPe. &)
Up to a surface term, it turns out that the action transforms under (3) into

[ sty a8 Byant - Iry,as Ale) (4)
So the expression inside the brackets has to vanish (both terms must
vanish separately) if the action is to be supersymmetric. But this happens
in precisely four cases. Suppose first that the dimension of space-time is

four. Since the f'St's are totally antisymmetric, we see from the Fierz

*L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys.
B121(1977) 77.
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identity on page12 that (4) is indeed identically zero, provided the spinors
are chosen to obey the Majorana condition. But this Fierz identity is also
true in D=3,6 and 10, provided the spinors are chosen to be Majorana, Weyl,
and Majorana-Weyl, respectively. For all other choices of D, it is false.
Hence, we conclude that an N=1 supersymmetric Yang-Mills model, with
the above action, exists in precisely these dimensions.

" On can of course check that the transformations (3) close to the
supersymmetry algebra, provided 4that the equations of motion hold.
Actually, this is true only up to gauge transformations; but that is enough.

Let us count the degrees of freedom in the action for the cases that it
is supersymmetric. The vector field has 2x(D-2) degrees of freedom (the
factor of 2 follows from the fact that the vector field obeys a second
order differential equation). The spinor field has 202 complex components
when D is even, and 2 components in D=3. The Majorana condition restricts
the number of independent degrees of freedom with a factor of 2, and so
does the Weyl condition. Hence there are 2, 4, 8 and 16 real degrees of
freedom in the spinor field in D=3, 4, 6 and 10, respectively. So we see
that the numbers match, and also that this happens only for special
choices of D. :

This counting is interesting from another point of view, since 4, 8 and
16 are precisely the number of degrees of freedom that we expect from an
N-extended supermuitiplet with maximum helicity 1 in four dimensions,
when N=1, 2 and 4, respectively. This suggests that there is a direct
connection between (say) the existence of a super Yang-Mills model in 10
dimensions and the N=4 Yang-Mills model in 4 dimensions. This is in fact
so, as we will see in more detail in the next section.
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4.3.2 Dimensional reduction and the N=4 model.

To see how the N=4 model is hidden inside the N=1 ten dimensional model,

we start out by declaring that nothing depends on the superfluous
dimensions:

Ap(x) = A (x0,x1,x2,x3,0,...,0) 1)

and similarly for the spinor field. (A,B,... denotes ten dimensional tensor
indices, in this section only.) This condition explicitly breaks the SO(1,5)
symmetry down to SO(1,3) x SO(6). SO(6), which is locally isomorphic to
SU(4), is precisely the internal symmetry which is allowed into the N=4
supersymmetry algebra by the theorem of Haag, Lopuszanski and Sohnius.

Since SO(1,9) is no longer with us, we may as well give new names to
six of the components of the vector potential. This will be done with some
cleverness, as follows:

Ap=A,  A=0,123

)
Pia= IN2(A 3 +iA,g) 1i=1,23 ok =172 MM g = (g4)

The ¢ 's are scalars under SO(1,3) and transform as a sixplet under SU(4).
There are six of them, which is just right for the N=4 model in" four
dimensions. To take the spinor apart, we choose a suitable representation
of the ten dimensional gamma-matrites (denoted by TI'; y will be reserved
for four dimensional gamma matrices):

M=pxi A=0,1,23

]

) i 0 | (3)
Il = y5 x (° ¢ ) ij=1,234 c,o=ox( ‘,
Piy o

Iy

where the p's are antisymmetric SU(4) matrices and C,, is the ten

dimensional charge conjugation matrix. In this representation, a ten
dimensional Majorana-Weyl spinor assumes the form

A= . F=CH)T (4)

where the SU(4) index i runs from one to four, and y'(%;) is a four

dimensional Weyl (anti-Weyl) spinor. There are four of each; again the
right number for the N=4 model.
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All that remains to do is to insert the vector and spinor fields, so
labelled, into the ten dimensional Lagrangian density. The result is:

£ = - 1/4F" ,F™ + 1/2D ", D% & ix'y Dy’ -
-irafrsy i'i x* 0% - 1 X5 o) ®)
- 1At @3 gl W @Uil @K

This is indeed the Lagrangian density of the N=4 supersymmetric
Yang-Mills model. You can check the N=4 supersymmetry by relabelling the
ten dimensional formulae for the supersymmetry transformations, in the
same manner as | did for the action.

This model turns out to have some quite amazing properties; for
instance, its B-function vanishes, at least perturbatively, which means
that the scale invariance of the classical model survives quantum
corrections. Nevertheless, there is a scale available in the model. As you
can see, the scalar potential does not have a unique minimum; rather, it
vansishes along “vacuum valleys" in the space of values for the scalar
fields. Hence the vacuum expectation values of the scalars might serve as
a scale in the quantum theory. )
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4.4 Other models.

We have seen how to construct interacting field theories corresponding to
all representations of supersymmetry with maximum helicity one (the N=2
model can be obtained by dimensional reduction of the six dimensional
model). In the list on page 23, only the N=2 model with maximum spin one
half - called the hypermultiplet - is missing. Actually, it so happens that
no renormalizable interacting model of this type exists. Interacting
models with maximum helicity three halves do not exist at all*, and
bringing in helicity two (the graviton) is something | will consistently
avoid, until | come to chapter 8.

Of course, many more models can be obtained by coupling different
models together. For instance, the hypermultiplet can be coupled to the
N=2 Yang-Mills model. The result is precisely the N=4 model, possibly
modified by - say - the inclusion of a mass term for the hypermultiplet. A
supersymmetric version of QED can be obtained by coupling the
Wess-Zumino multiplet to a vector multiplet, and so on. On the other hand,
it is impossible to assign the electron and the photon to the same
supermultiplet, since they differ in their internal quantum numbers.

The latter remark is rather serious from the point of view of
phenomenology. The world is clearly not supersymmetric, since particles
in the real world have different masses. However, one might hope that the
observed particles could be unified in the framework of spontaneously
broken supersymmetry, where mass differences will develop.
Unfortunately, spontaneous breakdown of supersymmetry will not change
internal quantum numbers, and when one scans the list of observed
particles one realizes that their quantum numbers are such that no two
observed particles can be "superpartners” of each other. | will show later
that it is nevertheless possible to make a case for supersymmetry in
phenomenology. But this will then force you to postulate the existence of a
new, hitherto unobserved, superpartner for every existing particle, and
then to invent explanations for why they have not been observed.

These unobserved superpartners go under names such as photinos,
gluinos, squarks, sneutrinos, shiggses and what nots. On the basis of this,
you may be tempted to formulate a comment on the amount of @stethic
sense that has gone into this business so far.

For extended supersymmetry, an additional problem appears . with
regard to phenomenology: If the helicity 1/2 fermions sit in the same
supermultiplet as those with helicity -1/2, then both kinds of fermions
must have the same internal quantum numbers. But this is not true for the
fermions in the standard model.

* Anders Bengtsson, Spin, Supersymmetry and Interacting Field Theories, PhD thesis, Goteborg
1984.
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5. SUPERSPACE. .

Superspace - an invention due to Salam and Strathdee® - is a space, some
of whose dimensions are spanned by anti-commuting numbers. It can be
regarded as just a clever book-keeping device, which enables one to write
down supersymmetric actions without effort, and then to compute
Feynman diagrams in a very efficient manner. It has its limitations,
though; for reasons which (I think) are poorly understood, it works
smoothly mostly for N=1 supersymmetry in four dimensions, and in
dimensions lower than that. It could be that there is more to the story.
Time will tell. The subject is highly developed technically, and there are a
number of good reviews**. | will consciously try to avoid to sound like
these reviews, because what they do | can not do better.

5.1 Grassman numbers and all that.

| have used anti-commuting numbers here and there already, and now it is
time to formalize them a little bit. A Grassman algebra with N generators
(N can be infinite, if you like) is an associative algebra with a unit, over
real or complex numbers, generated by N quantities which obey

&g + §&=0 ()

Any further relation among the generators is a consequence of eq. (1). Now
the rule is this: Take anything that you can do with real numbers, like
integration, say, and try to generalize it to Grassman numbers. Then you
call the result "super-whatever"; superintegration, in this case.

Let us begin by writing down the most general member of a Grassman
algebra:

z=Yay &k - @

where the coefficients ajj are real (or complex) numbers. This is called

a supernumber; the first term, which is an ordinary number, is called its
body, and the rest is called its soul. Those terms which contain an even
number of generators are called the even part; it has "Grassman parity 0",
and commutes with everything. The rest of the supernumber is its odd
part; it has "Grassman parity 1" and it anticommutes with every other
Grassman odd number. Superaddition and supersubtraction are defined in

* A.Salam and J. Strathdee, Supergauge Transformations in Four Dimensions, Nucl. Phys. B76
(1974) 477.
**J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton U.P., 1983.
M. Sohnius, Introducing Supersymmetry, Phys. Rep. 128 (1985) 39.
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the obvious way. As for multiplication, you should note that - as long as N

is finite, which is the case which we will deal with below - any

supernumber with vanishing body is nilpotent, i.e. you can find an integer n

such that z" = 0. Division does not generalize so well; the inverse of a

supernumber exists - and is then unique - if and only if its body is

non-zero (because one cannot define the inverse of a nilpotent quantity).
The complex conjugate of a product is defined as

(8,8 = &5 &y @)

Let us now turn to superanalysis. Differentiation is straightforward, of
course: . .

d
FE=1 (4)

.

Taylor expansions are particularly easy, and involve just two terms (or a
finite number, if you expand in séveral variables):

f(§)=a+bg ©)

Integration is more tricky. It is defined formally, as a linear functional
which has pothing to do with measure theory. You should not sniff at it,
though; it turns out to be very useful. Here is the definition:

Jde (a+bE)=alde 1 + bdeE=b (6)

There are no endpoints. We are not integrating from one number to another,
we just have this definition. (Actually, ditferentiating and integrating
yields the same result.) Experimenting a bit, you see that we can define a
delta-function which obeys :

8(-8)=8-§ 8(-&) =-5(&) @)

Multiple integrals are defined in the obvious way. Note that the dg;'s
anticommute with each other.

You may wish to change variables in a superintegral. In an ordinary
integral, you can do this if you know how to compute the Jacobian
determinant. The superdeterminant is called the Berezinian. So we are
looking at matrices of the general form .

my M
A= . m; even, n; odd (8)
Nz My
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A sensible definition of a superdeterminant should guarantee that
Ber AB = Ber A Ber B (9)
It turns out that this demaﬁd is obeyed by
Ber A = Det A (Det (D - CA"'B))"! . (10)

(For a matrix made out of ordinary numbers, the same formula applies
provided that the last factor is ralsed to the power +1).
The supertrace is defined as

STrA=Trmy-Trm,. (11)

The minus sign is there to guarantge that the supertrace of a commutator
always vanishes. The Berezinian can then be expressed in terms of the
supertrace as

Ber A = Str(InA) . (12)
This works out as it should, i.e.

BerAB=BereMA+INB+12[InA, InBj+... _ gStr(ln A+ InB) _

(13)
=eStrinA ¢StrinB _ ger A - Ber B.

This is already everything | need for these lectures. As you begin to use
Grassman numbers in calculations, all sort of funny sign errors will
happen. All you need to sort them out is a little bit of care and common
sense. There is much more to “supermathematics”, though. | will mention a
few things very briefly - you can find out more about it in a book written
by Berezin®, who was the pioneer in this field.

First of all, Grassman numbers, and a supersymmetry, occur naturally,
already at the classical level, in gauge theories. It is now understood that
the “correct” phase space of a gauge theory includes ghosts, which are
variables having a Grassman parity opposite to that of the constraints
which define the physical subspace of the system. The point about
extending the phase space with these ghosts is that different ways of
writing the constraints that define the physical subspace turn out to be
equivalent up to canonical transformations in this extended phase space.
Moreover, there is a symmetry, called BRST symmetry, in this phase space,
which is actually a supersymmetry, since it mixes the original phase
space variables with the ghosts, which have the opposite Grassman parity.

* F.A. Berezin, Superanalysis (edited by A.A. Kirillov), Reidel 1987.
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It is not a supersymmetry of the kind to which these lectures are devoted,
though, so | have nothing more to say about the BRST supersymmetry.

The "classical limit" of a quantum theory which contains fermions also
uses Grassman numbers. But this means that we must define infinite
dimensional symplectic supermanifolds carefully (more or less; much less
in practice) before we can study gauge theories, or theories containing
fermions, in depth. The "symplectic" part is easy. It just means that we
have to define Poisson brackets, in the obvious way:

€
{A, B} =A ai(l)"ai B . (14)
The only difference, compared .to the usual case, is that the Possion
bracket is now symmetric, as opposed to anti-symmetric. Again, a little
bit of common sense will enable you to work out all the rest.
Supermanifolds constitute a difficult subject, however. The last word
on things like the topology of supermanifolds is yet to be said, as far as 1
understand. They are defined using "sheafs”, in an algebraic manner. An
ordinary manifold - its topology, differentiable structure, the whole
works - can be defined in terms of the algebras of real valued functions
from subsets of the abstract set that is going to be the manifold, and
homomorphisms of these algebras that arise when one set is a subset of
another. It is said to have dimension n if the algebra of functions at any
given point has n generators - which is just another way of saying that
any function can be expressed as a function of n coordinates. (You can find
out more about this in the book by Penrose and Rindler.) A supermanifold
can be defined rigourously in the same manner. It is said to have dimension
(p.q) it the algebras of functions have p + q generators, of which p take
values among ordinary numbers and q are Grassman valued.
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5.2 Some slrpple superfields.
5.2.1 Some generalities about fields.

Ordinary Minkowski space is the homogeneous space that you get from
the Poincaré group by dividing out the Lorentz group. What this means is
that for any point in Minkowski space, you can find a group, isomorphic to
the Lorentz group, which leaves that point invariant. Moreover, you can go
from any given point to any other point by means of a translation.
Superspace is the homogeneous space that you get from the super Poincaré
group by dividing out the Lorentz group in a similar manner. A general
element of the supertranslation group will be parametrized as

oix-P +ig Q" 50, Q)

The “extra" dimensions, spanned by the @'s, that you get in this way are
"Grassman dimensions”, since they correspond to supertranslations. Since
the latter do not anticommute with each other, flat superspace has
torsion. You can keep these things in the back of your mind, if you want,
but | will introduce superfields in a more pedestrian manner. The
important thing to notice is that the idea is very simple, even if the
details tend to be a bit messy.

So, a superfield should be a function of 'x3, 6, and 6,., and the hope is
that we can find superfields that can be used to describe the models that
we constructed in chapter 4. Suppose we try a scalar superfield. To see
what sits inside it, we perform a Taylor expansion in the 6's:

@(x, 8, 8) = a(x) + 6X,(x) + BAy(x) + 66b, + BOb, +
2

+6V(x)0 + 686y, (x)+ 668)5(x) + 6688C(X)
where .
OL= 60a  GL=0L,=(B)) OV =0AV,, 8¢ 3)

I will use this notation for anti-commuting spinors only.

Wae see that the number of bosonic and fermionic degrees of freedom are
equal, but apart from this it does not look like any of the unitary
representations of the supersymmetry algebra that we studied in chapters
3 and 4.. Before we think about this further, it is useful to think a little
bit about how ordinary fields work, just to remind you that they are hard
to understand, too. So, suppose we want to desribe a massive particle with
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spin 1. It can exist in three different states, so we expect to use a field
with three degrees of freedom. On the other hand, we insist that we should
use a linear, finite dimensional representation of the Lorentz group to
describe it. This is a strange idea to start with, because a finite
dimensional representation of a non-compact group can not be unitary.
Moreover, there are no three diménsional representations of that kind
around. We insist on it anyway, and will say that the massive spin 1 -
particle is described in a “manifestly covariant® manner if we succeed.
The reason why we insist on it is partly a matter of convenience, and
partly philosophical. The point is that, to a mathematician, a tensor is not
a bunch of components that transform in a specific way under changes of
coordinate systems, it is something which exists independently of any
coordinate system. Starting from the "algebraic® way of looking at a
manifold that | sketched in section 5.1, one defines a tangent vector at a
point as a derivation of the algebra of functions at the point, and tensors
of higher valence are then defined in terms of the vectors. One can then
compute what the tensor looks like in any coordinate system, and derive
their transformation properties. The point is that you can run this
definition backwards - once your model is expressed in terms of linear
tensor representations of the Lorentz group, you know that it is
independent of any coordinate system, which, from a philosophical point of
view, is a very important property. Of course, the philosophical motivation
for using superfields is less clear, since we have no very clear
preconceptions about the meaning, if any, of superspace.

Now, the only reasonable candidate for a Lorentz tensor representation
which can describe a massive spin 1-particle is a field A,, transforming
as a vector under the Lorentz group. In order to make contact with the
representation theory of the Poincare group, it is necessary to build an
action for this field. The variational principle will then give us equations
of motion and constraint equations that supply additional conditions on
the degrees of freedom that make up the field. In this particular case, it
turns out that the fourth component - A, - is connected to the spatial

components of the vector field through second class constraints, so there
are only three independent degrees of freedom in the vector field after all.
The lesson that we draw from this is that the representation content of a
field, as far as the Poincaré group is concerned, is determined both by the
tensor character of the field (its "off-shell” properties), and by the action
principle. In general, the number of "off-shell" degrees of freedom is
greater than the number of “on-shell" degrees of freedom. Hence the fact
that our scalar superfield seems to contain far too many degrees of
freedom to describe a supermultiplet is not necessarily a problem. It still
needs some polishing, though, as | will show in the next section.



5.2.2 Chiral supertields.

Let us now try to represent the supersymmetry algebra on the scalar
superfield. We are not yet concerned with unitary representations - that
will come with the action principle - but only with “off-shell”
representations. Notice that the supersymmetry transformations now have
to form a closed algebra without help from the equations of motion, since
we do not have any equations of motion yet. We can write down the
following set of operators, which furnish a linear representation of the
super Poincaré algebra when they act on the scalar superfield:

P, =i2,

Jab = i(Xan 3pe - Xpm I~ 8(a @ ) Eaw - OaOp) Ean) M
Q= -1 pp B

Qu= 3 -i Ipp 0

There are two signs that you should notice here. In the first place, Q and Q
obey the supersymmetry algebra with the sign reversed. This is not a
misstake; the canonical generators that you build from the fields will get
the correct sign in this way. The second is a peculiar "Grassman-sign":

a - -
9a=30: (9a) =-0p ‘ (2

The representation in terms of component fields is determined as
follows:

50 = (€Q - €Q)® = 8a + 851 + 65M, +... 3)

The Lorentz properties of the component fields also work out correctly.

However, we do not yet have an irreducible representation. One way of
getting such a representation is to restrict ® to be real, a property which
is preserved by super Poincaré transformations, and which obviously will
cut down the number of independent fields inside it quite a bit. As it
happens, a real scalar superfield turns out to be suitable for describing
super Yang-Mills theories. There is another way to get an irreducible
representation, however. You notice that the operators D,, D,., defined as

Dp= 9p+i Ipab” Dp= dp +i pn0” (4)
obey

(DoDpl=2i9,s ;  (D.D)={D,D}=(D.Q}=(D,Q}={D.Q}=(D,Q}=0 (5)
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These operators are called covariant derivatives, because they obey
Leibniz' rule, and because the covariant derivative, when applied to a
superfield, results in another superfield, which also supplies a linear
representation of the super Poincaré group (this is a consequence of eq.
(5)). That such covariant derivatives exist in superspace, but not in
Minkowski space, is a consequence of the non-commutativity of the Q's.
The point is that the action of a supertranslation on a general element of
the supertranslation group can take place either from the left or from the

right; the D's then anti-commmute with the Q's as a consequence of group
associativity:

g(x'.0'8) = 6i(eQ+eQ)g(x 08) , 6i(eD+ED)g(x 0,5) = g(x,0.8)ei(EQ+EQ) ;
(ei(eQ+EQ)g)6i(tQ+LQ) - 6i(eQ+2Q) (g6l (£Q+LQ)) ©)
_— - - -
6l((D+D) ¢i(eQ+£Q)g . 6i(eQ+2Q) gi((D+LD)

Anyway, this means that we can impose a condition on the superfield
which preserves its character as a superfield, viz.

By =0 . (7)

A superfield which obeys this condition is called a chiral superfield (or
an antichiral superfield, if you impose D,® = 0), and this is irreducible,
too. .

One can solve the chirality condition, as follows

® = i63 (¥2 A(x) + V26)(x) + 60 F(x) ) (8)

where the exponential function is defined by means of its Taylor expansion
(and the square roots of two have been inserted for later convenience). The
representation content is now reasonably close to the Wess-Zumino
multiplet, and we will see in the next section, when we construct an
action involving such a field, that it gives precisely the Wess-Zumino
multiplet. Since any (interesting) superfield has to contain a spinor, which
has two complex components, and since there must be an equal number of
bosonic components in the superfield, it is anyway clear that this is as
close to the Wess-Zumino multiplet as we can get when we work with
"off-shell” fields. .

One more comment is in order. The condition (7), which guarantees the
irreducibility of the superfield, has no analogue for ordinary Minkowski
space fields. A massive spin 2 field, for instance, is described by a
symmetric tensor, which carries a reducible representation of the Lorentz
group. However, any attempt to separate the trace from the traceless part
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before writing down the action will violate locality, and so any constraint
on the field must come from the action principle itself. For the superfield,
there is no problem; the condition. (7) does constrain the superfield, but
its remaining component fields (A, F and 1) are unconstrained.
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5.2.3 The Wess-Zumino model In superspace.

So how do we define an action directly in superspace ? Since the
supersymmetry algebra is represented linearly on the superfields, it is
clear that polynomials in superfields,. such as

2, 93,... oD ,... (1)

are superfields, too. Moreover, expressions involving only ® are still chiral
superfields. This is already something. Next we notice an important
property of any superfield, namely that its last component - the term in
the Taylor expansion which multiplies 0688 - always transform into a
total derivative under supersymmetry transformations, just like the

“Lagrangian density of a supersymmetric model does. Hence the last

components of the superfields in eq. (1) are suitable candidates for
Lagrangian densities. To pick out these components from the superfields,
we can use Berezin integration, as follows

fdxd‘e (d® + @2+ 2 + ...) _ @)
where
d*0 =d26d28 ; [d%6e0=1, [d2600=1. 3)

Only terms which contain four 8's will survive the integration.

The action looks a little bit funny, because no derivatives are apparent,
but you should remember that there are derivatives hidden inside the
supertield. It is not yet satisfactory, though, because it is obvious from
eq. (8) in the last ‘section that the chiral terms in eq. (2) will contribute
total derivatives to the Lagrangian density only, since the 0080-term in a
chiral superfield is a total derivative. Pondering eq. (8) a bit further, you
realize that, in a chiral superfield, already the 66-term transforms into a
total derivative under supertranslations. Hence we can try the following
action for the Wess-Zumino multiplet, obviously supersymmetric (as long
as surface terms can be ignored, as they can in massive models), real, and
obviously renormalizable, since there are no coupling constants with
positive dimension in units of length (dim [x]=1, dim[8]=1/2):

Jd*xd* Do + (Jd*xd? (1 @2 + g/6 %) +c.C.) (4)
As we will see later, when we discuss quantum perturbation theory in

superspace, the fact that some of the terms in the action involve an
integration over de2 only has very important consequences. For now, let
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me simply evaluate the Berezin integral:

S = Jd*x (- AOA -1 200 + FF + u(2V2AF + 2V2AF - A\ - A1)
- (5)
+ g( AZF - 1N2AAA + AZF - 1N2AML ).

We see that the "extra” scalar field F is an auxiliary variable, which will
give rise to a very simple second class constraint when we analyze the
action: .

F+2V2uA +gA2=0. (6)

Inserting this directly into the action (5), as we are allowed to do, it
becomes: )

S = Jd4x (-AA - i Ao -8u2AA - L (AL + AL ) -
_ o (7)
- g2A2A2 -2V2g(A2A + AA2) - 1N2g (AML + AAL ) )

(The fermion masses equal the boson masses, as they should.) -

But this is precisely the action we studied in the last chapter.
Extracting the supersymmetry transformations that we get for the
component fields, and using eq. (6), we find that

5 =(eQ-eQ)d =

=V2 (- €d ) + V2 8,( -V2 eAF - 2i QAE, A) + 00( -iIV2 EN 90 AR)

(8)
5A =-er F=-iN2 88 950 A0

BMA=- 21 0 E, A-V2eAF = - 200PE, A + 4p eA A + V2g €A A2

Again precisely what we had in the last chapter. We see that it is the
auxiliary field F which ensures that the supersymmetry algebra closes
when the equations of motion do not hold, and also that it enables the
representation to become linear. Dynamically, it is trivial, since it is
connected to the other variables through a second class constraint.

So, what happened ? It is clear that the superspace technique enables
one to write down supersymmetric actions with very little labour
(although it' may become necessary to devote some care to surface terms
in models involving massiess fields). This is already something. The real
worth of the technique will not become apparent until we discuss
superspace perturbation theory, however.
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It is instructive to derive the equations of motion directly in superspace.
So we will vary the action with respect to ®. This is slightly tricky,
however. Consider the kinetic term. Clearly

Sin =Jdxdtesve ¢ 88 -0 @)
P
This is because @ is anti-chiral, and therefore the functional derivative

has to be anti-chiral, too. In order to define the functional derivative
correctly, it is useful to observe first that

- Jd20 = - 1/4 DD + surface term. (10)

Ignoring the surface term, we can therefore write the variation of the
action in the form

3S = [d*xd20 50 ( - 1/4 DD® + 2ud + g/2 ¥?)

ss _ _ , < (11)
80(x,0,0) =" 1/4DD® + 2ud + g2 2.

The term in brackets is anti-chiral, and is indeed the equation of motion
for the superfield. There is another way to say this. Introduce the
following projection operators:

Iy, = - 1 2RDD I, = - 118 DDDD M, = 1/4DJ%ED"
M, + Ty + I, =1 (12)
no=% no=aeo

We can in fact rewrite the action as an integral over the entire
superspace, provided that we allow pon-local operators, as follows:

S = Jd4xd*e d® + Jd*xd?8 (ud2 + g/6 B3) + ... =
= Jdxde Do - 1/aId4xd26Q%flﬁ&(u5+g/s )4 .. = (13)
= [d*xd%e (@0 + w2 (%D—'&"I’ +Q§¢¢) +g/12 (%5&%%%&)) )
If we define

30(x.08) - - 1/4.DD 54(x - x') 5%(8 - 0) (14)
33(x68)

N
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(and similarly for the complex conjugate), we recover precisely the
functional derivative of the action as given in eq. (11). The definition (14)
will be useful later.

Finally, a rule of thumb: Whenever you have a nice book-keeping device
such as superspace available, you should make as much use of it as you
can. Think in terms of superfields, and avoid component fields as much as
possible. (There is another rule of thumb, which says that you should not
be afraid of expanding in components whenever that becomes convenient -
which rule of thumb you should apply depends on the context.)
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5.3 Interlude: Covariant derivatives.

Before we tackle gauge theories in superspace, | would like to insert a
few words on covariant derivatives, torsion, curvature, and all that. | will
be very sketchy; | just want to outline the idea. | will call an operator
acting on an algebra (of functions) a derivative if it obeys Leibnitz' rule,
i.e. if

9, (fg) = 3,1g + 12,9 . (1

where a is some index which | will take to be a vector index (or more
generally a superspace index a,A,A'). Differentiating with respect to some
coordinate gives an example of a derivative, of course, but a general
derivative need not be expressible in that form. In fact, the derivative
operator need not be commutative. The commutator is a derivative also,
however, so | can write '

[9,,3plf = T %3, @

By definition, the object on the right hand side is called the torsion (the
torsion tensor, since a,b,c are vector indices). | have already shown you an
example of a derivative with non-zero ‘torsion, namely the superspace
covariant derivative D,.

Now for covariant derivatives. Suppose there are a second kind of
objects k, I,... on which the derivative can act, and that these object
transform under a structure group of some sort. In general, the object d,k
will not transform in the same way as k does (for instance, 9, might be a
coordinate derivative and the elements of the structure group may be
x-dependent). A derivative V,is called a covariant derivative if V k in fact
does transform in the same way as k. '

In Riemannian geometry, things are slightly more complicated, in that
the covariant derivative is supposed to take tensors into tensors of a
different type, but the definition 1°just gave is appropriate for the much
easier Yang-Mills case. Then you can regard the covariant derivative as
being supplied with additional matrix indices (for the structure group to
act on): /

U A Ki. (3)
These indices are rarely wiitten out explicitly.
In this more general situation, the commutator of two covariant

derivatives takes the form

[VaVplk = (Fap + TtV o)k . (4)



247-

Fap is called the curvature tensor; like the torsion tensor, it is matrix
valued, although | have suppressed the indices. Of course, you are familiar
with such curvature tensors from Yang-Mills theory. It turns out that, for
the covariant derivative that we need for Yang-Mills theory in superspace,
both torsion and curvature are present.

If you write out the statement that

explicitly, you will prove the very important Bianchi identity

ViaFoc) *+ Tfap%Fcja = 0 . | (6)
which must be obeyed by any tensors that aspire to play the roles of
torsion and curvature.

Selecting a suitable basis, one may always write the covariant
derivative in the form

V=0 . V k= (3, + Ak @

where A,, which is a matrix valued function, is called the connection.
Using eq. (7), you can obtain fomnula for the torsion and curvature tensors
which automatically obey the Bianchi identity.

Let me be a little bit more explicit about how things transform under
some element t of the structure group:

k- tk 9k o tak+ad,tk Vk =1tV k
(8)

Fap— tFgpt? Ay A + 1o,
Note also that, at least in the absence of torsion,

Fip=0 Ag=tot! - (9)

There may be several structure groups in the problem. In superspace
gauge theories, for instance, there are both supersymmetry and colour to
take account of. A derivative which is govariant with respect to one of the
structure groups need not be covariant with respect to the others.
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5.4 Gauge theories In superspace.
5.4.1 Supersymmetric QED.
The easiest kind of gauge theories to deal with is, of course, the Abelian
ones, so | will begin with a few words on supersymmetric QED. First we
have to select a suitable kind of superfield for the photon multiplet. A real
scalar one seems like a possible choice, since it contains a vector field:

V(x, 8, 8) = a + 6y + By + 66 + 88D + OAD + 606 + 000A + 6666D (1)

What kind of gauge invariance are we looking for ? Well, the kinetic
term of the action for a "matter” - i.e. Wess-Zumino - multiplet

Jd4xd*e D@ @

is invariant under the rigid transformation ® — e ®, and the only
reasonable local form of such a gauge transformation is

@ — 6iAK) @ (3)
where A is a chiral super field (it has to be a superfield). Then the action
[d*xd%e @ eVo 4)
is gauge invariant, provided that
Vo V+i(A-A). (5)
At first sight, the action (4) looks unpalatable in the extreme, since it
is non-polynomial, but inspection of the gauge transformation (5) shows

that it is possible to set all component fields in V to zero by means of
gauge transformations, excepting A,, D - which will become an auxiliary

field, just like F in the Wess-Zumino model - and A. In this gauge, which is
called the Wess-Zumino gauge, eV becomes a polynomial function, so the
situation is not that bad.
It is easy to construct gauge invariant "field strengts” from V, viz.
W,=DDD,V , W,=DDD,V . 6)

W, is obviously chiral; moreover these objects obey

DW-DW=0 . 7
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When written out in terms of component fields, this identity becomes the
Bianchi identity for F,p.

With the field strengths in hand, it is easy to write down a gauge
invariant action for the vector multiplet. Since W, is chiral, the action
involves an integration over half of superspace only, but it is possible, and
useful, to rewrite it (remembering Sq. (10) on page 44, and ignoring
surface terms) as an integral over the entire superspace:

S = 114 Ja*x{ [d2%6 WW + [dD WW } =
= 14 Jd*x { Jd26 DD(D,VWA) + [d%6 DD(DAVW,) } = ®)

= - Jd*xd*e (D,DAVDADAV + D,D,VDADAV )
If you write this out in terms of component fields, you will find that the
action contains higher derivatives (than two). You can escape this
conclusion by means of redefinitions of the component fields.
Varying with respect to V, we find the equation of motion

DW+DW=0 . &)
Non-Abelian gauge theory can be discussed in the same fashion, but in the

next section | will treat it using much heavier machinery, which will be
good for your education.

5.4.2 Supersymmetric Yang-Mills.

The approach in the last section was the "minimal® one - starting from a
guess about what kinds of superfields one should use, one fiddles out what
the gauge theory has to look like. In this section, we will try a "maximal®
approach - labourious, but instructive. First we collect all the superspace
indices into a single Swedish index a = (a, A, A’). Then we write down
superfields which are to play the role of curvature and torsion tensors, i.e.
they are subject to the Bianchi identity

Via Fag) + Tjag"Fejp =0 (M

where the bracket denotes antisymmetrization of even indices and
symmetrization of odd ones. A priori there are no more restrictions on
these tensors. Of course, supersymmetric Yang-Mills theory does not
contain that many gauge covariant component fields, so we expect to be
able to impose a few additional constraints. A first restriction is
suggested by insisting that the covariant derivative V, should be written
in the form

Vy=(3,+A, Dp+ Ay Dp+Ay). @

(Note that as yet there are no reality conditions implied, so A, and KA. are

independent fields. Also remember that all the fields are matrix valued,
with indices appropriate to the internal symmetry group that we are
gauging.) Eq. (2) leads naturally to constraints on the torsion tensor. The
only non-zero piece of the torsion is assumed to be the unavoidable

Taad=2icppa2. 3)

More constraints are needed. Suppose that, eventually, we want to
couple our supersymmetric Yang-Mills model to a "gauge covariantly
chiral* matter superfield. This suggests a consistency condition

V=0 = [VaoVpl®=Fpg® =0 4)

In fact, we will require that

Fag=Fag=Fan=0. (5)

At the moment, this is simply a suggestion, to be checked for usefulness

(and to be supplemented with reality conditions). In a later section, we
will see that there is a kind of interpretation of these constraints, which
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suggests that more can be said about them, but for the moment we will
proceed to investigate what additional requirements these constraints
imply via the Bianchi identities.

Taking the Swedish index apart into Latin indices, we find that the
following non-zero Bianchi identities remain:

VaFoc+ VeFap + VpFea=0

VaFpc + VoFap + VpFea=0 VaFuc + VeFapt VoFea =0

-VcFas + VgFca =0 VeFag + VgFca=0 (6)
0c:a%Fpg + OpcIFag =0 0ca9Fgq + OgcFag=0

-VoFap + VgFoq + 21 0pc9Fg=0.

The second to last line implies that
Faa =i Capa WA Faa=iCaaaWA: )

The last line then allows us to solve for F, in terms of Fy, and Fup;

looking carefully at this and the other identities, one sees that the general
solution of eqs. (6) is obtained by constraining the spinorial superfield W,

in the following fashion:

VW, =0=V,W, VW-VW=0 . ®)

So the curvature and torsion tensors that | started out with have now
boiled down to W, and W,.. It is clear that we have found a generalization

of the Abelian field strengths from the last section.

However, in order to build an action for supersymmetric Yang-Mills, we
have to figure out what the superspace constraints imply for the gauge
potentials (and also we have to make decisions concerning reality
conditions). From

[Va Val = Fan + Tan®V, 9)
and our choice of constraints, you can see that it is possible to solve for
A, in terms of A, and A,.. This is already something. The condition F,g =

Fag = O implies that the spinorial gauge potentials have the form

A, =e"DyeV Ay =eUDyeV. (10)
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where eV and eV are group elements and scalar superfields. They are called
prepotentials; there are two of them, unlike the single prepotential we had
in the last section. This suggests, correctly, that it should be possible to
set one of them to zero as a partial choice of gauge. To this end, we
examine the gauge symmetries present in the problem. Firstly, we see that

Fya — 6%F, 67X = &' e%eV eV eXel (1)

However, there is an extra gauge symmetry present, which F,, does not
feel at all, namely

eV - aVeld L (12)

where A is chiral and A antichiral (and independent of A, since there are as
yet no reality. conditions). We' can use the gauge symmetry in eq. (11) to
set U = 0 = A,,; there is still some of that gauge symmetry left, since the

gauge fixing is unaffected by gauge transformations of the form (11) when
X is restricted to be chiral. )

Now all that remains to do is to impose a reality condition of some son.
A suitable one is clearly to demand that V should be real. Then we have
indeed recovered a set up which reduces to that in the last section, once

the colour group is chosen to be Abelian. The remaining gauge symmetry is
given by

eV - eirgVelh (13)

(where A is now the complex conjugate of A, because of the reality
condition). The action is given by

S=14Tr]d%d2e WW +cc., (14)

where the trace is over the group matrices, and W, and its complex
conjugate is to be expressed in terms of the prepotential V. '



5.5 Survey of superspaces.

One of the things that should be fairly obvious from the last section is
that it is by no means straightforward, technically, to find superspace
actions. However, as far as N=1 superspace in four dimensional space-time
is concerned - the Wess-Zumino model, supersymmetric Yang-Mills and
supergravity - all problems have been solved already, and the resulting
formalism has proved to be very useful, both when it comes to proving
general theorems and when explicit calculations are to be performed. (I
will show some examples of this in the next chapter.) Of course, models
with extended supersymmetry can be formulated in N=1 superspace, too.
For instance, N=4 super Yang-Mills is described by a N=1 superspace
Yang-Mills model coupled to three chiral superfields. However, it seems
natural to introduce extended superspaces, spanned by N different 6's.

For extended supersymmetry, described in superspaces with N different
6's, the number of component fields in a superfield grows exponentially
with N, and it is not surprising that matters such as choosing the correct
constraints on superspace field strengths do become considerably much
more involved. For N=2 superspace, these matters have nevertheless been
sorted out, but the resulting formalism is very cumbersome. For N>2, it
turns out that something rather surpgsing happens; it has been proven®
that once N>2 - with one exception, which has to do with a model that can
be obtained by dimensional reduction from ten dimensions - it is
impossible to write down an action in terms of N-extended superfields.
Any attempt to impose constraints on the field strengths, in order to get
rid of superfluous degrees of freedom, turns out to "put the theory on
shell"; in other words, the constraints

FUag + Fea=Fuag + Fuga = Fluan =0 1)

say, are equivalent to the equations of motion for N=3 super Yang-Mills.
This means that such superfields can not be used to formulate action
principles. Of course, similar statements can be made for superfields in
space-times with dimension higher than four.

The proofs are based on counting arguments, and deeper reasons for this
phenomenon are not known. There are some suggestive observations, on the
other hand. In some ways, constraints such as those in eq. (1) are
reminiscent of the self-duality condition

*Fap=Fap @

* B.E.W. Nilsson, Off-Shell Fields for the 10-Dimensional Supersymmetric Yang-Mills
Theory, Goteborg preprint 81-6, February 1981.
V.0. Rivelles and J.G. Taylor, Off-Shell No-Go Theorems for Higher Dimensional Super-
symmetries and Supergravities, Phys. Lett. 1218 (1983) 37.
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in pure Yang-Mills theory, in as much as both types of constraints are
algebraic constraints on the field strengths. The self-duality condition
also implies the equations of motion, although it is much stronger. In fact,
the self-dual Yang-Mills equations, also in Euclidean space where it is
non-trivial, can be solved exactly, and they are, in one sense of the word,
integrable, although they can not be put in Hamiltonian form. The latter
property more or less amounts to the statement that they can not be
derived from a reasonable action. (The superspace analogue of the self
duality condition is to set - W,. = 0; provided that we are in Euclidean
space, or that the reality condition is relaxed, W, may still be non-zero.)

The solubility of the self-dual Yang-Mills equations is intimately
related to the fact that they can be obtained as compatibility conditions
for a system of linear equations. It seems far to optimistic to nurture any
hopes about a method which would enable one to construct the general
solution of the full Yang-Mills equations. Nevertheless, there is a linear
system yielding compatibility conditions which are the superspace
constraint equations, and hence - in the N=3 case - the full set of
equations of motion*. It is

AV, Y =0 pAY ,P=0 AV, P =0  (3)

where nA, fi* are commuting spinors. The fact that two commmuting
spinors appear, as "spectral parameters”, rather than just one, makes the
present set up hard to deal with. Nothing much has been achieved in this
direction yet, beyond writing down this linear system.

* E. Witten, An Interpretation of Classical Yang-Mills Theory, Phys. Lett 778 (1978) 394.
J. Avan, Superconformally Covariant Linear System for N=3,4 Supersymmetric Yang-Mills
Theory in Four Dimensions, Phys. Lett. 1908-(1987) 110.
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6. SUPERGRAPHS.

In the last chapter a lot of effort was expended on formalism, but not very
much came out of it. Actually, very much has come out of superspace. The
main application has been to quantum perturbation theory. Moreover, the
very special ultraviolet behaviour which supersymmetric models exhibit
in perturbation theory has always been in the center of interest for the
subject. So this ought to be the most important chapter in these notes.
However, due to my limitations, | will be very brief, and | will avoid
entirely some of the tricky points, such as questions concerning
regularization (these questions are in fact so difficult that a major
misstake was once made by t'Hooft). My aim is simply to show that
superspace methods are useful, and then to mention some of the results
obtained. You can find out more about "supergraphs®”, for instance in
various publications by Grisaru, Siegel and Rocek *, who developed the
superspace Feynman rules into their present form.

6.1 Feynman rules in superspace.

| will confine myself to the Wess-Zumino model, and only the massless
case, for additional simplicity. Remembering the manipulations that | did
at the end section 5.2.3, we can write the action, coupled to a chiral
source J, in either of the forms:

S = [d*xd*0 Do + Jd4xd20 (g/6®3 + 21RdJ) + ... = -
(1

= Jd*xd*8 (B0 + (/1202 + 2929)0Da + (911282 + 2-323)@6 ).

The idea now is to derive the Feynman rules directly in superspace.
Evidently, they will look more or less like the Feynman rules for the
scalar ¢3-theory, except that there will be a few superspace covariant
derivatives hanging around. Goncentrating on the free action, we can
rewrite the path integral in the usual manner as

Z4(J) = [d0d® exp-[(Be + 292000y 2'3'2&’@) =

- o (2
= [dod® exp-f(@ + 232 D‘P,J)@ +23200y) . 1/8%Q JBRJ) =

* M.T. Grisaru, W. Siegel and M. Rocek, Improved Methods for Supergraphs, Nucl. Phys. B159
(1979) 429.
M.T. Grisaru, Four Lectures on Supergraphs, Spring School on Supergravity, Trieste 1981.
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wexpfd 1T @
Since
&%{%ﬁ;) = - 1/4 DD 84(x-x) 54(8 - ©') @)

the propagator becomes .

<T(®(-k,0,,8,) B(k,8,,8,))> = 1/16 DD ﬁ‘g oD @)
where

8,5 = 52(8,-6,)52(8,-6,) = (8,-6,)(8,-6,)(8,-8,)(8,-6,) (5)

(note that Fourier transformations are done for x only, not for the 6's). In
the massive case, a rather more complicated expression results, since
there are ®®-terms in the action.

Explicit calculation yields the following important information, to be
used later:

8128,= =80 3,= 812D 8,,=8,,0D5,,= 8,,0D 8,,=8,,0D 8,,=

= §,,DDD 3,,= 8,,0DD 8, =0

—— (6)
8,,0DDD 8,,= 16 5;,

Da(k8y) 8;5= - Da(-k.8,) 3;,

Now we turn to the interacting case:
7] = 31 Jd*xd2e (—8 -8 —B)+cc)expfIld . (7
V] = exp g/31 Jutxee (82 2y rec)epfad 1)

At this point, | will make a drastic simplification, which will save
myself a lot of time, although it is not quite fair to you. | will ignore all
numerical factors.

Now it is clear that, with every chiral (anti-chiral) vertex, there will
be associated an integral over d26 (d28). It is convenient to rearrange
things a bit, however, before writing down the Feynman rules. There is a
propagator between every pair of vertices, and it turns out to be
convenient to move the covariant derivatives in eq. (4) from the
propagator to the vertices._ Hence with every chiral (anti-chiral) vertex
there will come a factor DD (DD) multiplying every line that leaves the
vertex; one of which will be used to convert the integration to an
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integration over d4e. Similarly, we see from eq. (2) that every external
chiral (anti-chiral) line comes with a factor DD/p (DDA, which will
cancel an additional DD (DD). So, we end up with the following Feynman
rules - with all numerical factors conveniently suppressed - for how to
compute the effective action:

- s
Propagator . # 113
Chirel vertex r
3 3} DD 3 fd*e

Anti-chiral vertex

[ ®

&——DD po—3 Jd*@
For each external chiral (anti-chirel) line, drop a factor DD (DD).

tions:
Integrations v ] o d4p o0 ¢ 5% (zp)
loops ext ext

]

The next section will be devoted to some explicit calculations. The
reason why we compute the effective action, rather than some S-matrix
element, is that the former calculation yields just a number. An S-matrix
element with N legs, on the other hand, is given by an expression which is
a superfield in N different @'s; it can be obtained by functionally
differentiating the effective action with respect to N superfields.

The reason why | do not discuss supersymmetric Yang-Mills models
here is that such a discussion is rather involved; it requires a good grasp
of the background field method (unless one takes recourse to light front
superspace methods).
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6.1.1 Sample calculations.
Now | will show how the Feynman rules work in practice. First a tree

level calculation, which would have served as a check on the
normalization, if | had bothered about numerical factors:

$
¢ —J_— $
This gives
Ja*p,d*p,d*pyd*es(zp) %9 ®(p,.0)0(P,.0)®(py.0) =
= Id‘#d‘pzd"pad?ea‘(zpi)ﬂp‘.e)a(pz.empa.e) : v

Next, a loop diagram:

"
C
o
]

p+q
We get:
fd*pd4qd*e,d%s, ®(-p,8,) DD 812 DD m—1<b(p,92) . @
9 Gy

Using the identities (5) from the previous section, this turns out to be
- [
Ja*pdtadte B(-p.6) ®(p.8) G (psq)?- (3)

The integral over q is logarithmically divergent. But this is amazing; if
we had done the calculation without the superspace technique - starting
from the action in section 4.2 - we would certainly have encountered
quadratic divergencies, from the diagrams

A//\T

\ —-—

_ A— — A
A A _ \‘__,’_
A _ A A A

However, since a fermion loop contributes a minus sign, these quadratic
divergencies come with the opposite sign. At this point, one might recall
an idea from the 30's, which has spent half a century in the dust bin. It
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was once suggested that the divergencies in spinor QED might go away,
once the contributions from the newly discovered scalar mesons were
included, since the meson loops have opposite sign from the electron
loops. That did not work out, of course, but it is precisely this mechanism
which operates in supersymmetric models. The contributions from the
diagrams above are actually included in eq. (3); however, the requirement
of supersymmetry has adjusted their relative strengths in precisely such
a manner that the quadratic divergencies cancel.

There is still a logarithmic divergence, but one might hope that other
supersymmetric models are completely finite, order by order in
perturbation theory. There does in fact exist such models, but for the
moment we ought to regularize the divergence at hand. It is clear that
dimensional regularization is somewhat against the spirit of the problem,
since all the superspace spinor algebra was carried out in four dimensions.
All | have to say about this is that the issue is tangled, and that | am
certainly not the person to say something about it.

While we are at it, we might as well go on to two loops. There is
actually only one diagram to compute (this would not be true in the
massive model, where there are ®-®-propagators to take account of as
well). This, if anything, ought to convince you about the power of
supergraphs, since the number of component diagrams that "sit inside” the
single supergraph is rather large. Anyway, the diagram is

P+
€« ___ €
= Jd*pd*qdkd*e,d*6,d*s,d‘e, &(-p,6,)DD 5‘% DD DD ﬁé% DD x o
Q-
x DD 824 DD 823 _814_o(p,6,) .

9T (i (prqp?

By means of partial integrations and eq. (6) from the previous section, we
can manipulate this expression as follows:
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1\

- - = |
... = [d*pdqd*kd*e,d*s,d‘e,d*s, (-p,8,)DD 52‘1% DDf2x

&«
834 pD 023 _514 =
x DD o DD(x.qp(M)z‘b(p'e‘) -

— a byt
= Jd*pdqd*id*e,ds, B(-p.8,)DD ﬁ% DD}zDD 821 DD x
4 _ :
X (k+q)* (p+q): DP.8y) = ®)
= Jd*pd4qd*kde,d*s, &(-p.e,) .ﬁz‘l% DD DD DD DD i% x
L1
X k(k+q)? (p+a)2®(P.01) =
- 1 I
= Jd*pd4qdkd?e O(-p.8) qtk2{k+q)2 (p+aR ®(P.6) -

This easy- calculation automatically sums all the component Feynman
diagrams that contribute to the two point function at two loops. There is
more to superspace perturbation theory than mere calculational
convenience, however; as | will discuss in the next section.



-61-
6.2 Non-renormalization theorems.

it you have followed the calculations in the previous section, you will
believe the central theorem of superspace perturbation theory, which is
that the effective action I'is an expression of the form

= Id“x, ...d‘de‘e G(Xy,...,Xy) X (Polynomial in the fields and their derivatives) (1)

What matters here is the way in which the 6's appear. The theorem says
that eqs. (6) of sect. 6.1, together with partial integrations, are enough to
ensure that T' always takes the form of an integral over a single 6, and
always an integral over the entire superspace - as opposed to the chiral
subspace - and moreover that the only 8-dependence in the integrand
comes from the external fields. A number of striking conclusions about
how supersymmetric models (in four dimensions - some of the conclusions
are invalid in, say, two dimensions, where superspace works somewhat
differently) behave in perturbation theory follow immediately:

1. All vacuum bubbles vanish identically. This follows since they
contain no external fields, and hence no 6's in the integrand, so that they
are killed by the integration over 8 It means that the energy density of the

physical vacuum is zero, as compared with the bare vacuum, while it is -

naively, at least - minus infinity in generic models. This is not quite the
same thing as saying that there is no energy difference between the
physical and the bare vacua; however, it turns out that the level shift is
indeed zero, perturbatively, provided that there are at least two
supersymmetries in the model®.

2. Chiral terms in the superspace action - i.e. terms which involve an
integration over d26 only - will receive no quantum corrections. This has
important consequences. Consider the' action for the Wess-Zumino model
as an example:

Jd*xd*0 D + (Jd*xd20 (1 d2 + g6 9%) +c.c.). 2)

One would normally expect three independent renormalizations to be
necessecary for this model:

®y =220 90 =249 My =Z,m (3)

However, the non-renormalization theorem just mentioned implies that

%27, =1 2Z_=1. 4)

m

* 1. Bengtsson and O.Lindgren, Extended Super.symmetry and the Vacuum, Phys. Lett. 1278
(1983) 65.
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Hence only one independent renormalization constant is needed for the
model. (This is of course reminiscent of Yang-Mills theory, as
renormalized using the background field method.) Note that this means
that the B-function of the model can be computed by computing the
two-point function, so that the more elaborate calculation of the three
point function can - for this purpose - be avoided.

3. Since dim [d46] = 2, simple power counting leads to the conclusion
that there will be at most logarithmic divergencies in perturbation theory,
provided that there are at most quadratic divergencies among the
component diagrams. One would expect even more dramatic cancellations
of divergencies among the component diagrams in models with extended
supersymmetry, since then there are "more 6's"; however, since extended
superspace does not work smoothly, it was for quite some time an open
question whether there indeed exists a model without any divergencies in
perturbation theory. | will say a few words about this in the next section.

4. Provided that supersymmetry is unbroken at the tree level, it will
not be spontaneously broken in perturbation theory either. Of course, this
very important conclusion can not be obvious unless you know what the
conditions for spontaneous breakdown of supersymmetry are, and | have
not told you that, so | just ask you to believe this statement. (A good place
to learn about this topic is two papers by Witten*.)

These conclusions are clearly remarkable; they are also enough to
provide some grounds for belief in the relevance of supersymmetry for
particle physics. | will spend a few words on this presently.

* E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B185 (1981) 513.
E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B202 (1982) 253.
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6.2.1 Finite models.

Returning to point 3 of the last section, it is clear that the mechanism for
removing divergencies in perturbatioh theory that we uncovered - any
Feynman diagram contains a superspace measure having a certain
dimension of length - will work only if the coupling constant of the model
is dimensionless; it will be quite helpless in the face of gravity, although
it took some time before this point was understood. The best candidate for
a finite model should be the N=4 supersymmetric Yang-Mills model. It has
been checked by explicit calculation that this model is indeed finite (in
the ultraviolet - infrared- divergencies are another matter) up to the three
loop level. A number of different proofs - using light front superspace”,
N=2 superspace, and consideration of anomalies respectively - that this
property holds to all orders have also been published. Unfortunately, there
are weak points in all of these proofs - points which are rarely discussed
in the papers which give the proofs - which means that it is difficult for a
non-expert to tell whether the result actually has been proven. However,
at least the light front proof has stood up to later scrutiny*®, and the
following statements*** are hardly in doubt.

The N=4 model is finite order by order in perturbation theory. You can
regard the N=4 model as an N=2 supersymmetric Yang-Mills model coupled
to an N=2 hypermultiplet in a specific way, and it turns out to be possible
to change the way in which the hypermultiplet couples to the Yang-Mills
multiplet in certain ways, without disturbing finiteness, so that finite
models having N=2 supersymmetry only result. Moreover it turns out to be
possible to add certain "soft" terms (not necessarily supersymmetric), i.e.
mass terms and terms cubic in the scalar fields, in such a way that
finiteness is preserved.

Note that perturbative finiteness of a quantum field theory implies
that its B-function is zero, perturbatively. For a Yang-Mills model, this
means that the conformal symmetry of the classical action is preserved
by quantum corrections.

One can turn the argument around: Starting out with a fairly general
gauge theory containing spinor and scalar fields, and demanding that
perturbative divergencies should cancel, one finds that the model has to be
supersymmetric up to possible "soft" terms. The same conclusion follows,
again in a large class of models, from the weaker requirement that all

* S. Mandelstam, Light-Cone Superspace and the Ultraviolet Finiteness of tighe N=4 Model,
Nucl.  Phys. B213 (1983) 149.
L. Brink, O. Lindgren and B.E.W. Nilsson, The Ultraviolet Finiteness of the N=4 Yang-Mills
Theory, Phys. Lett. 1238 (1983) 323.

**J.C. Taylor and H.C. Lee, The Light-Cone Gauge and Finiteness of the N=4 Supersymmetric
Theory, Phys. Lett. 1858 (1987) 363.

***P.C. West, Supersymmetry and Finiteness, Shelter Island II, June 1983.
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again in a large class of models, from the weaker requirement that all
quadratic divergencies, caused by the scalars, should cancel.

* N.G. Deshpande, R.J. Johnson and E. Ma, Does the Cancellation of Quadratic Divergencies

Imply Supersymmetry ?, Phys. Rev. D29 (1984) 2851.
W. Lucha and H. Neufeld, Finite Quantum Field Theories, Phys. Rev. D34 (1986) 1089.



i -68-
6.3 On the absence of quadratic divergencies.

(I do not fully understand the following argument, nor am | completely
sure that it can be understood.)

The standard model predicts that there exists something which has
never been observed: Fundamental scalar particles. These are usually
thought to have masses below 1 TeV, say; otherwise their couplings have
to be so strong that perturbation theory breaks down, which is at least
undesirable from the point of view of the physicist. Now 1 TeV is a very
low energy indeed compared to the Planck energy, which is often - very
glibly - thought to be the "next” energy scale in Nature. Therefore an
explanation for the lightness of these scalars - the Higgses - is being
sought for.

Renormalized quantum field theory can not predict these masses, since
the value of the physical masses age free input parameters in such a
theory. However, from a physical point of view, it seems to make a certain
amount of sense to regard the bare masses as input parameters. The theory
then contains a parameter A which "regulates” the theory. The bare
parameters depend on A in a very precise way, so that all physical
parameters come out to be polynomials in A-', which means that physical
quantities® do not depend on A when the limit A — « is taken. This is what
it means for a theory to be renormalizable. An intuitively appealing
choice of A is to say that all momentum integrals should be "cut off" at
some energy scale where the model is assumed to have lost its validity,
and a different theory takes over. So we assume that the cut off (A)is in
fact the Planck energy. .

Now it is considered "natural" to demand that the physical masses are
not all that sensitive to what values one chooses for the bare masses.
However, this requirement is inconsistent with the presence of quadratic
divergencies in the perturbation expansion. Suppose that the input
parameters are the dimensionless quantities

g =my/A 1)

and that the quantum corrections to the masses take the form

m? = my2 + A2g,2 . (2)
Then we find that
12 = m2/AZ - g,2. (3)

If the physical mass m = 1 TeV and A = 10'® TeV, this means that p, has to
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be adjusted to within one part to the 1032 in order to give the correct
value of m, which is clearly unnatural from the point of view adopted. A
logarithmic dependence on A is not nearly as bad, and therefore we
conclude that a "natural” renormalizable theory has only logarithmic
divergencies in its perturbation expansion.

Two different ways to avoid quadratic divergencies in the Higgs sector
of the standard model have been suggested. The first starts with the
observation that scalar particles - mesons - occur in QCD as well, but
there they are not accompanied by quadratic divvergencies since they are
bound states of quarks. So the suggestion is that the Higgs particle is
actually a bound state of fermions, which is kept together by strong
"technicolour" forces. The other way starts with the observation that
fundamental scalars are present in supersymmetric models, but again
without quadratic divergencies, since supersymmetry ensures that the
latter cancel out. :

There is a slightly different line of argument which ‘leads to the
conclusion that supersymmetry might explain why very light - as
compared to the Planck mass - fundamental scalars exist. Usually, an
explanation of the smallness of some mass amounts to finding a symmetry
which requires that the mass is exactly zero, and then an argument for
why this symmetry is very softly broken. For fermions, chiral symmetry
might do, but no ordinary symmetry is known to require a scalar mass to
vanish. Supersymmetry gets around this by requiring that the scalar mass
should equal the mass of the fermion. The mass of the scalar can then
become non-zero only when supersymmetry breaks down. However, since
spontaneous breakdown of supersymmetry does not occur in perturbation
theory, it has to have a non-perturbative origin (unless it happens already
at the tree level, of course). So a suggested explanation for the small
mass of the Higgs particle is that the Higgs particle is related to a
massless fermion by a supersymmetry, which is broken by a very weak
non-perturbative effect.

You don't have to believe this if you don't want to.
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7. SUPERSYMMETRIC QUANTUM MECHANICS.*

* P. Salomonson and J.W. van Holten, Fermionic Coordinates and Supersymmetry in Quantum
Mechanics, Nucl. Phys. B196 (1982) 509.

8. SUPERGRAVITY.

Ask Bengt.
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