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l.INTRODUCION

Supersymmetry has been a subject of ¡nlense ¡ntsr€st among particle
physicists since 1974 or thereabouts. So I cannot cover lhe whole subject

in these leclures. lt is difficult to make seleclions however, because
there is no experimental evidence whatsoever that supersymmetry ¡s

relevant lor particle physics. Hence I do not know which parts of the
subject that may ba important in lhe future. I will simply choose some
lopics according to lancy.

You are supposed lo know whal a symmetry is, and also that the
properties of a symmetry - apart lrom some global details - are
succinctly summarized by a Lie algebra, i.e. a vector space equipped with a
bilinear, antisymmetric brackel operation obeying the Jacobi identity.
Schematically,

[E,EI=E, (1)

where E is a generic symbol for the elemenls ol the vector space. We will
call lhem even elements, and lhen introduce odd elements O which obey
what is called a super-Lie algebra, ol the generic form

[E,El=E

IE,Ol=O (2)

{o,o}=E

The curly bracket operalion is poslulated lo be bilinear and symmetric - if

[ ,l is a commutator, { ,} is an anti-commutator - and one requires a
generalization of the Jacobi identity, namely

[[E1,E2],E31 + [[E3,E1l,E2l+ [[E2,83],E11= 0

(3)

[{o1,o2},E] + {[E,o1],o2] - {[o2,E],o1] = 0

(and a lew more, which should be obvious - eg. (3) is fairly obvious too,
once you learn how to keep track ol the sign; there is one each time you
inlerchange the order ol two odd elements).

As you know, all compact Lie algebras were classified by Cartan, and you

now learn that all compact super-Lie algebras were classilied by Kac'. We
will not go into that, since we are interested in a very parlicular kind of
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supersymmetry. Remember that the Hamiltonian is a symmelry generator
lor all isolated physical syst€ms, and moraover that it is bounded from
below in healthy models. This suggests lhal one should try lo express it as
a sum of squares, which is achieved il lhere is a supersymmetry generalor
Q in lhe model, such that

{Q,O} = H (4)

It is such sup€rsymmstries that I .will talk about. They were firsl
considered by Golland and Likthman in 1971'.

It is nol too hard to give an example ol a quantum mechanical model
which has this properly. Consider a non-relativistic particle of spin le,
moving on a line. The wave lunction will be a two component spinor V. For
Q, we simply make a guess, and then we will define the Hamiltonian as +tf
d.So: L

Q=u2(r1p+r.W(x)) (5)

where p = -¡h * , W(x) is some arbitrary function and the r, are the Pauli

matrices. We lind that

H=1/z(frlf*h..H) (6)

lf we look closCr, we find lhat lhere actually ars two supersymmetry
gensralors;

Qr=t/2(r1P+tW)

Q2= u2 (r2p - r,W )

obey the algebra

{Q¡,Q¡} = õ¡¡H

lH,oJ = 0.

So now we have a simple quantum mechanical model which has N=2 super-
symmelry, of the kind we wanted. lt has some quite interesting
properlies, but lor now it will be enough lo makg a single remark: One
could change the coefficients in the Hamiltonian withoul deslroying its

'Y.4. Gol'land and E.P. L¡kklhman. Exlension ol the Algebra ol Po¡ncaré Group Generalors and
V¡olat¡on ol P lnvariance, JETP Letl. l? (1971) 323.

-1

(7)

(8)

'V.G. Kac, A Sketch of Lio Superalgebra Theory, Comm. Malh. Phys.5Íl (1977) 31.
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positivity. but then sup€rsymmetry would be lost - hence supersymmetric
i-lamiltonians aro very special. Since this is so, one can study

supersymmetry lor various reasons:
1. supersymmslric quanlum lield theories may be so special lhat one can

conslrucl them - this would be interesting in the same ssnss that two-

dimensional quantum lield theories are interesting, as toy models.

2. The mere lact that a theory admits a sup€rsymmetric extension may

allow conclusions lo be drawn, just as one can prove theorems about real

functions by going out in complex plane.

3. There may be very special physical systems ' in statistical physics'

say - which exhibit supersymmetry.
4. lf there is a unilied lield theory, it is presumably very special. Per-

haps it is supersymmetric.
2 and 3 have been justilied already (the most dramatic instance ol the

lormer is an alternative prool ol the positive onergy conjecture in general

relativily), while l and 4 remainrhopes. Anyway, ws have seen that a
supersymmetric model exist. However, in particle physics we want our
models lo be Poincaré invarianl, and this means that the Hamiltonian H =
Po is part ol a lour vector. As a result, somo extra cleverness has to go

into the construction of the supersymmetry algebra. lt is necessary to

decide how the supersymmetry generator is to transform under the
Poincaré group. Eq. (4) is loo simple; a suitable substitute is in fact

{o",õà} = z(yaPlab (9)

Here Q, is a spinor with suitable properties, and the I is a gamma-

matrix.
You do not have lo learn much mathematics to understand an average

paper on supersymmetry, but there are some things you have to learn.
Spinors, and gamma-matrices, come first.

2. SP|NORS.

2.1 Splnors ln lourdlmenslonal space-tl4e.

2.1.1 Geometrlc theory of splnors.

You are supposed to know what vectors, and lsnsors, are. Spinors are
similar in some respecls, but lhey are very dillerent in olhers (and they
do not exist on an arbitrary manilold - to admit a "spinor structure" is a
non-trivial property lor a manifold). Their detailed properties depend very
much on the dimension and signatuie ol the space. For this reason I will
lirst describe how they work in a four-dimensional space-time, and then
menl¡on only brielly what happens.elsewhere. The standard treatise on
spinors in space-time is the book by Penrose and Rindler'.

We begin by looking at the sky. We observe the celestial sphere. A little
lhought will convince you thal we are looking out along lhe light cone
lrom the point P, and that all the stars can be regarded as laying at some
fixed distance d from P, as lar as the visual impression is concerned. We

can draw a picture/ of the situation, with one space dimension suppressed,
as follows (actually, spinors in a three-dimensional space-time are
similar in some respects to those in four, so you can take the picture to be

accurale and change some of the words, il you like - I leave thal as an

exercise).

crle¡li¡l
rphcro Plrnr of simult:neitg

Light n9

Suppressing one more dimension lor clarity, and performing a Lorentz

boost, the plane ol simultaneity - i.e. in this contexl the location of the

celeslial sphere on the light cone - changes as shown in the second ligure.

A little thought will convince you that this amounts to a projective trans-

lormalion of the sphere. So do rotalions, obviously. ln fact, there is a

one-to-one correspondence between Lorentz transformations in spacetime

'R. Penrose and W. R¡ndler, Spinors & Space-Time, Vol. I' Cambddge U.P. 1984.
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and project¡ve lransformalions of the sphere. Now if we think of the
celestial sphere as the Riemann sphere, the projeclive lransformalions
are given by Möbius transformalions:

Zrz1¿'= OZ + F
ú¿+s aô-p1= 1. (1)

In prolective geomotry, it is olten us€lul to inlroduce homogeneous
coordinates. For us, who are studyjng CPl (¡.e. lhe Riemann sphere), which
is the space of lines in the two cómplex dimensional space G2, üis means
that we should study the laller space directly. So we now have lwo
complex coordinates, and ws can rêcover the single complex coordinale on
the Riemann sphere by forming the quotient

z,,= t, (2)

To every Möbius lranslormation of z corresponds exactly two trans-
lormations in the group SL(2,C):

{:j-(;J =(; il (1 (s,

These two component objects are called spinors, and the lwo complex
dimensional space in which they live is called spin-space. We have seen
that every spinor determines a lightlike direction in space-time; actually
lour real numbers are needed lo specify a spinor completely, and only two
lo determine the direction of a light ray, so there are lwo extra pieces of
inlormation in the spinor to account for. ll is clear that one should be able
to deline some kind ol modulus for the spinor, which will correspond lo
the length of some light like v€ctor. There will then be a phase lactor left,
so lhat lo every light like vector corresponds a one-parameter family of
spinors.

ln some sense, then, spinors are more "lundamental" lhan vectors, since
lhey can be used as building blocks lor the latter. Moreover, they represent
the 'end ol the road": We have established that SL(2,G) gives a lwo-fold
covering of the Lorentz group, and the process ends lhere, since SL(2,C) is
simply connected. lt is called lhe universal covering group ol the Lorentz
group, and spinors give linear representalions of the universal covering
group.

-6-

2.1.2 Algebralc theory of splnors.

Lst me now develop the theory ol spinors purely algebraically, as the
theory ol linear representations of SL(2,C). First ol all, starting from
two-component objects YA, whsre the index A runs from 1 lo 2, we can
form multi-componenl spinors yAb...T, jusl as we would form tensors
from veclors. There will also be a dual spin space, which gives rise lo
spinors with indices downstairs, and contraction ol spinor indices can be
perlormed, iusl as with tensors. Môreover, there is an invariant two-index
spinor which, because it is invarianl, can be used as a 'metric' in spin
spacs:

LA" Lso 
"c? = .As

where the L's are SL(2,C) matrices and

*'= (:, :).

(1)

(2t

It is a 'symplectic' metric, since it is anti-symmetric. We can use this
metric, and its inverse, lo raise and lower indices, i.e. lo establish an
isomorphism between spin space and its dual. Since eAB is anti-
symmetric, ¡t is ¡mportant to get lhe convenlions clea¡ at this point. We
def ine

vA=eABYg ; vl=YBeBA

(where e6 is the lranspose of the inverse of eAB). Nole that

YIA = dBYIB =' €BAYAB= - YAA

sAB= - eB¡=6oe

Since spin space is two dimensional only, lhe theory of multi-component
spinors will be very simple. lt will be enough to consider totally
symmetric objects, since all anti-symmetric pieces can be separated out
using :

yA8= rp(AB) ¡ yfA8l = V(AB) a 1¡2gAByaC

This is a yeo¿ useful formula.

(3)

(4)

(5)
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There is one lurther operation that we can perlorm on our spinors, which
has no analogue in a real vector spacs, and lhat is to take the complex
conjugate of a spinor. The result of that operation can ¡9.t be another
element of spin space, because il il was, we could deline real and
imaginary spinors, and so lhe spinors would cease lo be on an equal
footing - the SL(2,G) covariance would be lost. Hence the complex
conjugate of a spinor vA is an element YA' - with a primed index - ol a
[gg space, anti-isomorphic to spin space in lhe sense lhal

wVA + zof = wYA + zoÂ' (6)

The theory ol primed spinors is ol course exactly analogous to the theory
ol the un-primed ones; there is an e-spinor, ws can lorm multi-component
spinors. and so on. We can also lorm multi-component spinors with mixed
indices, as lollows:

YAB...rAB...S' Vl

(the order between a primed and an un-primed index does not matter,
unless we are thinking in tsrms ol explicit matrices.) Contractions
involving one primed and one un-primed index is not allowed.

Ol particular inlerest ars multi-component spinors with an equal
number ol primed and un-primed spinors, since such spinors can be delined
to be real. The subspace ol real spinors with one index of each sort is a
lour dimensional vsclor space which turns out to be isomorphic to the
space of real Minkowski space vectors (with timelike melric - lhe
anti-hermitian subspace has a spacelike melric, and some authors prefer
that). ln lact, we will identily these spaces. Schematically,

Va x=i VAA' {"b '=- €AB €A.8. (8)

We could have developed the theory ol spinors 'abstraclly", in which
case the equality signs in equation (8) would be true equalities. However,
ws have been thinking in terms of specilic coordinate systems in spin
space, and explicil componenls of the spinors, and so ws have to take the
equality signs here as something ol a metaphor only. Or, to phrase it in
anolher way, lhere is only on€ space of world vectors, but it admits
diflerent bases. One in which the vector appears as a four component
column vector, and one in which it appears as a two by two hermitean (due
to the teality condition) matrix. Both ways of thinking about a vector are
equally correcl.

To exhibit the announced isomorphism, we introduce the lnfeld-van der
Waerden symbols

-8-

.otAB'- 
2'12ooAB.- a-',? [: ]) = æ*.=æo." t:

I
o = olAB.=õlAts

(e)

= d¡g'+-dA's

These matrices obey

o"Âs' oÞo". = õ"d i oa¡,s, oeoù = ôlc ôgp' (1 0)

Now we can rewdle eq. (8) as

Va = VM'dl¡. , Iau = €tce g,o.o"Æ'obcD'

(11)

VM'= V"oJÂ' E¡B Gc.D.= 465 oa¡c. dçg.

All lensors can be converlsd to multi-spinors in lhis way. lf one makes
use of eC. (5), it is a convenient way to decompose a tensor into its
irreducible parts. As an (important l) example, an anli-symmetric tensor
with two indices can be reexpressed . by means ol a symmetric two index
spinor, as follows:

¡labl ,=" 
F(AB) sA8'* 

"AB 
¡(AB'). (12)

The'self-duality" condition

.Fú 
= 1t2.ab, pcd 

= i Fab (13)

becomes simply

¡ab= 
"AB 

yAB' (f 4)

(which is necessarily complex - in Euclidean four dimensional space one
can have real sell-dual tensors, however).

For later use, w€ note that

o"AC õ¡c.a + o6Âg õ"6,s = l"¡ ôgA

(15)

õ",1c oucg + õ6¡ç o"cB' = q"u õtF'

Finally, we return to the connection between lightlike vectors and
spinors. Obviously, every veclor of the form

02ß' = 
"t4-1 ; I 

=- d¡s* dl.g osAB'= 2-112 (
to
o-l



-9-

I YAçA (16)

is real and lighllike, bscause

YAvo =0 (17)

(provided the spinor is made out ol commuling numbers - later we will
deal a lot with spinors made out ol anti-commuting numbers, for which
this does not hold).

Gonversely, every real lightlike vector can be written in this form (with
an obvious phase ambiguity), since

detVM'=1t2Y2 (18)

and when the determinant vanishes, the two-by-two matrix splits in an
outer product, as claimed. The sign ambiguity in (16) is also important;

Tr VM'=./2 Po (1e)

Hence the choice ol sign determines whether ths ¡¡ghlik€ vector points
into the lulure or into the past. This clearly requires that space-time is
lime-orientable, olherwise spinors could not exist. Here we have an
example ol a condition lhat a manilold has to lullfill in order lo admit a
spinor slructure (there are further conditions).

-10-

2.1.3. The lour-component formallsm.

The spinor lormalism lhat I developed above is called, for obvious reasons,
the two component lormalism. That such a formalism exists is closely
related lo the lact /that SO(a) is locally isomorphic to a direct product of
two SU(2)'s - as will bscome obvious when we coms to spinors in
Euclidean spaces later - and lhis in its turn is an important and absolutely
unique property of lour dimensional manifolds. (Partial analogues ol the
two-compon6nt formalism exist in som6 special higher dimensional
cases.) There is another lormalism available, howsver, which generalizes
more smoothly to higher dimensions, and which is called lhe lour
component lormalism. Moreover, it was in this formalism that spinors
were originally discovered, by Dirac. You are actually supposed lo know
this already, but I will run lhrough it quickly.

We starl by writing down the Clifford algebra

{ t"' lu} = 2 rab (1)

This can be represented in lerms of four by four matrices; for instance

a

( T")rô='/2
oc.
c-e

(2)

These matrices are to act on the lour-component spinors. Two further
matrices ol inlerest are Is

n oI
Ts=iÏoTrTzrs= [r ¡l tsl

and lhe charge conjugation matrix Caô (which is lhe analogue of the e-
spinor; we will use it lo raise and lower the 1-matrix indices a,b...l:

o

Cab =

e¡g

0 :,)
(4)

They obey respectively

{Ts'TJ=o , Ts2=1 CT"C{=-(T")r. (5)

The charge conjugation matrix is always antisymmetric, whalever the
representation.

The spinor is a column 'vector" wilh complex entries. The Lorentz group
acts on the spinors through the Lorenlz generators
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s"¡ = -2 i1"0 = -i[L,1o] (6)

which obey

[S"¡,S"0] = i(r¡6¿5*-I*Su¿ +IøS¡c -lu"S"¿] (7)

(this can be shown directly lrom the Clifford algebra (1)). ln the T-matrix
representation that we use, we can wrile

-12-

I
compon€nl lormalism: Fierz identities. The starting point is ths
observation that any lour-by-lour matrix can be expressed as a linear
combination of the sixteen matrices

1, 1", T"¡= Tt"¡1, Tas= TeTs' Ts '

all of which, except for the identity matrix. is lraceless. ln particular,

Y" 1å= - r/4ivôaô- r/1ÎT.v(flaå + r/4ÎTaby(1al) +

+ ur-t1*v1y5¡ - rø1yrv11¡ .

(13)

where the l's are SL(2,G)-generators. There is also a conjugate spinor

9a=gf1o=1roo PA) (9)

We have seen that the spinor formalism can be developed w¡th objects
that have only two components. ln the lour-componenl formalism lhis
means that it is possible lo impose algebraic conditions on the four-
component spinors, without destroying the linearily of the representation.
One such condition is lhe Weyl condition

(1 - TdY=0 (10)

(or the anti-Weyl condition, with the sign reversed). This takes us back to
the two-component formalism. Another possibility is the Majorana
condition

(?)r= c v (11)

ln our representation, this means lhat

.ËJ (12)

With slightly different conventions (e.9. spacelike metric) it is possible to
lind a real representation of the lmatrix algebra; the Majorana condition
then means lhat the spinor is real.

Finally we come to the sine qua non ol supersymmetry in the four-

(14)

This is a Fierz identily. To prove it, take the lrace ol bolh sides, then
multiply with f o and again take the trace, and so on. I have assumed that
the spinors arø ant¡ -commuting. For commuting spinors, change signs.

For Weyl spinors you have lo be carelul with lactors of llz; also some
of lhe lerms on lhe right hand side go away. Simplifications also occur lor
Majorana spinors. To see this you need to know thal

C"b, (CT"d"b, (CTs)d are antisymmetric in a,o.

(cT")'b, (cÏ"¡)aö are symmetdc in a,Þ.

For anli-commuting Majorana spinors, this means that

iY=- rrcd vö=- YôGôa ta=Vr

ly.v= -Vy"l

(1s)

(16)

and so on. The Fierz identity, and some elementary T-matrix algebra, can
then be used to prove the uselul identities

TaYl ç2fYs +y.v.Vryy, +Tay2 Fsfyl =o (17)

for anli-commuting Majorana spinors, and

TaYçfY=0 (18)

Ya=

yA

õA. '"=(;' :^,)
(8)

lor commuting ones (which is spinors and lightlike vectors all over again)
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2.2 Splnors ln Euclldean spaces.

2¿1 SO(4) splnors.

The geomelric picture ol spinors that I presenled above required a
Lorenlzian space-time, but spinors exist whatever the signature of the
space. Moreover, the subiect slill has a strong flavour ol projective
geomelry. Easiest to generalize, how€v€r, is the algebraic theory, in which
we simply look lor linear repressntations ol the universal covering group
of SO(n,m). We will look at spinors in Euclidean space only brielly, since I

will not uss thsm much in these lectures.
To ses how spinors in space-time are relaled lo spinors in Euclidean

spacs, il is instructive to begin with complex vectors in a four complex
dimensional space Ca, which.we will wrile in matrix form

-14-

relaled by complex conlugation in the space-lime case.
Perhaps it is as well to remark thal the simple relation between

Euclidean and Lorenlzian spaces that I have described holds for topo-
logically trivial spaces only - in general, the complexilication of a real
manifold with Euclidean sígnature does not possess a diflerent real slice
wilh a Lorentzian metric.

x00' xot
-AA'_ (1)

xr0' xtl

We inl¡oduce a norm, namely the one we used in Minkowski space earlier:

llxM'[2=2delxM'

The group which preserves lhis norm is obviously SL(2,C)XSL(2,C), acting
through matrix multiplication

xaAxB

where A and B are independent S[(2,C)-matrices. Clearly, space-time is a
real slice of Ca, consisting ol lhe subspace of hermitean matrices. lts
symmelry group is the "diagonal subgroup" SL(2,C), where the matrices in
eq. (3) are subject to the condition B = Al . lt is related by analytic
continuation to Euclidean space, which is a diflerent real slice ol Ca (i.e. a
set lell. invariant by a mapping I which obeys t2 = -1, but I will skip the
details). In lact, x belongs to Euclidean space il it is a matrix of the lorm

.A '- I (4)

As you can check, lhe subgroup ol SL(2,C)XSL(2,C) which preserves this
lorm is SU(2)XSU(2), which is lhe universal covering group ol SO(4).

Much ol the algebraic theory ol space-time spinors can lhen bE carried ..

over directly to Euclidean space; the diflerence is that the primed and the
unprimed indices are now completely unrelated, whereas they were

(21

(3)

l)
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2.2.2 SU(2) splnors.

Lel me now describe "spatial' spinors, i.e. SU(2) spinors (SU(z) is the
covering group lor the rotation group). Such spinors will be useful for
Hamiltonian lormulations, so it is natural to approach them through a "3+1

decomposition' ol SL(2,C) spinors.
Begin by fixing a timelike vector ol length ./2:

n^n = {2 ooon (1)

The normalization is such that

nM'no., = ôre

The subgroup of SL(2,C) which leaves noo. invariant is precisely SU(2). We

can us€ it to deline a positive definite hermilean inner product for the
spinors:

<g,Y>= þAn¡¡YA. (3)

Because ol this extra structure, we can convert all primed indices to
unprimed indices via

ÇAno.o =Ço . (4)

Hence only one kind of indices is needed lor SU(2) spinors.
The space of hermitean two index spinors which obey

xAA=o

is a three dimensional vector space isomorpic to, and to be identified
with, E3. The metric is

(21

-16-

2.3 Splnors ln hlgher dlmenslons.

Unlike tensors, spinors care about the dimension of space-time. For this
reason, one might expect that sp¡nors lor spaces of dimension higher than
four have nothing to do wilh physics. Nevertheless, much research in
supsrsymmetry has been concerned with higher dimensional
'space-times', and a smaltering ol knowledge aboul spinors in higher
dimensions is desirable il you want to learn about supersymmetry. (There
ars many readable summaries'.) ln even dimensions, the four componsnl
formalism becomes 

^ 
2 Dtz-ls¡¡alism, where D is the dimension of

space-time. (The two-component formalism does not exist outside four
dimensions.) The Weyl condition can always be imposed, but the Majorana
condition is available only in some cases. ll the dimension of space-time
is 1+1 modulo eight (9+1 for instance), one can impose both conditions at
once.

Odd dimensions are quile different, since ths SO(2N) groups are quiie
dilferent from the SO(2N+1) groups. The 1u-matrix becomes an ordinary 1-
matrix, and hence the Weyl condition is no longer available.

The connection between spinors and lighllike vectors holds true in 3, 4,
6 and 10 dimensions. The reason is that eq. (18) on page 13 holds in these
dimensions, il the spinor is taken to be Majorana (3 and 4), Weyl (6), or
Majorana-Weyl (1 0), respeclively. Eq. (17) holds under the same
conditions, and is of importance in supersymmelry, as I will explain later.
The underlying reason why these equations hold is the existence of the
four "Hun¡vitz algebras' - real numbers, complex numbers, quaterníons and
octohions. These are 'number lields" which can be used to define a plane on
which a projeclive geometry can be sel up. The result is that partial
analogues of the lwo-componenl formalism can bs set up in 6 and 10
dimensions, using quaternions and octon¡ons, respectively. However,
quaternions .do not commut€ and octonions do not associale, and this tends
to diminish lhe llexibility of the formqlism in 6 and f0 dimensions.

'T. Kugo and P. Townsend, Supersymmetry and the D¡v¡s¡on Aþebras, Nucl. Phys. 8221
(198rÍl) 3s7.

(s)

Q¡ = Tr o, o, = oiABoiEA

i.e.

x'y = x¡q'yi = xABYBA .

The epsilon-tensor is

e¡¡r = i'/z Tr o¡o¡o¡

(6)

(7)

(8)

a
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3. SPACE.NME SUPERSYMMETRY.

3.1 No-go lheorems.

3.1.1 All posslble evon symmetrles ol lhe $malrlx.

Since lhe sup€rsymmetry that w€ ars looking lor is a non-trivial
extension of lhe Poincaré group, it is only litting to begin by describing
known results lhat seversly conslrain the possibilities in this direclion. A
physicist conditioned by unilication mighl try to lind a comprehensive
group containing both the Poincaré group and the internal symmetry groups
of elemenlary particle physícs as subgroups. (A symmetry is called
internal il all malrix elem€nts connecting slates with diflerenl momsnta,
or spins, are zero.) There are various no-go theorems in the way, however.
lf, lor the moment, we restrict ourselves to symmetries generated by even
generators (obeying commulators), then lhese symmetries have to
commute with all Poincaré lranslormations - in other words, the
symmstry group ol a relativistic'system always splits (locally) into a
direct product ol space-time symmetries and internal symmetries. This
does DOI mean that the internal symmetries in Nature have nothing to do
with space-time symmetries; lhe €x¡stencs ol the inlernal symm€try
group in Yang-Mills theory, for instance, is basically lorced upon you by
Lorentz invariance if you lry to introduce self-interactions lor massless
spin one-fields. Moreover, lhere may still be some mixing between
internal symmelries and rotations, for instance, since the group does not
have lo be a direcl product globally. Nevertheless, the restriclions are
real, and now I will describe how they come about.

The two most lamous no-go lheor€ms concerning the unificalion of
internal and space-time symmetries are O'Raifeartaigh's-theorem and the
Coleman-Mandula theorem'. The former states that any two particles that
belong lo a symmetry multiplet ol some kind must have lhe same mass.
(This is still true lor supersymmetry multiplets, as we will see.) The ,.

latler, which is an sven more powerlul result, is slaled as a lheorem
about S-matriçes. This ñeans that it is hard to speak with absolute
conlidence about massless particles, since lhe asymptotic states may be
dilficull to define in lhat case. frobably, the conclusions go through
unaflected in the massless case as well (at least il "Poincaré group" is
replaced with "conformal group"), bul for deliniteness I will discuss
theories with a massgap only in this section.

The basic idea behind the Coleman-Mandula theorem is this: Consider
two particles thal scalter against'each other. When conservalion ol linear
and angular momentum is taken into account, only the scattering angle is
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left as an undetermined paramster. lt is then €asy to imagine that the
exislence of a further symmelry with non-lrivial space-time properties
might constrain the scattering process so severely that no solution exists,
€xcspt for the lrivial solution of no scattering at all. To make this idea
precise, one delines a symmelry ol ths S-matrix as a symmêtry which
lranslorms one-parlicle states inlo one-particle slat€s, and translorms
many-particle slates as tensor producls. lt is not obvious, but true, that
these assumptions imply locality; attsmpls have been made to derive a
version ol the theorem also lor non-local symmetries, but as yet the
conclusions ars not quite definilive. Also lhe generator of the symmetry is
assumed to commuto with the S-matrix, and it has reasonable continuity
properlies. The S-matrix is taken to be an analytic funclion of lhe
Mandelslam variables. Analyticity is in lacl necessary in the proof; there
ars counlerexamples to the lheorem, in which non-trivial scattering
occurs, bul only in the backward and forward directions. ln particular, the
theorem lails completely fbr 1+1 dimensional models, for which lhe
S-matrices are not analytic. A non-lrivial S-matrix in 1+l dimensions
simply involves a lew phase shifts.

Next comes an assumption which is perhaps questionable, namely that
the number of one-particle slates with mass less than any given number M
is linite. Perhaps it could be derived from the requirement that emply
space should have linite heat capacity. lf it is dropped, one can find
counlersxamples to the theorem. (A possibly interesting theory which
would violate particle finiteness, il it exists, is massless higher spin
theory.) lt is lurther assumed lhat lhe symmetry group of the S-matrix
conlains the Poincaré group as a suþgroup (il lhe Galilei group is chosen
inslead, the lheorem fails), and thal lhs S-matrix is non-trivial in lhe
strong sense that any two particles 'scatter against each other, except
possibly lor isolated values ol the momenta. From these assumptions it
can be proved that the most general symmetry group possible is, locally, a
direct product of the Poincaré group with some internal symmetry group.

A similar theorem could probably be proved in classical lield theory as
well; the "S-matrix' of lhe classical lheory would be a lransformalion of
lree lield data in the remote past lo similar data in the remote futurs.

The Coleman-Mandula lheorem is obviously very important. lt is common
belief that it kills all hopes to find integrable relativistic lield theories
in 3+1 dimensions. ln an integrable model on a 2n-dimensional phase
space, ons can lind n conserved charges that commute with the
Hamiltonian. For a lield theory lo be integrable, one would need an inlinile
set ol conserved. curr€nts, and the . S-matrix of such a theory could
probably be proved lo be lrívial by means ol Coleman-Mandula type
arguments, except in 1+1 dimensions, where integrable fíeld theoríes are
known. Still, there is no theorem lhat precludes field theories from being
integrable in some sens€; there is in lacl a supersymmetric field theory,
called N=4 supersymmetric Yang-Mills theory, which seems to share' S. Coleman and J. Mandula, All Possible Symmelr¡es ol lh€ S-Malrix, Phys. Rev. l5ll (1967)

1251"



-19_

cerlain propert¡es with ¡nlegrable models. I will return to this topic

a
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3.1.2 All posslble odd symmelrles of the S-matrlr.

Now we are ready to write down the super-Poincaré algebra. The even part
will consist of the Poincaré algebra, togelher with some inlernal
symmetry group. The most general lorm of tho odd part of a super-
symmotry algebra which is to be a symmetry algebra of a relativistic
S-matrix was written down by Haag, Lopuszanski and Sohnius'. For
theories with a massgap, il is

{orA,QJ8}= 6A82u tõ¡,qrt=dtsZu

p0+p3 pl +ip2

{on, õrA} = 2 ôlpM' ¿ 6\ztn
Pt-iP2 P0_P3

[PAA" QBI = [PAA" õB] = 0

P"b, QAI = oóAaQB

[Bp C|JAI = s¡JxQn

(1)

Here the Z's are called central charges, since they commute with every-
thing, I,J are internal symmetry indices'running from 1 to N, and lhe B,s
are generalors of the internal symmetry, which can be as large as U(N)
unless the Z's are non-zero, in which case il is soms subgroup of U(N)
(since the requirement that lhe B's commute with the Z's gives a condilion
on the former). The s's and o's are repressntation matrices lor lhe B's and
the Lorentz generators, respectively. The algebra is called, lor obvious
reasons, lhe N-extended supersymmetry algebra.

Note lhat

Tr (A^, õAì = e./e po, tzt

and since the left hand side can be writlen as a sum of squares, this is
really a supersymmgtry of the kind we were looking lor. We also see that
lhe odd part of the algebra, given above, in lact strings together lhe
Poincaré group with an internal symmetry group in a non-lrivial manner.
However, it is hard to see what such an internal symmetry group might
have to do with lhe internal symmetry groups that we actually know about
lrom experiment.

Let me also stress what Haag, Lopuszanski and Sohnius found lo be
impossible. First, one cannot get the Lorenlz generators on the righl hand

'R. Haag, J.T. Lopuszanski and M. Sohnius, All Possible Generators ol Supersymmetries ol lhe
S-Matrix, Nucl. Phys. B!8 (1 975) 2s7.

¡
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side ol some ant¡-commutator. Second, the only odd elements thal ar€
allowed in a symmetry algebra of the S'matrix are spinors of rank 1;

spinors ol higher rank cannol appear. I should say that in the massless
caso, a somewhat tighter struclur€, namely the superconlormal algebra,
could in principle appear as a symmetry group ol lhe S-matrix. I will not
go into this; normally one would say lhat any non-trivial quantum theory
has non-vanishing ß-funclion, and therelore conlormal symmetries are
always broken by anomalies. Actually, there afe counterexamples to this
among supersymmetric theories, so maybe I ought to discuss
superconformal symmetries, but anyway I will not.

a

-2È

3.2 Bepresenlatlons of supersymmetry.

So what is the particle contenl of a supersymmetry multiplet ? You are
supposed to know how one gets the unilary irreducible represenlalions of
the Poincaré group. All these representations ars infinite-dimensional, a
lypical representation space being the space ol positive lrequency
solutions to Maxwell's equalions, and at lirst sight il seems like a
difficult task to classify all such representations. But Wigner ligured oul
how to do it. The idea is to fix a particular momontum v€clor - timelike,
lightlike or spacelike - and then work out the unilary representations ol
the .'liltle group" ol Lorenlz lransformalions that leave this vector
invariant. One then relies on the theory of induced represenlations -

developed by Wigner especially lor the purpose - and concludes that the
represenlations of lhe Poincaré group stand in one-to-one coriespondence
with the representations of lhe litlle groups. The representations of the
supersymmetry algebra can be obtained in lhe same way.

Let us begin with the algebra (1)'with lhe central charges Z=0. ln lhe
massless case, we choose a lightlike stability vector Pa=P+ (where I use
"light front notation' p x =2-1t2lP0t P3)). The supersymmetry algebra (for
N=1) that pertains to lhe litlle group is simply

{Ql,õ11=2P*

{oA, 08} = ¡Õô" õ$ = o.

Pr2, Qtl= -1¡2 gt

{oF, eP) = o

(1)

pl2, õ1) = r¿-er'

(and a few more, which need not concern us). So the Q's behave like a pair
of creation- and annihilation operators. This means that if we start lrom a
stale with helicity l,:

¡te¡þ, = l,lÞ (2t

we get one mors state, with helicity L + 112, when we act on lhat state
w¡lh õt'. Since lhe Q's are odd, it slops lhere, and we conclude that a
supersymmetry multiplet consists of two massless states, with helicity
diflering by a haltinleger. For N>1, we evidenlly gel N independent
crealion- and annihilation operalors, and hence we get 2N slates, with
helicities ranging from )" to À + N/2. A table of all supersymmetry
multiplets with maximum helicity equal to one is given below. For such
multiplets, N<4. ln the lable I have added lhe PcT-conjugate multiple! as

well, since lield theories are always PCT'invariant. Hence they contain
irreducible supermultiplets only il lhe latter are PCT-self conjugate. For
representations with maximum helicity equal to two - i.e. multiplets



I
4
6
I
I

I
3+t
3+3
l+3

I

I
2
t+t

2
I

I
I

I
I

I
2
I

I
l+t

I
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N-t t¡.2 ilrl 1lr2 N=3 N=4

Hclicitg=¡
Hrticily=l /2
HclicitY-g
Ìhli;ilY¡-l /2
Holir:itgr-¡

Hcllcitg conlent of ¡ fcv m.r3lG!! tupcrmultiplctl (vith
CPT-conjugotc multiPlGtt rddcd vlrcrc ¡gDroPri.tc).

which includo grav¡tons, but no higher spins - lhe maximum value of N is
8.

So much for massless represenlations. ll the stability vector is laksn to

be timelike, we obta¡n massivs representations (tachyonic

representat¡ons of supersymmetry do not exist). For the little group' we

get
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4. SUPERSYMMETRIC ACTIONS.

4.1 The naturo of supersymmêtry

ln this chapt€r I will give some simple examples ol lield theoretic models
which exhibit supersymm€lry. lt is uselul lo sit back and think lirst,
because certa¡n features of these models can be guess€d without
calculalion. First ol all, it is clear from lhe supersymmetry algebra, lor
instancs lrem

{Ql,õtl=ep+ (1)

(where I am using'light lront notation";

.l2pt=PotP3,,l2p=Pl+iPz,'/ZF=Pl-iP2) l2l

that two supertranslalions in succession result in a translation along the
light cone, lorwardf in time. This means lhal supersymmetry is a
dynamical symmetry, which depends on the equations of motion in critical
way. (Other dynamical symmetries ar€ generated by the Lorentz boost
gensrators and the Hamiltonian itself.) Symmetries which only result in a
reshulfling of initial data. on lhe other hand, are called kinematical
(rotation and translalion in space are examples, together with various
internal symmetries). The canonical generators of dynamical symmetries -

in interacting, non-linear theories - differ lrom generators of kinematical
symmetries in an important respect, namely lhal they contain non-linear
terms. From Noelher's lheorem we know that this can happen only il the
Lagrangian ol the model transforms inlo a total derivative under a
dynamical symmetry translormation, since thal is the only way in which a

Noether charge can get non-linear terms. The symmetry is truly a
symmetry only il the boundary conditions are such lhat this tolal
derivative inlegrates to zero, of course.

Another property ol dynamical symmetries is that, in general, one
expects lhat lhe lransformations that they generate close to the
appropriate algebra only if information.about the time development of the
dynamical variables is supplied, i.e. only if the equations of motion hQld.

We will see in lhis chapter lhat the supersymmetric actions that we

study do have lhese properties. ln cþapter 5 we will see that it is possible

to add auxiliary lields to the models in such a way that linear
representations ol supersymmetry are obtained, and the algebra closes

also "olf-shell", i.e. when the equations of motion do not hold.
!t is ol course much more awkward to deal with non-linear symmelry

generators, than with kinematical ones. Going back lo eg.(1), we see that

10
tOA, õA) =21tî2Po (3)

01

so we get two independent pairs of creation- and annihilation operators

lor each supercharge. Hence the ¡number of slates in a massiv€ super'
multiplet is 22N.

Representations ol the algebra when the central charges do not vanish

are always massivo, since the central charges have dimension of mass. To

work out the represenlalions in. this case, one has to perform linear

combinations ol the supercharges in a suitable way. lt lurns out lhat lor
particular values ol the central charges, the phenomenon of "multiplet

shorlening" occurs; lhis means that the number of states, and the range of
spins, is less lhan in a generic massive multiplet. This fact is of some

imporlance in connection with symmetry breaking in gauge theories.
Suppose thal we have a supersymmetric gauge lheory in which lhe gauge

symmetry is broken via lhe Higgs mechanism, while supersymmetry
remains inlact. Then the number ol states in the lheory should remain the

same as in the massless phase, and yet they arê required lo lill qut some

massive supermultiplet, which generically contains more slates than the

massless one. The paradox can be evaded il the algebra develops a cenlral

charge when the symmetry breaks'.

. E. Wltten and D. olive, supefsymmetry Algebras Thal lnclude Topological charges, Phys. Letl.

788 (1978) 97.
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there is a way ol making some of the supersymmelry charges kinemalical.
The way to do it is to use what Dirac called "the lronl form of dynamics",

which is whal I call 'light lront dynamics" and everybody else,
incorrectly, call 'the light cone gauge". The point is that, in relalivislic
theories, there is some lreedom in choosing the surface on which initial
data lor lhe relalivistic equations ar€ set. The usual choice is a space like
surface. delined by x 0 - 0, say. Dirac called this "the instant form ol
dynamics', and il this is what you do, the supercharges are indeed
dynamical, since they transform the system out of the initial data surlace.
However. anolher possible choice ol surlace is a surlace tangenl to the
light cone.

Tvo poriblc initi¡l dot¡ ¡urface¡:

x+'0x0

1
x+

7
xo. 0

a

\ x-. oo
( conditions)

Thc in¡t¡nt form of dgncmiæ It¡è front form of dgnomiæ

The coordinate x+ then plays lhe role ol 'time". ll we use such an inilial
dala surface, P+, logether with Ol and Ol',become kinematical symmetry
generators. This is one rsason why light lront dynamics is useful for
certa¡n questions in supersymmetry*. This kind ol initial value problem
also has advantages for gauge theories in general (it is possible to solve
all constraints explicitly, and express the whole theory in lerms of lree
inítial datal; unforlunately, lhere are drawbacks, since it is dillicult to
deal with the boundary conditions at x- -r - in a rigourous way. Light

lront dynamics is especially uselul for theo¡ies that are formulated in
lirsl quantized language (i.e. slrings). I will not use the light f ront
lormulalion in these lectures, but you¿ should know that it is there for you
to use.

It is perhaps worth noting lhat in the non-relativistic limit, when the
light cone 'collapses outwards" and merges into the "instant" initial dala
surlace, all the supersymmelry generators become kinematical. Super-
symmelry becomes like an ordinary'inlernal symmetry.

'L. Brink, O. Lindgren and B.E.W. Nilsson, N.4 Yang-Mills Theory on lhe Light Cone, Nucl.

Phys. BZl2 (1983) 401.
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4.2 The Wess-Zumlno model.

Now it is time to pressnl an aclual example ol a supersymmelric action.
Looking through the list ol reprssentalions on page 23, it is clear lhat the
easiesl example must be a model which conlaín lwo scalar states, and two
spin 1/2 states (spin up and spin down). For lhis we need an aclion which
contains one complex scalar field, and one two-componenl spinor (or one
Majoran¡ spinor, if we work in the four. component lormalism). ln the lree,
massless case, lhe action will be

so=f-¡o{-itAaAi{.iA' (1)

(l will be carelsss about surlacs torms throughout lhis chapter). lt is
ralher simple lo sâe that thor€ actually is a symmetry here, which
connecls bosons and lermions, namely

ôA = - e¡ xA õIa= -2¡ AAAãA, A. (21

The action is invariant, up to a surlace term, under this translormation:

ôso=J¿"16e'io. a"l-€^xA aaÃ*Ã ð"ertA). (g)

Moreover, the transformations do close to the supersymmetry algebra,
provided that we use lhs equations of molion for the spinor field:

[ ôr, ôz] A = 2i eeA ä*.ã,r'¡ - (1e2)
(4)

[ô1,ôzlIB=2i€2AaAA.ãrA IB* erA ÇA ào,"Xc -(1er2)

This is so far so good, but not yet exciting, since free theories always
have a large number of symmetries'that are completely uninteresting,
because they are not shared by any interaction terms. A symmetry is of
inlerest only il it' can be realized in soms model with a non-lrivial
S-matrix. lt is nol particularly easy to find interaction terms which
exhíbit supersymmetry, since the very form of the supersymmetry
translormations has to change in the interacting theory (that is to say,
unless we take lhe approach of the next chapter, and add suitable auxiliary
lields). lt is not particularly hard, either, provided you are convinced lhat
it is possible. Suppose we look for a renormalizable interaction. Then,
there can be no derivalives in the inleraction terms, which means that
there will be no scalar field momenta in the canonical supercharges. This
means that the translormation of the scalar field will be the same in both

the lree and the interacting model. Experimenting a bit, you lind that the

action
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s=so-Jnzfiz¡z+r/.,2g(AtAtA *ÃiAi"¡ (5)

is invariant, up to surlace tems. undsr the transformal¡on

gA=-e¡IA ôt^=-âAA'å.A*.Jzg$Ãe. (6)

These translormations closs to the supersymmetry algebra provided that ,,,

you use lhe equations of motion that follow from the action (5). This
model certainly appears to have a non-trivial S-matrix (assuming it has an

S-matrix al all, which, ol course, might be disputed by a construclive
lield theorisl). We will study it ¡n detail later. ll exhibits already what,
perhaps, is lhe most interestifig property ol supersymmetric field
theories, namely some ralher remarkable cancellations among ultra violel
divergent Feynman diagrams. lt is called the Wess-Zumino model, because
it was lirst studied by Wess and Zumino, in a paper which louched olf an

explosion of interest in lhe subidct'.
Actually, the way in which I constructed the action for lhe Wess-Zumino

model here is much inferior to the superspace method that I will describe
in the next chapter. The laller method has its limitations, though, in that
it is not applicable to all possible models. The method used here, clumsy
as it is, has the advantage that it always works.

'J. Wess and B. Zumino, Supergauge Transformations in Four Dimensions, Nucl. Phys. ZlE
11974l. 477.
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4.3 Supersymmetrlc Ysng-Mllls theorles.

4.3.1 All posslble N=l models.

Now we turn lo supersymmstric gauge theories with maximum helicity 1'.
According to the group theoretical analysis, there oughl to be lour models

ol lhis kind, with N = 1,2,3 and 4 supersymmelries respectively. However,
since a field theory always has a CPT self conlugate sp€ctrum, wo ses
from the table on page 25 lhat the N=3 model has the same particle
contenl as the N=4 model, so these two ought lo be identical when
considered as lield lheories.

Begin by looking lor the N=1 model. First we write down an action
containing massless spin 1 and 112 lields, working in four component
lormalism lor a change, because ws want to keep the dimension of space
time arbitrary for the time being. Since lhe supersymmetry commutes
with the internal colour symmetry, it is clear that the spinor lield has to
t¡anslorm under the same (i.e. the adloint) representation of the colour
group as the vector lield does. So, the action is

g=J -røFr¿sFd+iir1'ofr (1)

wherE r,s,t... are colour indices and

F ab = ðaAr¡ - ðÉt" + fstAs"C6
(2t

D.lJ = ä"lr - lal xsAta

lf lhis action.is to be supersymmetric, there is almost no choice
involved in the form of the lranslormations. On dimensional grounds, they
have to be

ôAr" = iã1"f - iit"e ôIr= 1"sFrúe. (3)

Up to a surface lerm, it lurns oul that the action transforms under (3) into

J¡rs1ir1"rs ;TaXl --XrTaXs ihfÊ) (4)

So the expression inside the brackets has to vanish (bolh terms must

vanish separately) il the action is lo be supersymmetric. But this happens

in precisely lour cases. Suppose first that lhe dimension of space-time is

four. Since ¡¡" ¡tst's are lotally antisymmetric, we see from the Fierz

'L. Brink, J.H. Schwaz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys.

8121 (1s77) n .
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identity on page12 that (4) is indeed identically zero, proúided the spinors
are chosen lo obey lhe Majorana condition. But this Fiez identity is also
lrue in D=3,6 and 10, provided the spinors are chosen lo be Majorana, Weyl,
and Majorana-Weyl, respeclively. For all other choices of D, it is false.
Hence, we conclude thal an N=l supersymmelric Yang-Mills model, with
the above action, exists in precisely these dimensions.

On can ol course check that the translormations (3) close to the
suporsymmetry algebra, provided.that the equations of motion hold.
Actually, this is true only up to gauge transformations; bul lhat is enough.

Lel us count the degrees ol freedom in the action for lhe cases that it
is supersymmetric. The vector field has 2x(D-2) degrees ol lreedom (the
lactor ol 2 lollows from the fact that the veclor lield obeys a second
o¡der dilferential equation). The spfnor field has 2D2 complex components
when D is even, and 2 components in D=3. The Majorana condition restricts
the number of independent degrees ol freedom with a factor of 2, and so
does the Weyl condition. Hence there are 2,4,8 and 16 real degrees of
freedom in the spinor lield in D=3,4,6 and 10, respectively. So we see
that the numbers match, and also lhat this happens only for special
choices ol D.

This counting is interesting lrom another point ol view, since 4, 8 and
16 are precisely the number of degrees of lreedom that we expect lrom an
N-extended supermultiplet with maximum helicity 1 in lour dimrinsions,
when N=1 , 2 and 4, respectively. This suggests that there is a direct
connection between (say) lhe existence ol asuper Yang-Mills model in 10

dimensions and the N=4 Yang-Mills model in 4 dimensions. This is in fact
so, as yve will see in more detail in the next sect¡on.
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4.3.2 Dlmenslonal reductlon and lhs N=4 model.

To see how the N=4 model is hidden inside the N=l len dimensional modet,
we slart oul by declaring that nothing depends on the superlluous
dimensions:

A¡(x) * A"(xo,x1,x2,t',0....,0) (1)

and similarly for the spinor lield. (A,8,... denoles ten dimensional tensor
indices, in lhis section only.) This condilion explicitly breaks lhe SO(1,9)
symmelry down to.SO(1,3) x S0(6). 50(6), which is tocalty isomorphic to
SU(4), is precisely the internal symmetry which is allowed into the N=4
supersymmetry algebra by the theorem ol Haag, Lopuszanski and Sohnius.

Since SO(1,9) is no longer with us, we may as well give new names to
six ol the components ol the vector potential. This will be done with some
cleverness, as lollows:

A¡ = A" A=0,1,2,3

ç¡¡= 1/./2(A¡*s + iA*d ; i=l,2,3 9ß =t/2 eßlt q¡,¡ = (<C¡r)

The ç 's are scalars under SO(1 ,3) and lranslorm as a sixplet under Sú(¿).
There are six ol them, which is jusl right for the N=4 model in' lour
dimensions. To takä the spinor apart, we choose a suílable representation
ol the len dimensíonal gamma-matrièes (denoled by f; T will be reserved
for four dimensional gamma matrices):

¡A=fx1 A=0,1,2,3
(3)

(2t

n,=ru, (L¡ i') i,i=1,2,3,4 c'o=c, [T :
where the p's ar€ antisymmelric SU(4) matrices and C'o is the ten

dimensional charge conjugalion matrix. ln this represenlation, a ten
dimensional Majorana-Weyl spinor assumes the form

^t;) i¡= (cii)r (4)

where the SU(4) index i runs from one lo lour, and 1¡ (Ì¡) is a four

dimensional Weyl (anti-Weyl) spinor. There are lour of each; again the
right number lor the N=4 model.
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All that remains to do is to insert the v€ctor and spinor lields, so
labelled. into the ten dimensional Lagrangian density. The result is:

I = - l/4Fra¡Fd + 1/2D"9r¡O"çÛ lritÏ'O r'-
. -ys¡tst1?¿trþp,¡¡-i'¡ i1dÐ F)

- l/4frEl 9"i¡Qlrf*guigfl .'

This is indeed the Lagrangian density ol lhe N=4 supersymmetric
Yang-Mills model. You can check the N=4 supersymmelry by relabelling the
len dimensional formulæ lor the supersymmetry transformations, in the
same manner as I did for lhe action.

This model lurns' out lo have some quite amazing properties; for
instance, its ß-lunclion vanishes, at least perturbatively, which means
that the scale invariance of the classical model survives quantum
corrections. Nevertheless, there is a scale available in the model. As you
can se€, the scalar potential does not have a unique minimum; ¡ather, it
vansishes along 'vacuum valleys" in lhe space of values for lhe scalar
lields. Hence the vacuum expectat¡on values ol the scalars might servs as
a scale ¡n the quantum lheory.
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4.4 Other models.

We have seen how lo conslruct inleracting field theories corresponding to
all representations ol supersymmetry wilh maximum helicity one (the N=2
model can be obtained by dimensional reduclion ol the six dimensional
model). ln the list on page 23, only the N=2 model with maximum spin one
half - called the hypermultiplet - is mi5sing. Actually, it so happens that
no renormalizable interacting model ol lh¡s type exists. lnteracting
models wilh maximum helicity three halves do not exist at all', and
bringing in helicity two (the graviton) is something I will consistently
avoid, until I come to chapter 8.

Ol course, many mors models can be obtained by coupling dillerent
models together. For instance, lhe hypermultiplel can be coupled to lhe
N=2 Yang-Mills model. The result is precisely the N=4 model, possibly
modified by - say - the inclusion ol a mass lerm lor the hypermultiplet. A
supersymmetric version ol QED can be obtained by coupling the
Wess-Zumino multiplet lo a vector multiplet, and so on. On the other hand,
it is impossible to assign the electrbn and the photon to the same
supermultiplet, since they differ in lheir internal quanlum numbers.

The latter remark is ¡ather serious from the poinl of view of
phenomenology. The world is clead| not supersymmetric, since parlicles
in lhe real world have different masses. However, one might hope that the
observed paiticles could be uniiied in the lramework of spontaneously
broken supersymmElry, where mass dilf erences will develop.
Unlortunately, spontaneous breakdown of supersymmelry will not change
internal quantum numbers, and when one scans the list ol observed
particles ons realizes that lheir quanlum numbers are such that no two
observed particles can bs "superpartners" of each olher. I will show later
lhat it is nevertheless possible to make a case lor supersymmetry in
phenom-enology. Bul lhis will lhen force you to postulate the exislence of a
new. hitherto unobserved, superpartner for every exisling particle, and
then to invent explanations for why they have not been observed.

These unobserved superpartners go under names such as photinos,
gluinos, sguarks, sneutrinos, shiggses and what nots. On the basis of lhis,
you may be tempted lo lormulate a comment on the amounl of æslethic
senss lhat has gone into this business so lar.

For extended supersymmelry, an additional problem appears with
regard to phenomenology: ll the helicity 1/2 lermions sit in lhe same
supermultiplet as those with helicily -1/2, then both kinds of lermions
must have the same internal quantum numbers. But this is not lrue for the
lermions in the standard model.

'Anders Ber¡glsson, Spin, Supersymmetry and lnleracl¡ng Field Theories. PhD thesis, Göleborg
1984.
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5. SUPERSPACE.

Superspace - an invenlion due to Salam and Slrathdee' - is a space, some
ol whose dimensions are spanned by anti-commuling numbers. lt can be
regarded as iust a clever book-keeping device, which enables one to write
down supersymmetric actions wilhout ellort, and then to compute
Feynman diagrams in a very eflicient manner. lt has ils limitations,
though; lor reasons which (l think) are poorly underslood, it works
smoothly mostly lor N=l supêrsymm€try in lour dimEnsions, and in
dimensions .lower than that. lt could be that there is more to the story.
Time will tell. The subject is highly developed lechnically, and there are a
number of good roviews". I will consciously try lo avoid to sound like
these reviews, becauss what they do I can nol do better.

5.1 Grassman numbers and all lhat.

I have used anti-commuting numbers here and lhere already, and now it is
time to formalize them a little bit. A Grassman algebra with N generators
(N can be inlinile, if you like) is an associative algebra with a unit, over
real or complex numbers, generated by N quantities which obey

EiE¡ + €¡Ë¡=o (1)

Any lurther relalion among lhe generators is a conseguence of eq. (1). Now
the rule is thís: Take anything that you can do with real numbers, like
integralion, say, and lry to generalize it to Grassman numbers. Then you
call the result "super-whatever"; superinlegralion, in lhis case.

Let us begin by writing down the most general member of a Grassman
algebra:

z = I a¡¡... ËiË¡Er ... (21

where the coelficients a¡jk... are real (or complex) numbers. This is called

a supernumber; the first term, which is an ordinary number, is called its
body, and the resl is called its soul. Those lerms which contain an êven
number of generalors are called lhe even part; ¡t has "Grassman parity 0",
and commutes with everything. The rest ol lhe supernumber is its odd
part; it has "Grassman parity 1" and it anticommutes with every other
Grassman odd number. Superaddition and supersubtraction are defined in

' A. Salam ar¡d J. Strathdee, Supergauge Translormalions in Four D¡mens¡ons, Nucl. Phys. 876
(19741 4n.

" J. Wess and J. Bagger, Supersymmolry and Supergravity. Pr¡ncelon U.P., 19€lÍ¡.

M. Sohnius, lntroducing Supersymmelry, Phys. Fep. 128 (1985) 39.
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the obvious way. As lor multiplication, you should note lhat - as long as N
is linite, which is lhe case which we will deal with below - any
supernumber with vanishing body is nilpotent, i.e. you can lind an integer n

such that zn - 0. Division does not generalize so well; the inverse ol a
supernumber exists - and is lhen unique - il and only il its body is
non-zero (because one cannot define the inverse of a nilpotent quantily).

The complex conjugate ol a prcduct is delined as

( Er Ea)'= E2'Ët' (3)

Lel us now turn to superanalysis. Dilferentiation is straightlonrvard, of
course

d
G q =t

Taylor expansions are particularly easy, and involve lust two terms (or a
finile number; ¡f you expand in sêveral variables):

l( l) = a + b[ (s)

lntegration is more tricky. lt is delined lormally, as a linear lunctional
which has nothing to do with measure theory. You should not snilf at it,
though; il lurns out to be very useful. Here is the definition:

foË("*bË)=aJ¿qt +¡l¿qB=u (6)

There are no endpoints. We are not integrating from one number to another,
we just have lhis delinilion. (Aclually, diflerentiating and integrating
yields the same result.) Experimenting a bit, you see that we can deline a
delta-lunction which obeys

õ(EL E) = €L Ë ô(-q)=-ô(q) (7)

Multiple integrals are defined in the obvious way. Note that the d(¡'s
anticommute with each other.

You may wish lo change variables iç a superintegral. ln an ordinary
inlegral, you can do this il you know how to compute the Jacobian
determinant. The superdelerminant is called the Berezinian. So we are
looking at malrices of the general lorm '

(4)

I n1

A=
m2

i m¡ even, n¡ odd (8)
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A sensible definition ol a superdelerminant should guarantee that

BerAB = BerA BorB (9)

It tums out that this demand is obeyed by

Ber A r Det A (Det (D - Cl-tg¡-r . (10)

(For a matrix made out of ordinary numbsrs, the same lormula applies
provided that the last lactor is raised to the power +1).

The supertrace is delined as

STrA=Trm1-Trm2. (11)

The minus sign is there to guarantee that the supertrace of a commutator
always vanishes. The Berezinian can then be expressed in terms of the
supertrace as

BerA=sStr(lnA¡ (12)

This works out as it should, i.e.

BerAB = Bereh A + ln B + t/alln A, ln Bl+ ... 
= sstr(ln A + ln B) =

= sStr ln A 
"Str 

ln B 
= g", ¡ . Ber B.

(13)

This is already everything I need for these leclures. As you begin lo use
Grassman numbers in calculations, all sort ol funny sign errors will
happen. All you need lo sort lhem out is a little bit of care and common
sense. There is much more to 'supermathematics", though. I will mention a
lew things very briefly - you can lind out more about it in a book written
by Berezin', who was the pioneer in this lield.

First of all, Grassman numbers, and a supersymm€try, occur naturally,
already at the classical level, in gauge theories. lt is now understood that
the 'correct" phase space ol a gauge theory includes ghosts, which are
variables having a Grassman parily opposile to lhal of the constraints
which define the physical subspace of the system. The point about
extending the phase space with these ghosls is that dilferent ways of
writing the constraints that define the physical subspace turn out to be
equivalent up lo canonical transformations in this extended phase space.
Moreover, there is a symmetry, called BRST symmetry, in this phase space,
which is actually a supersymmelry, since it mixes the original phase
space variables with the ghosts, which have the opposite Grassman parity.

' F.A. Berezin, Superanalysis (edited by A.A. Kirillov), Reidel t987.
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It is not a supersymmelry ol the kind lo which these lectures are devoted,
though, so I have nothing more to say about lhe BRST supersymmetry.

The 'classical limit' of a quantum lheory which conlains fermions also
uses Grassman numbers. But lhis m€ans lhat we must define inlinite
dimensional symplectic supermanilolds carefully (more or less; much less
in practice) before we can study gauge theories, or theories containing
lermions, in depth. The 'symplectic" p.arl is easy. lt jusl means thal we
have to define Poisson brackels, in the obvious way:

Ê ...t
{A,B}=AA¡ûilAiB (14)

The only dilference, compared .to the usual case, is lhat the possion
bracket is now symmetric, as opposed lo anli-symmetric. Again, a little
bit ol common senss will enable you to work out all the rest.

Supermanifolds conslitute a difficult subject, however. The last word
on things like the topology df supermanifolds is yet to be said, as far as I
understand. They are defined using 'sheafs", in an algebraic manner. An
ordinary manifold - its topology, diflerentiable structure, the whole
works - can be defined in terms of the algebras of real valued functions
lrom subsets ol the abstract set that is going to be the manilold, and
homomorphisms of lhese algebras that arise when one set is a subset ol
anoth€r. lt is said to have dimension n if the algebra of lunctions at any
given point has n generators - which is just another way of saying that
any lunction can be expressed as a lunction of n coordinates. (you can lind
out more about this in the book by Penrose and Rindler.) A supermanifold
can be defined rigourously in the same manner: lt is said lo have dimension
(p,q) if lhe algebras of functions have p + q generators, of which p take
values among ordinary numbers and q are Grassman valued.
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5.2 Some slmplo superllelds.

5.2.1 Some generalltles about llelds.

Ordinary Minkowski space is lhe homogensous space that you get lrom

the Poincaré group by dividing oul tlra Lorentz group. what this means is

that for any point in Minkowski space, you can find a group, isomorphic to

the Lorenlz group, which leaves that point invarianl. Moreover, you can go
from any given point to any other point by means ol a lranslation.
Superspace is the homogeneous space that you get lrom lhe super Poincaré
group by dividing out the LorEntz group ¡n a similar manner. A general
€lement ol the supertranslation groùp will be parametrized as

"ix.P 
+ie^d+ iô"b¡ (1)

The 'exlra" dimensions, spanned by the 0's, that you get in this way are

"Grassman dimensions', since they correspond to supertranslalions. Since

the latter do nol ant¡commute with each other, flat superspace has

lorsion. You can keep these things in the back ol your mind, if you want,
but I will introduce superiields in a more pedestrian manner. The
important thing to notice is that the idea is very simple, even if the
deta¡ls lsnd to be a bit messy.

So, a superlield should be a lunction ol'xa, 0o and 0A., and the hope is

that we can find superfields thal can be used to describe the models that
we construcled in chapter 4. Suppos€ w€ try a scalar supelield. To see
what sits inside it, we perform a Taylor expansion in the 0's:

o(x, 0, e) = a(x) + eq(x) + õi(x) + 00b1 + 
-eõ0. 

+

+ oV(x)-e + õ6e¡11x¡+ oeüz(x) + eeõ6c(x)

where

0l= OrM ôi=illo=1ef¡' 0Võ=0AV*.õA' (3)

I will use this notation lor anti-commuling spinors only.
We see that the number of bosonic and lermionic degrees of freedom are

equal, but apart lrom lhis it does not look like any of lhe unitary
representalions ol lhe supersymmelry algebra that we studied in chapters
3 and 4.. Belore we lhink about this lurther, il is useful to th¡nk a little
bit about how ordinary lields work, just lo remind you thal they are hard
to understand, too. So, suppose we want to desribe a massive particle with
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spin 1. lt can exist in three dillerent states, so ws axpecl to use a lield
with three degrees ol lreedom. On the other hand, we insist that we sh.ould
use a linear, linite dimensional représentation ol lhe Lorenlz group to
describe it. This is a slrange idea lo slart with, because a 'linite

dimensional repreienlation ol a non-compacl group can not be unitary.
Moreover, there are no three dimènsional representations ol thal kind
around. We insist on it anyway, and will say that lhe massive spin 1 -
particle is described in a 'manilestly covariant" manner if we succeed.
Ths reason why we insist on it is partly a matl€r of convenience, and
partly philosophical. The poinl is that, to a malhemalician, a tensor is not
a bunch of componenls that translorm in a specilic way under changes ol
coordinale systems, it is somelhing which exists independently ol any
coordinate system. Starting lrom the "algebraic" way of looking at a
manifold that I sketched in section 5.1, one delines a tangent vector at a
point as a derivation of the algebra ol lunctions al the point, and tensors
of highér valence are then defined in terms ol the vectors. One can then
compute what the tensor looks like in any coordinate system, and derive
lheir transformalion properties. The point is that you can run lhis
definition backwards - once your model is expressed in lerms of linear
tensor representalions ol the Lorentz group, you know that it is
independent ol any coordinale systsm, which, from a philosophical point ol
view, is a very importanl property. Of course, the philosophical motivation
for using superfields is less clear, since we have no very clear
preconceptions about lhe meaning, il any, of superspace.

Now, thE only reasonable candidale lor a Lorentz lensor represenlation
which can describe a massive spin l-particle is a lield 4", translorming
as a vector under the Lor€ntz group. ln order to make conlact wilh lhe
repres€ntalion lheory ol the Poincare group, it is necessary to build an
action lor this lield. The variational principle will then give us equations
of motion and constraint equations that supply additional conditions on
lhe degrees of freedom that make up ihe field. ln this particular case, it
turns out that the lourth componsnt - Ao - is conneclsd to the spalial

componenls ol lhe vector field through second class constraints, so lhere
are only three independent degrees ol lreedom in lhe vector lield alter all.
The lesson lhat we draw lrom this is lhal the representalion content of a
lield, as lar as the Poincaré group is concerned, is determined both by lhe
lensor character of the lield (its *off-shell' properties), and by the action
principle. ln general, the number of "ofl-shell" degrees ol freedom is
greater than the number ol "on-shell" degrees ol lreedom. Hence lhe fact
lhal our scalar superlield seems to contain lar too many degrees of
freedom lo describe a supermultiplet is nol necessarily a problem. lt still
needs some polishing, though, as I will show in the next section.

(21
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5.2.2 Ghlral superflelds.

Let us now try to rsprss€nl the supersymmetry algebra on ths scalar
supeilield. We are not yet concerned with unitary ropresentations - that
will come with the action principle - but only wilh 'oll-shell"
representalions. Notice that the sup€rsymmelry translormations now have
lo lorm a closed algebra without help lrom lhe equations of motion, sincs
we do not have any equations of motion yet. We can write down the
lollowing set of operators, which lurnish a linear representalion of the
super Poincaré algebra when they act on the scalar superlield:

P"'= i ð,
J"6 = i(x¡¡, ðsB. - xBs, â¡¡. - 0¡e â st "rB. 

- õ¡¡ãÐ e¡s) (1 )

Q¡- à¡-i AAA.-O'f

Q¡- ã¡-¡ aA.AoA

There are lwo signs lhat you should notice here. ln the first place, Q and Q
obey the supersymmetry algebra with the sign reversed. This is not a
misstake; the canonical generalors lhat you build lrom the lields will get
lhe correct qign in this way. The second is a peculiar "Grassman-sign':

à,ä¡=ä; (â¡)'=-ã¡ el

The representalion in terms of component fields is determined as
lollows:

66 = ( eQ - ËÖ¡o = ôa + oõ\ * õoi *... (3)

The Lorentz properties ol the component lields also work out correctly.
However, we do not yet have an irreducible representation. One way of

getting such a represenlation is to reslrict o lo bs real, a property which
is preserved by super Poincaré transformations, and which obviously will
cut dòwn the number ol independent fields inside it quite a bit. As it
happens, a real scalar superlield turns out to be suitable lor describing
super Yang-Mills theories. There is another way to get an irreducible
representation, however. You notice that lhe opsrators D¡, D¡', defined as

Dr = ðr + i ð¡¡.õA' õA= ãA, + i ðo.o 0A (4)
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These operators are called covariant derivatives, because they obey
Leibniz' rule, and because lhe covariant derivative, when applied to a
superfield, resulls in anolher superfield, which also supplies a linear
representalion of the super Poincaré group (this is a consequence of eq.
(5)). That such covariant derivatives exist in superspace, but not in
Minkowski spac€, is a consequence ol lhs non-commutativity of the Q's.
The point is that the action ol a supertranslation on a gensral element of
the supertranslation group can take place either lrom the left or lrom the
right; the D's then anli-commmute with the Qs as a consequence of group
associativity:

g(x',o,ð') = 
"i(eQ+õô)n1x,e,6) 

, 
"i(eD+Ëô)n1r,s,ô¡ 

= g1x,e,ð¡eí(eA+õõ) .

1"i(eQ+Éö)s¡e¡((o+(ô) = "i(eQ+Ëö)6"i((o+iõ)¡ (6)

{å

"i((D+iö¡ "i(ee+Ëö)n 
= 

"i(ee+ãõ) "i((D+lö¡
Anyway, this means that we can impose a condition on lhe superfield

which preserves its character as a superfield, viz.

Do'o=o . (71

A superfield which obeys this condition is called a chiral superfield (or
an antichiral superfield, il you impose DAO = 0), and this is irreducible,
too.

One can solve the chirality condition, as lollows

. - 
"iæõ 

1./2 A(x) + ./20¡,(x) + 0o F(x) ) (8)

where lhe exponenlial funclion is defined by means of ils Taylor expansion
(and the squar€ roots ol lwo have been inserted lor later convenience). The
rspresentation content is now reasonably close to the Wess-Zumino
multiplet, and we will see in the next section, when we construcl an
action involving such a field, that it gives precisely the Wess-Zumino
multiplet. Since any (interesting) superfield has to contain a spinor, which
has two complex components, and since there must be an equal number of
bosonic components in the superlield, it is anyway clear that this is as
close to ths Wess-Zumino multiplet as we can get when we work with
"off -shell" f ields.

One more comment is in order. The condition (7), which guarantees the
irreducibility ol lhe superlield, has no analogue lor ordinary Minkowski
space lield.s. A massive spin 2 field, for instance, is described by a

symmetric lensor, which carries a reducible representation of the Lorentz
group. However, any attempt to separate lhe lrace from the traceless part

obey

{Do,õo,¡=2¡aA,; {D,D}={ó,õ}={D,o}={D,õl=tõ,o}={ó,õ}=o (s)
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belore wriling down the aclion will violale locality, and so any conslrainl

on the lield must come lrom the aclion Princ¡ple itsell. For lhe superlield'

there is no pfob¡em; the conditior¡. (7) does constra¡n lhe superlield. but

its remaining component lields (4, F and l,) are unconstra¡nsd.

a
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5.2.3 Tho Wess-Zumlno model In superspace.

So how do we deline an aclion direclly in superspace ? Since the
supersymmolry algebra is represenled linearly on the superlields, il is
clear lhal polynomials in superlields..such as

oÊ, o3,... .Do.... (1)

are superlields, too. Moreovor. expressions involving only o are still chi¡al

superlields. Thls ls already something. Next we notice an important
properly ol any superlield, namely that its com - lhe term in
the Taylor expansion which multiplies lransform
total derivalive under transformalions.

a
components of the superlields in eq. (1) are suitable candidates lor
Lagrangian densities. To pick out these components from the superlields,
sre cen use Bsrezin integration, as lollows

Jdord.e(õo+oc+õÊ +...) (2)

where

616 -62s62fr ; Jdzsee =t , f¿aðeõ =t (3)

Only terms which conlain lour 0's will surv¡v€ lhe inlegration.
The action looks a litlle bil lunny. because no derivatives are apparent,

but you should remember lhat lhere are derivatives hidden inside lhe
superlield. lt is not yet salisfactory, though, because il is obvious lrom
eq. (8) in the last'sect¡on lhal the chiral terms in eq. (2) will contribule
lotal derivatives to the Lagrangian density only, since the eeãõ-term in a

chiral superlield is a lotal derivalive. Pondering sC. (8) a bit lurther, you

realize that, in a chiral superfield, already the 0O-term translorms inlo a

lotal derivative under supertranslalions. Hence we can tty lhe lollowing
aclion lor the Wess-Zumino multiplet, obviously supersymmetric (as long

as surface lerms can be ignored, as they can in massive models), real, and

obviously renormalizable, since lhsre are no coupling constants wilh
positive dimension in unils of length (dim [xl=l, dim[0]=1/2):

Jdaxdae õo + d¿axoee 0¡ oÊ * s/G 03 ) + c.c. ) (4)

As we will see later, whsn we discuss quantum perturbalion theory in
superspace, the lact lhat some ol the terms in lhe action involve an

integration over d02 only has very important consequences. For now, let

like the
the last
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me s¡mply evaluat€ the Berezin integral:

s = I¿nr ( - ¡on - ¡ r.ai + FF + pp^lzAq + 2'lzÂF - x¡. -î'i)

+ g( A2F - r¡/zAx.t + Ã2F - t/.J2¡,Íi )).

g = fdax ( -¡04 - i rai -apz[¡ - p ( rr +1i ) -

- g2^2A2 -2./zpg(Âzl * Ãet) - r/./2g (Alr. * Ãü ) I
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ll is instructive to derive lhe equations of molion directly in superspace.
So we will vary the action with respect to O. This is slightly tr¡cky,
however. Consider the kinetic term. Clearly

We see that the "extra" scalar field F is an auxiliary variable, which will
give rise to a very simple sscond class conslraint when we analyze the

action:

F+2,lzpÁ,*gÃ2=0. (6)

tnserting this directly inlo the action (5), as we are allowed lo do, ¡t

becomes:

=O (e)

This is because o is anti-chiral, and therelore the lunctional derivalive
has to be anti-chiral, too. ln order to deline the lunctional derivative
conectly, it is uselul to observs first that

'Jdee = - r/4 DD + surlace term. (10)

lgnoring the surface term, ws can therelore write lhe variation of the
action in the lorm

õS = J6+¡6a6 ¡õ ( - rn DDo + 2¡t6 + g/.ú |
ãS (+ (11)

øîæ¡l = - t/4 DDrD + 2Piõ + st2-Ú .

The term in brackets is anti-chiral, and is indeed the equation of motion
for the superlield. There is another way to say this. lntroduce the
following projection operators:

s*,0¡ = Jdnrdoo ô,Þo # {+å+

fto*=- t/sDDõDD flo-=- rnöÞÞD

[Io*+ÍI*+flro=1

qõ=¡õ fl-o=<D

(s)

(7)

(The fermion masses equal the boson masses, as lhey shoutd.)
But lhis is precisely the action we studied in the last chapter.

Extracting the supersymmetry lransformations that we get for the
component fields, and using eq. (6), we lind that

66=(eQ-tO)o

= .lz (- ¿ ¡ + ./z eo1 -"/2 enF - 2¡ èAAi; A) + 0e( -i"/2 ãA'aAA.rA)

öA = - eI F = -i./2 Ër' â*. LA

ôxA = - 2i aA^' ËA. A - ./a e¡ F = - 2iaAA'ãA, A + 4p eA Ã + .Jzg eA ts

Again precisely what we had in the last chapter. We see that it is the
auxiliary lield F which ensures that the supersymmetry algebra closes
when the equalions ol motion do not hold, and also that it enables the
represenlation lo become linear. Dynamically, it is trivial, since it is
connected lo the other variables thror.rgh a second class constraint.

So, what happened ? lt is clear thal the superspace technique enables
one to write down supersymmetric act¡ons with very little labour
(although it'may become necessary to devote some care to surface terms
in models involving massiess lields). This is already something. The real

worth of the lechnique will not become apparent until we discuss
superspac€ perturbation theory, however.

We can in fact rewrite the action as an integral over the enlire
suparspace, provided that we allow 0g&lecal operators, as follows:

S = J6t6csõo * I¿t¿ze (piiÉ + 9/6 õ3¡ + ... =

=Jdaxdaeiño-16J6rr6e6DDÞõõþõ+9/6ii2)*...= (13)

= Jotore (õo + p/2 q+ a * Dfo.l + s/r 2 1DÕõ õe + To o2¡¡ .

lf we define

fl,o = rø ùÞÞD^

(12)

(8)

(14)



*45-

(and similarly lor the complex conjugate), w€ recover precisely the
lunctional derivative ol lhe action as given in eq. (11). The delinilion (14)
will be uselul laler.

Finally, a rule of thumb: Whenever you have a nice book-keeping device
such as superspace available, you should make as much use of it as you
can. Think in t€rms of superlields, and avoid component lields as much as
possible. (There is another rule ol thumb, which says lhat you should not
be alraid ol expanding in componenls whensver that becomes convenient -

which rule ol thumb you should apply depends on the conlext.)
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5.3 lnlerlude: Covarlant de¡lvatlves.

Belore we tackle gauge theories in superspace, ! would l¡ke to insert a
few words on covarianl derivatives, torsion, curvature, and all thal. I will
be very sketchy; I just want lo outline lhe idea. I will call an op€ralor
acting on an algebra (of functions) a derivalive if it obeys Leibnitz' rule,
i.e. if

ð¡ (fO) = â"þ + lð"9 (1)

where a is some index which I will take lo be a vector index (or more
generally a supsrspace index a,A,A'). Differentiating with respect to some
coordinale gives an example of a derivative, of course, but a general
derivalive need not be expressible in that lorm. ln lact, the derivative
opsralor need not be commulative. The commulator is a derivative also.
however, so I can wrile

[ða,AbI = TabcaJ (2t

By delinition, the objecl on lhe right hand side is called the torsion (the
torsion lensor, since a,b,c are vector indices). I have already shown you an
example of a derivative with non-zeio'lorsion, namely the superspace
covariant derivative Ð^.

Now for covariant derivatives. Suppose lhere are a second kind of
objects k, 1,... on which the derivative can act, and thal these object
translorm under a slructure group of some sort. ln general, the object ô"k
will not lransform in the same way as k does (for instance, ð" might be a
coordinale derivative and the eleqents ol lhb slructure group may be
x-dependent). A derivalive V. is called a covarianl derivative if V"k in lact

does transform in lhe same way as k.
ln Riemannian gsomslry, things are slightly more complicated, in that

the covariant derivalive is supposed to take tensors into tensors of a
different type, bul the delinition l'jusl gave is appropriate lor the much
easier Yang-Mills case. Then you can regard the covariant derivative as
being supplied with additional matrix indices (lor the struclure group to
act on): l

kr -+ (v"¡|ki . (3)

These indices are rarely wdtten out explicitly.
ln lhis more general situation, the commutator ol two covariant

derivalives takes lhe form

a

[Va,Vb]k = (Fr6 + TabcVdk (4)
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F"6 is called lhe curvalur€ lensor; like the torsion tensor, it is matrix

valued, although I have suppressed the indices. Of course, you are lamiliar
with such curvature tensors lrom Yang-M¡lls theory. lt turns out that, lor
lhe covariant derivative that we need lor Yang-Mills theory in superspace,
both torsion and curvature are pres€nt.

ll you wdle out the slatement thal

VlaVulVcl = V¡¡VbVc¡ = v¡av¡ovc¡¡

explicitly, you will prove the very importanl Bianchi identity

V¡"Fuc¡+T¡¿6dFc¡d-0 (6)

which must be obeyed by any tensors that aspire to play lhe roles ol
torsion and curvature.

Selecting a suitable basis, ons may always write lhe covariant
derivative in the form

V"l=â"r, Vak=(ð"+4")k (7)

where 4., which is a matrix valued lunction, is called the connection.

Using eq. (7), you can obtain fortulæ lor the lorsion and curvature tensors
which automatically obey the Bianchi identity.

Let me be a little bit more explicit about how things transform under
some element t of the structure group:

k + tk ð"k -r t â"k + â"t k V.k -r tV"k
(8)

F"6 -r tF.6t'1 A" + tA"t'l + lð"1-1

Nole also that, at least in the absence of torsion,

F"¡=o Aa = lâ.fl (s)(+

There may be several structure groups in the problem. ln superspace
gauge theories, for inslance, lhere are both supersymmetry and colour to
take accounl ol. A derivative which is çovariant with respect to one of the
struclure groups need nol be covariant w¡th respect to lhe others.
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5.4 Gauge theorles ln superspac€.

5.4.1 Supersymmetrlc QED.

The easiest kind ol gauge theories to deal with is, of course, the Abelian
ones, so I will begin with a lew words on supersymmelric QED. Fi¡st we
have lo select a suitable kind ol superlield lor the photon mulliplet. A real
scalar ons se€ms like a possible choice, since il contains a veclor lield:

V(x, 0, 0) = a + or +ã[+ 00b +6ð6 + oAõ + eoõi+õ6ef + eeõõO (1]

Whal kind of gauge invariance are we looking for ? Well, the kinetic
term of the action for a'mattef - i.e. Wess-Zumino - multiplet

Jooro.e õo (21

is invariant under the rigid lranslormation Õ -+ el^ o, and the only
reasonabls local lorm of such a gauge transformation is

O -r €i^(x) O (3)

where 
^ 

is a chiral super field (it has to be a superfield). Then the action

(4)fdlo¿e o evo

is gauge invariant, provided that

V-+V+¡(Ã-^). (5)

At first sight, the aclion (4) looks unpalatable in the extreme, since it
is non-polynomial, but inspection ol the gauge transformation (5) shows

lhat it is possible to set all component fields in V to zero by means of
gauge transformations, excepting 4., D - which will become an auxiliary

lield, just like F in the Wess-Zumino model - and 1,. ln this gauge, which is

called the Wess-Zumino gauge, eV becomes a polynomial function, so the

siluation is not that bad.
It is easy to construct gauge invariant "fleld strengts" lrom V, viz.

W¡ = DDD¡V , WA = DDD¡V .

Wn is obviously chiral; moreover these objecls obey

ow-õW=o

(s)

(6)

(7)
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When written out in terms of component lields, this identily becomes the

Bianchi identity for F"6.

Wilh the lield strengths in hand, it is easy to wrile down a gauge

invarianl action lor the vEctor multiplet. Since Wo is chiral, the action

involves an inlegration over half of suf€rsPace only, but it is possible, and

useful, to rewrile it (remembering eq. (10) on page 44, and ignoring
surlace terms) as an integral over the entire superspace:
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5.4.2 Supercymmetdc Yang-Mllls.

The approach in the last section was the 'minimal" one - starting lrom a
guess about what kinds of superlields one should use, one liddles out what

lhe gauge theory has to look like. ln lhis section, we will lry a 'maximal'
approach - labourious, but inslructive. First ws collect all the superspacs
indices into a single Swedish index å = (a, r, l'). Then we write down
superlields which are to play lhe role of curvature and torsion lensors, i.e.
they are subject to the Bianchi identity

vpFao¡+Tp6oF6¡o=0 (1)

where the bracket denoles antisymmetrization ol even indices and
symmetrization of odd ones. A priori there are no more reslrictions on
these tensors. Of course, supersymmslric Yang-Mills theory does not
conlain that many gauge covariant component lields, so we expect to be
able to impose a few additional conslraints. A lirst restriclion is

suggesled by insisting that lhe covariant .derivative V. should be wr¡tten

in the lorm

v¡=(â.+A.,D¡+A¡,0¡*Ã¡.). l2l

(Note lhat as yel there are no reality conditions implied, so A¡ and Ao. are

independent lields. Also remember lhat all lhe lields are matrix valued,

with indices appropriate to the internal symmetry group that we are
gauging.) Eq. (2) leads naturally lo conslraints on lhe torsion tensor. The

only non-zero piece ol the torsion is assumed to be the unavoidable

TAA." = 2i o*3

More constraints ars needed. Suppose that, eventually' we want to
couple our supersymmetric Yang-Mills model to a "gauge covariantly
chiral' matter superfield. This suggests a consistency condition

VAO=0 + [VÀVslO=FortD=0

ln fact, we will require that

FÆ = Fl,e.=.FA{.= 0

s = v¿ Jdaxf Jd2e ww * Io4 -tniw ¡ =

= uclút{ faze õ-o1oornrur) + fozõ oo1-oÂ\rWo.¡ ¡ =

= -tdt6rs (õA,DAvõADAv + ooõovoÆôv ¡

(8)

lf you write lhis out in lerms of component lields, you will lind that the
action contains higher derivatives (lhan two). You can escape this
conclusion by means of redelinitions of the component fields.

Varying with respect to V, we lind the equation of motion

DW+ DW=0 (e)

Non-Abelian gauge lheory can be discussed in the same fashion, but in the
next section I will treat it using much heavier machinery, which will be
good lor your education.

(3)

(4)

(s)

At the momenl, this ís simply a suggestion, to be checked for usefulness

(and to be supplemented with reality conditions). ln a later section, we

will see that there is a kind ol interpretation ol these constraints, which
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sugg€sts that more can be said about them, but lor the moment we will

prõãeeA to investigate whal additional requirements these constraints

imply via the Bianchi identities.
Taking the swedish index apart into Lat¡n indices, we lind lhat the

following non-z€ro Bianchi identities remain:

V"F¡+V"F"¡+V6F."-0

V¡F5s + V"Fn6 + V6F"¡ = O Vo'f* + V"F¡6+ V6F.¡. = 0

-vcFas+vsF..=0 -1".F""+V8.F""=0 (6)

oc.tdFsd+oss.dF^d=0 o"olFro+og"dF^6=0

- V",F., + vsF., + 2i or".dF"o = o .

The second to last line implies that '

Fo"=io"*.tÄ F¡¡=io"¡¡.wÂ' (7)

The last line then allows us to solve lor F"5 in lerms of Fo" and F¡'";

looking cårefully at this and the other identities, one sees lhat the general

solution of eqs. (6) is obtained by constraining the spinorial superfield wo

in the lollowing lashion:

Vowo=o=vAF/A. vw-ffi=0. (8)

so the curvature and torsion lensors that I started out with have nôw

boiled down to Wo and Wn.. lt is clear that we have lound a generalization

of the Abelian lield strengths lrom the last section.
However, in order lo build an action for supersymmetric Yang-Mills, we

have to ligure out what the supersþace constrainls imply for lhe gauge

potentials (and also we have to make decisions concerning reality

conditions). From

[vr, lr.l = FA¡\, + Tm.âv¿ (9)

and our choice of constraints, you can see that it is possible lo solve for

A. in terms of Ao and Ão.. this is already somelhing. The conditioî FrB =
FA,B. = 0 implies that the spinorial gauge potentials have the lorm

AA = evDAe-v Ãn,= euõr,e-u . (10)
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where ev and eu are group elemenls and scalar superlields. They are called
prepotentials; lhere are two of them, unlike the single prepotential we had

in the lasl section. This suggesls, corregtly, thal il should be possible to
sêt on€ ol them to z€ro as a partial choice ol gauge. To this snd, we
examine lhe gauge iymmetries present ¡n tho problem. Firstly, we see that

F¡¡ â eíxFåäsìx + ov + €ixev ou -Ð eix €u (11)

However, lhere is an extra gauge symmetry present, which F¡¡ does nol

feel at all, namely

. sv + oveii ou -+ eust^ (12)

where À is chiral and ¡l anlichiral (and independent of À, since there are as
yet no reality conditions). We can us€ the gauge symmstry in eq. (1 1) to
set U = g = Ã¡,; there is still some of that gaugs symmetry left, since the

gauge lixing is unaffecled by gauge translormalions of the lorm (11) when
X is ¡estricted lo be chiral.

Now all that remains to do is to impose a r€ality condition of some sort.
A suitable one is clearly to demand that V should be real. Then we have
indeed recovered a sst up which reduces lo lhat in the last section, once
the colour group is chosen to be Abelian. The remaining gauge symmetry is

given by

ev + e-¡^evs¡Ã (13)

(where À is now lhe complex conjugate of Â, because of the reality

condition). The action is given by

S = v¡ Tr fdaxd2o Ww + c.c. , (14)

where the lrace is over the group matrices, and Wo and its complex

cbnjugate is to be expressed in terms ol the prepotential V.
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5.5 Survey of superspaces.

One ol lhe things lhat should be lairly obvious lrom lhe last section is

lhat it is by no means straightlorward, technically, to lind superspace
act¡ons. However, as far as N=l superspacs in lour dimensional space-time
is concernsd - the Wess-Zumino model, supersymm€tric Yang-Mills and
supergravity - all problems have been solved already, and the resulling
formalism has proved lo be very uselul, both when ¡t com€s to proving
general theorems and when explicit calculalions are to be perlormed. (l
will show some €xamples ol this in lhe next chapler.) Ol course, models
with extended supersymm€try can be formulated in N-1 superspace, too.
For instance, |.1=4 super Yang-Millþ is described by a N=l supsrspace
Yang-Mills model coupled to three chiral superfields. However, it soems

natural lo inlroduce extended sup€rspaces, spanned by N diflerenl 0's.
For extended supersymmetry, described in superspaces with N dillerent

0's, the number of component lields in a superfield grows exponentially
with N, and it is not surprising lhat matters such as choosing the correct
constrainls on superspace lield strengths do become considerably much
morE involved. For N-2 superspace, these matters have nevertheless been
sorted out, but the resulling formalism is very cumbersome. For N>2, it
lurns out lhat something rather surprjsing happens; it has been proven'
that once N>2 - wilh one exception, which has to do with a model that can
be obtained by dimensional reduction lrom ten dimensions - it is
impossible lo write down an action in terms ol N-extended superfields.
Any atlempt to impose conslrainls on the field slrengths, in order lo get
rid ol superfluous degrees of lreedom, turns oul to 'put the theory on
shell'; in other words, lhe constraints

Fu¡s + Fus¡= Fu¡g.+ FpB.A.= Fl¡r.= 0 (1)

say, are eqlivalenl to lhe equations of motion lor N=3 super Yang-Mills.
This means that such superlields can nol be used to lormulate action
principles. Of course, similar statements can be made lor superfields in

space-limes with dimension higher lhan four.
The proofs are based on counting arguments, and deeper reasons for this

phenomenon are not known. There are soms suggestive observations, on the

other hand. ln some ways, conslraints such as lhose in eq. (1) are
reminiscenl ol the sell-duality condition

'F"6 = F"6 el

' S.E.W. Nilsson, Ofi-Shell Fields lor the lGDimensional Supersymmetr¡c Yang-M¡lls
Theory, Gdteborg preprint 81-6. February 1981.

V.O. Rivelles and J.G. Taylor, OltShell No-Go Theorems for Higher Dimensional Super-
symmelries and Supergravil¡es, Phys. Len. 12lB (1983) 37.
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in pure Yang-Mills lheory, in as much as both types ol conslrainls are
algebraic constraints on the lield strengths. The self-duality condition
also implies the equalions of molion, although it is much slronger. ln lact,
the self-dual Yang-Mills equations, also in Euclidean space where it is
non-trivial, can be solved exaclly, and lhey are, in one sense of the word,
integrable, although lhey can not be put in Hamiltonian lorm. The latter
propêrty more or less amounls to the statem€nt that they can not be
derived from a reasonable aclion. (The superspace analogue of the sell
duality condilion is to set .WA. = 0: provided that we are in Euclidean

space, or that the reality condition is relaxed, Wn may still be non-zero.)

The solubility ol the sell-dual Yang-Mills equations is intimalely
related to lhe fact that they can be obtained as compalibility conditions
for a system ol linear equations. ll seems lar to optimistic to nurture any
hopes about a method which would enable ons to construct the general
solution of ths full Yang-Mills equations. Nevertheless, there is a linear
system yielding compatibility conditions which are the superspace
constraint equations, and hence - in the N=3 case - the lull set ol
equations ol motion'. lt is

nôvJ¡y=o [rllrny=o r¡ÈAv¡¡.Y=o (3)

where ¡¡4, [a are commuting spinors. The fact that luq commmuling
spinors appear, as "speclral parameters", rather lhan just one, makes the
present sel up hard to deal with. Nothing much has been achieved in this
direction yet, beyond wriling down this linear system.

' E. Wilten, An lnterprelalbn ol Class¡cal Yang'Mills Theory. Phys. Letl 778 (1978) 394.

J. Avan, Suporconlormally Covariant L¡near Syslem lor N=3,4 Supersymmetric Yang'Mills

Theory in Four Dimens'¡ons, Phys. Lett. 1Íl0B.(1987) 110.
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6. SUPEBGRAPHS.

ln the last chapter a lot ol offort was sxp€nded on lormalism, but not very

much came out ol it. Actually, very much hAS come oul of superspace. The
main application has been lo quantum perturbation th€ory. Moreover, the
very special ultraviolet behaviour which supersymmetric models exhibit
in perturbation theory has always been in the center ol inleresl lor the
subject. So this ought to be lhe most important chapter in these notes.
Howsver, due to my limilations, I will be very briel, and I will avoid
entirely soms of ths tricky points, such as questions concerning
regularizalion (these queslions are in lacl so diflicult that a malor
misstake was once made by l'Hooft). My aim is simply to show that
superspace melhods are useful, and lhen to menlion som€ of the results
obtained. You can lind out more aboul "supergraphs", lor inslance in
various publications by Grisaru, Siegel and Rocek ', who developed the
superspacs Feynman rules into their present lorm.

6.1 Feynman rules ln sup€rspace.

I will confine myself to the Wess-Zumino model, and only the massless
case, lor additional simplicily. Remembering the manipulalions thal I did
at the snd section 5.2.3, we can write the action, coupled to a chiral
sourcs J, in either ol lhe forms:

S = J6ç6q6. + J6t6zs (9/6o3 + z'tt2øJl + ... =
(1)

= ldaxdag (õo + (g/12o¿ * ssa¡¡QQo + @¡2õ: * 2-aaj¡8Ðõ ¡ .

The idea now is to derive the Feynman rules directly in superspace.
Evidently, they will look more or less like the Feynman rules lor lhe
scalar q3-theory, except that there will be a lew superspace covariant
derivatives hanging around. Çoncentrating on the free action, ws can
rewrite th€ path integral in lhe usual manner as

zolJl * f¿o¿õ expJ(iio * 2-sao$i¡ .' 2æôD$i) =

= f¿oaõ erpJ((õ + 2€¿2 QÞo JXo * 2'.,, Þû1 - vaDD ¡ B i I *

' M.T. Grisaru, W. Siegel and M. Rocek, lmproved Methods lor Supergraphs, Nucl. Phys. 8159
(1979) 429.
M.T. Grisaru, Four Leclures on Supergraphs. Spring School on Supergravily, Triesle 1981.

Þllrr0:ql = - v¿õõ 6{x-x1 6r1s - o'}
6J(xlcjã)

the propagator becomes

<T(o(-k,ol,6r) õ1r,er,Q¡¡t = vr6õõ Pl oo
k¿

-5&.

* 
"'p-J¡*i

(2',1

Since

(3)

ç
(4)

where

ôr¿ = ô2(0r-ge)ô2(6r-õ2) = (or-o2x0r-e2¡6,-e¡õ'-6¡ (5)

(note that Fourier lransformalions are done for x only, not lor the 0's). ln
the massive casa, a rather more complicated expression results, since
there are OO-terms in the aclion.

Explicit calculation yields the lollowing important information, to be
used later:

õteõ¡z= = ô12D ô12= ôraó ôrr= ôr2DDô12= ôr2DÓ ô12= ôrrÓD õr.=

j ôreDDÓ ôre= ôrrDÓõ ö,, = o

õr2DDõõ ô12= t6 ô12

DA(k,01) ôre= - Dil-k,oe) ôre

Now we turn to the ¡nteracting case:

(6)

z[4=expsßlJotoze,;l*]j) +c.c.]expJJ+i . ø)

At this point, I will make a drastic simplification, which will save
mysell a lot of time, although il is not quite lair to you. I will ignore all
numerical faclors.

Now it is clear that, with every chiral (anti'chiral) vertex, there will

be associated an integral over dzo (d2õ). lt is convenient to rearrange

lhings a bit, however, before writing down the Feynman rules' There is a
propagator between every pair of vertices, and it lurns out to be

convenienl lo move th€ covarianl derivatives in eq. (4) lrom the
propagatof to lhe verlices._Hence wilh every chiral (anti-chiral) vertex

there will come a lactor DD (DD) multiplying every line that leaves lhe
verlex; one of which will be used to convert the integration to an

(2t



integration over dao. Similarly, we sae lrom eq. (2) tlal every exlernal

chiral (anti-chiral) line comes with a lactor DD/o (DD,b)' which will

cancsl an additional DD (DD). So, wo end up wilh the lollowing Feynman

rules - wilh all numerical faclors convenienlly suppressed ' for how lo
computs the eflective act¡on:
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oõProp¡g¡tor :- tu
¡2

Chlrol vcrtcx

Õ

-Õ
lo'e

õ
Anti-chlral vcrtcx å- lo'ã

For c¡ch cxtcrn¡l chir¡l (¡nti-chlrcl) linc, drop c factor õõ'(DD)

lntcgrctionr: 
¡
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6.1.1 Sample calculatlons.

Now I will show how the Feynman rules work in praclice. First a tree
level calculation, which would have served as a check on the
normalization, i[ I had bothered about numerical factors:

å

ÕÕ

The next section will be devoted to some explicit calculations. The

reason why we compute the eflective action. rather than some S-malrix
element, is thal lhe lormer calcu[ation yields just a number. An S'matrix
element with N !egs, on the other hand, is given by an expression which is

a superfield in N diflerent O's; il can be obtained by lunctionally
dilferentiating the eflective aðtion with respect to N superfields.

The reason why I do not discuss supersymmetric Yang-Mills models
hers is that such a discussion þ rather involved; it requires a good grasp

ol thê background field method (unless one takes recourss to light front

superspace methods).

This gives

Idlp,orprorp.oreô1(Eft ) DP o(p,,e)oþ2,0)o(p3,0) =

= Jdap,daprdapffeal(zp,¡ o(pr,0)d(p2,0)o(p3,e) .

Next, a loop diagram: 
q

À

We get:

Jdrpdrqdre,dno2 o(-p,ol) DD ry DD 
,fftr.to,rr¡ 

. (21

Using the identities (5) from the previous section, this turns oul to be

J¿opooqo¿eõ(-p,e)o(p,o)¡fr-F. (3)

The integral over q is logarithmically divergent. But this is amazing; il
we had done the calculation without the superspace technique - starting

from the action in section 4.2 ' we would certainly have encountered
quadratic divergencies, lrom the diagrams

Õ

(1)

+

dap n
cxt

õ
Õ

Õt
Õ

p+q

n
loogr

dap 6{ ( ¡p)
cxl

a

r
A-(

¡\- -'

I

r
A

A Ã'
A A

However, since a lermion loop contributes a minus sign, these quadratic

divergencies come with the opposite sign. At this point, one might recall

an idea lrom the 30's, which has spent half a century in the dust bin. ll
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u,as onc€ suggssled that tho divergencies in spinor QED might go away,
onc€ the contribulions lrom the newly discovered scalar m€sons wer€
included, since the meson loops have opposite sign lrom lhe electron
loops. That did not work out, of course, but it is precisely lhis mechanism
which operates in suporsymmstric models. The contributions lrom the
diagrams above are actually included in eq. (3); however, lhe requirement
of supersymm€|ry has adjusted their relative strengths in precisely such
a mannor that the quadratic divergencies cancel.

There is still a logarithmic divergence, but one might hope that other
supersymmetric models aÍe completely finile, order by order in
perturbation theory. There does in lact exist such models, but lor the
moment we ought to regularize the divergence at hand. lt is clear thal
dimensional regularizalion is somewhal against the sp¡rit of the problem,
since all lhe superspace spinor algebra was carried oul in lour dimensions.
All I have to say about lhis ¡s that the issue is tangled, and lhat I am
certainly not lhe person to say something about it.

While we are at il, we might as well go on to two loops. There is
actually only one diagram to compute (this would not be true in the
massive model, where thers are O-O-propagators to take accounl ol as
well). This, il anything, ought to convince you about lhe power of
supergraphs, since lhe number of component diagrams lhat "sil inside" the
single supergraph is rather large. Anyway, lhe diagram is

k

{ k+q

Õ å (p)

p+t¡

€0-

- Jdopdqdot¿oord1ozd1e3d1e{ õçp,e, ¡oo
<.

x ooþõóffit'5.ote,ea

= J¿rp¿rqaruror d4% õ(-p,0, )DD

'fr}þfi¡"o(p,q)=

'ù¿

12

(-r<-
õõ¿oo &r-oõ x

= fdpdq¿aL¿oe,o\ õ¡p,e,¡ Jt* DD õ6 DD õõ -ô¿* x

!ttxþififür1ffi¡zo(p,01) =

- J4p6rqdq<doe õçp,e¡fr f"t*hioi-oåF.o,.l .

This easy. calculation automatically sums all lhe componenl Feynman
diagrams that contribute to lhe trgo point lunction at two loops. There is
more lo superspace perturbation theory lhan mers calculalional
convenience, howeve¡; as I will discuss in the next seclion.

ë
- -- I

!|ooæx

(s)

DOqD

ç?
= fd4pd4qd4kd4o1d1e2d4osd404 õ(-p,or)DD qg Dõ ôõ ô41 oo t

e 1' k¿ 
(4)

x DDô+õD('sffi.*to,rot .

By means ol partial integrations and eq. (6) from the previous section, we
can manipulate this expression as lollows:
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62 Norrrenormallzatlon thgorers.

ll you have lollowed the calculations in the previous seclion, you will
believe llle central theorem of superspace perturbation theory, which is
thal the elleclive action l'is an expression ol the form

Í=fdaxr'..daxnpaoG1xr,...,x*)x(Polyrnmialhrhofi€Hsandthe¡rderivativos) (1)

Whal matters here is the way in which lhe 0's appsar. The theorem says
lhal eqs. (6) ol sect. 6.1, logether wilh partial integrations, are enough to
ensure that f always takes the form ol an integral ovsr a single 0, and
always an integral ov€r the entire superspacs - as opposed to the chiral
subspace - and moreover that the only O-dependence in the integrand
comes lrom the external lields. A numbEr of striking conclusions aboul
how supersymmetric models (in lour dimensions - soms of the conclusions
are invalid in, say, lwo dimensions, where supsrspace works somewhat
dilferently) behave in perturbation theory lollow immedialely:

1. All vacuum bubbles vanish identically. This lollows since they
contain no external fields, and hence no 0's in the integrand, so that they

a¡e killed by the integration over t ll means that the energy density of the
physical vacuum is zero, as compared with the bare vacuum, while it is -

naively, at least . minus infinity in generic models. This is not quite the
same thing as saying that there is no energy dilference between the
physical and the bare vacua; however, it lurns out thal lhe level shift is
indeed zeÍo, perlurbatively, provided that there ars at least lwo
supersymmetries in the model'.

2. Chiral terms in the superspacs action - i.e. lerms which involve an
integration over dzO only - will receive no guantum correclions. This has
important consequences. Gonsider the' action lor lhe Wess-Zumino model
as an example:

foor¿oe õo + ddtdzg 0r o¿ * s/6 o3 ) + c.c. )

One would normally expecl three independent renormalizalions to be
necessecary for this model:

o.o=Z1t2O go = Zsg mo = Z-m (3)

However, lhe non-renormalization theorem just mentioned implies that

zst2zs='l 72-=1. (4)

'1. Bengsson and O.Lindgren, Extended Supersymmelry a¡¡d the Vacuum, Phys. Letl. 1278
(r9$) 6s.
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Hence only one independent renormalization constant is needed for the
model. (This is ol course reminiscent of Yang-Mills theory, as
renormalized using the background lield method.) Nots that this means
that the 8-lunclion ol the model can be compuled by computing the
two-point lunclion, so that the mbre elaborate calculation of the three
point lunction can - lor this purpose - be avoided.

3. Since dim [da0l - 2, simple power counting leads to the conclusion
that there will be al most logarithmic divergencies in perturbation lheory,
provided that there ars at most quadratic divergencies among the
component diagrams. One would expect €v€n more dramatic cancellations
of divergencies among lhe component diagrams in models with extended
supersymmetry, since then there are "more 0's'; however, sincs extended
superspace do€s not work smoothly, it was for quite some lime an open
queslion whether there indeed gx¡sts a model without any divergencies in
perturbation theory. I will say a lew words about this in the next seclion.

4. Provided that supersymmelry is unbroken at the tree level, it will
not be spontaneously broken in perlurbation theory eilher. Of course, this
very important conclusion can nol be obvious unless you know whal the
conditions lor spontaneous breakdown of supersymmetry are, and I have
not told you that, so I just ask you to believe this statement. (A good place
to learn about this topic is two papers by Witten'.)

These conclusions are clearly remarkable; they are also enough to
provide somo grounds lor belief in the relevance ol supersymmetry lor
particle physics. I will spend a lew words on this presently.

'E. Witten, Dynamical Breaking ol Supersymm€try, Nucl. Phys.818Ê (1981) 513.
E. Witlen, Conslrainls on Supersymmelry Breaking, Nucl. Phys.820? (1982) 253.

(2',1



-63-

6.2.1 Flnlte models.

Returning to point 3 ol the last section, it is clear that lhe mechanism for
removing divergencies in perturbatidù theory that we uncovered - any
Feynman diagram contains a superspace m€asurs having a certain
dimension of length - will work only if the coupling conslant of the model
ís dimensionless; it will be quile helpless in the lace ol grav¡ty, although
it took some time before this point was understood. The besl candidate lor
a linite model should be the N=4 supersymmelric Yang-Mills model. lt has
been checked by explicil calculation that this model is indeed linite (in

the ultraviolet - inlrared divergencies are another matter) up to the three
loop level. A number of dilferent prools - using light lront superspace',
N=2 superspace, and consideration ol anomalies r€specliv€ly - that this
property holds to all orders have also been published. Unlorlunately, there
are weak points in all of lhese proofs - points which are rarely discussed
in the papers which give the proofs - which means that ¡t is difficult lor a
non-€xp€rt lo tel¡ whether the result actually has been proven. However,
al least the lighl lront proof has stood up to later scruliny", and the
lollowing statements"' are hardly in doubt.

The N=4 model is linite order by order in perturbation theory. You can
regard the N=4 model as an N=2 sup€rsymmetdc Yang-Mills model coupled
to an N=2 hypermultiplet in a specilic way, and it turns out to be possible
to change the way in which the hypermultiplet couples to the Yang-Mills
multiplet in certain ways, without d¡sturb¡ng liniteness, so that finite
models having N=2 supersymmetry only result. Moreover it turns out to be
possible to add certain 'solt" lerms (nol necessarily supersymmetric), i.e.
mass terms and lerms cubic in the scalar lields, in such a way that
finiteness is preserved.

Note thal perturbative finiteness of a quanlum field lheory implies
that its ß-lunction is zero, perturbatively. For a Yang-Mills model, this
means lhat the conformal symmetry ol lhe classical aclion is preserved
by quanlum correctíons.

One can turn lhe argumenl around: Starting out wilh a lairly general
gauge theory containing spinor and scalar lields, and demanding that
perlurbatíve divergencies should cancel, one finds that the model has to be
supersymmetric up lo possible "solt" terms. The same conclusion follows,
again in a large class ol models, lrom the weaker requirement that all

' S. Mandelslam, L¡ghþCone Superspac€ and the Ultraviolet Finileness ol tghe N=4 Model,
Nucl. Phys.B3LA(198í¡) f49.

L. Brir¡k, O. Lindgren and B.E.W. Nilsson, The Uhrav¡olet Finileness ol the N-4 Yang-Mills
Theory, Phys. Lett. lzÍlÊ (1981¡) 323.

"J.C. Taylor and H.C. Lee, The Lþht-Cone Gaug€ and Finiteness ol the N-4 Supersymmetrb
Theory, Phys. Lett. 185q (1987) 363.

"'P.C. Wesr, Supersymmelry ar¡d Finileness, Sheller lsland ll, June f 98i!.
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again in a large class ol models, lrom the weaker requirement that all
quadratic divergencies, caused by the scalars, should cancel'.

' N.G. Deshpande, R.J. Johnson and E. Ma, Does the Canc€llation ol Ouadralic Divergencies
lmply Supersymmetry ?, Phys. Rev. D?9 (1984) 2851.

W. Lucha and H. Neuleld, Finite Ouanlum Field Theories, Phys. Rev. D34 (1986) 1089.
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6.3 On the absencs of quadratlc dlvergencles.

(l do nol lully understand lhe lollowing argumenl, nor am I completely
sure lhat it CAI be understood.)

The slandard model predicts that there exists somethíng which has
never been observed: Fundamental scalar particles. These are usually
lhought to have masses below 1 TeV, say; othenvisE their couplings have
to be so strong lhat perturbation lheory breaks down, which is at least
undesirable from the point of view of the physicist. Now I TeV is a very
low energy indeed compared to lhe Planck energy, which is often - very
glibly - lhought to be lhe 'next' energy scals in Nature. Therelore an
explanation for the lightness ol lhese scalars - lhe Higgses - is being
sought for.

Renormalized quanlum lield theory can not predict lhese masses, since
the value ol the physical masses a¡e free input parameters in such a
lh€ory. However, from a physical point ol view, it seems to make a certain
amount of sense to regard the bare masses as input param€lers. The theory
then contains a parameter 

^ 
which "regulates" the lheory. The bare

parameters depend on ¡\ in a very precise way, so that atl physical
paramel€rs come out to be polynomials in Â-l , which means that phys¡cal
quantities do not depend on 

^ 
when the limil Â -' - is taken. This is whal

it means for a lheory lo be renormalizable. An intuitively appealing
choice ol rt is lo say that all momentum integrals should be "cut off" at
some energy scale where the model is assumed to have lost its validity,
and a different theory lakes over. So we assume that the cut off (Â) is in
lact the Planck energy.

Now it is considered 'nalural" to demand that the physical masses are
not all that sensitive to what values one chooses lor the bare masses.
However, this requirement is inconsistent with lhe presence of quadratic
divergencies in the perlurbation expansion. Suppose thal lhe input
parameters are the dimensionless quantities

¡b = ms/Â (1)

and that lhe quanlum corrections to the masses take the lorm

m2=nì02+^2902

Then we find that

yo2=m2¡A2-goz
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be adjusled to wilhin one part to the'1032 in order to give the correct
value of m, which is clearly unnatural from the point of view adopted. A
logarithmic dependence on Â is not nearly as bad, and therelore we
conclude that a 'nalural" renormalizable theory has only logarithmic
divergencies in its perturbation expansion.

Two diflerent ways to avoid quadratic divergencies in the Higgs seclor
of the standard model have been suggested. The lirst starts with the
observation that scalar particles - mesons - occur in QCD as well, but
there they are not accompanied by.quadratic divvergencies since lhey are
bound stales ol quarks. So the suggestion is that the Higgs parlicle is
actually a bound state ol lermions, which is kept together by strong
"technicolour" lorces. The other way starts wilh the observation thal
fundamental scalars are present in supersymmelric models, but again
without quadralic divergencies, since supersymmetry ensures that the
latter cancel out.

There is a slightly dillerent line ol argument which'leads to the
conclusion that supersymmetry might explain why very light - as
compared to the Planck mass - lundamental scalars exist. Usually, an
explanation of the smallness of some mass amounts to linding a symmetry
which requires thal the mass is exactly zero, and lhen an argument for
why this symmetry is very softly broken. For lermions, chiral symmetry
might do, but no ordinary symmetry is known lo require a scalar mass lo
vanish. Supersymmetry gets around this by requiring that the scalar mass

should equal the mass of lhe fermion. The mass ol the scalar can then
become non-z€ro only when supersymmetry breaks down. However, since
spontaneous breakdown ol supersymmetry does not occur in perturbation
theory. it has to have a non-perlurbative origin (unless it happens already
at the tree level, of course). So a suggested explanation lor the small
mass ol lhe Higgs particle is that the Higgs particle is related to a

massless lermion by a supersymmetry, which is broken by a very weak
non-perturbative eflect.

You don't have lo believe this if you don't want to.

(2)

(3)

lf the physical mass m = 1 TeV and À = 1016 TeV, this means that ¡ro has lo
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7. SUPERSYMMETRIC OUANTUM MECHANICS.'

t
o

'P. Salomonson and J.W. van Holten, Fermionic Coordinates and Supersymmelry ¡n Ouanlum
Mechanics, Nucl. Phys.8196 (1982) 509.

-68-

8. SUPERGRAVITY

Ask Bengt.


