-

64-21
March, 1984

Revised June, 1984

Covariant Superstrings Do Not Admit Covariant

Gauge Fixing
by

Ingemar Bengtsson and Martin Cederwall

Abstract

The covariant action for superstrings is
analfzed by means of the Dirac method, and the
light front action is derived. The action gives
rise to second class constraints which cannot be
solved for in a covariant way. Covariant gaugé
fixing, in any conventional sense, cannot be ap-
plied, which leaves the question of covariant
quantization of the superstrings open. A similar
statement holds for a massless supersymmetric

point-particle.

1. Introduction

The subject of superstrings [1] has been developed by
Green and Schwarz. In Ref.[2] they presented a light front
action which describes the quantum mechanics of free super-
strings., For closed boundary conditions this action gives a
superstring with N=2 supersymmetry (in ten space-time dimen-
sions ). A covariant formulation of this interesting model
~ 1t is connected to N=8 supergravity in the so-called zero-
slope limit of the interacting theory - is lacking, though.

In Ref.[3], a covariant action was given, which in a light
front gauge reduces to the action of Ref. (2). We will demon~
strate that the covariant action does not admit covariant gaug
fixing. Before the completion of this work, a paper by Green
and Schwarz ([4] appeared in which a covariant gauge was pro-

posed. Our analysis shows that thelr procedure is deficlent.

The reason why covariant gauge fixing 1s impossible 1s to
be found in the constraint structure of the model. For bosonic
strings, the covariant action glves rise to constraints among
the canonical variables which are all first class, i.e. they
obey a closed algebra among themselves and with the Hamiltonia
(the terminology 1is that of Dirac [5]). First class constraint
correspond to gauge symmetries. They may be imposed as condi-
tions on the quantum states, while the naive Poisson brackets
are retained. This strategy 1s used in covariant quantization,
most elegantly performed using the BRS technique (see Ref. [6]
for BRS quantization of bosonic strings). The superstring actli

glves rise to 6ome constraints which do not obey the above mer



tioned condition. Such constraints are called second class and
they have to be explicitly accounted for before quantization is
attempted. In the canonical formalism the naive Poisson brackets

have to be replaced by Dirac brackets; .

& -1,
[AB)=1AB] - [A.Q’x][?i.‘bj] H’j,B] . ' m
Here, the ¢1's are second class constraints. In the path inte-

gral formalism, the constraints gilve rise to a non-trivial

factor in the path integral measure [7], as follows:

TS0 0pn det U, 1 T, § (b )V Let o 4] =

where wi are first class constraints and Xy are gauge conditions.
The problem that we will encounter in the superstring model

is that the second class constraints cannot be accounted for

in a covariant way (in fact, they cannot even be identified

in a covariant way).

There exists a supersymmetric point particle action [8]
which is closely analogous to the string actions discussed
here, and we will begin by analyzing this simpler case. See the

appendix for our conventions.

2. A supersymmetric point particle

The supersymmetric point particle action is

e pfert izt
where
Zl = xr- 1'5X/‘é : (4)

The action 1s left invariant by the global supersymmetry trans-

formation
SXI'=12y/e , So%=¢£", SV=0 | (5)

The momenta conjugate to x", 53 and V are

_ 1 i (vre)s -
Ro=FZp , ppWerz. , p=o. (6)
We recognize the primary constraints

$"= F,‘— i((yfe)“Pr =0 F, =0 . (N

]

The canonical Hamiltonian may now be calculated,
Ho= XI'B. +8pt VA -4 = Lvipt+m') . (8)

We 1impose on the coordinates and their conjugate momenta the

nalve Poisson brackets at equal T



Lxt,P*1=9t",
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and all other Poisson brackets zero.

We now have to ensure that the constraints are consistent
with the time evolution of the system, e.g. we have to require

that

[PV,H]=0- (10) -
This generates a secondary constraint

Y= pami=0 | (1)

It follows that H is weakly zero, in the sense of Dirac. Having
found the secondary constréint, it is convenient to impcose the
gauge choice V=1, after which V and PV may be dropped from the

problem.

The naive Poisson brackets among the constraints are
b : ab
[4)“;(# ] =Z1’ (X/‘C) Pf) (12)

and all the others vanish. Thus, ¢ is a first class constraint,
which corresponds to reparametrization invariance. In the mas-
sive case, all the ¢a's are second class, since the matrix in
Eq. (12) possesses the lnverse

(S )t I e diE)
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It is straight forward to introduce the appropriate Dirac

brackets {8].

When m=0, the matrix in Eq. (12) becomes singular and tl
inverse no longer exists. This means that some of the ¢a's al
first class, corresponding to an extra gaugesymmetry of the :

tion (the local supersymmetry of ref. [9]).

In fact, the ¢a's contain both first and second class c
straints. Since first and second class constraints are to be
handled in different ways, it is necessary to separate them
from each other before we proceed. However, the required sep
ration cannot be performed covariantly. This is clear on dim
sional grounds - the constraint matrix (12) has dimension of
mass, so that it 1is necessary to divide by an object having
dimension of mass in order to invert any part of it. Unless
ifest covariance is given up, the only available object 1s P
which 1s zero. Therefore the second class constraints cénnot

eliminated in a covariant fashion.

A non-covariant decompositicn may be performed, however

In particular, the light front decomposition

b=dord=zypdr byt A

proves to serve our purposes well, ¢_ may be viewed as secor

class since

{42, 45 = Zi(ch)“P+, (15)



the determinant of which is zero only for p*=0 . This singula-
rity is not serious (more over, it is unavoidable for massless

particles [10}). We then find the Dirac brackets
a bo* p‘ P 1
{4, 4] =ty ). (16)

Hence, the ¢+a's have become first class constraints. They allow

the gauge choice 8_=0.

The essentlal points of our reasoning should be clear from
this example. The superstring case involves slightly more work

but no new 1ideas.

3. Generalization to Superstrings

A natural generalization of the point particle action -

first considered in 1976 [11) ~ appears to be

5= % [drdr -31%9P2zL 2.8 (17)
where
zZh = axt-iéyfa.e (18)

However, it exhibits undesirable features. Let us sketch what
they are. In the ON-gauge ga8=nu8 (corresponding to the gauge
v=1 in the point particle case) one finds the first class con
straints (corresponding to the reparametrization invariance o

the world sheet of the string)
1, S
Y (r)s P +Z7 =0,

"ﬁ_(G')E PrZ,/. -0 | (19)

as well as the spinorial constraints
a L} - a
¢(T}EP,-1(A’r9J Pl =0, (20)
Using the naive Polsson brackets, one finds that
a [ ’ —- 2 b P
(%), $°(c))]} = zt((y/_c) Pl &(e-a’) . (21)

Since the determinant of this matrix is non-zero in general,

there are no first class constraints among the ¢a's, and thu:



no gauge symmetry to allow the gauge choice 8_=0. For this

reason the action (17) cannot be used to describe the super-
strings of ref. [2]. On the other hand, the matrix (21) 1is
singular when P2(0)=0. We believe that this singularity is
serious and means that the model is inconsistent. However, it

is concievable that the action (17) could be used in connection
with a Polyakov-type string in four dimensions, having a massive
spectrum, 1f supplemented with some extra degrees of freedom
(although it should be said that definite obstacles to a Polyakov
treatment of superstrings are known [12]). Note that the super-

charge

Q= qu- [P; + i(d},a)“P/‘] = Zijda' (37.6)“P/‘ (22)

contains enough independent degrees of freedom to create an N=1

massive supermultiplet (which again shows that the action (17)

has nothing to do with massless superstrings).

In order to make the action (17) locally supersymmetric,
i.e. to make some of the spinorial constraints first class, some
extra terms have to be added. The action must contain an N=2

symmetry and was obtained in ref. [3],

5= Sd'rdtr{- 1(-9)%g1Z0 2, -
- iz"/“a,,Xf'(e—}/. 6"~ 5‘()(/. al,e‘)-f

+ P8y 0,6'6%, 0,0" |
yio e’y 50" } (23)

The emanating constraints become, in close analogy with (7),

(11) and (19), (20):

where

¥, = (P+3)'+Z%=0 , | (24)
¥, = z,(P/“+6f‘)zfr=a , ~ (25)
¢l= pl- i(y. 8V (PI-XI+i&yé") =0, (26)
¢ = Po = t(yu&) (PI+XT- i8'yrét)=o | (27)
sl = i('é'(y/'é'— é'X/'G") : (28)

The naive Poisson bracket relations among the constraint

calculated for the case of closed strings, are

i

(Y@, @)= 2 (Vula)+¥,(c)) 3, S (a-a") |
(@), ol T)] = 2 (N () +, () 3 S (- o)
[\P‘(Gﬂ,,w‘(T')] = 2—(\{}1(r,+‘+;_(vl)) 30.8(0”——0") 5 {29)

n

{4410, ¢%a] = 2is*(p. ) M @ See-a) | )

[$™@) )] = (-1 76, ¥y (c)] =

= 41 (y, . 6)YT) T (e) Sta-a) .
I _ (31)



(A is not summed over), where

'ITE = Pr+sl' s 20 ' (32)
Note that
(M )= ¥ 5% | (33)

i
ABab '
An attempt to invert the constraint matrix C {g,0’) of

Eq. (30) glves the result

M4 (o)

—— S(T-a’) (34)
(M) ()

(7)o tma) = 58%°(Cplu
This cannot be allowed since division by zero has been performed
(this is similar to the case of the massless point particlel.
However, the analysis of ref. [4] amounts to this. The authors
of ref. [4]) proceed to quantize the model using the ensuing
“Dirac brackets", and fail to do so which is a consequence of
their inconsistent classical treatment. Another serious mistake
in treating all the spinorial constraints as second class, ag
is done in ref. [4], is that one miscounts the number of degrees
of freedom. It is clear that - as in the massless point particle
case - the spinortal constraints contain both first and second
class constraints, which have to be disentangled before we pro;
ceed. A strong argument against this problem having a covariant
solution, is the fact that, since the ¢A's already are in the
smallest (16-dimensional) spinor representation of s0(1,9), theéy

cannot be decomposed covariantly. However, this argument has a

flaw, to which we will return. A fruitful choice for a non-

covariant decomposition is the light front decomposition

$=drd = Gppdctrpd. (351

‘

¢_A may be viewed as sgcond‘class, since
(@), 6@} = 2i5% (o) MA@ s(e-a), 36)

the determinant of which is zero only for nA+(o)=0, the usual
singularity of the light front formalism. The ensuing Dirac

brackets between the remaining constraints are
[ty () 1% = [ate), (a1, (37)

(), p2Ha} = sty ot (T sy
@) (38)
(b)) ]* = (DAL M), ¥ ()] =

== 2.1: ((Y_ 9’4)4((1-) {m}‘(rj

S(a—a’ (39)
M @) S ),

which shows that they are all first class. Thus, the rank of

constraint matr}x is 16. This is what one should predict, know
the amount of gauge symmetry in the model. We now have a con-
sistent Hamiltonian system, to which BRS quantization, say, C

be applied, but this at the price of loss of manifest covaria

On the other hand, we can impose the light front gauge



cholices

Xc)=0 , P'tr) = Pt
Aa N (40)
6 (c)=0 ,

together with the orthonormal gauge cholce
('ﬂ)yzj.(ﬁ“ ,Z“IB P . (41)

which leads us to the light front lagrangian (the light front

hamiltonian is p+P—)

i A Aa +t D =
Log = X*P +6“F"A_'F.P
= - zntox QX HipeypTae, W

which, of course, is in accordance with ref. [2]. The non-zero

Dirac brackets between the physical variables are

[ X*), Pi@)] = sUs(-a’) , (43)
(oM@, 6w} = —is*(p ) qna@a) . wa

There 1s one possible objection to the argument above EOF
the non-existence of a covarjant gauge fixing procedure: We have
demonstrated that the spinorial constraints contribute 16 second
class constraints, and it remains to be investigated whether
they can all be collected into one s0(1,9) spinor. Consider the

constraint matrix (evaluated with the naive Polsson brackets)

Aaﬂ(v_ld_l) = [¢“(d')+d¢u(d')’ (#1‘(0_/)*_“4“(0_9} =

. (45)
- Zi((y/, c)“[(a'n)(msr) +@-1)Zr () S(r-a’),

Its inverse 18

(a*41)(Fesr) +(a=1)Z T
[@1)(P+s)+(a21)Z]"

«) S(a-a°)

(A )up(y0) = Jz'i(Cy,.LL

1 2 "...
(at) (P/‘+sf}f;(a NZE O sire),
(P+.S) (46)

’éi(%})..&
The last guality is obtained using the constraint (24). Un-
fortunately, Eq. (46) 1is singular when (P+S)'=0: We belive
that this is inconsistent, and coﬁsequently the second class
constraints cannot be covariantly eliminated. We do not know
how to demonstrate the inconsistency, however, and therefore

we proceed.

When ¢1+a¢2 is taken to be secqnd class, the remaining
constraints (w1, wz and a¢1-¢2) obey a closed Dirac bracket
algebra among themselves. If we disregard the fact that the
various Dirac brackets involve division by (P+S)2, we would
conclude that we have obtalned a consistent Hamiltonian system‘
without giving up manifest covarlance. No gauge fixing has beer
performed at this point. If one sets a=1 and 1mposes.the gauge
choice 61-92=0 to solve for the first class constraint ¢1-¢2=0,
one arrives at the model described by the action (17)1 In this
gauge s¥=0 , and division by P2 has been performed, which clear

i{s inconsistent for massless strings. In general, the superchar



Q1+aQ2 contains enough degrees of fregdom to create a masslve
supermultiplet. What one can not do is to fix the gauge in such
a way that one obtailns the light front description of the super-
strings of ref; (2]. Therefore, the covariant Hamiltonian system

does not describe these superstrings.

In conclusion then, there are two possibilities. Either,
the second class constraints cannot be covariantly eliminated,
and consequently the action (23) admits no covarlant gauge, Or
else, division by (P+S)2 is allowed (we stress that we do not
believe this), but in this case the action (23) gilves rise to
two. inequivalent Hamiltonian systems, of which only the nonco-

variant one describes the superstrings of ref. [2].

'

3. Conclusioﬁs

We have seen how the constraint structure of the covariant
N=2 superstring theory in 10-dimensional space-time allows
us to choose gauge conditions that make it reduce to the light-
front theory earlier known. At the same time we have shown,
that_the structure is such,'that it does not-allow covariant
gauge fixing ( in any cpnventional sense; at least not for the
superstrings of ref. [2]‘. The same statement holds true for
the massless supersymmetric point-particle. This phenomenon 1s
a serious obstacle to covariant Quantization of the model; no
conventional method is applicable. A result like this should
however not be taken merely as negative. It has been realized
in recent years that fully covariant formalisms for certain ce
plex models, involving extended supersymmetry and higher spin
may become quite uhwie;dy and may not even exist. The problem
noted have shed some light on the difficulties involved. On t
other hand, the non-covariant light front method has been suc
cessfully applied to superstrings: This suggests that the fur

ther development of non-covariant methods may be important.
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