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covarlant Superstrings Do Not Admit CovarlanÈ

Gauge Flxlng

fngemar Bengtsson and Hartln Cederwall

Àbstract

The covarlant actlon for superstrlngs 1s

analyzed by means of the Dtrac method, and the

Ilght front actlon ls derlved. The actlon glves

rlse to second class constralnts vrhlch cannot be
I

solved for In a covarLant ü¡ay. covarlant g"ugd

flxlng, ln any conventLonal sense, cannot be ap-

plled, whlch leaves the questlon of covarlant

quantlzatton of the superstrlngs open. ¡ stmtiar

statement holds for a massless supersymmetrlc

polnt-partlcle.

by

l. Introductlon

The eubJect of superatrlngs [tl tras been developed by '

creen and Schwarz. In nef. [Z] they preaented a Ltght front
actlon whlch descrlbes the quantum mechanics of free super-

strlngs. For closed boundary condltlons thls actlon glves a

superstrl,ng wtth N=2 supereymetry (ln ten space-tlme dlmen-

slons ). À covarl"ant formul-aÈlon of thls lnterestlng model

- lt ls connected to N=8 supergravity ln the so-called zero-.

elope ltml.t of the interactlng theory - le lacklng, though.

In Ref.[¡], " covarl,anÈ acÈlon wås gtven, whtch ln a llght
front gauge reduces to the actlon of Ref,, [Z]. We wlLl demon-

strate that the covarlant actl-on does not admit covariant gaug

flxlng.. Before tlre completlon of thls work, a paper by Green

and Schwarz [4] appeared ln whlch a covarlant gauge hras pro-

posed. Our analyals shows that thelr procedure 1s deflclent.

the reason nhy covarlant gauge flxlng ls imposslble ls to

be found ln the constralnt structure of the model. For bosonlc

strlngs, the covarlanL actlon glves rlse to constralnts among

the canonlcal varlables whlch are all flrst class, 1.e. they

obey a closed atgebra among themselves and wlth the Ha¡nlltonla

(the termlnology ls that of Dlrac [511. rfrst class constraint

correepond to gauge eymmetri.ee. They ¡nay be lmposed as condl-

tlons on the quantum statesr whlle the nalve PoLsson brackets

are retalned. Thls strategy ls used ln covarlant quantlzatlon,

most e'l.egantly perforrned uslng the BRs technlgue (see Ref . [61

for BRS quantlzatlon of bosonl-c strlngs) . The superstrlng actl

glves rl"se to 6ome constrafnts whlch do not obey the above men
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tloned condltlon. Such conÈtral-nts are called second clasi and

they have to be exptlcttly accounted for before quantlzatlon La

attempted. In the canonl-cal formallsm the nalve Polsson brackets

have to be replaced by Dlrac brackebs,

[n.BJ'= [1,s1 - t¡r.tùtt¡,t¡ì-'[t¡, tl . (11

Here, the 01's are second class constralnte. In Èhe path lnte-

gral formallsm, the congtral-nts glve rlse to a non-trlvlal

factor ln the path lntegral measure [Zl, as folloers:

rr, [fx¡)5ty¡] dct Ix¡,frl\ 5rç,.¡ J.ct It",{.] (21

where 91 are flrst clase constralnts and X1 are gauge condltlong.

The problem that we wlll encounter ln thò euperstrlng model 
'

ls that the second class constralnts cannot be accounÈed for

ln a covartant way (ln fact, they cannot even be ldentlfled

ln a covarlanÈ way).

There existÊ a supersy¡nmetrfc polnt partlcle actton [81

whtch is closely analogous to the strlng actlona dlscussed

here, and we wlll begin by analyzing thlsslmplercase. See the

appendlx for our conventlons.

2. A suoersvmmetrl-c oolnt oartlcle

The aupersymmetrlc pol-nt partlcle actLon Ls

s- Lt^'tí2'*v^'J (31

(7t

where

(4t

The actlon le left lnvarlant by the global supersyrametry tranò-
1

formatlon

áXl - iE¿,/"e |On=e', 3V=o tst

thè momenta conJugate to x!, 6" and V are

zr P, èo (61

2t - xr-;ã{ê

fzryfeP; - i(P-L,T V ,

Wè recognlze the prlnary constralnts

The canonical HamlltonLan may nottt be calculatedt

{^= F"'- i(yl"a)'P, = o Pr=o

H"= *rP, *äf..+ vP,-L - !vle'*^'¡ (81

We Lmpoee on the coordl-nates and thelr conjugate momenta the

nalve Pol.sson brackets at equal r
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Lxf , P"l = 7f" ,

Ío", F,tl = å't

4

Lv, n7 = I
(el

and all other Polsson brackets zero.

Wenowhavetoensurethättheconstralnt8areconeletent

with the tlme evolutlon of the systemr e'9'we have to requÍre

that

I r", H ) = o (101.

This generates a secondary constral-nt

9=P"+tú2:a {111

ItfotlowsthatHlsweaklyzero,lntheseneeofDl.¡rac.Havlng

foundthesecondaryconstraintrltLsconvenlenttolnposethe
gaug.e choice V=1 r after which V and Pv may be dropped from the

problem.

ThenaivePolssonbracketsamongtheconstrâlntsare

It le stralght forward to lntroduce the approprlate Dlrac

brackete [81.

t{hen m=0, the matrlx ln Eq. (121 becomes slngular and tl

Lnverse no longer eÍlsts. Thls means that some of the 6a's at

flrst classr correspondlng to an extra gaugesyr¡rmetry of the ¡

tlon (the local aupersymmetry of ref. [911.
:

In fact¡ the Sars contaLn both flrst and second class ct

stralnte. Stnce fl-rst and second class constralnts are to be

handled ln dlfferent waysr l-t ls necessary to separate them

from each other before we proceed. Hovtever, the requlred sep'

ratlon cannot be performed covariantly. Thls ls clear on dlm'

elonal grounde - the constralnt matrlx (121 has dlmenslon of

naas, ao that tt ls necessary to dlvlcle by an obJect havlng

dlmeneton of mass in order to lnvert any part of lt- Unless I

lfeat covariance fs gLven up, the only avallable objeca 
-1" I

whlch l-s zero. therefore the second class constralnts cannot

ell¡nlnated ln a covarlant fashlon.

À non-covariant deconposltlon may be performed, however

In partlcular, the llght front decomposltlon

+-4,,4-= Ly-y-l* Ly.rl (14t

provea to serve our Purposes well, Q- may be vlewed as secon

class since

t12l

and all the others vanish. Thus, rfr Is a flrst clase constralnt'

whlch corresponds to reparametrizatlon lnvarl-ance. In the mas-

sive case, all the 4a's are second class, slnce the matrLx ln

Eq. (12) Possesses the lnverse

I.+", +tl -- zi ( yrdr el',

{ +_ I+
( cxr)¿Pt

?,Íf",+tl-t = i i (cx.).tPf
'2m' ( 131

e & zi ( yrc)'t P' , ( 151
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the determlnant of whtch le zero only for P+=0 . Thfe slngula-

rtty ls not serl-ous (more over, lt ls unavoldable for massless

partlcles t10ll. We then flnd the Dirac brackete

f 4*',4.'l'= ; F (l*.)"6

3.. Generaltzatiori to Superstrlnga

À natural generall"zation of the polnt partlcle actl-on -

flrst consldered tn 19?6 tlll - aPPears to be

Lla'a' çJ,Y'J"f zLz¡¡(16!

Hence, the $*ars have become flrst clasa constraLnÈs' They allow

the gauge choice 0-=0.

Theessentlalpolntsofourreasonlngshouldbeclearfrom

thls example. The superstrLng case fnvolves ellghtly more work

but no new ldeas.

$s ( 171

where

Zä= anxr- ílyfa"e t18l

Hoerever, lt exhtblts undeslrable features' Let us sketch what'

they are. rn the oN-gauge goß-noß (correspondlnq to the gauge

V=l ln the poÍnt partfcle casel one flnds the fLrst clase con'

gtralnts lcorresponcltng to the repara¡netrlzatlon Lnvarlance o'

the world sheet of the atrlng)

.P, fo.l , P'+ 7--Oþt
( 1e)

t,tnl = Pfzr=o '

as well as the splnorlal constralnts

('tal -- F: - i (lf ê)'lf = o ( 201

Uslng the nalve Polsaon brackets, one flnds that

I4'tn),4|tn'll - - 2í(yrc)'tPt f,þ--r') t21l

slnce the determlnant of thts matrlx i,s non-zero ln general,

there are no flrst class constralnts among the óars, and thu¡
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no gauge synmetry to aLlow the gauge cholce 0_=0. For thls
reason the actlon l17l cannot be used to deecrlbe the super-

strlngs of ref. f2l. on the other hand, the matrlx l2ll ls
I

slngular when P'lo¡=6. We belleve that thls slngularl-ty ls
serlous and means that the model ls Lnconelstent. However, Lt

ls conclevable that the actlon 117) coulil be used ln connectlon

wlth a Polyakov-tyþe string fn four d.lmenslons, havlng a masslve

spectrum, lf supptemented wlth some extra degrees of freedom

(although 1t should be satd that deflnlte obstacles to a Polyakov

treatment of superstrlngs are known flZ¡¡. Note that the super-

charge

The emanatlng constralnts becone, ln close analogy wlth (71 r

(111 and (1gl 
' 

(201 ¡

Ja* Lyî + iUr\'rrJ = 2íl¿n (yrd'Pr Q2l

where

sl' = i, (ã'yl& - õ'Xfd') ( 281

The naLve Polsson bracket relatlons among the constraLnt

calculated for the case of closed strlngs, are

*r= (P+5)'+á'=o ,

Y= z( Pf+sr ) ár -- o ,

4n"= p:- i(lfrl^(pf-.t+ iã'l/"á") =o ,

#u= p!^- i(lr"')^ (pI +.{r- ;eirá,) = ô ,

LYttat,9,ß')f = z (!.ts'l +tþ.(a'))òa t &--q'),

It,tot ,,1.ß1J - z (t, H +,1, @'f ð63(c- a') ,

l'1.(ol,t!.(a')l = z(!"tn)+{lv')) ânt(r- r') ,

l$&tal,ç"t0 1) : zi á^' (X, c)r Tf¡r (nl 3 k- a' 7,

f þ^^tal ,yk jl = ( - I )^ L +*@l ,*,{n,11 :
* 4i (yrá^1"rn¡ nl@ 5(a- a') ,

(241

(2sl

(26)

(271

( 291

( 301

a

contalns enough lndependent degrees of freedom to create an N=1

masslve supermultfplet (whlch agaln shows that the actfon (171

has nothing to do wlth massless superatrlngsl

In order to make the actlon (171 locally supersymmetrlc,

1.e.. to make some of the spinorlal constrainÈs flrst clasgr seme

extra terms have to be added. The actlon must contaln An Ni3

syrunetry and was obtalned in ref. [3J,

, s = \ata" l- LG3)%g"lz(,zrf -

- ie"fa,Xf f ã'ff rf n'- e'¡rare') +

+ ¿"f ã'¡ianê'õ"lf af"' J .
t 23l

(311



(À ts not summed overl, where

( r\ )' = U, +V, (331

I

. An attempt Lo lnvert the constralnt matrlx 6]ABab¡oror I of

Eq. l30l glves the result

Í (cl
å ({- {') { 341

ftr^l

Thls cannot be allowed slnce dlvlsLon by zero has been performed

(thts is slmllar Èo the case of the ¡nasslese poln! partlclel .

¡lowever, the analysls of ref. [4] amounts to thls. the authors

of ref. [4] proceed to quantlze the ¡nodel uslng the eneulng

,.Dirac brackets,,, and fall to do so whlch ls a congeguence of

thelr. lnconslstent classlcal treatment. Ànother serloug ¡nlstake

ln treating all the sptnorlal constralnts as second clase, ag

ls done ln ref . l4l ' ls that one mlscounts the numÞer of degrees

of freedo¡n. rt ls clear that - as ln the masslesE PoLnt partlcle

case-tlresplnorlalconstralntscontalnbothttrstandaecond.

class constraints, which have to be dtsentangled before we Pro-

ceed. À strong argurnent against thls problern havlng a covarlant

sol.utlon, ls the fact that, alnce the 4Ate already are ln the

smallest (16-dlmenslonall splnor representatlon of so(1 r91 , théy

cannot be decomposed covarlantly. ¡lor''evert thls argument has a

flaw, to whfch we erlll return. À fruitful chotce for a non-

covarl-ant decompositlon ls the llght front decomposltlon

4 - 4**4-: lz f-f-{ * ty*¡-4 . I 3sl

0-À tnuy be vlewed as second class, slnce

l{ltnl,fjttn')l - zi;Æ (¡*c)t nf,r:¡ 5(a-c', ,
( 361

the determlnant o.f whlch ig zero only for no*{o}=0, the usuàl

slngularlty of the tlght front formalLsm. The ensulng Dlrac

brackebs between the remalnlng constralnts are

ttr.L*¡(''ll*= [Yr(nl,V¡(c'11 , (37)

[+l1-l,;lrk)T, - iaAB{y-c¡'t (rÍtl'kt 
â"'-a,¡

IT^Inlut--",r'

l4l'to.l ,*n¡1li = (- tl^ L[fç).*,,u-'¡1-
r - 2¿(l-á^yCa¡ IW 5@-q-') , (3e)

TTI = rt'+ sl r ¿r .
(321

Note that

( C-'):Z(rn't = 2,3o" 
( cyr).t

whtch ghows that they are a.ll flrst class. lhus, the rank of

constralnt matrlx ls 16. Thlg ts what oneshouldpredlct, know

the.amount of gauge symmetry ln the model' We now have a con-

slstent Hamlltontan syste¡n, to whlch BRS guantlzatlon, sayr c

be apptled, but thfe at the prlce of loes of manlfest covarla

on the other hand, we can lmpose the llght front gauge
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cholces A"b (n,c-') = l, $"ra * afutnl, #t'F'l + a$a¡a')l ;
- Zí ( ¡, cl^ß lt i+ t¡ ( Pl+s¡ 1 +¡a'- t ¡/r I k ) 3 G - r' I

( {sl

&t.f

( 401

t42l

Ite Lnversa lstogether wlth the orthonor¡nal gauge cholce

(-3)n"3"f - Lnf
(411

which leads us to the ltght fÉont lagranglan (the ltght front

hamfltonian is p+P-l

x;p' " eif! l,P-:
- - 2rL"Pa^x'rf*t + ip*ã¿,*f'A*e ,

The last quallty I's obtalned uslng the constralnt (211 ' Un-

fortunatelY, 89. (46) te etngular when (P+Slr=0' we bellve i

that thls ls lnconelstent, and consequently the second class

constralnts cannot be covarlantly ellmlnated' We do not know

how to demonatrate the lnconslstency, however, and therefore I

we proceed

When Qr+a$, le taken to be second class, the remalnlng 
,

constralnts (Û1, Û2 and aÔt-0zl obey a closed Dliac bracket'

algebra among themselvee. If we dlsregard the fact that the

varlous Dlrac brackets fnvolve dtvl-sfon by (P+512, we would

conclude that we have obtalned a conslstent HamlltonLan system,

wlthout gtvtng up manlfest covarlance' No gauge flxtng has beer

performed at thls polnt. If one sets a=l and lmposes the gauge

cholce 0r-0r=0 to solve for the flrst class constralnt Ô1-0r=0'

one arrlves at the model descrlbed by the actlon (1711 In thle

gauge Su=g , and dtvLslon by P2 has been performed, whlch clear

ls lnconslstent for massless strlngs. In general, the' superchar

whlch, of course, l"s ln accordance wlth ref. t2l' The non-zero

Dlrac t¡rackets between the physlcal varlables are

Lx'(n) ,pita')l = áÙ ála-c't (431

(441

ThereisoneposslbleobjectlonÈotheargumentabovefor

the non-exl-stence of a covarlant gauge flxlng procedure: lÍe have

demonstrated that the splnorLal constralnts contrl-bute l6 secbnd

class constraLnts, and lt remalris to be lnvesÈlgated whether

they can all be collected lnto one SO('lr9l splnor. Conslcler the

constralnt matrix (evaluated wlth the nalve Pol"sson bracketsl

¡ el^cl, aitcn')l = - ttt" ( h cfL*p,sç-()



Ql*uQ2 contafns enough degrees of freedom to create a masslve

supermultlplet. What one can not do ts to flx the gauge ln euch

a Íray that. one .obtalns the l-lght front descrlptlon of the auper-

strlrìgs of ref. t2l..Therefore, the covarlant Hamlltonlan syeten

does not describe these superstrlngs'

Inconcluslonthenrtherearet$topoeslbllttles'Elther'

the second class constrafnts cannot be covarlantly etlmtnatedt

andconseguentlytheactlon(23}admttsnocovarlantgauge,or

else, dlvlston by (P+s)2 ls allowecl (we etress that we do not

belleve thist, but ln thls case the actlon (231 glves rlse to

two.tnequlvalent Hamiltonlan systems, of whlch only the nonco-

varlant one descrlbes the superstrlngs of ref' [2] '

3. concluslona

t{e have 6een ho¡r the qonatralnt structure of the covarlant

N-2 auperatrlng Èheory ln 1o-dlmenslonal apace-tlme allows

u6tochooeegaugecondltlongthatmakeltreducetothellght:

front tlieory earlLer known. At.the same tl¡ne we have shown'

that,.the atructure la such, that lt does not'allow covarlant

gauge ftxlng I ln any conventlonal sensei at least not for the

euperstrlngs of-ref. [211. The same statement holds true for

the maseleas auPersym¡netrLc polnt-partlcle' Thls phenomenon lr

aeerlousobstacletocovarlantguantlzatlonofthemodel¡no

conventlonal ¡nethod ls appllcable. A result ltke thts should

however not be taken merely ae negatlve' It has been reallzed

ln recent years that fully covarlant formallsms for certaln ct

plex nrodels, lnvolvlng extended supersyrometry and hlgher splnt

nay becone qulte unwleldy and nay not even exlst' The problem

notedlhave ghe¿l sone llght on the dtfficultles lnvolved. on tl

other hand, the non-covarlant ttght front ¡nethod has been suc'

, to superstrlnge. Thls suggests that the fur

ther development of non-covarlant rnethods may be lmportant'
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Lx on conventl.ona and t

The Regge slop€ parameter Is taken to be

¡l4=il (À1)

space-llke metrLc Is used throughoutt

4r" . d.ir.1 (-1, l,- .. l)
(A2 )

'ì{f ' 't;'1 t-1, I ) (À3)

Derivatlon wlth respect to the parametera o and 1 ls denoted
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