
CONSTRAINED HAMILTONIAN SYSTEMS

Introduction - Second Class Constraints - First Class Constraints - Electrodynamics - Observ-

ables - Canonical Gauge Fixing1

Introduction

The Hamiltonian formulation of gauge theories is due to Dirac, who described it brilliantly
in the first two chapters of Lectures on Quantum Mechanics. These notes are intended as
a supplement to Dirac’s lectures. As is customary, the general theory will be presented
for theories whose phase spaces are finite dimensional. However, it turns out that most of
the naturally occurring examples of Dirac’s theory arise in relativistic mechanics, which
means—among other things—that our examples will be field theories. I will begin with
a comparison of scalar field theory and the field theory of electromagnetism, to see what
the problems are. The Klein-Gordon equation is

2ϕ(x) = m2ϕ(x) . (1)

This is a hyperbolic equation. To solve it in a general situation, one first specifies the
initial data

ϕ(0,x) ϕ̇(0,x) (2)

on some spacelike hypersurface defined by t = 0. This can be done arbitrarily, subject only
to some smoothness requirements. Then—as shown by Cauchy, Kowalewskaya, Hadamard
and others—the Klein-Gordon equation suffices to determine ϕ(x) everywhere in space-
time. Essentially, this happens because the equation can be used to compute

ϕ̈ = ϕ̈(ϕ, ϕ̇) . (3)

By iteration, we can compute the time derivatives to all orders, and construct the function
everywhere under the assumption that it is analytic. Further analysis reveals that the
assumption of analytic data can be dispensed with, and indeed one can prove that smooth
initial data determine a unique solution. Moreover the latter depends continuously on
these data. It is however non-trivial to go beyond analytic data—a corresponding analysis
of the Laplace equation would give a different result.

The Hamiltonian formulation of the Klein-Gordon equation is closely tied to the initial
value problem, and poses no problems. In phase space, the variables that are used to
describe the theory are just ϕ itself, together with

π ≡ ϕ̇ . (4)

1These notes, from a 1995 relativity course, were gently modified in 2012.
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The Poisson brackets and the Hamiltonian are

{ϕ(x), π(y)} = δ(x, y) (5)

H =
1

2

∫

d3x (π2 + ∂aϕ∂aϕ + m2ϕ2) . (6)

It is easy to check that Hamilton’s equations

ϕ̇ = {ϕ, H} π̇ = {π, H} (7)

are equivalent to the original Klein-Gordon equation.
As an aside, we introduce a piece of notation that is often used in both classical and

quantum field theory, namely smearing with test functions f(x), g(x), ... . If we define

ϕ[f ] ≡
∫

d3x f(x)ϕ(x) (8)

and so on, we can evidently rewrite the Poisson brackets as

{ϕ[f ], π[g]} = f [g] = g[f ] . (9)

This is often a convenient notation, especially when one wants to keep track of partial
integrations in a calculation. Also, both in classical and quantum field theory there are
many formal calculations that may or may not be valid, depending on—in the classical
case—the behaviour of the fields at spatial infinity. The use of test functions is convenient
for keeping such problems under control as well.

Next we look at Maxwell’s equations:

2Aα − ∂α∂ · A = 0 . (10)

By inspection, we see that there will be problems. The obvious guess, that one can specify
Aα and Ȧα on a spacelike hypersurface, and then use the equation of motion to construct
Aα everywhere, is simply wrong. First, we observe that the time component of Maxwell’s
equations reads

∂a(Ȧa − ∂aAt) = 0 . (11)

This equation has to hold on every spacelike hypersurface, which shows that the proposed
initial data cannot be arbitrarily specified. Second, there is no equation for the second
time derivative of At, i.e. the function

Ät = Ät(Aα, Ȧα)

is simply not there, so that we can not set up a power series solution for At, given
Maxwell’s equations and the inital data. Third, it is well known that given a solution
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Aα(x) to Maxwell’s equations, we can construct an infinite number of other solutions
related to the first by

A′

α(x, t) = Aα(x, t) + ∂αλ(x, t) , (12)

where λ(x) is an arbitrary function. This function may be chosen to vanish on the
hypersurface where we are trying to specify initial data, so that we have a proof that no
choice of initial data is capable of giving a unique solution of the equations.

At first sight, these problems appear to be rather different. The first problem says that
equations are somehow overconstrained, the second and third that they are nevertheless
underdetermined. In the Hamiltonian formulation of Maxwell’s equations, these problems
will have to be faced squarely. Dirac’s theory of constrained Hamiltonian systems reveals
that in fact these problems are directly connected to each other, and moreover that they
are not fatal.

Second Class Constraints

Before we come to the Hamiltonian formulation of gauge theories such as electrodynamics,
we will discuss Dirac’s approach to the symplectic geometry of phase space. In elementary
books on analytical mechanics, it is shown that the Euler-Lagrange equations from the
Lagrangian

L = L(q, q̇) (13)

are equivalent to Hamilton’s equations

q̇ =
∂H

∂p
= {q, H} ṗ = −

∂H

∂q
= {p, H} , (14)

where the Poisson brackets, for two arbitrary functions f and g on phase space, are

{f, g} =
∂f

∂q

∂g

∂p
−

∂f

∂p

∂g

∂q
(15)

and the Hamiltonian H = H(q, p) is related to L through a Legendre transformation, so
that

S =
∫

dt L(q, q̇) =
∫

dt q̇p − H(q, p) . (16)

In the derivation of this result, it is assumed that the equation

p ≡
∂L

∂q̇
= p(q, q̇) (17)

is invertible, so that we can solve it for q̇ = q̇(q, p). There are, however, many choices of
L for which this assumption fails. As a fairly general example, consider the action
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S =
∫

dt θµ(z)żµ − H(z) . (18)

The definition of the canonical momentum that was used above now gives

pµ = θµ(z) , (19)

which evidently can not be solved for żµ - in fact żµ does not even occur in the formula.
Nevertheless the equations of motion, like any differential equation that comes from ex-
tremizing an action, can be written in Hamiltonian form. It is just that the form of
Hamilton’s equations is now somewhat more general than what we had above.

We will look at this problem from two different points of view, first directly, and then
using Dirac’s theory of second class constraints. First the direct approach: If we vary our
action, we find that the equations of motion can be written in the form

ωµν ż
ν = ∂µH(z) , (20)

where we have defined the anti-symmetric tensor

ωµν = ∂µθν − ∂νθµ . (21)

This is a tensor on phase space. We now assume that it possesses an inverse,

ωµσωσν = δµ
ν . (22)

Since it is a well known fact that anti-symmetric matrices can be inverted only if they
have an even number of rows and columns, this means that we assume that there is an
even number of z’s, or in other words that the phase space is even dimensional. With
this assumption made, we can write the equations of motion in a form which provides a
natural generalization of Hamilton’s equations of motion as given above, namely

żµ = ωµν∂νH(z) = {zµ, H(z)} , (23)

where a generalization of the Poisson bracket has been introduced, to wit:

{f(z), g(z)} = ∂µf(z)ωµν∂νg(z) ⇒ {zµ, zν} = ωµν . (24)

To see why this provides a natural generalization of what we had before, split the phase
space coordinate z into q’s and p’s according to

zµ =

(

qi

pi

)

. (25)

(Note that we are now using the fact that phase space is even dimensional.) Then what
was called “the Hamiltonian form of a set of differential equations” above is just given by
the special case that
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ωµν =

(

0 1
−1 0

)

. (26)

We have now - by a slight extension of the meaning of the words - succeeded in
casting our equations of motion in Hamiltonian form. This is an opportunity to present
the general definition of a Hamiltonian system, which is the pinnacle of classical physics.
It has three ingredients, and reads as follows:

Definition: A Hamiltonian system consists of
1) A phase space, which is a differentiable manifold of even dimension.
2) A closed non-degenerate two-form ωµν(z) defined on phase space.
3) A function H(z) on phase space. By assumption, the time evolution of the Hamiltonian
system is defined by the vector field

żµ = ωµν∂νH(z) . (27)

A “closed non-degenerate two-form” means the following: A covariant tensor is a two-
form if it has rank two and is anti-symmetric. The anti-symmetry guarantees that the
Poisson brackets are anti-symmetric. The two-form is non-degenerate if its inverse exists,
which is needed to ensure that the Poisson brackets exist. The two-form is closed if

∂[µωνσ] = 0. (28)

This condition guarantees that the Poisson brackets obey the Jacobi identity. (The last
statement is not quite obvious, and should be checked by the Gentle Reader.) Concerning
point 3 in the definition, we observe that any function on phase space can be associated
with a vector field by means of the symplectic two-form. The symplectic form plays a
role which - in Arnold’s phrase - “is analogous to, but refreshingly different from” the
role played by the metric tensor in Riemannian geometry, and it is therefore customary to
talk about “symplectic geometry”. We see that the elementary definition of Hamiltonian
systems differs from the general definition in that it requires the symplectic two-form
to take the “flat” form given (for its inverse) in eq. (26). There is a theorem, due to
Darboux, which says that locally in phase space one can always find a coordinate system
in which ωµν takes this form.

We now turn to Dirac’s way of dealing with general symplectic structures. Suppose
that, when we perform the Legendre transformation of some Lagrangian, we encounter a
set of constraints

Φm = Φm(q, p) = 0 . (29)

It will still be possible to carry through the Legendre transformation and to compute
H = H(q, p), so at first we simply ignore the constraints, and postulate the ordinary
Poisson brackets
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{qi, pj} = δij {qi, qj} = {pi, pj} = 0 (30)

—even though they are inconsistent with the constraints, as is evident in the particular
case we studied earlier:

δµ
ν = {zµ, pν} = {zµ, θν(z)} = 0 .

We call these Poisson brackets “the naive Poisson brackets”. Now Dirac gives a simple
recipe for how to use the naive brackets to construct an improved Poisson bracket which
is consistent with the constraints. This improved bracket is known in the literature as the
Dirac bracket, and it is defined, for an arbitrary pair of phase space functions, as follows:

{f, g}∗ ≡ {f, g} − {f, Φm}C
−1
mn{Φn, g} , (31)

where we employ the inverse of the constraint matrix

Cmn ≡ {Φm, Φn} . (32)

(Note that we now assume that Cmn can be inverted.) It is easy to see that the Dirac
bracket of a constraint with an arbitrary phase space function vanishes by construction, so
that if we use the Dirac bracket the kind of inconsistency that plagued the naive brackets
can not occur. This is of course the point of the construction.

In the example that we studied earlier, we see that

{Φµ, Φν} = {Pµ − θµ(z), Pν − θν(z)} = ∂µθν(z) − ∂νθµ(z) = ωµν . (33)

It follows that the Dirac bracket {zµ, zν}∗ agrees precisely with the “curved” Poisson
bracket that was used in the direct approach to the definition of the Hamiltonian system.

Dirac’s definition of the constrained Hamiltonian system defined by a given Lagrangian
now reads as follows: There is a “naive” phase space, spanned by the q’s and p’s that were
introduced in the Legendre transformation of the action. The physical phase space of the
model is the submanifold of the naive phase space defined by the constraint equations.
There is a “flat” symplectic structure in the naive phase space, which induces a non-
trivial symplectic structure on the physical phase space. This is precisely given by the
Dirac bracket. Finally, the Hamiltonian is the one that is obtained from the Legendre
transformation.

First Class Constraints

In the previous section we had to assume that a certain matrix—the symplectic two-form
in the first case and the constraint matrix in the second—has an inverse. But this might
fail for a constraint surface. It could behave like a null surface in space-time, for which
the induced metric is degenerate. When the induced symplectic form on the constraint
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surface is degenerate we are dealing with gauge theories, or in Dirac’s terminology with
constrained systems with first class constraints. It is in the treatment of this case that
the Master’s Book is truly original.

Dirac approaches every constrained system in the same fashion: We start from a
Lagrangian L(q, q̇), derive the canonical momenta, postulate the naive Poisson brackets,
and compute the Hamiltonian. For simplicity, we assume that no second class constraints
occur, or if they do, that they have been dealt with already and the naive brackets replaced
with Dirac brackets. There remain a set of constraints

Ψm ≈ 0 . (34)

The wavy equality sign here denotes “weak equality”. It means that two things are equal,
and we will keep track of this, but for the time being it will be ignored: In any solution
of the equations of motion, the constraints do indeed vanish, but Dirac’s idea is to ignore
them while the canonical formalism is being set up. So “weak equalities” may not be used
inside Poisson brackets. It is of course essential that

Ψ̇m ≡ {Ψm, H} ≈ 0 . (35)

If the right hand side does not vanish as a consequence of the constraints already obtained,
one declares it to be zero, whatever it is. In this way one can obtain new constraints (called
secondary). Also their time derivatives have to vanish, so by repeating this procedure one
may obtain additional (tertiary) constraints, and so on. Eventually this procedure stops,
because the right hand side vanishes as a consequence of the constraints already obtained.
At this point we have all the constraints, say M of them. One then computes their Poisson
bracket algebra. Since we assumed that no second class constraints are present, the result
is of the general form

{Ψm, Ψn} = U r
mn Ψr ≈ 0 , (36)

where the “structure functions” U r
mn may depend on the q’s and p’s. We also define an

“extended” Hamiltonian, using some Lagrange multipliers, as follows:

Hext = H + λmΨm ≈ H . (37)

At each step of the algorithm we have to change H → Hext before checking consistency
through eq. (35).

We can summarize the results from Dirac’s treatment of a system with first class
constraints only as follows: The phase space action is

S =
∫

dt q̇p − H − λmΨm . (38)

The constraints together with the Hamiltonian obey the Poisson bracket algebra

{Ψm, Ψn} = U r
mn Ψr {Ψm, H} = V r

m Ψr . (39)
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The equations of motion are

q̇ = {q, H}+ λm{q, Ψm} (40)

ṗ = {p, H}+ λm{p, Ψm} (41)

0 = Ψm(q, p) . (42)

and—a crucial point—there are no equations of motion for the λm’s. As a result, since the
λm’s do enter into the equations of motion for the q’s and p’s, the time evolution of the
latter is partly arbitrary. This seems unsatisfactory, but it is precisely the situation that
we encountered for Maxwell’s equations, and we will soon see that it all makes perfect
sense.

Let us go back to our assumption that the constraint matrix is weakly vanishing. In
general, what may happen is that

{Ψm, Ψn} ≈ Cmn 6= 0 , (43)

where Cmn is a matrix whose rank is less than or equal to M , the number of constraints.
If the rank is less than M but greater than zero, say equal to R, this means that both

second and first class constraints are present, and it becomes necessary to isolate a set
of R second class constraints and use them to define the appropriate Dirac brackets.
Then there will remain M − R first class constraints to be dealt with according to the
procedure that we are about to describe. Dirac’s book contains an easy-to-follow recipe
for how to do this kind of things. With experience, one learns of various shortcuts, which
are easy to remember but complicated to describe. I will make only one comment on
this here: Suppose that all the constraints are second class, and suppose that we insist
that eq. (35) holds. Then nonsense will result, unless we take appropriate precautions.
To be precise, what one has to do is to change the Hamiltonian to the form given in
eq. (37) before the calculation is made. Then what the calculation (35) gives is just an
equation for the Lagrange multiplier that was introduced in eq. (37). So, remember that
Lagrange multipliers that multiply second class constraints will be determined by the
consistency conditions, while those that multiply first class constraints are left arbitrary.
Also remember the overriding rule that if there is trouble of any kind, an unthinking
application of the recipe in the Master’s Book, without shortcuts, will give you the right
answer.

Electrodynamics

At this point an example is usually helpful. So consider the action for electrodynamics,
with a mass term for the photon added:
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S =
∫

d4x L = −
∫

d4x

[

1

4
FαβF αβ +

1

2
m2AαAα

]

. (44)

The canonical momenta are

Ea =
∂L

∂Ȧa

= Fta πt =
∂L

∂Ȧt

= 0 . (45)

It is straightforward to compute the Hamiltonian; if partial integrations are allowed and
the magnetic field is defined as usual, we find that

H =
∫

d3x
[

ȦaE
a −L

]

=

(46)

=
∫

d3x

[

1

2
(EaEa + BaBa) − At∂aE

a +
m2

2
(AaAa − AtAt)

]

.

Now from eq. (45) we evidently have the primary constraint

πt ≈ 0 . (47)

Consistency then implies the secondary constraint

0 ≈ π̇t = {πt, H} = ∂aE
a + m2At . (48)

Following custom, we refer to the constraint

G ≡ ∂aE
a + m2At ≈ 0 (49)

as “Gauss’ law”. It is of course recognizable as the time component of the Lagrangian
field equation

∂βF βα − m2Aα = 0 . (50)

Before we investigate whether there are any tertiary constraints, we compute the
algebra of the constraints that we have already collected, and find that

{G(x), π(y)} = m2δ(x, y) . (51)

The conclusion here depends critically on m2. If m2 = 0 the constraints are first class, if
not they are second class. Let us deal with the latter case first. The Dirac brackets are
easily computed, and include

{Aa(x), Eb(y)}∗ = {Aa(x), Eb(y)} = δb
aδ(x, y) . (52)

Once the naive brackets have been replaced by Dirac brackets we can set the constraints
“strongly” to zero (i.e. we replace the wavy equality signs with ordinary ones), which in
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this case means that we can express At as a definite function of Aa and Eb, which remain
as the “true” degrees of freedom of the system. The time components simply drop out
from the Hamiltonian formulation. In this way we arrive at a consistent Hamiltonian
system described by the Poisson brackets (52) and the Hamiltonian

H = H [A, E] =
1

2

∫

d3x

[

EaEa + BaBa + m2AaAa +
1

m2
(∂ · E)2

]

. (53)

This is all. By the way we note that the Hamiltonian is now manifestly bounded from
below, something which was not evident from the start. Since all the constraints have
been solved for, we can also count the number of degrees of freedom in the theory, i.e.
one half of the dimension of the phase space, and find this number to be 3 · ∞3, or three
per point in space.

The massless case is subtler. Gauss’ law now says that the electric field is divergence-
less. It is easy to check that there are no tertiary constraints, so that we have reached the
position that was reached for a general Hamiltonian system with first class constraints in
the previous section. Thus, the phase space action is

S =
∫

d4x

[

ȦaE
a −

1

2
(EaEa + BaBa) − λ∂aE

a

]

. (54)

Here I have renamed λ ≡ −At and then quietly dropped the time components from the
phase space; I could have included them in the action and added a Lagrange multiplier
to impose the constraint that the time component of the momentum in weakly zero, but
since this leaves the time evolution of At entirely arbitrary the content of the resulting
equations would have been exactly the same as the content of the equations that we derive
from the action (54), viz.

Ȧa = Ea − ∂aλ (55)

Ėa = ∂bF
ba (56)

0 = ∂aE
a . (57)

This is the situation encountered in the introduction; there is a 3 · ∞3-dimensional
phase space spanned by Aa(x), Eb(y), but the time evolution of the vector potential is
arbitrary because the evolution equation includes an unspecified gauge transformation.
Moreover the initial data are subjected to a constraint, or more precisely 1·∞3 constraints
(one at each point in space). The reason why Maxwell’s equations do not determine the
time component of the vector potential is revealed to be that it enters the action as a
Lagrange multiplier which enforces the constraint. Concerning the physical interpretation
of this formalism, the crucial idea is familiar from elementary electrodynamics: Changes
of “gauge”, i.e. changes in the vector potential of the form
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A′(x) = A(x) + ∂aΛ(x) , (58)

do not correspond to any changes in the state of the physical electromagnetic field. The
fields A′(x) and A(x) are related by a gauge transformation and describe the same physics.
As we will see, there is a similar resolution to the general problem of giving physical
interpretation to an arbitrary Hamiltonian system having first class constraints in its
phase space.

Observables

Our understanding of systems with second class constraints is complete. For a Hamilto-
nian system without constraints, the fundamental assumption made in the interpretation
of the theory is that there is a one-to-one correspondence between the points in phase space

and the physical states of the system being described; also the phase space is equipped with
two structures, a symplectic two-form and a Hamiltonian function, which together define
the time evolution of the system. If second class constraints occur, there is a constraint
hypersurface embedded in the “naive” phase space, defined by the constraints Φ(q, p) = 0.
Because of the embedding, the symplectic form on the naive phase space induces a definite
symplectic form on the constraint surface, and the interpretation of the whole structure
is that there is a one-to-one correspondence between the points on the constraint surface
and the physical states of the system. There is no real distinction between the constraint
surface on the one hand and the phase space of an unconstrained system on the other—the
naive phase space is just a convenient crutch used in setting up the description.

We have left the physical interpretation of Hamiltonian systems with first class con-
straints floating in the air, and it is time to fix it. The picture of a system with second
class constraints is still relevant, since again there is a naive phase space and a constraint
surface, and the “physical points” in phase space have to lie on the latter. The essential
point in Dirac’s theory is now that the one-to-one correspondence between points on the
constraint surface and physical states of the system is given up—the latter correspond
to equivalence classes of points on the constraint surface. To see this, we recall that the
constraint surface is defined by a set of constraints

Ψm(z) ≈ 0 . (59)

Now let us concentrate our attention on the fact that these functions are given, rather
than on the fact that they vanish in a solution of the equations. The symplectic two-form
can be used to associate vector fields not only to the Hamiltonian, but to any phase space
function, and in particular to the constraint functions; so we introduce the vector fields

ξµ
m ≡ ωµν∂νΨm . (60)

These vector fields give rise to curves which have the property that if they start out from
a point on the constraint surface they stay on the constraint surface. (This can be proved
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Figure 1: The constraint surface partitioned into gauge orbits (schematically).

using the Poisson bracket algebra of the constraints. The constraints are said to be “in
involution” with each other and with the Hamiltonian, and if you carry through the proof
you may recognize it from the theory of integrable systems, where the same argument
occurs in a different context.) Let us agree to call each such curve a “gauge orbit”. If
there are M constraints altogether, the vector fields give rise to M dimensional surface
elements at every point, and it can be proved that they are integrable, and define an M

dimensional surface embedded in the constraint surface. (This follows from the algebra
of the constraints and Frobenius’ theorem.) These surfaces are sometimes called “gauge
flats”, although they are often loosely referred to as gauge orbits as well. We can now
draw a picture of the situation, which shows the constraint surface embedded in the naive
phase space, and foliated by the gauge orbits. The symplectic form on the naive phase
space again induces a two-form ω∗ on the constraint surface, but it is not immediately
useful since it is degenerate—its null eigenvectors are precisely the vectors ξµ that point
along the gauge orbits.

The crucial idea is that the constraint surface is divided into equivalence classes of
points. Each equivalence class consists of all the points that lie on a given gauge flat. The
physical interpretation of the construction is now given by the assumption that there is
a one-to-one correspondence between the gauge flats and the physical states of the system

being described. Thus,

Physical phase space ≡
Constraint surface

Gauge transformations
. (61)

A physical observable is a function that takes a definite value if the physical system
assumes a definite state, hence in the formalism an observable is a function of the con-
straint surface that takes the same value at all the points on a given gauge orbit. Thus,
if O is an observable, we must have that

Lξm
O = 0 ⇔ {O, Ψm} ≈ 0 . (62)

In words, O is a gauge invariant function on the naive phase space.
This definition provides some guidance in the physical interpretation of a theory; how
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stringent the guidance is varies from theory to theory. In electrodynamics, the electric
and magnetic fields provide examples of observables. This is no longer true in non-
abelian Yang-Mills theory, where the canonical variables carry an extra index supplied
by the adjoint representation of some compact Lie group. We have the canonical Poisson
bracket

{Aai(x), Eb
j (y)} = δa

b δijδ(x, y) . (63)

We also have the first class constraints

Gi[λi] =
∫

d3x λi(∂aE
a
i + fijkAajE

a
k) ≈ 0 . (64)

Here fijk are the structure constants of the group, λi(x) are (fairly) arbitrary functions,
and I used the convenient idea of presenting the constraints smeared with test functions.
One checks that the constraints generate the gauge transformations

δAai = −∂aλi − fijkAajλk , δEa
i = −fijkE

a
j λk . (65)

The electric field is no longer gauge invariant, but transforms like a vector in the internal
representation space. It remains possible to write down observables by inspection, such
as the energy density.

In general relativity, the situation is very subtle since there the role of the canonical
Hamiltonian is entirely taken over by constraints; the time evolution itself is a gauge
transformation, and indeed people still disagree on the questions raised by this circum-
stance. More than that, quarrels erupt and friendships are broken up when this issue is
discussed—much like what happens with the meaning of entropy, probability, and such
things.

Canonical Gauge Fixing

In looking over the picture of a system with first class constraints, an idea suggests itself,
namely that one could define a physical phase space by simply picking one point on
each gauge orbit (or gauge flat, if there are many constraints), and call the resulting set
of points the physical phase space. In the end, one would then arrive at an ordinary
Hamiltonian system without constraints on the degrees of freedom that remain in the
theory.

Within limits, such a procedure can indeed be carried through, and is called “canonical
gauge fixing”. The first limit is that it may be impossible to do this globally, all over
the constraint surface. Problems arise if the latter is a non-trivial fiber bundle of some
sort. Even when this problem does not occur, there may be problems with non-locality
in space—physical space, not phase space. We will show, using electrodynamics as an
example, how canonical gauge fixing necessarily leads to the appearance of non-local
differential operators or, which is the same thing, that a description making use of gauge
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degrees of freedom is necessary if electromagnetism is to be described in a way that is
manifestly local in space-time.

The recipe for how to perform canonical gauge fixing is given in Dirac’s book. Sup-
pose for simplicity that we are interested in fixing the gauge pertaining to one first class
constraint Ψ only. Suppose that we find (by inspection, trial-and-error, or whatever) a
condition

χ(q, p) = 0 , (66)

such that the matrix

(

0 {χ, Ψ}
{Ψ, χ} 0

)

(67)

is invertible. Then we can treat χ and Ψ as a pair of second class constraints, solve them,
compute the Dirac brackets for the remaining degrees of freedom, and in this way we
arrive at a description of our model as an unconstrained system with fewer degrees of
freedom that was used from the start. To be precise, we see that the naive phase space
has two “extra” degrees of freedom, compared to the gauge fixed version.

Of course there is a detail that has to be checked before one concludes that the gauge
has been successfully fixed, namely that every gauge flat contains one and only one point
which obeys the condition χ = 0. Let us see, using electrodynamics as an example, how
the question can be analyzed. Our proposed gauge condition is the well known Coulomb
gauge,

χ(x) = ∂ · A = 0 . (68)

One finds

{χ(x),G(y)} = −∆δ(x, y) , (69)

where ∆ is the Laplacian. To show that the Coulomb gauge condition is a good gauge
choice the first thing to do is to check that the constraint matrix (67) is invertible. It
is clear that this requires the Laplacian to be invertible, so that we can write an inverse
constraint matrix—in a meaningful way—as

C−1(x, y) =

(

0 −1
1 0

)

1

∆
δ(x, y) . (70)

Exactly the same question comes up when we check the second requirement on the gauge
choice, that every gauge flat should contain one and only one point that obeys the gauge
condition. Indeed, suppose that the vector potential Aa does obey the Coulomb gauge
condition. Then all the other vector potentials A′

a on the same gauge flat obey

∂ · A′

a(x) = ∂a(Aa(x) + ∂aΛ(x)) = ∆Λ(x) . (71)
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Figure 2: A good gauge choice, and two bad ones.

We need to show that the left hand side vanishes if and only if Λ(x) vanishes. So the
question comes down to whether the Laplace equation

∆Λ(x) = 0 (72)

has a unique solution ( = 0) for Λ. It must be stressed that this question can not
be answered unless our so far careless description of electrodynamics is supplemented
with a certain amount of additional information. The extra information concerns the
behaviour of the fields at large distances, and—for a relativist—the behaviour of space
itself at large distances. If space is flat and Euclidean and if all the fields (and Λ, whose
behaviour at infinity is tied up with that of the vector potential) vanish sufficiently fast
at infinity, then the Laplace equation has a unique solution, and therefore there can be
at most one vector potential obeying the Coulomb condition on every gauge flat. Some
restrictions on the large distance behaviour of the fields are in fact necessary to ensure
that the Hamiltonian formalism is well defined in the first place—obviously the integrals
that define the Hamiltonian must converge, and there are other requirements too. But
it is worth observing that if we solve these problems with periodic boundary conditions,
so that space is a torus, then the inverse of the Laplacian is not well defined, and the
Coulomb gauge as it stands is not acceptable.

An extension of the argument shows that—given suitable boundary conditions—there
is one vector potential on every gauge flat that obeys the Coulomb condition, and the
appearance of the Laplacian in a denominator in eq. (70) can be justified. The con-
straint and the gauge condition together can now be regarded as a pair of second class
constraints, and we can solve for the independent physical degrees of freedom, which are
the “transverse parts” of the vector potential,

AT
a ≡ (δab −

∂a∂b

∆
)Ab , (73)

and similarly for the electric field. It is straightforward to compute the Dirac brackets
of these degrees of freedom, but it should be noted that these brackets then involve the
inverse of the Laplacian, which is a non-local operator. It is in this sense that manifest
locality is lost once the Coulomb gauge has been fixed. (Although it remains true that
propagation of influences from a point is confined to the interior of its light cone.)
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There are other conditions that may be employed to fix the gauge in electrodynamics,
such as the axial gauge

A3(x) = 0 (74)

and many others. The familiar and manifestly covariant Lorenz gauge

∂ · A − Ȧt = 0 (75)

on the other hand belongs to a different kettle of fish, as is evident from the fact that it
involves the Lagrange multiplier At. It is not a canonical gauge fixing condition at all; its
treatment belongs to a part of the theory of constrained Hamiltonian system that we will
not discuss, namely the part marked “BRST” by its practioneers.

Which will serve as a reminder that this sketch of the theory is incomplete.

Exercises

• Show how the assumption that the symplectic form is closed implies that the Poisson
brackets obey the Jacobi identity.

• Explain in technical terms why Dirac’s construction gives a symplectic form which is
“induced” from the symplectic form in the naive phase space through the embedding
of the constraint surface. Make the explanation as general as you can.

• Show how the induced symplectic form is degenerate when first class contraints are
present.

• Show that the gauge orbits are confined to the constraint surface.

• Show that the gauge flats are integrable.

A coherent account of these questions will be appreciated.

Recommended reading:

The only indispensable reference is

P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science,
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New York 1964.

The geometrical point of view on constrained phase spaces is described for instance in

A. Ashtekar and M. Stillerman, Geometric quantization of constrained systems, J.
Math. Phys. 27 (1986) 1319.

The modern “BRST” approach to first class constraints is summarized for instance in

R. Marnelius, Introduction to the quantization of general gauge theories, Acta Phys.
Pol. B13 (1982) 669.

For a brief discussion of the initial value problem, see

R. M. Wald, General Relativity, Chicago UP, 1984.
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