
QUANTUM INFORMATION May 8, 2023

In the 1920s quantum mechanics was discovered, by Heisenberg, Born, Schrö-
dinger, and others. It was found to involve probability theory in an intimate
way. But classical probability theory was still in a primitive state. Kol-
mogorov gave a proper axiomatization of probability theory in the 1930s.
Shannon introduced information theory in the 1940s. In the following decade
the theory of stochastic processes saw great developments. So did operator
theory, the work of Stinespring being especially important. In the 1970s the
time had come to update the probabilistic structure of quantum mechanics.
Thus the subject of quantum information was born, in the hands of Holevo,
Kraus, Lindblad, and a few others. A new ingredient was introduced when
the idea of quantum computers was put on the table, by Benioff, Deutsch,
and others. The subject grew dramatically in the 1990ies largely because
experimentalists caught up with it, enabling theorists like Bennett and Shor
to assume that the theory deals with things you can actually do. At the
moment it is one of the main growth points of physics. It will take some
time before we know where it leads.

Quantum mechanics has many successes to its credit, such as enabling
us to understand the wave-particle nature of light, the structure of atoms,
and the stability of matter. Here we take a lightning tour through quantum
information theory, assuming as little as possible in the way of prerequisites.
The course falls into four separate parts:

• Lengthy introduction

• Open systems

• Information theory

• Quantum computation

To support you, and keep you company in the evenings, you have the book
by Stenholm and Suominen, and these lecture notes. Since the book starts
with a quote, I do so too: “it would be contrary to ... the perfection of
things, if there were no chance events”. The source is the same as Stig’s and
Kalle-Antti’s.
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LENGTHY INTRODUCTION

Throughout the lectures I will stress the connection to classical probability
theory rather more than the book does. The book on the other hand stresses
the connection to experiments in quantum optics much more than I will do.

The set of classical probabilities

Probability theory is simple to define mathematically if we stick to probabil-
ity distributions over a finite number n of mutually exclusive events. Then
we need n non-negative numbers summing to 1,

pi ≥ 0 ,
n
∑

i=1

pi = 1 . (1)

We can collect these numbers into a vector ~p and refer to any such vector
as a probability vector, as a probability distribution P , or—in analogy to the
quantum states that we will introduce later—as a classical state.

It is an embarrassment that the question what it means to assign the
number p1 = 0.561 (say) is controversial. Is it an objective statement about
frequencies? Or a measure of rational belief? Or what? Things are simple
only as long as we don’t ask.

A bit of extra notation is helpful. A random variable is defined as a
function that assigns real numbers to events. The random variable A takes
values ai with probabilities

pi = P (A = ai) . (2)

If we have several random variables we can define the joint probability pi,j =
P (A = ai, B = bj), which is the probability that A takes the value ai and B
takes the value bj , and the conditional probability P (A = ai|B = bj), which
is the probability that A takes the value ai given that B is known to take
the value bi. Joint and conditional probabilities are connected by Bayes’s
formula. In short hand notation

P (A,B) = P (A|B)P (B) = P (B|A)P (A) . (3)
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If there are n outcomes for the first and m for the second, the joint probability
vector carries a collective index and has nm components. We require

pi = P (A = ai) =
m
∑

j=1

pi,j , qj = P (B = bj) =
n
∑

i=1

pi,j . (4)

Probability vectors that arise in this way from a joint probability distribution
are known as marginal distributions.

The random variables may or may not be correlated. If not, they are
independent, and the probability vector for the joint event can be written as

pi,j = P (A = ai, B = bj) = P (A = ai)P (B = bj) = piqj . (5)

I stress that this equation is not true in general. Indeed, suppose n = m = 2,
and order the components of the joint probability vector lexicographically:

P0 = p0,0 , P1 = p0,1 , P2 = p1,0 , P3 = p1,1 . (6)

Now suppose that the random variables are independent, as in eq. (5). Then
the probability vectors that actually occur (the frequencies that will actually
be observed, if you look at it that way) are constrained by1

P0P3 = P1P2 . (7)

If the observed frequencies do not obey this condition, you conclude that the
two random variables must be correlated.

The set of probability vectors form a convex set. What this means is
that given two probability vectors ~p(1) and ~p(2) and a number x ∈ (0, 1), the
combination

~p = x~p(1) + (1 − x)~p(2) (8)

is a probability vector too. Conversely, given a probability vector ~p we can
ask if it can be formed as a mixture of two distinct probability vectors in
this way. If no such decomposition is possible the vector ~p is said to be pure.
Geometrically, you can think of a convex set as a set of points such that the
straight line between any pair of points in the set also belongs to the set. Of
course this assumes that we have a rule for adding points, and for drawing

1Exercise: Prove this. Note that it is an ‘if and only if’ statement.
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straight lines between them. But this we have, because we regard our points
as vectors in a vector space of a fixed dimension n. Given a set of points you
can form the minimal convex set that contains them. This is known as their
convex hull.

The set of probability vectors is a convex set of a special kind. When
n = 3 there are three pure vectors, and every probability vector ~p can be
written as a convex combination of these pure vectors,

~p = p1







1
0
0





+ p2







0
1
0





+ p3







0
0
1





 , pi ≥ 0 , p1 + p2 + p3 = 1 . (9)

Geometrically this is a triangle, or a simplex if we keep the number of out-
comes n arbitrary.2 A convex combination, also known as a mixture, is a
quite special case of a linear combination, because the coefficients are re-
quired to be non-negative and sum to one. For simplices the decomposition
of a point into a convex combination of pure points is unique, but this is a
special feature of simplices. A square is also a convex set, but there is no
unique way of decomposing an interior point as a mixture of the four pure
points at the corners. The same is true for a circular disk, which has infinitely
many pure points. This last observation will become relevant when we come
to the quantum case.

If you find the story so far too abstract for your taste you can use your
physical intuition on an equivalent problem. Consider n points in space, or
in the plane, distribute a fixed amount of mass over them, and ask for all
possible positions of the centre of mass that can arise in this way. The answer
is: the convex hull of the n points. You can also ask the converse question:
if you know the position of the centre of mass, can you decide how the mass
was distributed over the n points? The answer to this will depend on the set
of n points was to begin with.

Dynamics and distinguishability

2Exercise: When n = 4 the simplex is a tetrahedron, and eq. (7) describes a surface
inside a tetrahedron. Draw it! You should be able to see that it is formed from straight
lines obtained by keeping either ~p or ~q constant.

4



Figure 1: We illustrate the stochastic map (11). In information theory stochastic
maps are called ‘channels’, and this is the ‘binary symmetric channel’.

If you want to introduce dynamics on a probability simplex, the options are
rather limited. You can use stochastic maps, given by matrices S such that
the vector ~q defined by

~q = S~p (10)

is a probability vector for every probability vector ~p.3 An example of a
stochastic map is the ‘bit flip’ matrix

S =

(

1 − p p
p 1 − p

)

, (11)

which may describe the degrading noise acting on a bit in a computer mem-
ory. If we also require the stochastic maps to take pure states into pure
states, then the matrix is a permutation matrix. General stochastic maps
tend to shrink the simplex towards some fixed point, and can be combined
into Markov chains.4 A Markov process is a special kind of stochastic time
development in which what happens in a given step depends only on the
result of the previous step. To see if a real physical phenomenon—like the
Brownian motion studied by Einstein—is a Markov process, one needs a
careful study of the relevant time scales.

This is a natural point to introduce the notion of distance between states,
in this case between probability vectors. The first attempt is to say that the
distance is defined using the recipe of Euclidean geometry, so that

3Exercise: What conditions on the matrix elements of S ensure that this holds? How
do you prove that the product of two stochastic matrices is stochastic?

4Exercise: Apply the bit flip map (11) N times, and see what happens to the (one
dimensional) probability simplex.
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D2(~p, ~q) =
n
∑

i=i

(pi − qi)
2 . (12)

The triangle becomes an equilateral flat triangle. But this turns out to be
unsatisfactory from two points of view. From the first point of view one
asks how easy it would be to distinguish two probability assignments from
each other using a finite number N of observations or samplings. You may
have two competing theories predicting the probability distributions ~p and
~q, respectively. You perform N measurements and obtain a frequency vector
~ν, which does not agree exactly with either prediction because of statistical
fluctuations. How many measurements do you have to perform before you
can sit judgment between the two theories? If that number is large, the
predictions are ‘close’, and we want a notion of distance that encodes this
idea. The second point of view suggests that the notion of distance should
have the property that

D(S~p, S~q) ≤ D(~p, ~q) . (13)

This means that one requires monotonicity under arbitrary stochastic maps
S. Either way, we insist that a notion of distance must mean something.
This is the operational point of view, which pervades the whole subject.

Let us look at a special example of a stochastic matrix:

S =







1 0 0
0 1 1
0 0 0





 . (14)

This is a coarse graining of the outcomes. We have decided not to keep track
of the distinction between the second and the third outcome, so certainly
distinguishability goes down if we perform the map ~p → ~q = S~p. But
Euclidean distances on a flat simplex can increase under this map, as you
can see in Figure 2. One way to handle this is to write

xi =
√
pi ≥ 0 ⇒

∑

i

pi =
∑

i

x2
i = 1 . (15)

If we think of the xi as Cartesian coordinates in space the probability simplex
looks like the positive octant of a sphere. We define the Fisher–Rao distance

DFR between two probability vectors as the length of the shortest curve
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connecting them on the sphere that we just defined. It is well known that
the shortest curve between two points on the sphere is always an arc of a great
circle on the sphere, and you can easily convince yourself that if we connect
two points on an octant of the sphere with such an arc, then the entire
arc will lie within the octant. The distance DFR between two probability
distributions ~p and ~q then becomes simply the angle between the two unit
vectors they define, which is implicitly given by the formula

cosDFR =
∑

i

√
pi
√
qi . (16)

This should be a familiar property of the unit sphere.
This notion of distance behaves nicely under all stochastic maps. It can-

not decrease. We omit the proof, but Figure 2 shows how things work out
for the coarse graining map (14). On the round octant the transformation
goes along an arc of constant latitude, and distances stay constant.

Figure 2: Coarse graining collapses the entire simplex onto one of its edges. Eu-
clidean distances can increase under this operation—two points at distance D from
each other will find themselves at a distance D′ > D. On a round octant (one
eighth of the surface of a sphere) this never happens.

The Fisher-Rao metric does have an operational meaning in terms of how
well one can distinguish between two probability distributions based on the
frequencies observed in a finite but large number of trials. Suppose that
there are only two outcomes, and that one of them happens with probability
p. The probability to see it happening m times if we do N samplings is

P (m) =

(

N

m

)

pm(1 − p)N−m . (17)
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We get a frequency vector ~ν with components (m/N, (N − m)/N). If N
is large we expect this to be a fair approximation of the probability vector
(p1, p2) = (p, 1 − p). Indeed, after 20 years of work, Jakob Bernoulli proved
an important theorem:5

Law of Large Numbers. For every ǫ > 0 and δ > 0 the probability P to
obtain the first outcome m times in N trials obeys

P
(∣

∣

∣

∣

m

N
− p

∣

∣

∣

∣

< ǫ
)

> 1 − δ , (18)

provided that N > N0 for some sufficiently large N0.

Information theory, to which we will arrive later, relies heavily on this.
It is possible to make the Law of Large Numbers into a more quantitative

statement by bringing in Stirling’s formula

n! ∼ χ(n) =
√

2πn
(

n

e

)n

. (19)

This formula turns up whenever large numbers are to be counted.6 The sign
‘∼’ means that

lim
n→∞

n!

χ(n)
= 1 , (20)

and the approximation is accurate to within a percent already for n = 10.
Assuming that the number of samplings is large and using Stirling’s for-

mula we can rewrite (17) as

P (m) ∼ 1√
2πNpq

(

Np

m

)m+ 1
2
(

Nq

N −m

)N−m+ 1
2

, (21)

where q = 1 − p. We now introduce the variable

λ =
m−Np√
Npq

=
m/N − p

σ
, (22)

5Exercise: Look in a textbook on probability theory for a proof that takes less than 20
years to do.

6Exercise: Derive an approximation for lnn! by rewriting it as a sum and then approx-
imately as an integral. Compare to Stirling’s formula.
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where σ is the standard deviation. The parameter λ measures the deviation
of the observed frequency from its expected value, in units of the standard
deviation. Using λ to replace m we find after some calculations, and Taylor
expansions, that

P (m) ∼ 1√
2πNpq

e−
λ2

2 . (23)

This is a famous result, due to De Moivre.
We can rewrite it in an interesting way by introducing

∆p1 = ν1 − p1

∆p2 = ν2 − p2

}

⇒ λ2 = N

(

∆p2
1

p1
+

∆p2
2

p2

)

. (24)

We conclude that if N is large then the probability to observe the frequency
~ν in N samplings is governed by the probability distribution

P(~ν) ∼
√

N

2πp1p2

e
−N

2

∑2

i=1

(∆pi)
2

pi , ∆pi = νi − pi . (25)

What we are driving at now is that the sharpness of the peak of the Gaussian
varies as you move around the probability simplex. As you can see in Figure
3, two probability assignments close to the edges of the interval will be easy to
distinguish with a modest number of samplings, and hence we should regard
them as far apart. The opposite holds for two probability assignments close
to the centre. Quantifying this leads directly to the Fisher-Rao distance.

To see how, go back to (16) and suppose that qi = pi +∆pi where the ∆pi

are small (and sum to zero). Taylor expanding on both sides (16) becomes

1 − 1

2
D2

FR ≈
∑

i

√
pi
√
pi

√

1 +
∆pi

pi

≈ 1 − 1

4

∑

i

∆p2
i

pi

. (26)

From this we see that the expression that governs the sharpness of the peak
in (25) is the Fisher–Rao distance squared. When we allow a large number of
samplings this provides a justification of the Fisher–Rao distance, at least if
the distances are small. Since we do not expect stochastic maps to increase
distinguishability, we do indeed expect that metrics quantifying the latter
notion must be monotone.

If we do not know what probability vector to assign to a choice between
N outcomes, we expect that the likelihood to find the probability vector in a
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Figure 3: The broader the Gaussian, the harder it is to decide if the observed
frequency matches the probability assignment we are assuming. Here N = 200,
and we have one component of the probability vector on the horizontal axis.

Figure 4: It might seem as if 25 percent of all probability distributions lie in the
triangle in the middle. However, using the round metric on the simplex only 12
percent of them do.

given region on the probability simplex is proportional to the volume of that
region. Here it clearly matters whether the simplex is flat or round. If we
use the volume element provided by the Fisher-Rao metric for the purpose,
we find that most of the volume is concentrated near the edges and vertices
of the simplex. We can take this as a reason why, in real life, most things
happen in a fairly predictable way. Random events that are evenly poised
are quite rare.7

There are other notions of distance that are operationally meaningful,
such as the ‘taxi cab’ l1-distance

||~p− ~q||1 =
n−1
∑

i=0

|pi − qi| . (27)

7Exercise: Verify the calculation that goes into Figure 4.
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On a two dimensional probability simplex ‘circles’ at constant distance from
a given point will then appear as suitably oriented hexagons.8 The taxi cab
distance is monotone under stochastic maps, and its operational meaning has
to do with how reliably two probability distributions can be distinguished by
means of a single sampling.

The quantum generalization

To generalize classical probability theory we first rewrite the definitions in
terms of diagonal matrices. We replace all probability vectors with matrices

P =







p1 0 0
0 p2 0
0 0 p3





 , P ≥ 0 , TrP = 1 . (28)

A random variable A is an otherwise unrestricted diagonal matrix,

A =







a1 0 0
0 a2 0
0 0 a3





 . (29)

The expectation value of a random variable, given a state, is then

〈A〉 = TrPA . (30)

There is a fairly obvious generalization of all this. We replace the diagonal
matrices with ‘diagonalizable’, and more particularly Hermitian, matrices.
This still leaves it open whether they should be real or complex matrices,
but it will turn out that complex numbers are the preferred choice, so let
us make it right away. A state is now a positive (and therefore Hermitian)
matrix,

ρ = ρ† , ρ ≥ 0 , Trρ = 1 . (31)

The notation ρ ≥ 0 means that all the eigenvalues are greater than or equal to
zero. A matrix obeying all these conditions is known as a density matrix, or as

8Exercise: Draw such ‘circles’ around a few selected points in the simplex. Argue that
this distance is monotone under the map (14).
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a quantum state. A random variable is an otherwise unrestricted Hermitian
matrix,

A = A† . (32)

For expectation values, we keep the classical formula (30).
Since positive operators are so important, let us state three equivalent

definitions:

ρ is Hermitian with non-negative eigenvalues ⇔

⇔ 〈v|ρ|v〉 ≥ 0 for every vector |v〉 ⇔ (33)

⇔ ρ = X†X for some bounded operator X .

This will make it easier to check if a given operator ρ is positive. It is also
good to know that if A and B are positive operators then TrAB ≥ 0, even
though AB is not Hermitian unless A and B commute.

The quantum generalization is a significant one. The random variables,
and the states, now belong to a non-commutative algebra. If the matrices
act on a d dimensional Hilbert space the d − 1 dimensional classical state
space is turned into a d2 − 1 = (d − 1)(d + 1) dimensional one.9 The set of
density matrices is again a convex set. To see this we must prove that if ρ1

and ρ2 are density matrices then so is ρ, where ρ is the convex combination

ρ = xρ1 + (1 − x)ρ2 , 0 ≤ x ≤ 1 . (34)

The proof is easy given one out of the three equivalent definitions of a positive
operators.10 So the density matrices form a convex set, just as the probability
vectors do.

A remark on the Dirac notation

9Exercise: Verify that a general matrix subject to (31) depends on d2 − 1 real param-
eters, where d is the dimension of the complex Hilbert space.

10Exercise: Verify that this is, indeed, easy.
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We will be dealing with vectors in Hilbert space, and operators acting on
them. The Hilbert space will have a finite dimension d, and an orthonormal
basis consisting of d unit vectors |ei〉. In fact it has infinitely many different
orthonormal bases. Having chosen one, we can write every vector in the form

|ψ〉 =
d−1
∑

i=0

zi|ei〉 , (35)

and every operator in the form

A =
d−1
∑

i,j=0

|ei〉Ai
j〈ej| . (36)

Frequently this is on the pedantic side, and we will often regard vectors
and operators as ordered arrays of numbers in the usual way (so that an
operator becomes a matrix). Having said this, there are situations where
things become conceptually more clear if we remember that this is just a
shorthand. And it is important to know what properties depend only on the
operator itself, and what properties depend also on the chosen basis. Being
positive is an example of the first kind, and being diagonal is an example of
the second. A Hermitian operator defines its own preferred eigenbasis, but if
you are interested in two Hermitian operators that do not commute you will
have to make the choice yourself.

The qubit

To understand what we have, set d = 2 so that we deal with two-by-two
matrices. The most general Hermitian two-by-two matrix with unit trace
can be written as

ρ =
1

2

(

1 + z x− iy
x + iy 1 − z

)

=
1

2
(1 + xσx + yσy + zσz) , (37)

where Pauli’s sigma-matrices were introduced in the last step. Think of the
triple (x, y, z) as a real vector. We call it the Bloch vector. When the Bloch
vector is zero we have what we call the maximally mixed state. Its eigenvalues
are clearly positive. We calculate that

13



det ρ =
1

4
(1 − x2 − y2 − z2) . (38)

So the determinant vanishes if and only if the length of the Bloch vector
equals unity. The set of positive matrices is determined by the condition

det ρ ≥ 0 ⇔ x2 + y2 + z2 ≤ 1 . (39)

We call it the Bloch ball. Its surface is the Bloch sphere. The pure states sit
at the surface. States in the interior are known as mixed, because they can
be obtained as mixtures of pure states—in a highly non-unique fashion.

To see what goes on at the surface we note that every Hermitian matrix
can be decomposed into its eigenvectors. That is, we can write

ρ = λ0|ψ0〉〈ψ0| + λ1|ψ1〉〈ψ1| , 〈ψi|ψj〉 = δij , λ0 + λ1 = 1 . (40)

The eigenvectors are orthonormal, and the eigenvalues sum to 1 because
Trρ = 1. At the surface of the Bloch ball detρ = 0, and one of the eigenvalues
vanish. Hence we have

ρ = |ψ〉〈ψ| , (41)

for some unit vector |ψ〉. Conversely, for every unit vector |ψ〉 we will obtain
a density matrix lying on the Bloch sphere in this way. Let us consider
the most general case. Since an overall phase factor of the vector can be
chosen freely we can make things completely definite by insisting that the
first non-vanishing component is real and positive, and then we get

|ψ〉 = cos
θ

2
|e1〉 + sin

θ

2
eiφ|e2〉 , 0 ≤ θ ≤ π , 0 ≤ φ < 2π . (42)

We have chosen to parametrize the state vector with angles θ and φ with
the idea that these parameters should, in the end, serve as coordinates on a
sphere.

Putting eqs. (41) and (42) together we find

ρ =

(

cos2 θ
2

cos θ
2

sin θ
2
e−iφ

sin θ
2

cos θ
2
eiφ sin2 θ

2

)

=
1

2

(

1 + cos θ sin θe−iφ

sin θeiφ 1 − cos θ

)

. (43)
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We can now read off the Bloch vector that describes an arbitrary pure state
|ψ〉, namely

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ) . (44)

And we can draw a picture of the Bloch sphere, with some states of interest
placed where they should be.

Let us think about the basis that was implicit in the discussion. By
agreement the computational basis consists of the vectors

|e0〉 =

(

1
0

)

↔ θ = 0 , |e1〉 =

(

0
1

)

↔ θ = π . (45)

(No pedantry here.) We place them at the north and south poles of our
sphere. Another pair of orthogonal states are

1√
2

(

1
1

)

↔ (θ, φ) = (
π

2
, 0) ,

1√
2

(

1
−1

)

↔ (θ, φ) = (
π

2
, π) . (46)

Orthogonal pure states always sit on antipodal points on the sphere, as far
from each other as they can be. Note also that every state in the interior can
be created as a mixture of pure states in infinitely many ways.

Let us draw the map of the Bloch sphere in a slightly different way. We
begin with a general vector in the two dimensional Hilbert space C2. We
are interested in vectors only up to an overall normalization and an arbitrary
phase factor. It is quite convenient to remove the ambiguity by insisting that
its first componenent equals 1. This works for all vectors except for those
whose first component vanish. In C2 we miss only one state in this way,
and this can be added in later. Taking the sign ‘∼’ to mean ‘equal up to an
overall complex factor’ we write

|ψ〉 ∼ z0|e0〉 + z1|e1〉 ∼ |e0〉 +
z1
z0
|e1〉 = |e0〉 + z|e1〉 . (47)

The equality defines an arbitrary complex number z. In terms of the angles
we used before we would have

z = tan
θ

2
eiφ . (48)
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The one-to-one correspondence between pure qubit states and the surface of
a sphere now turns into the well known correspondence between the complex
plane and the surface of a sphere. The ‘extra’ number ∞ will have to be added
to the complex plane in order to ensure that the correspondence becomes
one-to-one.

We write down the corresponding density matrix, normalizing as we go,
and read off the Bloch vector:

1

1 + |z|2
(

1
z

)

(

1 z̄
)

=
1

1 + |z|2
(

1 z̄
z |z|2

)

=
1

2

(

1 + x3 x1 − ix2

x1 + ix2 1 − x3

)

.

(49)
The components of the Bloch vector are denoted xi. Clearly

x1 + ix2 =
2z

1 + |z|2 x3 =
1 − |z|2
1 + |z|2 . (50)

The condition x2
1 + x2

2 + x2
3 = 1 is built in, because we started from a pure

state. This is the famous stereographic projection from the sphere to the
complex plane.11

We have now provided two useful maps of the Bloch sphere, and we just
have to fill in some physics.

Polarization states of a photon

We have just described the qubit, the smallest information carrying unit in
quantum information theory. Many physical systems are as simple as this.
However, it is often difficult to give a physical interpretation of the full set
of qubit states. An example where we can do it is given by the polarization
states of a photon.

The word ‘photon’ is a dangerous one. Lamb suggested that it should
not be used by anyone who does not have a special license to do so. Some
people define a photon as ‘a click in a detector’. We may, however, think
of a monochromatic electromagnetic plane wave travelling in the z-direction.
While this is a rather different thing, the possible polarization states of the

11Exercise: Why do I call it a “projection”? What am I projecting from? Explain the
geometric construction behind this.
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two things agree, and this is what we want to parametrize. A polarization
state of a plane wave is an ellipse swept out by an electric field vector or-
thogonal to that direction. The magnetic field sweeps out a similar ellipse.
The ellipse degenerates to a line for a linearly polarized state. Why is the
set of such polarization states equal to a sphere? The answer was given by
Stokes. We will give a sketch of the details.

Keeping things quantum mechanical, imagine that you have bought a
source producing 106 photons per second and a very expensive detector with
90 % efficiency. You also buy two Glan–Thompson prisms, at only 1000
Swedish crowns apiece. You can now prepare and measure linear polarization
states. You arrange the source, the two prisms, and the detector along a
straight line. The source and the first prism serve to prepare the state. The
second prism together with the detector serves as a measuring device. Let us
say that the detector clicks 106 times every second whenever the two prisms
have the same vertical orientation. Now change the preparation by rotating
the first prism an angle α away from the vertical. An accuracy of about 5
arcseconds can be achieved with a suitable goniometer. You will observe that
the number of clicks go down with a factor of cos2 α. When you rotate the
prism through the angle π you prepare the same polarization state as the one
we started out with. Evidently we have a circle’s worth of linear polarization
states. It is convenient to replace α with an angle that runs from 0 to 2π, so
we define a one parameter family of states ψ(eiφ) where

eiα =
√
eiφ = ±e iφ

2 . (51)

Now α and α+π correspond to the same state. We place this one parameter
family of states on the equator of a sphere, using the stereographic coordinate
z = eiφ.

How do we interpret the remaining points on the sphere? There should
be two orthogonal circular polarization states, obtained as equal weight su-
perpositions of any two orthogonal linear polarization states. (You will have
to buy some more equipment in order to prepare and measure them.) We
place them on the poles of our sphere. In between we have elliptical polar-
ization. These can be understood by first correlating ellipses with pairs of
positions on an auxiliary sphere, and again using a square root to obtain a
one-to-one correspondence between oriented ellipses and points on the final
Bloch sphere, with coordinates θ and φ. Consult Figure 5 for the idea. The
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Figure 5: The physical geography of the Bloch sphere. To the left, for a spin
one half silver atom. To the right, we show the first of the two steps needed to
define the Stokes parameters for photon polarization states. Each oriented ellipse
in the equatorial plane can be obtained by projecting two distinct great circles
on the sphere down to the equatorial plane. This means that it is associated to
two distinct points on that auxiliary sphere, which is coordinatized by a complex
number w.

components of the resulting Bloch vector are known in optics as the Stokes

parameters. They are indispensable for serious optics, but here we skip over
the fairly complicated details of the calculation. Notice though that the spe-
cific one-to-one correspondence we have set up here is not God given. We
can (and people sometimes do) change coordinates so that linear polariza-
tion states lie on the Greenwich meridian, where they are described by real
state vectors. What is always true is that the linear polarization states lie
on a great circle on the sphere, with pairs of physically orthogonal states
(for which the relative angle of linear polarization is 90◦) sitting at antipodal
points.

Dynamics and distances on the qubit

In the classical theory dynamics is given by stochastic maps, degenerating to
permutation matrices if pure states always evolve into other pure states. In
quantum theory the general case is difficult enough to merit a chapter of its
own, ‘Open systems’. But we can understand those transformations that take
pure states to pure states. They are simply rotations of the Bloch sphere. We
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obtain them by acting with a unitary matrix on the pure state vectors. To
see this it is enough to observe that we can obtain scalar products between
Bloch vectors by turning the set of operators acting on Cd into a Hilbert
space in its own right. The scalar product between operators is defined by

A ·B = TrA†B . (52)

Notice the dagger, guaranteeing that

||A||2 = TrA†A ≥ 0 . (53)

Clearly this scalar product is left invariant by

A→ UAU † , B → UBU † . (54)

The complex dimension of the Hilbert space of operators acting on a complex
Hilbert space of dimension d is d2. This is an important idea that we will
use again.

So far things do not really depend on the Hilbert space dimension d. For
d = 2 we check that if

A =
1

2

(

x3 x1 − ix2

x1 + ix2 −x3

)

, B =
1

2

(

y3 y1 − iy2

y1 + iy2 −y3

)

, (55)

then

TrA†B =
1

2
~x · ~y . (56)

It follows that, in C2, unitary transformations can be thought of as rotations
of the Bloch ball. Moreover every rotation of the Bloch ball can be obtained
in this way, but this is a special feature of the qubit.

The scalar product that we have introduced defines a notion of distance
between quantum states that reduces to the ordinary Euclidean distance on
the Bloch ball, and on the probability simplex spanned by a set of diago-
nal density matrices. There is no disputing the usefulness of this, but we
have already argued that if a distance is to capture the notion of statistical
distinguishability it must be defined differently. If we restrict ourselves to
pure states and qubits, another notion of distance between quantum states
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suggests itself, namely the length of an arc of a great circle connecting the
two points on the Bloch sphere. This is known as the Fubini–Study distance,
and denoted DFS. It is an exercise to show that it is given by the formula

cos2DFS =
|〈ψ|φ〉|2

〈ψ|ψ〉〈φ|φ〉 , (57)

where the vectors are not necessarily normalized.12 It is an interesting ex-
ercise because it brings home the fact that the Bloch sphere does not sit in

Hilbert space. A point on the Bloch sphere corresponds to an equivalence
class of vectors in Hilbert space (all unit vectors differing only by a phase).
So do quantum states. The formula turns out to be useful, in the same sense
as the Fisher–Rao distance is useful, and it can be used regardless of the
dimension of Hilbert space.

Higher dimensions

Many of the formulas for the qubit generalize immediately to Hilbert spaces
of dimensions higher than two. Nevertheless the qubit is a misleadingly
simple example in many ways. The set of quantum states, that is positive
matrices with trace one, has d2−1 dimensions. A general density matrix can
be obtained from a diagonal one by means of a unitary transformation

ρ→ UρU † . (58)

Because an overall phase does not matter it is the SU(d) subgroup that acts
effectively on the states. You can still think of this as a rotation in d2 − 1
dimensions, but now it is a quite special rotation. This is so because the
set of density matrices is no longer a sphere. In fact the surface of a sphere
in d2 − 1 dimensions has, in itself, d2 − 2 dimensions. But the pure states
can be described by vectors in Cd, with one of the d complex numbers being
irrelevant. So the set of pure states has only 2d − 2 dimensions, far less
than the dimension of the surface of a sphere. The set of all states is the

12Exercise: Do the exercise referred to in the text. You may have to adjust the size of
the sphere. Can you see why the same formula will work in every dimension?
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convex hull of the pure states, and is therefore only a subset of the ball. It
is well-nigh impossible to visualize the set of density matrices for d > 2.13

When d = 2 we expanded an arbitrary state in terms of the Pauli matrices.
A Pauli matrix has eigenvalues ±1, which means that it is both Hermitian
and unitary. There are two ways to generalize the Pauli matrices to arbitrary
dimensions, because you can regard them either as a basis for the set of all
Hermitian matrices, or as a basis for the set of all unitary matrices in the d2

dimensional Hilbert space of d by d matrices equipped with the trace inner
product (59). Saving the second way for later, we observe that for any d one
can find a set of d2 − 1 Hermitian traceless matrices such that

Trλiλj = dδij . (59)

Any d× d density matrix can then be written as14

ρ =
1

d



1 +
d2−1
∑

i=1

xiλi



 . (60)

This defines a generalized Bloch vector with components xi, although the
conditions one has to impose on this vector to ensure that ρ is positive are
distinctly unpleasant.

A couple of useful facts, that you can prove by first diagonalizing ρ: A
density matrix lies at the boundary of the set of density matrices if and
only if it has a vanishing eigenvalue. A density matrix is pure if and only if
Trρ2 = 1. This quantity obeys

1 ≥ Trρ2 ≥ 1

d
. (61)

It is sufficiently important to have a name, purity.15

From now on we will be a bit vague about the dimension of the Hilbert
space in this ‘Introduction’. The dimension is arbitrary but finite when this
causes no extra trouble, but you may think in terms of qubits if you so prefer.

13Exercise: Let ρ be a Hermitian matrix obeying Trρ3 = Trρ2 = 1. (In this exercise
nothing else is assumed about ρ.) Prove that ρ is a pure state.

14Exercise: Find such a set of Hermitian matrices for d = 3. What instructions would
you give to the computer, if you want it to produce such a set in some very high dimension?

15Exercise: Prove these inequalities. Also write down a formula connecting TrM , TrM2,
and detM for an arbitrary two-by-two matrix M .
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A preliminary theory of measurements

In classical theory it is fairly obvious what a measurement is, and what it
measures. Not so in quantum theory, and most of the discussion has to
wait until we come to ‘Open systems’. But we can make a start. Choose
any quantum random variable, that is to say a Hermitian matrix. It has a
complete set of orthonormal eigenvectors {|ei〉}d−1

i=0 , and they correspond to
the d mutually exclusive outcomes of an experiment. Given that the state of
the system is defined by a particular density matrix ρ, the probability that
a particular outcome occurs is declared to be

pi = Tr|ei〉〈ei|ρ = 〈ei|ρ|ei〉 . (62)

These numbers are non-negative because ρ ≥ 0 is a positive matrix, and they
sum to unity because

∑

i

pi =
∑

i

Tr|ei〉〈ei|ρ = Tr
∑

i

|ei〉〈ei|ρ = Trρ = 1 . (63)

Note carefully the steps in this calculation, which made use first of the lin-
earity of the trace, then of the completeness of the basis, and finally of the
normalization of the density matrix. The density matrix is not a probability
distribution, but it stands prepared to give one for every orthonormal basis
that you choose to introduce.

It is important to notice that the result of a quantum measurement cannot
tell you what the state of a qubit was before the measurement, not even if you
are assured that it was in some pure state. The measurement is associated to
an eigenbasis unrelated to the state. If you observe the outcome associated
to |e1〉, all you can say with certainty is that the state was not one of the
those orthogonal to |e1〉. Every other pure state would yield that outcome
with some probability.

The situation improves if you are given a large number N of qubits, and an
assurance that their states are identical. Then you will obtain a probability
distribution ~p over the eigenstates of the observable. A look at the Bloch
sphere tells you that this outcome is consistent with any state lying on a
certain circle at the surface of the Bloch sphere. If you have no assurance
that the state ρ you are trying to determine is pure, you can only conclude
that ρ lies on a disk in the Bloch ball. (The disk has a normal vector parallel
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to the line that connects the two eigenstates.) In order to pin down the state
exactly you will need not only a supply of many identically prepared qubits,
you will also need to perform quantum measurements associated to more
than one eigenbasis.16

There remains the question about the state of the system after the mea-
surement. The answer depends. A photon detected as a click in a detector
does not exist after the measurement. In a projective or von Neumann mea-

surement corresponding to some Hermitian matrix, the state after the mea-
surement is one of the eigenstates |ei〉 of that matrix. The system ‘collapses’
to one of the eigenstates, with probabilities given by (62). Some more detail
will be added when we come to ‘Open systems’, but for now it is enough to
know that the notion of von Neumann measurements is useful in the lab.

Nice error bases

Let us return to the Pauli matrices, and look at them as unitary operators.
We even give them new names:

X = σx =

(

0 1
1 0

)

Z = σz =

(

1 0
0 −1

)

. (64)

There is one more, but we can regard it as a derived quantity because

Y = σy =

(

0 −i
i 0

)

= iXZ . (65)

The action on the computational basis is

X|0〉 = |1〉 , X|1〉 = |0〉 , Z|0〉 = |0〉 , Z|1〉 = −|1〉 . (66)

X is sometimes called the bit flip, and Z is called the phase flip. Another
interesting operator in this connection is

H =
1√
2

(

1 1
1 −1

)

. (67)

16Exercise: If your Hilbert space has dimension d, how many different measurements
would you need to determine an arbitrary state ρ, given an infinite supply of identically
prepared systems so that each measurement may be repeated to give a frequency?
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It interchanges X and Z,

H2 = 1 , HXH† = Z , HZH† = X . (68)

It is called the Hadamard gate, where ‘gate’ means ‘unitary operator’ in
discussions of quantum computers.17

An important property of the set {1, X, Z,XZ} is that it forms a unitary

operator basis. This is also known as a nice error basis in quantum computing,
because such bases play a role in quantum error correction. What it means
is that there exists a group with d2 elements gi, g0 = e being the identity
element, and a set of unitary operators Ug acting on Cd, such that

Ue = 1 , gi 6= e ⇒ TrUgi
= 0 , Ugi

Ugj
∼ Ugigj

. (69)

Here the sign ‘∼’ means ‘equal up to a phase factor’. It follows that U †
gi

=
Ug−1

i
. But then it also follows that

TrU †
gi
Ugj

=

{

d if i = j
0 if i 6= j .

(70)

But this means that this set of unitary operators forms an orthonormal basis
in the d2-dimensional Hilbert space of all operators acting on Cd, equipped
with the natural inner product (52). Hence the name. Every operator,
whether Hermitian or unitary or none of those, can be expanded as

A =
1

d

∑

g

UgTrU †
gA , (71)

where the sum runs over the elements in the operator basis. In the qubit
example, there are four terms.

Nice error bases exist in all dimensions. One of many possibilities goes
as follows: Introduce a basis {|i〉}d−1

i=0 in Hilbert space, and treat the labels
as integers modulo d (that is to say that i+ d = i). Let

ω = e
2πi
d . (72)

Define two unitary operators Z and X by

17Exercise: How do X , Z, and H rotate the Bloch sphere? For each of them you have
to find an axis of rotation and an angle.
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Z|i〉 = ωi|i〉 , X|i〉 = |i+ 1〉 . (73)

One can now prove that

Xd = Zd = 1 , ZX = ωXZ . (74)

The resulting group is called the Weyl–Heisenberg group. Up to phase factors
it has d2 group elements X iZj, and it can be shown that these group elements
form a nice error basis in dimension d.18

Composite systems

If, in classical probability theory, we look for the combined outcomes of n
events that can be either true or false, then there are two outcomes per event
but 2n possible outcomes altogether. If n is large this gives a probability
simplex of a high dimension. Quantum mechanics shows a similar exponential
growth in the dimension of Hilbert space if you put several qubits together.
The idea is that if you have a system composed of two parts, so that you can
choose to do observations either on only one of the parts or on the whole, then
the Hilbert space is the tensor product of the Hilbert spaces of the parts. One
way of constructing the tensor product is to introduce orthonormal bases in
each factor, say {|ei〉}d1−1

i=0 and {|fj〉}d2−1
j=0 , and use the d1d2 vectors |ei〉⊗ |fj〉

as an orthonormal basis for the combined system. This is a somewhat clumsy
way of expressing things, but it will do. It does not imply that every vector
in the larger space is a product vector, because we can have superpositions
such as

|ψ〉 =
∑

i,j

cij |ei〉 ⊗ |fj〉 . (75)

This is not a product vector in general.19 You can put n qubits together by
iterating the idea, and you will end up with a Hilbert space of dimension 2n.

18Exercise: Write the operators X and Z as matrices for d = 2, 3, 4. Write out all the
operators X iZj for d = 3, and check that they form a nice error basis.

19Exercise: For two qubits, write down the condition that this be a product vector and
compare to (7).
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We can define operators of a special form, called local operators and
denoted A⊗B. They act on the basis states according to

A⊗ B|ei〉 ⊗ |fj〉 = A|ei〉 ⊗B|fj〉 . (76)

They obey obvious rules such as

A⊗ (B + C) = A⊗ B + A⊗ C , (A⊗ B)(C ⊗D) = AC ⊗BD . (77)

Operators of the form A⊗ 1 and 1 ⊗ B commute.
When working with components in a product basis we adopt a lexico-

graphical ordering of the basis vectors. Thus

|ψ1〉 =

(

a0

a1

)

, |ψ2〉 =

(

b0
b1

)

⇒ |ψ1〉 ⊗ |ψ2〉 =











a0b0
a0b1
a1b0
a1b1











, (78)

A =

(

a00 a01

a10 a11

)

, B =

(

b00 b01
b10 b11

)

⇒

(79)

A⊗ B =











a00b00 a00b01 a01b00 a01b01
a00b10 a00b11 a01b10 a01b11
a10b00 a10b01 a11b00 a11b01
a10b10 a10b11 a11b10 a11b11











.

We frequently abbreviate |ψ1〉⊗ |ψ2〉 to |ψ1〉|ψ2〉. More drastic abbreviations
are sometimes used, especially for qubits where one often abbreviates |0〉⊗|1〉
and X ⊗ Z (say) to |01〉 and XZ.

By inspection we see that it may be useful to index the components of
the density matrix, and other matrices, by a pair of indices. Thus we write

ρ =
d1−1
∑

i,j=0

d2−1
∑

α,β=0

|ei〉|fα〉ρiα
jβ〈ej|〈fβ| , (80)

where we used both Latin and Greek indices to emphasize that the fac-
tor Hilbert spaces may have different dimensions (although the dimensions
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would be the same for the two-qubit case). Here I am using the “upstairs–
downstairs” notation for indices, but I will not be very consistent about it.
You can think of it as just a way of keeping track of which pair of indices
that label the rows, and which pair of indices that label the columns. You
may prefer to have all indices down, and use a notation like Uiα;jβ, with a
semicolon to separate the pairs. Whatever notation we choose we can do
the same for every operator. For local operators the expressions take a quite
special form. In particular

(A⊗ 1)iα
jβ = Ai

jδ
α
β , (1 ⊗ B)iα

jβ = δi
jB

α
β . (81)

We have constructed the Hilbert space Cd1d2 = Cd1 ⊗Cd2 . Sometimes we
will write this as H = H1 ⊗H2. Starting from the other end, a Hilbert space
with a dimension that is a composite number can always be decomposed
into a tensor product, but there are many different ways of doing so. A
particular way may be preferred by the physics. Suppose that Hilbert space
is four dimensional, and that we are able to identify two sets of mutually
commuting operators, each of them as rich as the set of operators on a qubit.
Then we declare them to be local operators of the special form that guarantee
that they commute, relative to a tensor product structure defined especially
for the purpose. Thus operators of the form A⊗1 and 1⊗B may be applied
at opposite ends of an optical table, while non-local operators may have been
applied to the system at an earlier stage. For instance, the system may be a
pair of photons created in a special two-photon state by a non-linear crystal.
In some experiments pairs of photons have been distributed by satellite to
locations that are very far apart, and it seems obvious that whatever is done
at one of the locations ‘commutes’ with what is done at the other location.
This explains why we refer to ‘local’ operators, because then we really mean
‘local in space’.

We have a general formula for the expectation value of any Hermitian
operator A given that the state is ρ, namely

〈A〉 = Tr(Aρ) . (82)

But there are many situations, many more than those hinted at in the pre-
ceding paragraph, where we are only concerned with expectation values of
local operators of the form A ⊗ 1. Inspection of the formulas (81) suggests
that there may be many complexities of ρ that do not come into play when
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we calculate such expectation values. We are therefore looking for a reduced

state density matrix ρ1, acting only on the first factor in the tensor product,
such that

A = A1 ⊗ 12 ⇒ Tr(Aρ) = Tr(A1ρ1) , (83)

where the matrices and the trace at the end are those relevant for the factor
Hilbert space H1. This is achieved by taking the partial trace of ρ, written

ρ1 = Tr2ρ , ρ2 = Tr1ρ . (84)

The definition of the partial trace is conveniently given in the matrix repre-
sentation (80), as

(Tr2ρ)i
j =

d2−1
∑

α=0

ρiα
jα , (Tr1ρ)α

β =
d2−1
∑

i=0

ρiα
iβ . (85)

Clearly Trρ = Tr1Tr2ρ. One can show that ρ1, so defined, is the unique linear
operator that meets the requirement (83). The importance of the reduced
states ρ1 and ρ2 is that they encode all the information about the state ρ that
can be extracted by means of operations acting only on one of the factors of
the Hilbert space. Formulated in this way it sounds abstract, but it is in fact
what may be going on in the lab, and elsewhere.20

In calculations it is often preferable to use the Dirac notation for the
trace. Using the product basis we write

Trρ =
∑

i,j

1〈i|2〈j|ρ|i〉1|j〉2 , Tr2ρ =
∑

j

2〈j|ρ|j〉2 , Tr1ρ =
∑

i

1〈i|ρ|i〉1 . (86)

Note carefully that Trρ is a number, while Tr2ρ is an operator acting on H1.
The notation has to carry quite a bit of information, eg. 2〈j| is a basis vector
for the bra-space in the second factor of the composite Hilbert space, while
|i〉1|j〉2 is a basis vector for the latter. Checking that eqs. (86) are equivalent
to eqs. (85) is a good exercise.

The story does not stop at two. We can construct tensor products of an
arbitrary number of Hilbert spaces, such as H1 ⊗H2 ⊗ . . . ⊗Hn, and trace
out whatever factors we are not controlling, to obtain density matrices like

20Exercise: Compute the two partial traces of the matrix A⊗B given in (79).
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ρ12 = Tr34ρ , (87)

where ρ acts on the four partite Hilbert space H1 ⊗ H2 ⊗ H3 ⊗ H4 in this
particular example.

Entanglement

The term ‘entanglement’ was coined by Schrödinger, in a far-seeing series of
papers in the 1930ies. We begin by considering a pure state in a bipartite
Hilbert space H1⊗H2, and ask what one can do with it using local operators
only. For simplicity we assume that both the factors have the same dimension
d. A general pure state can be written as

|Γ〉 =
1√
d

d−1
∑

i,j=0

Γij |ei〉 ⊗ |ej〉 . (88)

Keeping the distinction between upstairs and downstairs indices requires
some sophistication when we encounter notions like the transpose of a ma-
trix, as we soon will. The easy way out is to have all the indices in downstairs
position. The tensor product sign will be omitted when it is not needed for
absolute clarity.

The vector |Γ〉 is a product vector if there exist vectors ~α and ~β such that

Γij = αiβj . (89)

The state is then said to be separable. If it is not separable it is said to be
entangled, but entanglement is (as we will see) a question of degree. Now let
us act on the state with a local unitary U⊗V . The result, using the notation
we just introduced, is21

U ⊗ V |Γ〉 =
1√
d

∑

i,j,k,l

UikVjlΓkl|ei〉|ej〉 = |UΓV T〉 . (90)

This is alarming at first sight. Let us choose Γij = δij. This gives the
Jamio lkowski state |δ〉,

21Exercise: Perform the calculation, using Dirac notation very carefully.
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|δ〉 =
1√
d

d−1
∑

i=0

|ei〉|ei〉 . (91)

We see that

U ⊗ 1|δ〉 = |U〉 , 1 ⊗ V |δ〉 = |V T〉 . (92)

Everything that Alice can do acting with U ⊗ 1 can be done by Bob as well,
if he acts with 1⊗UT. Does this means that information can be transmitted
by the state in a non-local way?

Recall that all the information that Alice can extract from the state must
come from the partial trace of the density matrix, and similarly for Bob. For
any state |U〉 for which U is a unitary matrix (this includes the Jamio lkowski
state) we can calculate

ρ1 = Tr2|U〉〈U | =
1

d
1 , ρ2 = Tr1|U〉〈U | =

1

d
1 . (93)

In both cases this is the maximally mixed state for dimension d.22 It means
that neither Alice nor Bob can make any useful prediction about the exper-
iments that they carry out on their own, using operators of the form A⊗ 1

and 1 ⊗ B respectively. This is true for Bob regardless of what Alice does
to the state, and conversely. Alice and Bob will have to cooperate, and use
non-local operations, if they want something more specific to come out of
the Jamio lkowski state. No information was transmitted in (92).

The Schmidt decomposition

We will now introduce one of the working horses of entanglement theory, the
Schmidt decomposition. It concerns bipartite Hilbert spaces that are tensor
products of the form Cd1 ⊗Cd2 , where we may as well assume that d1 ≤ d2.
We start out with any choice of bases {|e(1)i 〉}d1

i=1 and {|e(2)i 〉}d2
i=1 in the two

factors, and consider an arbitary pure state |Ψ〉 in the composite Hilbert
space. Then the claim is that we can introduce new bases in the two factor
Hilbert spaces, adapted to the state and denoted by {|ei〉} for both factors,
such that

22Exercise: Perform the calculation. Also try the two qubit state |ψ〉 = z0|00〉+ z1|11〉.
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|Ψ〉 =
d1
∑

i=1

d2
∑

j=1

Γij |e(1)i 〉|e(2)j 〉 =
d1
∑

i=1

√
pi|ei〉|ei〉 . (94)

Here the pi are non-negative numbers, and so are their square roots. The
double sum has been converted to a single sum. Some important conse-
quences follow immediately, but first we have to prove that this can always
be made to work.

Here we can rely on the singular value decomposition of the matrix Γij ,
but we can also do it directly. What we need to know is that for any matrix
A the matrix AA† is Hermitean with non-negative eigenvalues, hence that√
AA† can be defined in a natural way, and finally that there always exist a

unitary matrix U such that

A =
√
AA†U . (95)

I hope this looks plausible.23 For 1×1 matrices it is the usual way of writing
a complex number as z = reiφ.

Now we apply this to the matrix Γ that occurs in equation (94). We
also decide to use unitary operators to diagonalize the Hermitean matrix we
encounter. Hence

Γ =
√

ΓΓ†U = U1DU
†
1U = U1DU2 , (96)

where D is a diagonal matrix whose eigenvalues we denote by
√
pi. We can

then show that

|Ψ〉 =
∑

i,j,k,l

U1ikDklU2lj |e(1)i 〉|e(2)j 〉 =
∑

i,j,k,l

Dkl

(

|e(1)i 〉U1ik

) (

|e(2)j 〉UT
2jl

)

. (97)

The adapted bases that we are going to introduce are then

|ek〉 = |e(1)i 〉U1ik , |el〉 = |e(2)j 〉UT
2jl . (98)

We use the same notation for both bases, even if the basis in Cd2 may have
more members than that in Cd1 . Then we finish the calculation with

23Exercise: Prove the three claims I made, perhaps under the simplifying assumption
that all the eigenvalues of

√
AA† are non-zero. Also look up “singular value decomposition”

to see what it is.
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|Ψ〉 =
∑

k,l

Dkl|ek〉|el〉 =
∑

k,l

√
pkδkl|ek〉|el〉 =

∑

k

√
pk|ek〉|ek〉 . (99)

It is done.
We can now prove24 that the reduced density matrices take a transparent

form when we use the adapted basis:

ρ1 = Tr2|Ψ〉〈Ψ| =









p1

. . .

pd1









= Tr1|Ψ〉〈Ψ| = ρ2 . (100)

This reveals that the bases we introduced in order to write the basis in the
Schmidt form are precisely the bases in which the reduced density matrices
are diagonal.

We also learn that the reduced density matrices have the same spectrum,
except that if d2 > d1 there are additional zero eigenvalues in ρ2. Let us ignore
the latter complication. The eigenvalues pi are entanglement invariants in
the sense that they cannot be changed by local unitary operations. A pure
state is separable if one eigenvalue equals 1 and the rest are zero. A state
is maximally entangled if all the eigenvalues are equal, that is to say if the
reduced states are maximally mixed.

Entanglement theory

Entanglement theory offers a new analogue of the venerable complementarity
between position and momentum. If we place a particle in a position eigen-
state we can make no prediction about its momentum. If we place a system in
a maximally entangled state we can make no prediction about the outcomes
of local measurements. All our information is about their correlations.

There is much more to the story. It is usually told from the perspective
of local operations and classical communication. Then the operations are
unitary transformations and measurements associated to operators like A⊗1

and 1 ⊗ B. The parties are allowed to communicate with each other, so
that Alice can suggest to Bob which particular operation he should apply.
The theory treats local operations as if they were for free, while entangling

24Exercise: Do it!
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operations are expensive. Separable states can be transformed into each
other for free, and pure states with isospectral reduced density matrices can
be transformed into each other for free, but it is expensive to turn a separable
state into an entangled one. We can define the entanglement cost of a state
ρ as the minimum number m of maximally entangled states needed to create
n copies of ρ, or more precisely as the quotient m/n in the limit of large n.
We can define the distillable entanglement of a state ρ similarly, in terms of
the number of maximally entangled states one can create from a number of
copies of ρ. (Curiously, these are not equal.)

And we can generalize bipartite entanglement to tripartite or multipartite
entanglement. Let me just say that this is not easy. One reason is that the
Schmidt decomposition works only in the bipartite case.

The no-cloning property

Here is a simple observation one should know about: It is impossible to
construct a machine that inputs an arbitrary quantum state and outputs
two copies of the same state. Let us prove this for pure states. Our machine
effects some unitary transformation. We need a unitary transformation in a
two-particle Hilbert space H⊗H, so that

U(|ψ〉 ⊗ |0〉) = |ψ〉 ⊗ |ψ〉 , (101)

for every state |ψ〉. Let |e1〉 and |e2〉 be two orthogonal states in H. It must
be the case that

U(|e1〉 ⊗ |0〉) = |e1〉 ⊗ |e1〉 , U(|e2〉 ⊗ |0〉) = |e2〉 ⊗ |e2〉 . (102)

Now consider the state |ψ〉 = z1|e1〉 + z2|e2〉. By linearity

U(|ψ〉 ⊗ |0〉) = U(z1|e1〉 ⊗ |0〉 + z2|e2〉 ⊗ |0〉) =

(103)

= z1U(|e1〉 ⊗ |0〉) + z2U(|e2〉 ⊗ |0〉) = z1|e1〉 ⊗ |e1〉 + z2|e2〉 ⊗ |e2〉 .
But

z1|e1〉 ⊗ |e1〉 + z2|e2〉 ⊗ |e2〉 6= (z1|e1〉 + z2|e2〉) ⊗ (z1|e1〉 + z2|e2〉) . (104)
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And what we have on the right hand side here is |ψ〉 ⊗ |ψ〉. End of proof.
Note that were it possible to clone an unknown state, we could perform a

large number of measurements on a large number of copies, and in this way
determine the state. But this way is blocked.

The no-cloning theorem is not the end of the story. We can still ask for a
unitary operator that minimizes the maximal copying error over all possible
states. The answer is known, but we go on to other matters.25

Quantum teleportation

It is time to introduce Alice and Bob, the pair that does all the quantum
communication so far discussed in the literature. Alice is in possession of a
system in an unknown quantum state. She wants to transmit this state to
Bob without moving her actual system. The idea is that she simply reaches
for a classical telephone and sends instructions enabling Bob to put a system
of his in the same state. Given that unknown quantum states cannot be
copied, and given that Alice does not know what state |ψ〉 her system is in—
indeed, by the quantum theory of measurement, she cannot find it out—this
sounds like a tall order.

I will first present the solution in complete generality, and afterwards
specialize to qubits to make sure that we understand what is going on. The
starting point is a nice error basis. Suppose that {UI}d2−1

I=0 is a nice error
basis (or, more generally, a unitary operator basis—since we are not doing
quantum error correction yet, it does not have to form a group). Using one
of these unitaries to replace the matrix Γ in (88) gives a maximally entangled
state, as you can check by taking the partial trace of |UI〉〈UI |. To be explicit
about it,

|U〉〈U | =
1

d





∑

i,j

U ij |i〉|j〉








∑

k,l

〈k|〈l|U∗
kl



 =
1

d

∑

i,j,k,l

|i〉|j〉U ijU∗
kl〈k|〈l| .

(105)

25Exercise: Suppose there is a unitary such that U |ψ〉⊗ |0〉 ≈ |ψ〉⊗ |ψ〉 and U |φ〉⊗ |0〉 ≈
|φ〉⊗|φ〉 for two different states |ψ〉 and |φ〉, leaving the meaning of ‘approximately’ a little
vague. Argue that it must hold that 〈φ|ψ〉 is close to either 0 or 1.
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Now take the partial traces following the recipe (85), remembering that U is
a unitary matrix. We asssumed that the matrices form a unitary operator
basis, which means that

〈UI |UJ〉 =
1

d
TrU †

IUJ = δIJ . (106)

To sum up, from a unitary operator basis we have created an orthonormal
basis consisting solely of maximally entangled states.26 Alice must be sophis-
ticated enough so that she can perform a von Neumann measurement using
this basis.

Next Alice and Bob create a Jamio lkowski state, and share it out between
them. The total Hilbert space is a tensor product of three factors (of equal
dimension). Alice controls the first two factors, Bob (situated elsewhere)
controls the third. The shared entangled state sits in the tensor product of
the last two factors. The state to be teleported, |ψ〉, is in the first factor.

When the teleportation is about to start, the state is

|ψ〉1|δ〉23 = 112 ⊗ 13|ψ〉1|δ〉23 =





d2−1
∑

I=0

|UI〉12〈UI | ⊗ 13



 |ψ〉1|δ〉23 . (107)

The equality here is just an odd way to rewrite the expression for the state,
using a special basis for the H12 factor. It is an exercise to show that this
rewriting can be continued to27

|ψ〉1|δ〉23 =
1

d

d2−1
∑

I=0

|UI〉12|U †
Iψ〉3 . (108)

So far nothing has happened. But now Alice performs her von Neumann
measurement. After looking at the outcome, she finds that the state has
collapsed to an eigenstate in H12, namely, one of the states in the unitary
operator basis. At this point Alice reaches for the classical phone, and tells

26Exercise: Write down the basis obtained from the nice error basis provided by the
Pauli matrices, and for the one provided by the Weyl–Heisenberg group for d = 3, in fully
explicit form. You should see a Latin square and the matrix that gives rise to the discrete

Fourier transform in front of you.
27Exercise: Do this exercise.
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Bob to apply one out of the d2 unitary operators to the state he controls. As
a result of this two-step process

|ψ〉1|δ〉23 → |UI〉12U †
I |ψ〉3 → |UI〉12|ψ〉3 . (109)

The transfer of the unknown qubit state |ψ〉 from Alice to Bob is complete.
Alice ends up with all the entanglement. Neither of them have gained any
information about what the state |ψ〉 is.

Now let us specialize to qubits. We start with the state

|ψ〉|δ〉 =
1√
2

(z0|0〉 + z1|1〉)(|00〉 + |11〉) =

(110)

=
z0√

2
|00〉|0〉 +

z0√
2
|01〉|1〉 +

z1√
2
|10〉|0〉 +

z1√
2
|11〉|1〉 .

We introduce the maximally entangled Bell basis

|U0〉 =
1√
2

(|00〉 + |11〉) , |U1〉 =
1√
2

(|00〉 − |11〉) ,

(111)

|U2〉 =
1√
2

(|01〉 + |10〉) , |U3〉 =
1√
2

(|01〉 − |10〉) .

A quick calculation shows that

〈U0|00〉 =
1√
2

= 〈U0|11〉 , 〈U1|00〉 =
1√
2

= −〈U1|11〉 ,

〈U2|01〉 =
1√
2

= 〈U2|10〉 , 〈U3|01〉 =
1√
2

= −〈U3|10〉 .

The remaining scalar products vanish. We can now take the step from (107)
to (108), and obtain

|ψ〉|δ〉 =
1

2
|U0〉(z0|0〉 + z1|1〉) +

1

2
|U1〉(z0|0〉 − z1|1〉) +

(112)

+
1

2
|U2〉(z0|1〉 + z1|0〉) +

1

2
|U3〉(z0|1〉 − z1|0〉) .
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A Bell measurement by Alice will not tell her what the amplitudes z0 and
z1 are, but it does tell her what action Bob must take to transform his state
into a copy of the original. The choice is between four possibilities, so the
message she sends contains exactly two classical bits, in the language we will
introduce later.28

The BB84 protocol

This introduction would be incomplete if we did not give an example of a
quantum communication protocol that one can actually buy on the market.
It concerns cryptography. Readers of Poe and Conan Doyle will know that
encrypted messages can be cracked by statistical analysis. But there is a way
of encrypting messages that will never yield to such methods. Suppose Alice
wishes to encrypt a message to be sent in binary digits, such as 000111000
(or preferably something longer, to which statistical analysis can be applied).
Suppose that Alice and Bob share a sequence of random digits of the same
length, such as 101101100. (I constructed this sequence by flipping a coin.
This is not a very good method. In fact, since random sequences are valuable,
constructing them by quantum mechanical means is another useful applica-
tion of quantum mechanics.) Alice now adds the two sequences digit by
digit, and sends the sequence 101010100 to Bob. Bob subtracts the random
sequence from the sequence he received, and obtains the sequence that Alice
wanted to convey. This way of encrypting a message is known as the Vignère
cipher, and it is in principle unbreakable because the sequence being sent
shares complete randomness with the key. The catch with the idea is that it
assumes that Alice and Bob do share copies of the same random sequence.
The BB84 protocol offers a way of sending such a random sequence over
an open channel, with a built-in guarantee that Alice and Bob can detect
whether an eavesdropper has been listening in.

Alice starts with a secret sequence of 0s and 1s, rather longer in fact
than the one needed to encrypt the message. She selects, at random and in
secret, either X or Z, and encodes a binary digit by preparing a qubit in an

28Exercise: Alice creates a pair of maximally entangled photons, and Bob does likewise.
Each of them sends one of their photons to Charlie. Design a measurement that Charlie
can do, which forces the photons kept by Alice and Bob to be in a maximally entangled
state (even though these two photons have never interacted with each other).
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eigenstate of the gate she selected. She sends the qubit to Bob, who selects
either X or Z and measures the outcome. If they made the same choices, the
binary digit has been successfully transferred (because we are ignoring all
practical difficulties with noise in the communication channel). If not, Bob’s
digit is not at all determined by Alice’s. After doing this many times, Alice
announces, over a telephone line that anyone can listen in to, what choices
she made in the preparation. Bob replies with a list of those measurements he
made where his choice agrees with Alice’s. They both delete those elements
of the sequence for which their choices disagreed. Having done so, they share
identical random sequences, selected at random from the longer sequence
that Alice started out with.

The claim is that this is an absolutely safe way to transmit a random
sequence. To see why this is so, suppose an eavesdropper (called Eve) tries
to listen in. Since no information about the actual digits has been sent over
the telephone line, she must inform herself about the state of the qubits
that were sent. This means that she must intercept and measure a qubit.
But should she measure in the X or in the Z basis? She has to make a
choice. Sometimes her choice will not be the same as Alice’s, and then
Alice’s preparation is undone. When Eve sends the qubit on to Bob (to hide
the fact that she is listening in) she destroys the perfect correlation between
Alice and Bob that should have been there whenever they made the same
choices between X and Z.

This means that Alice and Bob can test whether Eve has been listening.
Alice sends a part of the shared random sequence to Bob over the public
telephone line. Bob examines it and if it agrees with what he has, he knows
that no-one has tampered with the qubit transmission. He informs Alice ac-
cordingly, and the secretive pair can use the remainder of the shared random
sequence to encipher their messages using the unbreakable Vignère cipher.

It remains to add that companies that sell hardware for quantum key
distribution are making excellent profits. Before being carried away by this,
notice that this is in some ways a very simple application of quantum infor-
mation theory because it does not involve any actual processing of quantum
states, and it does not require us to store quantum states in memories.

Bell inequalities
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Bell inequalities were introduced in the 1960ies by Bell to show that quantum
mechanics gives predictions that cannot be obtained from any ‘hidden vari-
able’ theory. We do not discuss hidden variables here, but it is to be noted
that the inequalities arise in classical probability theory. The quantum part
of the story is precisely that they do not hold, in situations where you might
have expected them to hold.

We begin by defining a few correlation polytopes. A polytope is the convex
hull of a finite set of points, and is bounded by a finite set of faces (called
facets if their dimension is larger than two). A simple correlation polytope is
obtained by first choosing three events ai, each of which may occur in some
experiment. We can make a truth table for the events, as follows

a1 0 1 0 0 1 1 0 1
a2 0 0 1 0 1 0 1 1
a3 0 0 0 1 0 1 1 1

(113)

The first column covers the case when none of the events happen, the second
when only a1 happens, and so on. Each column can be regarded as a vector
in a three-dimensional space, and together these vectors form the corners of a
cube—which is a polytope. If the experiment is repeated N times each event
will occur ni times, and is hence associated with a frequency νi = ni/N .
The argument to follow applies directly to the observed frequencies as well
as to the probabilities that emerge in the limit. This means that when you
have done the experiment N times you will have obtained three non-negative
numbers pi, none of which can be larger than 1. They do not have to sum
to 1 because the events are not mutually exclusive.

So we have found that the possible outcomes of the N experiments taken
together can be labelled by three numbers pi, which by construction obey
the inequalities

0 ≤ p1 ≤ 1 , 0 ≤ p2 ≤ 1 , 0 ≤ p3 ≤ 1 . (114)

This is related to a dual description of the cube in terms of these six in-
equalities, each of which says that the cube lies on one side of some two-
dimensional plane. Every compact convex set admits two dual descriptions
along these lines, one of which describes the body as the convex hull of a
set of pure points, and one of which describes it as the intersection of a set
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of half-spaces. In both cases we are looking for a minimal description of its
kind.

Things get more interesting if there are logical connections between the
events. For instance, we can assume that the three events are mutually
exclusive, so that exactly one of the events happens in each run of the exper-
iment. Only three columns of the truth table survives, there are only three
pure points left, and the observed frequencies necessarily obey the condition

p1 + p2 + p3 = 1 . (115)

This is the case we started out with.
Another interesting restriction is to impose the logical condition that

a3 = a1&a2, that is to say that the event a3 is that both a1 and a2 happen.
This gives the truth table

a1 0 1 0 1
a2 0 0 1 1

a1&a2 0 0 0 1
(116)

The convex hull of the four column vectors is a polytope inscribed in the
cube. Its dual description in terms of inequalities describing the faces of the
polytope is

p3 ≥ 0 , p1 ≥ p3 , p2 ≥ p3 , (117)

p1 + p2 − p3 ≤ 1 . (118)

The last of these may be a little hard to see, but—like the other three faces—
it defines a face passing through exactly three of the vertices, namely in this
case the last three of the columns of the truth table. See Fig. 6. Slightly
more involved examples of this last kind of inequality are known as Bell

inequalities. We will see that they may fail to hold in quantum theory, and
must try to understand why.

To get an interesting Bell inequality, consider eight events a1, a2, a3, a4,
a1&a3, a1&a4, a2&a3, a2&a4. The truth table will produce vectors with eight
components, in fact 16 vectors altogether, and we do not write it out here.
The inequalities of interest to us are
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Figure 6: A correlation polytope for three logically connected events.

−1 ≤ p1,3 + p1,4 + p2,4 − p2,3 − p1 − p4 ≤ 0 (119)

−1 ≤ p2,3 + p2,4 + p1,4 − p1,3 − p2 − p4 ≤ 0 (120)

−1 ≤ p1,4 + p1,3 + p2,3 − p2,4 − p1 − p3 ≤ 0 (121)

−1 ≤ p2,4 + p2,3 + p1,3 − p1,4 − p2 − p3 ≤ 0 . (122)

You can check that they hold by making all possible truth assignments to
the four events a1, a2, a3, a4.29

To each event ai there will correspond an observable αi taking values +1 if
the event happens, 0 if it does not. There will be corresponding expectation
values

pi = 〈αi〉 , pi,j = 〈αiαj〉 . (123)

It is customary to introduce observables Ai = 2αi − 1, and to rewrite the
inequalities in terms of

〈AiAj〉 = 〈4αiαj − αi − αj + 1〉 = 4pi,j − 2pi − 2pj + 1 . (124)

Finally we rename A3 as B1 and A4 as B2. Inequality (119) then takes the
form

29Exercise: Do it. Also rewrite (119) in the form (125).
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−2 ≤ 〈A1B1 + A1B2 + A2B2 − A2B1〉 ≤ 2 . (125)

Written in this form it is known as the Clauser–Horne–Shimony–Holt in-
equality. It has to hold for the individual outcomes and for the observed
frequencies in any experiment measuring these random variables.

Now let A1, A2 be operators corresponding to measurements that can be
made by Alice, while B1, B2 can be made by Bob. The possible outcomes
are ±1 in all cases. In a single run of the experiment only one of A1 ⊗ B1,
A1 ⊗ B2, A2 ⊗ B1, A2 ⊗ B2, can be measured. But many measurements of
each kind will be made, and it seems reasonable to assume that, once the
statistics is collected, it will be true that

〈A1B1+A1B2+A2B2−A2B1〉 = 〈A1B1〉+〈A1B2〉+〈A2B2〉−〈A2B1〉 . (126)

In quantum mechanics the left and right hand side are necessarily equal to
each other, and both can be computed once we know what state the system
is in. The argument for the CHSH inequality applies to the left hand side.
The right hand side will be measured. Its first term is evaluated by collecting
the statistics from those instances of the experiment in which the settings
were made so that A1 ⊗ B1 was measured, and so on. The system, in most
experiments, consists of a pair of photons in a carefully prepared entangled
state. In the best experiments the choice of settings is done when the pair
of photons are well on their way, and every effort is made to ensure that the
choice is made in a random fashion on both sides. But now we do have a
problem, namely Problem 1.

Problem 1: To test the CHSH inequality Alice and Bob use

A1 =

(

0 1
1 0

)

⊗ 1 , A2 =

(

0 e−iα

eiα 0

)

⊗ 1 ,

(127)

B1 = 1⊗
(

0 1
1 0

)

, B2 = 1 ⊗
(

0 e−iα

eiα 0

)

.
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They can vary α. What do these measurements correspond to if they are measuring
photon polarization? What is the largest value they can obtain for the quantity
in the CHSH inequality? What quantum state gives this value?

Problem 2: Consider two quantum states, anywhere on the Bloch sphere. Choose
a Hermitian matrix A, and expand the two states in its eigenbasis. Calculate the
Fisher–Rao distance between the two states, in terms of the expansion coefficients,
for the two-outcome measurement corresponding to A. Prove that by varying A
this distance can be made equal to the Fubini–Study distance, but that it cannot
be made larger.
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OPEN SYSTEMS

The theory of open systems deals with situations where the system of interest
is not fully isolated from its environment. It regards the world as divided into
a ‘system’ and a ‘reservoir’, where the latter is not controlled by the exper-
imentalist. Sometimes the reservoir is useful when one wants to manipulate
the system, and then it may be called an ‘ancilla’. If the system becomes
entangled with the reservoir the split of the whole into its parts becomes a
subtle matter. The brief account here is mostly concerned with the theory
of quantum measurements.

The chicken and the egg

Let us summarize the message of the Schmidt decomposition (94):

• Let ρ12 be a pure state on H12 = H1 ⊗ H2. Then the reduced states
ρ1 = Tr2ρ12 and ρ2 = Tr1ρ12 have the same non-zero eigenvalues.

• Given a state ρ1 on H1 there exists a Hilbert space H2 and a pure state
|ψ〉 in H12 such that ρ1 = Tr2|ψ〉〈ψ|.

In these notes density matrices were introduced first, and Hilbert space vec-
tors were added almost as an afterthought. Many accounts start at the other
end, density matrices appearing only when the state of the system has not
been specified as completely as it could be. What is the correct starting
point? The Schmidt decomposition turns this into a chicken-and-egg ques-
tion because any mixed state can be purified, and regarded as a pure state
in a larger Hilbert space partly outside our control.

Either way we have a concrete question concerning time evolution to
discuss. Were the system isolated it would evolve unitarily according to

ρ → UρU † . (128)

If the unitary is of the form U = e−iHt this becomes the differential equation

dρ

dt
= i[ρ,H ] . (129)
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We will want to know how the density matrix on H1 evolves if we extend it
to a state on the larger Hilbert space H12 = H1 ⊗H2, evolve that state with
a unitary, and take the partial trace down to H1 at the end.

CP maps

It is convenient to assume that there are no correlations between the state
and its environment to begin with. In fact we assume that the initial state
is

ρS ⊗ ρ0
R , (130)

where the initial state ρ0
R of the reservoir is pure

ρ0
R = |R0〉〈R0| . (131)

The second assumption is harmless because we can consider a Hilbert space
large enough so that it holds. The assumption that we start out with a
product state is not harmless, but it is an interesting one to make. It holds
if the environment has no memory of any past interactions with the system.
To see whether this is so requires a detailed analysis of the physics. For
instance, it seems plausible that it holds if the reservoir consists of photons
that come from afar and then quickly disappear to very large distances.

We now evolve the state (130) with a unitary U acting on the full Hilbert
space, and then take the partial trace using an orthonormal basis {|iR〉} for
HR. We find

ρS → TrRU
(

ρS ⊗ ρ0
R

)

U † =
∑

i

〈iR|U |R0〉ρS〈R0|U †|iR〉 . (132)

The sum will have to include all non-zero terms. Whatever their number is,
the answer has an interesting form.

We define the Kraus operators Ai by

Ai = 〈iR|U |R0〉 . (133)

If you remember that U operates on the Hilbert space HS ⊗ HR, it will be
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obvious that this is an operator on the Hilbert space of the system.30 By
construction

∑

i

A†
iAi =

∑

i

〈R0|U †|iR〉〈iR|U |R0〉 = 〈R0|U †U |R0〉 = 1S . (134)

Conversely, it can be shown that every set of operators Ai obeying the last
equality can be obtained in this way from some unitary U .

We have arrived at the notion of a completely positive map, which is the
quantum version of the linear maps (10) that take probability vectors to
probability vectors. A map Φ taking density matrices to density matrices
is completely positive if and only if there exists a set of Kraus operators Ai

such that

ρ→ Φ(ρ) =
∑

i

AiρA
†
i where

∑

i

A†
iAi = 1 . (135)

This is clearly a linear map,

a1ρ1 + a2ρ2 → a1

∑

i

Aiρ1A
†
i + a2

∑

i

Aiρ2A
†
i . (136)

If you rearrange the density matrix so that it forms a vector with d2 compo-
nents, the CP map Φ becomes a d2 × d2 matrix. If you like, it is a superop-

erator acting on operators. The trace and the positivity of ρ is preserved by
the map, so it takes density matrices to density matrices.31 But positivity is
not enough. There is more to it. The extra ingredient leading to complete
positivity and to the Kraus form comes about in a rather strange way, as we
will see.

Positive maps and entangled states

A linear map from matrices to matrices is said to be positive if it takes
positive matrices to positive matrices. It is very difficult to describe positive

30Exercise: Expand U in a product basis for the composite Hilbert space (letting |R0〉
be one of the basis vectors in one of the factors). Then calculate the Kraus operators.
Note that many different Us correspond to the same set of Ai.

31Exercise: Prove this.
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maps in general, but a simple example of a positive map is ρ → ρT. The
transposed matrix has the same spectrum as the original, so this is clearly a
trace preserving positive map. But suppose our Hilbert space is C2⊗C2. As
usual, Alice controls only the first factor, so she performs a partial transpose

of the density matrix. That is, using the notation (80), she performs the map

ρiα
jβ → ρjα

iβ . (137)

A little more abstractly, this is

ρ→ ρTA . (138)

(It is understood that Alice ‘performs’ the map using pen and paper only.
It does not correspond to a physical transformation, as we will see.) Let us
take it that the density matrix is pure,

ρ = |ψ〉〈ψ| , |ψ〉 =
√
p0|0〉|0〉 +

√
p1e

iν |1〉|1〉 , p0 + p1 = 1 . (139)

The problem is that when the partial transposition is performed the spectrum
of the density matrix changes according to

(1, 0, 0, 0) → (p0, p1,
√
p0p1,−

√
p0p1) . (140)

Unless the state vector is a product vector negative eigenvalues appear. The
matrix is not a density matrix any more.32

The definition of completely positive maps avoids this difficulty. Let us
represent positive maps as d2 × d2 matrices Φ. The density matrices, on
which the maps are acting, act in their turn on a Hilbert space HS. This
Hilbert space can be enlarged to a Hilbert space HS ⊗HR, but let us agree
that the second factor is irrelevant, so that we perform only positive maps of
the form Φ ⊗ 1. The partial transposition is of this form. By definition the
map Φ is said to be completely positive if Φ ⊗ 1 is positive for all possible
extensions HS → HS ⊗HR.

Stinespring’s dilation theorem: A map is completely positive and trace pre-
serving if and only if it can be written in the Kraus form (135).

32Exercise: Do this calculation. Do the same for the case when Bob takes the partial
transpose.

47



The extra ingredient leads to the Kraus form. We quote the theorem without
proof, not because the proof is difficult but because it takes a little time to
organize. The point to notice is how simple and easy to use the result is.

It took some twenty years for physicists to understand Stinespring’s the-
orem, and Kraus was one of the first to do so. Once you know the result,
it is easy to remember and to use. Moreover every completely positive map
can be performed in a hypothetical lab equipped to perform every unitary
transformation, in Hilbert spaces whose dimension is at most the square of
that of the Hilbert space of the physical system being studied.

There is another interesting aspect of this story. We can ask: when is
a quantum state entangled? If the state is pure the answer is simple: if its
partial trace is a mixed state. But what if the state itself is mixed? There
can be classical correlations present, and in fact there will be whenever the
state is not of the form ρA⊗ρB . A suitable definition of a separable quantum
state, whether mixed or pure, should allow for classical correlation between
the two subsystems, but no more than that. Mathematically this means that
the separable state lies in the convex hull of uncorrelated states:

Definition: A state ρ is separable if and only if it can be written as

ρ =
∑

i

piρ
A
i ⊗ ρB

i , (141)

for some density matrices ρA
i , ρ

B
i acting on the factors.

This definition is due to Werner.
A direct check whether a given state ρ obeys this condition is prohibitively

difficult, since we have to try all possible decompositions of this type. It is
therefore helpful to know that a state is entangled if and only if there exists
a positive but not completely positive map Φ such that Φ⊗1 turns the state
ρ into a matrix with at least one negative eigenvalue. This is still a hard
condition to check when the dimensions involved are large. In fact it is an
NP complete problem, in the language of complexity theory that we will
introduce later. But for two qubits it settles things.

We have the following useful theorem:
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Theorem: A state ρ is entangled if ρTA has a negative eigenvalue. For two
qubits, and for one qubit and one qutrit, this is an if-and-only-if statement.33

Measurements

Let us agree that an isolated quantum system always evolves unitarily, while
an open system—perhaps the system is coupled to a measurement apparatus—
evolves with completely positive trace preserving maps. In the first step (135)
applies, for some choice of Kraus operators Ai. But in a measurement the
wave function must collapse to an outcome. Rushing in where angels fear to
tread, we resolve the measurement problem with a postulate:

Let there be n possible measurement outcomes. Then there are n Kraus
operators Ai. In a non-selective measurement the system changes its state
according to the CP map generated by the Ai. In a selective quantum mea-
surement the system changes its state from ρ to one of the n states

ρi =
AiρA

†
i

Tr(AiρA
†
i )
. (142)

The transition ρ→ ρi happens with probability

pi = TrAiρA
†
i . (143)

All the ρi are legitimate density matrices and the Kraus operators Ai obey
a condition ensuring that the probabilities sum to unity.34

We now have two kinds of time evolution, the linear time evolutions
effected by CP maps, and the non-linear time evolution ρ→ ρi described by
the measurement postulate. An important special case is that of a projective

or von Neumann measurement. Then we choose the measurement operators
to be mutually orthogonal projection operators,

Ai = Pi = A†
i , PiPj = δijPi . (144)

33Exercise: Consider the two qubit state ρ = p

2
(|00〉 + |11〉)(〈00| + 〈11|) + 1−p

4
1. For

what values of p is this an entangled state?
34Exercise: Check this.
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The completeness property of the measurement operators implies that

∑

i

Pi = 1 . (145)

Sets of projection operators like this are obtained by choosing a Hermitian
operator, now called an ‘observable’, and performing a spectral decomposition

A =
∑

i

λiPi . (146)

For simplicity, suppose that all eigenvalues are non-degenerate. In a non-
selective von Neumann measurement of the ‘observable’ A the state changes
according to

ρ→ ρ′ =
d
∑

i=1

PiρPi . (147)

The state has been forced to commute with A. This is in fact a CP map
effected by the d Kraus operators Pi. In a selective von Neumann measure-
ment the state collapses, and the outcome labelled λi occurs with probability
pi,

ρ→ ρi =
PiρPi

Tr(PiρPi)
, pi = Tr(PiρPi) = Tr(ρPi) . (148)

This measurement is repeatable.35 It is also highly idealized. Still the von
Neumann measurement is much beloved by people who have the task of
actually measuring things in the lab. The picture to have in mind is that
of a photon encountering a Glan–Thompson prism that lets through linearly
polarized photons only.

What is happening here? First we pause to reflect on classical probabil-
ity theory. If a probability vector counts as a classical state, the classical
state can collapse too. A classical probability distribution P (A) can col-
lapse to a conditional probability distribution P (A = ai|B = bj) depending
on the outcome observed for the random variable B. But the non-selective

35Exercise: In classical statistics the expectation value is 〈A〉 =
∑

i piλi. Show that
〈A〉 = Tr(Aρ). Also show that if you repeat the same von Neumann measurement you get
the same result, and verify that ρ′ commutes with A.
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measurement does not have a classical analogue. In a non-selective classical
measurement nothing happens since

∑

j

P (A = ai|B = bj)P (B = bj) = P (A = ai) . (149)

The analogy breaks down because the quantum state ρ′ obtained in (147)
may be significantly different from the state ρ. Very special cases excepted
a quantum measurement always disturbs the state, and the classical notion
of ‘conditional probability’ is no longer with us. At the same time we should
note that CP map that describes the non-selective measurement can in prin-
ciple be reversed by an experimentalist who is able to perform arbitrary
unitary transformations of the whole system including the ‘reservoir’ that
describes the measurement apparatus. Then the non-selective measurement
is an event that can be made to un-happen.

This is an important conceptual point, so let us say it in a different way.
Suppose a pure quantum state evolves under a unitary transformation,

|ψ(t)〉 = U(t)|ψ(0)〉 = z0(t)|0〉 + z1(t)|1〉 . (150)

If, at time t, we perform a measurement in this basis we find the outcome |0〉
with probability |z0(t)|2. But what is the probability to get this outcome at
time t = 1 given the outcome at t = 0? We cannot talk about the outcome
at t = 0 unless a measurement was performed at that time. But if so the
state at t = 0 changed according to

|ψ(0)〉〈ψ(0)| =

(

|z0|2 z0z̄1
z1z̄0 |z1|2

)

→ ρ(0) =

(

|z0|2 0
0 |z1|2

)

. (151)

The off-diagonal elements have disappeared, and

U(1)ρ(0)U−1(1) 6= |ψ(1)〉〈ψ(1)| . (152)

So we get into a muddle if we use equation (150) to talk about the probability
that the system ‘was’ in one of the states |0〉 and |1〉 at two different times.
The notion of history is not that easily reconciled with quantum theory.

POVMs
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We leave these questions open, and return to general measurements. The idea
to use Kraus operators to guarantee that there is some larger Hilbert space
behind us has led us to claim that a given outcome occurs with probability

pi = Tr
(

ρA†
iAi

)

,
∑

i

A†
iAi = 1 . (153)

The Kraus operators describe how the state of the system changes in a mea-
surement. But maybe we are only interested in the result of the measurement,
and therefore we define a general measurement by saying that there exists a
number of positive operators Ei, called effects, such that

Ei ≥ 0 ,
n
∑

i=1

Ei = 1 . (154)

The collection of effects is known as a POVM, which can be spelt out as ‘pos-
itive operator valued measure’. The POVM allows us to extract a probability
distribution from any density matrix,36

pi = Tr(ρEi) . (155)

There is no requirement that TrEiEj = 0, which means that this is not
a probability distribution over mutually exclusive events, nor is there any
guarantee that we can choose a state for which p1 (say) equals 1.37 Moreover,
unless the effects are one-dimensional projectors they can be written in terms
of Kraus operators in many different ways.

Coming back to the chicken-and-egg question, following Naimark we can
regard any POVM as a von Neumann measurement by adding an ancilla
Hilbert space to the Hilbert space of the system. Let us consider the special
case of a rank one POVM, in which each of the n > d effects is of the form
Ei = |xi〉〈xi| for some vector |xi〉 obeying 〈xi|xi〉 ≤ 1, with equality only if
the effect actually is a projector. Then form the generator matrix

36Exercise: Show that the following equation defines a probability distribution.
37Exercise: For the qubit, choose projectors that project onto states forming a regular

triangle on the equator. Rescale them so that they form a POVM. What probability
distributions over three events can you obtain in this way?
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X =
(

|x1〉 |x2〉 . . . |xn〉
)

d×n
=













〈u1|
〈u2|

...
〈ud|













d×n

. (156)

We have arranged things so that we can think of X either as n columns or
as d rows. You can check that

XX† =
n
∑

i=1

|xi〉〈xi| =
n
∑

i=1

Ei = 1d×d . (157)

But when you think in terms of the rows, this means that you have a set of
d n-dimensional vectors obeying

〈ui|uj〉 = δij . (158)

Here 1 ≤ i, j ≤ d. You can extend this set of d orthonormal row vectors to
n orthonormal row vectors by adding more rows to X, so that it becomes a
unitary matrix. We interpret it as a set of n column vectors,

U =

(

|x1〉 |x2〉 . . . |xn〉
|y1〉 |y2〉 . . . |yn〉

)

n×n

. (159)

Because the matrix is unitary, the column vectors are mutually orthogonal
unit vectors {|zi〉}n

i=1, yielding n projection operators {Pi}n
i=1, where

|zi〉 =

(

|xi〉
|yi〉

)

, Pi = |zi〉〈zi| . (160)

This defines a von Neumann measurement in the large Hilbert space, related
by a simple projection to the POVM we started out with.38

POVMs provide an interesting perspective on quantum states, but we
hasten on to the next topic.

The Lindblad equation

38Exercise: Do this construction explicitly for the POVM in the preceding footnote.
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A system may fail—and will always fail, more or less—to be isolated because
it interacts with some ‘environment’ or ‘thermal reservoir’. In this situation
unitary time evolution is at best an approximation to what is observed. We
round off this brief introduction to the theory of open systems by giving the
generalization to quantum mechanics of the classical Markov process. If the
evolution of the system is a continuous unfolding of completely positive maps
it is described by the Lindblad equation

dρ

dt
= L(ρ) = i[ρ,H ] +

∑

i

(

LiρL
†
i −

1

2
(L†

iLiρ + ρL†
iLi)

)

. (161)

The Li are the Lindblad operators, and L stands for Liouville. The Hamilto-
nian H typically has contributions also from the terms that couple the system
to the reservoir in the evolution of the composite system. The equation ap-
plies when the system dynamics is slow compared to the correlation time
scale of the reservoir, so that equation (130) is a reasonable approximation
for each step.

For a careful derivation you have to look elsewhere, but to see where the
various terms come from consider a CP map

E(ρ) = A0ρA
†
0 +

∑

i

AiρA
†
i = ρ + δρ , (162)

A0 = 1 + (L0 − iH)δt , Ai = Li

√
δt . (163)

One of the Kraus operators is close to the identity, while the others are close
to zero. Then

δρ = (−i[H, ρ] + L0ρ + ρL0 +
∑

i

LiρL
†
i )δt . (164)

To ensure that the trace is preserved we must have Trδρ = 0 for all choices
of ρ. This forces

L0 = −1

2

∑

i

L†
iLi . (165)

Dividing through by δt we arrive at the Lindblad equation.

54



To see a possible issue with the equation it is helpful to consider a familiar
classical problem, namely that of Brownian motion. A pollen grain is im-
mersed in a liquid, and moves under the influence of collisions with molecules
coming from random directions. Now you may worry that when the pollen
grain has been around for some time correlations will be set up between the
grain and the molecules, so that the collisions do not come from random di-
rections any more. Close investigation of the physics suggests that this worry
is unfounded. So we make the Markov assumption that such correlations can
be ignored, and the resulting theory works splendidly. In quantum theory
there is a Markow assumption too, since we assume that equation (130) holds
at each stage of the discretized process.

What we can say is that the Lindblad equation has fared brilliantly in
quantum optics, where any correlations with the radiation field leak away
quickly. But we do not go into this any further here.

Problem 3: Consider the unitary operator

U = 1 ⊗ |0〉〈0| +X ⊗ |1〉〈1| (166)

acting on a two qubit Hilbert space (where X = σx). Choose the initial state to
be ρ⊗ |R0〉〈R0|, where

|R0〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉 . (167)

Construct the Kraus operators acting on ρ. What happens to the Bloch vector of

ρ when we perform the resulting CP map? To what surface in the Bloch ball of

the first qubit does the Bloch sphere of the first qubit go?
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INFORMATION THEORY

Shannon created information theory in two papers entitled A Mathematical

Theory of Communication, later reissued as a book under the more accurate
title The Mathematical Theory of Communication. The key to his work is
to realize that it ignores the meaning of the message. Rather, the significant
aspect of a message is that it has been selected from a set of possible messages.
To quantify information the theory uses a quantity called ‘entropy’. Following
Boltzmann it was denoted by the letter H . Generalizing Shannon’s theory
to the quantum case is a subtle thing.

Information

Shannon worked at the Bell Telephone Laboratories, and his interest in com-
munication was very practical. A message is being sent, using some alphabet
of n letters. The theory (as presented here) assumes that the letters are i.i.d.,
spelt out as ‘independent and identically distributed’. That is, the probabil-
ity that the ith letter will be sent is pi, every time. We want to compress
the message as much as possible before sending it, and the first goal is to
determine how much data compression that can be achieved.

Figure 7: The problem considered by Shannon. The message is compressed at an
encoder before it is sent through a possibly noisy communication channel.

Shannon began by asking for a measure of how much ‘choice’ is involved
in the selection of a letter, or how uncertain we are of the outcome of the
event. Equivalently, this is the amount of information produced when the
event happens. The measure he arrived at is a function of the probability
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distribution associated to some random variable. From now on then infor-

mation is quantified by the Shannon entropy

H(~p) = −
n
∑

i=1

pi log pi . (168)

It is understood that 0 log 0 = 0. The logarithm is usually taken to be with
base 2, and then the information is measured in bits. We will slip back to
natural logarithms at some stage.39

We can argue for this measure as follows. We regard − log pi as an ad-
ditive measure of the ‘surprise’ we feel in receiving the ith letter. Then
H = 〈− log p〉 is the information received per letter, when averaged over
a long message. The interpretation makes more sense if we remember the
psychophysical law that says that human response is proportional to the log-
arithm of the stimulus. (This is why the Greeks measured the luminosity of
stars using logarithmic magnitudes.) But the real justification for the defi-
nition lies in the theorems that Shannon proved. Let us place an informal
version of his noiseless coding theorem on the table right away. Then you
will see that these lecture notes carry a certain amount of information, and
that Shannon’s definition of information is the relevant one if you want to
convert them to JPEG format.

To introduce the theorem we first note that when we use the logarithm
with base 2 we assume that the length of the message is measured in terms
of the number of binary digits you need to encode it. This length will clearly
depend on the coding. Recall that the Morse alphabet uses dashes and dots,
with the number of dashes and dots used to encode the letter being lower
if that particular letter is in frequent use. The theorem is concerned with
the length of a message that has been encoded in an optimal way. Ignoring
some fine print, it says that if a message contains N letters chosen with
probabilities pi from an alphabet consisting of n symbols, then it can be
transmitted in the form of a string of bits of length NH(~p), but it cannot be
compressed further.

To see how the theorem comes about, consider the kind of sequences that
can arise. In particular, consider the number of sequences that contains N1

instances of the first letter in the alphabet, N2 of the second, and so on. This

39Exercise: For p1 = p, p2 = 1− p, plot H(p). Then maximize the function for arbitrary
n. Also check what happens if you change the base of the logarithm to e.
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number is

N !

N1!N2! . . .Nn!
. (169)

Using Stirling’s formula we can approximate this number, or more conve-
niently its logarithm, by

log
N !

N1!N2! . . . Nn!
≈

(170)

≈ N logN −N −
n
∑

i=1

(Ni logNi −Ni) = −
n
∑

i=1

Ni log
Ni

N
.

Now comes the trick. Ni/N is the frequency with which a certain letter
occurs in a sequence. It then follows from the Law of Large Numbers that,
with overwhelming probability, in the sequences that we need to encode we
have

Ni

N
= pi . (171)

Inserting this in (170) we conclude that the Law of Large Numbers allows
us to say that, with overwhelming probability, the sequence that we need to
encode can be regarded as having been chosen from a set of

2NH(~p) (172)

typical sequences. For large N , and unless all letters are equally likely, this
is a small fraction of the number of all possible sequences (equal to nN).40

We see that the compression of the message is possible because at the
encoder we can assume that we are dealing with a typical message. We do
not have to encode all the 2N messages. It is enough if the signal carries
information about which out of all the typical messages is being sent. This
is how the noiseless coding theorem arises. We also see that some fine print

40Exercise: Consider a string of 10 binary digits. How many such strings are there
altogether? How many of them contain at least 7 zeroes? If the probability of choosing
a zero is 9/10, what is the probability of obtaining a string of the latter type? Use your
result to make a comment on the idea of typical sequences.
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must be added to the statement of the theorem, because there is a small
probability that the message is, in fact, not typical. If so we must declare an
error. However, the Law of Large Numbers guarantees that the probability
that this happens can be made as small as we please by making the message
long enough.

Some limitations are apparent here. Let us raise some of them. To
begin with, the i.i.d. assumption may be too strong. If the message is
in English, or in any other natural language, there will in fact be strong
correlations between the various letters in the message. We could compress
the message by, say, removing all the vowels, and chances are that it would
still be decodable. Entire books have been written in this way. (Incidentally,
a theory taking the redundancies in the English language into account shows
that the amount of information present in my notes would increase if its
letters were reordered in a random way.) A second limitation of the theorem
is that it is non-constructive. It tells us that compression is possible, but
it does not provide a recipe for how to do it. Finally we notice that the
encoding cannot even start until the encoder has received a string of letters
long enough to ensure that the string is typical. Still the noiseless coding
theorem provided information theory with a very good start.

Some properties of the Shannon entropy

The Shannon entropy is a continuous and nowhere negative function of a
probability distribution ~p, taking the value zero if and only if the probability
vector is pure. It also obeys a recursion property that we illustrate in Figure
8. To see what it means, suppose that we coarse grain the data so that we do
not distinguish between all of the N individual outcomes. We choose some
partition N = k1 + k2 + . . . + kr and obtain a new probability distribution
with only r components,

q1 =
k1
∑

i=1

pi , q2 =
k2
∑

i=k1+1

pi , . . . , qr =
kr
∑

i=N−kr+1

pi . (173)

Then it holds that
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H(~p) = H(~q) + q1H

(

p1

q1
, . . . ,

pk1

q1

)

+ . . .+ qrH

(

pN−kr+1

qr
, . . . ,

pN

qr

)

. (174)

Applied to the example in Figure 8 this gives the formula

H
(

1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8

)

=

(175)

= H
(

3

8
,
3

8
,
1

4

)

+
3

8
H
(

1

3
,
1

3
,

1

3

)

+
3

8
H
(

1

3
,

1

3
,
1

3

)

+
1

4
H
(

1

2
,

1

2

)

.

Figure 8: The recursion property illustrated: to the right it is used to determine
H(3

8 ,
3
8 ,

1
4 ) in terms of the Shannon entropy for uniform distributions.

This is clearly interesting since it shows that the Shannon entropy is deter-
mined by the values it takes when all events are equally likely. Supplemented
by some mild extra conditions the recursion property actually defines the
function H uniquely, that is to say that no other reasonable function has
this property.

A key property is concavity. Let ~p and ~q be two probability vectors, let
x ∈ [0, 1], and consider the mixture x~p+ (1 − x)~q. Then

H(x~p+ (1 − x)~q) > xH(~p) + (1 − x)H(~q) . (176)
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In words, the Shannon entropy is a concave function of its arguments, which
means that a straight line between two points on its graph always lies below
the graph.41

Concave functions, or convex functions for which the direction of the
inequality is reversed, are important for many reasons. (To remember which
is which, memorize that a convex function has a convex epigraph, and recall
that the epicentre lies above the earthquake.) Concave functions are easy to
optimize, because a concave function has at most a single maximum inside
its domain.

Conditional entropy, joint entropy, and mutual information

To continue, it is convenient to associate the Shannon entropy with some
particular random variable A, so that

H = H(A) = −
∑

i

P (A = ai) logP (A = ai) . (177)

If we have two random variables we have the two probability distributions
P (A) and P (B) to play with, as well as the joint and conditional probability
distributions. (At this point, please recall eq. (3), known as Bayes’ formula).
Then we define the conditional entropy

H(A|B) = −
∑

i,j

P (B = bj)P (A = ai|B = bj) logP (A = ai|B = bj) (178)

and the joint entropy

H(A,B) = −
∑

i,j

P (A = ai, B = bj) logP (A = ai, B = bj) . (179)

The joint entropy measures the uncertainty of a joint event, or equivalently
the information received when both events are found to happen. The condi-
tional entropy measures the uncertainty of the event A given that we know
the outcome of the event B, weighted over all the possible outcomes of B.

41Exercise: Calculate the matrix of second derivatives of H(p1, p2, . . . , pn). Show that
it is negative definite, and that this is enough to prove concavity. Where in these notes
have you seen this matrix before?
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In the calculations to follow we will set

P (A = ai|B = bj) = pi|j , P (A = ai, B = bj) = pi,j , (180)

P (A = ai) = pi =
∑

j

pi,j , P (B = bi) = qi =
∑

j

pj,i . (181)

In this notation Bayes’ formula (3) takes the form

pi,j = pi|jqj = pj|ipi . (182)

If we sum over i or j we see that we are on familiar ground here; the equation

qj =
∑

i

pi,j =
∑

i

pj|ipi (183)

can be recognized as eq. (10). The conditional probabilities are the matrix
elements of a stochastic matrix.

There are relations between the joint and conditional entropies. Using
Bayes’ formula it is easy to see that

H(A,B) = H(B) +H(A|B) = H(A) +H(B|A) . (184)

The easy proof consists in writing out the definition of the conditional en-
tropy,

H(A|B) = −
∑

i,j

pi,j ln
pi,j

qj
= −

∑

i,j

pi,j(ln pi,j − ln qj) =

(185)

= −
∑

i,j

pi,j ln pi,j +
∑

j

qj ln qj = H(A,B) −H(B) .

(Out of habit, we decided to replace the log with the natural logarithms in all
the definitions.) If the two random variables are uncorrelated it immediately
follows that H(A|B) = H(A), so that the joint entropy is just the sum of
the two entropies for the individual random variables.

We define one more useful quantity, the mutual information

H(A : B) = H(A) +H(B) −H(A,B) . (186)
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Mutual information will play a key role when we discuss the quality of com-
munication channels. It is a measure of the correlations between the two
random variables, and it equals zero if the events are uncorrelated.42 An
important property that it has is that it is a concave function. If one of its
arguments is a convex mixture ~p = x~r + (1 − x)~s then

H(~p, ~q) ≥ xH(~r, ~q) + (1 − x)H(~s, ~q) . (187)

We omit the proof, but keep it in mind. It will be useful when we have to
maximize the mutual information in one of its arguments.

There are important inequalities obeyed by the various quantities that
we have introduced. The most obvious one is

H ≥ 0 (188)

with equality only for a pure state. Two more are suggested by the interpre-
tation. The information received when a joint event happens must be greater
than that received from only one of the events, so we must have

H(A,B) ≥ H(A) . (189)

Indeed this is true. Similarly, it must be the case that the conditional entropy
obeys

H(A) ≥ H(A|B) (190)

with equality only for independent random variables A and B. To prove
this, let the random variables have the probability distributions ~p and ~q,
respectively. Using the definition, and then Bayes’s formula (3) to rewrite
the conditional probabilities, we observe that

H(A|B) −H(A) = −
∑

i,j

qj
pi,j

qj
ln
pi,j

qj
+
∑

i,j

pi,j ln pi =

(191)

=
n
∑

i=1

m
∑

j=1

pi,j ln
piqj
pi,j

≤
n
∑

i=1

m
∑

j=1

pi,j

(

piqj
pi,j

− 1

)

= 1 − 1 = 0 .

42Exercise: Prove that it is zero if the events are uncorrelated. The maximum value
is trickier. Prove that H(A : B) ≤ H(A) and H(A : B) ≤ H(B). If H(A) < H(B) the
second bound cannot be reached. Try to see why.
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We relied on the inequality

ln x ≤ x− 1 , (192)

which holds for all x > 0.43

Using the connection between joint and conditional entropy the property
of subadditivity follows immediately,

H(A) +H(B) ≥ H(A,B) , (193)

again with equality if and only if the random variables are independent. From
eq. (186) we see that another way of saying this is that mutual information
is always positive, or equal to zero for independent events.

Figure 9: This picture appears in many textbooks, as an aid to memorize eqs.
(184) and (186). It has the virtue of giving a central position to mutual informa-
tion. The joint entropy is represented by the total area. If A andB are independent
the two circles are disjoint and the mutual information vanishes.

Without giving the story away just yet, let me say that some of the
entropy inequalities must be revisited when we come to quantum information
theory. Then it will be seen that neither the conditional entropy nor the
conditional probability distribution have any immediate analogues in the
quantum case, while the mutual information will be very important.

Relative entropy

43Exercise: Prove the inequality (192). Why is the entropy inequality (190) necessary
for the interpretation of H(A|B) to make sense?

64



Boltzmann’s H-theorem says that entropy cannot decrease as time passes. If
the passage of time is governed by stochastic maps this is not true, in general,
for the Shannon entropy. The bit-flip map (11) does increase entropy, but
the coarse-graining map (14) can decrease it. The general statement is that
a stochastic map will increase the Shannon entropy, H(S~p) ≥ H(~p) for all ~p
if and only if it has the maximally mixed probability distribution as a fixed
point.

This is one reason to introduce the relative entropy

H(~p||~q) =
n
∑

i=1

pi ln
pi

qi
. (194)

This does have the desirable property of monotonicity under stochastic maps,
namely that

H(S~p||S~q) ≤ H(~p||~q) (195)

for every stochastic map S. We omit the proof, but we (or you) will prove
that relative entropy enjoys other interesting properties as well.

First of all it is non-negative. More than that, it obeys

H(~p||~q) ≥ 1

2

n
∑

i=1

(pi − qi)
2 . (196)

To prove this, note that any smooth function f obeys

f(x) = f(y) + (x− y)f ′(y) +
1

2
(x− y)2f ′′(ξ) , ξ ∈ (x, y) . (197)

Apply this to the function x ln x, and you get the result by summing.44 Us-
ing this result you can derive a slightly sharper version of the inequality
H(~p) ≤ lnn, as well as—by considering the relative entropy between a joint
probability distribution and the probability distribution for two independent
events—a slightly sharper version of the subadditivity inequality (193).45

We get an interpretation of relative entropy if we go back to the proba-
bility of obtaining an outcome m times in N trials with two outcomes, eq.

44Exercise: Do it!
45Exercise: Do this as well!
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(17). Taking logarithms and applying Stirling’s formula we find (after some
calculation) that

ln

(

N

m

)

≈ −m ln
m

N
− (N −m) ln

N −m

N
, (198)

ln
(

pm(1 − p)N−m
)

= m ln p+ (N −m) ln (1 − p) . (199)

Putting things together, and generalizing from the binomial to the multi-
nomial distribution valid for n outcomes, we find that the probability to
obtain the frequency vector ~ν in N samplings from a probability distribution
~p obeys46

P (~ν|~p) ≈ e−NH(~ν||~p) . (200)

This suggests that relative entropy is a good measure of the distinguishability
of two probability distributions when we do a reasonably large number N of
samplings. If H(~ν|~p) is large the probability that we will obtain a frequency
vector ~ν (and erroneously conclude that ~p = ~ν) is small.

However, unlike distances relative entropy is highly asymmetric in its ar-
guments. How different is a fair coin from a biased coin that always gives
heads? Pick one of them and start flipping it to see which is which. The
number of flips you have to make before you feel sure which one you picked
depends very much on the choice.47 So the asymmetry of this distinguisha-
bility measure may be desirable.

Error correction

So far we have focussed on data compression. We now change perspective,
and observe that removing redundancy may be a very bad idea. If a message
is phrased in a natural language it is hugely redundant—and this reduncancy
is useful in communication, because it means that errors in the transmission
are easily corrected. The misprints in these notes may be annoying, but
they are not fatal. In the real world transmission of information is always
distorted by noise. If you want to send a message from a space probe far out

46Exercise: Fill in the details!
47Exercise: Use eq. (200) to calculate P (fair|biased) and P (biased|fair) in the example.
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in the Solar system, or if you want to build a quantum computer, this is a
key issue. The way out is to introduce redundancies in the message, allowing
us to spot and correct errors.

To be quantitative about this we need a model for the noise. A very
simple, but useful, model is the binary symmetric channel defined by eq. (11).
So we are sending bits, and each bit may flip with probability p. Suppose
we want to send the message 1101. The message will come through correctly
with probability (1 − p)4, which may be unacceptably low. The obvious
way to deal with this is to repeat the message three times, so that we send
110111011101. Should an error occur in one place, we can correct it by taking
a majority vote. In fact some double errors can also be corrected for. But
the length of the message has gone up. This is bad in itself. Moreover, with
increased length comes an increased risk of double errors, and if the error
probability is high the repetition code may no longer be safe.

It was once believed that the only way to combat noise is to reduce it.
For the binary symmetric channel, this means that one tries to reduce p.
But Shannon took the amount of noise as given, and asked for the minimum
amount of redundancy that will ensure that the message can be corrected
on arrival. He proved a sharp theorem about this. As for the noiseless
coding theorem the proof is non-constructive. It shows that an optimal
error-correcting code must exist, but it does not provide it.

We will pass over the question of how to actually encode messages so that
you come close to the limits set by the noiseless coding theorem. For this
you have to consult a book on information theory. But before we come to
the theorem about noisy channels we will give a simple example of an error-
correcting code that improves on the simple repetition code above. One
reason for doing so is that it will suggest ideas for error-correcting codes to
be used in quantum computers.

We again assume that we wish to send one out of 24 possible messages,
but we view the messages as linear combinations of four basis vectors in a
four dimensional subspace of a seven dimensional vector space, where the
only numbers available for the linear combinations are 0 and 1. Thus the
vector space is not R7, it is Z7

2 where Z2 denotes the integers modulo two (so
that 1 + 1 = 0). To see why we choose seven please proceed—the point will
be that seven is less than twelve, which is what we used for the repetition
code.

To be precise, we let the four vectors be the four rows of the generator
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matrix

G =











1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1











. (201)

The message we wanted to send, 1101, is then sent in the form of the sequence
obtained by adding the first, second and fourth rows together, namely as
1101001. In all the 16 messages that we can send the first four entries are
the message, and the last three are to be used for correcting errors. If we
want to send a sequence a, b, c, d of four binary integers, what we actually
send is the sequence a, b, c, d, b + c + d, a + c + d, a + b + d, where addition
is modulo 2. Now the subspace of Z7

2 in which the code words live has been
very carefully chosen. After staring at the basis vectors for some time one
sees that in order to transform one of the 16 possible sequences into another
one has to flip the value of at least three entries. This is interesting because
it means that any single error can be corrected for by selecting the one out
of the 16 that differs from the received message by a single bit flip. Hence
all single errors will be corrected for, and none of the double errors.48

But the best part of the story is the way we correct the errors. Write the
generator matrix as G = [14|A], where the 4 × 3 matrix A is defined by eq.
(201). Define the 3 × 7 matrix H = [−AT|13]. By construction

HGT = 0 . (202)

This means that Hu = 0, where u is any linear combination of the four rows
of G, that is to say if its components form one of the 16 correct messages. If
an error occurs during the transmission the message received is given by the
components of a vector u + e, and

H(u + e) = He . (203)

The 3-component vector He is known as the error syndrome. It is easy to
check that if e has a single non-zero component then it can be reconstructed

48Exercise: For what values of p is the probability that the message comes out correctly
larger than (1 − p)4 if we use this code?
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uniquely from a knowledge of the error syndrome.49 Once this is known
we can correct the message by subtracting e from the received message (or
adding it, which is the same thing since we work with integers modulo two
all the time).

We have just described the simplest example of a Hamming code. For
messages of length 4 it is evidently less wasteful than the repetition code.
Indeed we made do with less redundancy than we might have expected.
But for us the really remarkable thing about it is that we can do the error
correction without, in fact, reading the message. All we need is the error
syndrome. Once we start sending quantum messages we have to measure the
message in order to read it. This means that reading the message changes the
message. Quantum error correction has to correct messages without reading
them.

Channel capacity

We now get back on the path towards Shannon’s theorem about noisy chan-
nels. A channel is any medium carrying a message. Physically it may be
air, an optical fibre, or a printing press. The input of the message can be
regarded as a random variable A, whose outcomes are the letters being sent.
The output is another random variable B, whose outcomes are the letters re-
ceived. The two random variables are connected by a conditional probability
distribution P (B|A), which tells us the probability that bi is received given
that aj was sent. As we have seen these conditional probabilities are the
matrix elements of a stochastic matrix, in this context often called transition

probabilities. We will therefore equate a channel with a stochastic matrix.
This means that we assume the channel to be memoryless. This may not be
an accurate model of the physical channel, because real noise often has a ten-
dency to come in bursts, but it is a good first approximation. The physical
details of the channel are left to the engineers.

In a noiseless channel the output is in one-to-one correspondence with the
input, which means that the stochastic matrix is a permutation matrix. A
noisy channel offers more of a challenge. Given a stochastic matrix describing

49Exercise: How many single component errors are there, and how many error syn-
dromes? Check the whole story of this Hamming code in detail.
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a noisy channel, we want to know the maximal rate at which information can
be sent over that channel.

The quality of the channel can be measured by the mutual information
H(A : B) between input and output. If the output is independent of the
input the mutual information vanishes. If they are perfectly correlated the
mutual information equals the information H(A) in the input. We define the
capacity of a noisy channel as

C = max H(A : B) , (204)

where the maximization is with respect to the probability distribution chosen
for the input. The stochastic matrix defining the channel is kept fixed, so
that C is indeed a property of the stochastic matrix. Calculating the channel
capacity is a constrained optimization problem that can be addressed using
the Lagrange multiplier method. We write the mutual information in the
form

H(A : B) = H(B) −H(B|A) . (205)

Then we set

∂

∂pi



H(A : B) − λ(
∑

j

pj − 1)



 =
∂

∂pi





∑

k,j

pk|jpj ln
pk|j

qk
− λ(

∑

j

pj − 1)



 = 0 .

(206)
The conditional probabilities characterize the channel and are kept constant,
but when taking the derivative we must remember that ~q = ~q(~p). Provided
that no component of ~p vanishes we obtain

∑

k

pk|i ln
pk|i

qk
= λ + 1 . (207)

The “1” on the right hand side comes out when you take the derivative of qk
with respect to pi. Fortunately we know that mutual information is concave,
so these equations determine the unique maximum. Unfortunately they are
difficult to solve.50

There is one easy case: the binary symmetric channel (11), for which
p0|0 = 1 − p, p0|1 = p and so on, where p is fixed. For this channel there are

50Exercise: Show that the equations imply that λ = C − 1.
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only two equations (206), and if you write them out you see that they imply
q0 = q1 = 1/2. After that you quickly arrive at51

C = ln 2 + p ln p+ (1 − p) ln (1 − p) . (208)

It remains to interpret this formula. For this purpose we assume that we are
sending binary digits, and switch back to logarithms with base 2 (replacing
ln 2 by 1). We then have H(~p) ≤ 1.

The precise interpretation of the channel capacity is provided by Shan-
non’s theorem. It is again concerned with a message containing letters chosen
according to a probability distribution ~p and coded into bits. It says that a
string of bits of length NH(~p) can be coded into a string of bits of length
N and transmitted through a channel with capacity C with arbitrarily small
error, provided that

H < C . (209)

If H > C this is not possible. Actually the theorem says more, and as
was the case with the noiseless coding theorem some fine print should be
attached. It is important to realize that the theorem applies to very long
and ‘typical’ sequences only. But when it applies, and provided we know
the capacity of the channel, it tells us exactly how much redundancy that
has to be added to the message in a perfect error-correcting code. With this
remarkable statement we take leave of classical information theory.

The von Neumann entropy of a quantum state

We turn to the quantum case. In our discussion of measurements we came to
the conclusion that a quantum state ρ will return a wide variety of different
probability distributions, depending on what measurement we choose to do.
Each measurement of ρ is associated to some Shannon entropy. Is there a
single one that deserves to be called ‘the’ entropy of ρ? The first observation
is that if ρ is a pure state then there is a measurement that gives zero Shannon
entropy, while other measurements give positive entropy. If ρ is a mixed

51Exercise: Do the whole calculation! If p = 0.01 and you use logarithms with base 2,
what is the channel capacity?
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state the issue is less obvious. If you stare at a point in the Bloch ball,
and imagine the probability distribution returned during an arbitrary von
Neumann measurement (defined by a pair of antipodal points on the surface),
you see that the Shannon entropy is smallest if the measurement is performed
in the eigenbasis of the state.

We just made a move that is typical for quantum Shannon theory. We
start with a notion from the classical theory, and then we optimize it. In this
case, we optimize over all possible measurements. One observation is that
methods of optimization will be important throughout the subject.

By optimizing the Shannon entropy we arrive at the von Neumann en-

tropy

S(ρ) = −Trρ ln ρ . (210)

Calculating the logarithm, or any other reasonable function, of a positive
operator poses no problem of principle. The function is defined in the eigen-
basis of the operator, by replacing its eigenvalues with the function of these
eigenvalues. Taking the trace that occurs in the definition of the von Neu-
mann entropy is even easier, because we can calculate the trace in any basis
we want. In particular, we can calculate the trace in a basis in which ρ is di-
agonal. Its eigenvalues form the probability vector ~λ, and the von Neumann
entropy is the Shannon entropy of that probability vector,

S(ρ) = −
d−1
∑

i=0

λi lnλi = H(~λ) . (211)

The suggestion to call Shannon’s information ‘entropy’ was actually made
by von Neumann, who had already studied its quantum version.

The von Neumann entropy has the obvious property that

S(ρ) ≥ 0 , (212)

with equality if and only if the state ρ is pure. But the next obvious property
is simply not true. We recall from our discussion of entanglement that we
can have a pure state ρ12 in a composite Hilbert space, and reduced states
ρ1 and ρ2 describing parts of the whole, such that

S12 = 0 , S1 = S2 ≥ 0 . (213)
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We have lost the natural analogue of the obvious inequality (189). This,
however, is not a weakness. It is simply the way things are.

The observation (213) does throw conditional entropy out of the game
however. Suppose we try to define it by

S(ρ1|ρ2) ≡ S(ρ12) − S(ρ2) ,

in analogy with eq. (184). But it follows from what we just showed that
S(ρ1|ρ2), so defined, can become negative. Hence this definition is useless,
or at least not obviously useful.

Entropy and measurement

The von Neumann entropy is indeed a very distinguished Shannon entropy,
singled out by the state itself. We can choose an arbitrary POVM and obtain
a probability vector having many more components that the vector ~λ. Let ~p
be any probability distribution returned by ρ in some measurement. Then
one can show that

H(~p) ≥ H(~λ) . (214)

Our Bloch ball arguments should make this plausible. You will have the full
proof for the special case of von Neumann measurements once you have done
Problem 4 below.

An interesting way to look at this is to consider the two-step description
of a von Neumann-measurement given in equations (147)–(148),

ρ → ρ′ =
d
∑

i=1

PiρPi → ρi =
PiρPi

Tr(PiρPi)
, (215)

where the final collapse happens with probability pi = Tr(ρPi). If we describe
the first step in the eigenbasis of the projectors Pi we see that we are simply
deleting the off-diagonal elements of the density matrix. Problem 4 then
implies

S(ρ′) ≥ S(ρ) . (216)
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In this sense a measurement is a dissipative, entropy-increasing process. A
subtler result (due to Lindblad) that we will not prove here is that

S(ρ) ≥
∑

i

piS(ρi) . (217)

If entropy is regarded as “missing information” this gives a measure of the
average information gain in the measurement process.

Strong subadditivity, quantum relative entropy, and mutual information

We have already noticed that some seemingly natural entropy inequalities
fail in the quantum case. There is, however, a master inequality from which
many other inequalities follow. It is called strong subadditivity. It states that

S(ρ123) + S(ρ2) ≤ S(ρ12) + S(ρ23) . (218)

This is a deep result due to Lieb and Ruskai. Since it was first proved in
the 1970s there have been many attempts to find a simple proof, but these
attempts have not been very successful.

The inequality can be rewritten in an interesting form if we purify the
state ρ123 by introducing a fourth factor Hilbert space such that ρ123 =
Tr4ρ1234. By assumption the four-partite state is pure, so we can rely on

S1234 = 0 S123 = S4 and S12 = S34 . (219)

Using this (and changing the label 4 → 1 at the end, to make the formula
look more pleasing) we find that the strong subadditivity inequality becomes

S(ρ1) + S(ρ2) ≤ S(ρ13) + S(ρ23) . (220)

For the classical Shannon entropy the inequalities S1 ≤ S13 and S2 ≤ S23

hold separately. In the quantum case they do not, but their sum does.
Many important results follow from strong subadditivity. For an easy

example, let the Hilbert space H2 be one-dimensional so that S2 = 0. The
inequality (218) then collapses too

S13 ≤ S1 + S3 . (221)
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This is the subadditivity inequality.
Finally we define the quantum relative entropy in analogy to the classical

case,

S(ρ||σ) = Tr (ρ(ln ρ− ln σ)) . (222)

If [ρ, σ] 6= 0 the two density matrices do not share any common eigenbasis.
It follows that the relative entropy is an object that is hard to manipulate,
even though it is every bit as important to quantum information theory as
is its classical cousin to classical information theory. One reason for this is a
theorem due to Lindblad, who used strong subadditivity to show that quan-
tum relative entropy is monotone under arbitrary CP maps. The statements
are that

S(ρ12||σ12) ≥ S(ρ1||σ1) (223)

S(ρ||σ) ≥ S (Φ(ρ)||Φ(σ)) , (224)

where Φ is any CP map.52

An easier result, requiring just a little bit more background than provided
in our ‘Lengthy Introduction’, is that

S(ρ||σ) ≥ 0 . (225)

This is what we need to show that, unlike conditional entropies, the mutual
information of two density matrices is still in the game. We define it by

S(ρ1 : ρ2) ≡ S(ρ1) + S(ρ2) − S(ρ12) . (226)

We then prove that53

S(ρ1 : ρ2) = S(ρ12||ρ1 ⊗ ρ2) ≥ 0 . (227)

So quantum mutual information has a good and potentially useful definition.
The upper bound for quantum mutual information turns out to be

S(ρ1 : ρ2) ≤ 2S(ρ1) , S(ρ1 : ρ2) ≤ 2S(ρ2) . (228)

52Why does the second statement follow from the first?
53Do this, by first proving that ln (ρ1 ⊗ ρ2) = ln (ρ1 ⊗ 1) + ln (1 ⊗ ρ2).
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The upper bound is easily seen to be saturated if ρ12 is a maximally entangled
pure state. This is striking because it is a factor of 2 larger than expected
classically. According to this measure then the correlations between the parts
are really strong.

Quantum channels

A quantum channel allows us to send qubits rather than classical bits to the
receiver. An optical fibre through which we send polarized photons can serve
as a physical example. In quantum information theory a quantum channel is
modeled by a CP map. A main aim of the theory is to define quantum channel
capacities analogous to that of Shannon. But there will now be several
different capacities, such as the capacity C to transmit classical information
using a quantum channel, the capacity Q for transmitting quantum states,
and a capacity Q2 for the channel to transmit quantum states if it is assisted
by a classical channel through which supplementary classical information can
be sent (as happened in the quantum teleportation protocol). Calculating
these capacities is difficult. Moreover some quite unexpected phenomena
can occur. Thus two quantum channels may transmit more than twice the
information transmitted by a single channel, if their inputs are entangled.

The oldest result in the theory, first stated by Levitin and then proved
by Holevo, gives a useful upper bound on the capacity C. Let us begin by
defining the latter. The sender constructs the message by choosing from a
fixed set of letters 1, 2, . . . , n with probabilities p1, . . . , pn. That is to say, she
has a random variable X with outcomes xi. For each choice of xi she prepares
a density matrix ρi and sends it through the channel. The receiver cannot
‘see’ what density matrices he receives, but he can perform a measurement
of his choice, getting outcomes that can be described as a random variable
Y . The question is how strong the correlations between X and Y can be.
This will depend on the choice of measurement, so we define the accessible

information H(X : Y ) as the maximum of their mutual information, taken
over all possible choices of measurement schemes. Evidently, what we are
describing is not something that is easily calculated. What Holevo was able
to prove was that
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H(X : Y ) ≤ S(ρ) −
∑

i

piS(ρi) , ρ =
∑

i

piρi . (229)

There is nothing very easy about the proof, but we can unravel the right
hand side a little. Suppose that Alice sends pure states only. This is a
favourable case since S(ρi) = 0 in this case. If the pure states she is sending
are orthogonal to each other we are back in the classical case in the sense
that S(ρ) = H(~p), where H(~p) is the Shannon entropy of the source. We
can then reach the classical maximum of the mutual information between the
sent and the received message. If the pure states fail to be orthogonal they
cannot be perfectly distinguished from each other by any measurement, and
indeed S(ρ) < S(~p) in this case.

It sounds as if quantum theory is making matters worse. In this setup at
most one classical bit can be transmitted by sending a qubit. But this result,
from 1973, is not the end of the story. Suppose that Alice and Bob are in
the possession of a maximally entangled state of two qubits. Alice has one
qubit and Bob the other. Now recall the quantum teleportation protocol, in
which entanglement made it possible to transmit an entire qubit by sending
two classical bits. You can turn this around, and arrive at a quantum dense

coding protocol, in which you transmit two classical bits by sending a single
qubit only.54 There is no contradiction of Holevo’s theorem here, because in
this protocol some shared entanglement is being used up. This idea was, in
a way, the starting point for the effort to show that quantum communication
is quite superior to classical communication in certain well defined contexts.
By now all the main theorems of classical information theory have been been
generalized to take quantum theory into account, and a number of interesting
applications have surfaced.

But since we have not said anything about quantum computing yet, we
turn the page and go to a different topic.

Problem 4: A bistochastic matrix is a stochastic matrix such that the sums over

columns and the sums over rows equal 1. Show that, alternatively, it can be defined

as a stochastic matrix having the maximally mixed probability distribution as a

fixed point. Then prove eq. (214) for arbitrary von Neumann measurements. You

54Exercise: Figure out how this protocol works, and spell it out.
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should begin by showing that the vectors ~p and ~λ are connected by a bistochastic

matrix. Then you have to rely on the convexity of the function x lnx.
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QUANTUM COMPUTATION

With very little time left we start a discussion of what may, or may not,
turn out to be the most important part of the course. Certainly progress in
this area is fast. In 2019 a group at Google announced that they had built a
programmable processor using 53 superconducting qubits that outperformed
any existing classical computer in a carefully selected problem. This has
been compared to the airplane flown at Kitty Hawk by the Wright brothers.
Not yet useful, but it does show some promise. Whatever happens, quantum
computing illuminates what quantum theory is about.

Computation and complexity

In the 1930ies Turing analysed the meaning of computability. He came up
with the notion of a universal Turing machine which is supposed to be able to
compute anything that can be computed by means of algorithmic procedures.
From a modern perspective you can think of a universal Turing machine as
any existing computer, having a finite number of internal states and a finite
program but modified so that its memory grows linearly with the length of
the computation. Indeed the computer can be stripped down a lot, making it
very slow but still universal, in the sense that given enough time it can mimic
the actions of any other computer. It is generally agreed that no machine,
whether classical or quantum, can do better than the Turing machine in this
regard.

The universal Turing machine is used to define what we are supposed to
mean by ‘computable’. A function is said to be computable if there exists
a program for the machine which takes the argument of the function as an
input, and outputs the value of the function after a finite time. Since the
input and the output can be coded in binary digits, the function is a function
from the integers to the integers. Any question you may care to ask can be
phrased in these terms. In ASCII encoding every upper or lower case Latin
letter, Arabic numeral, question mark, and so on, is given by a 7 digit binary
integer. Two symbols are then given by a 14 digit binary integer, and so
on. Hence your question can be assigned a number, and the answer will be
a function of that number.
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The story changes if we are interested in obtaining the result in reasonable
time. Suppose that the task is to multiply n×n matrices together. Proceed-
ing as usual you see that this requires n3 multiplications. This gives us some
feeling for how the complexity of the calculation grows with n. We could
say that it grows like n3. Actually it is possible to improve the algorithm by
trading some multiplications for additions, which are cheaper.55 One can set
up matrix multiplication so that that the number of multiplications grows
like n2.37, and perhaps further improvements are possible. Either way the
growth is polynomial in the size of the input. We count time in terms of
the number of computational steps needed, and say that matrix multiplica-
tion can be done in polynomial time, or equivalently that it belongs to the
complexity class P.

As another example, consider factoring an integer N into primes, using
an algorithm that applies to any N . If we use Erathostenes’ sieve we simply
check, for every integer less than or equal to its square root, whether it divides
the given integer. Measuring the size of the integer in terms of the number
n of binary digits needed to write it down, the size of the calculation grows
like 2n/2, that is to say exponentially in the size of the input. This leads
us to define the complexity class EXP, consisting of problems that can be
solved in a time that grows exponentially with the size of the input. Clearly
P is a subclass of EXP. The distinction between the complexity classes is
fundamental, even if we do not have a proof that prime factorisation does
not belong to that subclass. An algorithm that belongs to P is regarded as
‘tractable’.

You can object that, as a practical matter, it is not obvious what to
choose if the choice is between an algorithm with a running time 106 +106 ·n
and another with running time e10

−6·n But this situation rarely occurs in
practice. A deeper answer is that one can build an interesting theory based
on the distinction between P and EXP. For instance, once an algorithm has
been shown to be tractable in the sense that it belongs to P, it can be called
as a subroutine in a larger program without taking the latter out of P.

Returning to the factoring of integers, we can use this problem to in-
troduce a few more complexity classes. Consider first the less ambitious

55Exercise: For the matrices A and B in eq. (79), suppose you are given the seven
products (a00 + a11)(b00 + b11), (a10 + a11)b00, a00(b01 − b11), a11(b10 − b00), (a00 +
a01)b11, (a10 −a00)(b00 + b01), (a01 −a11)(b10 + b11). Show that no further multiplications
are needed to construct AB.
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question whether a given integer is a prime or not. This is a yes/no ques-
tion. A yes/no question is said to belong to the complexity class BPP, spelt
out as bounded-error probabilistic polynomial, if there is an algorithm that
runs in polynomial time and gives the correct answer with probability equal
to 3/4.56 It turns out that primality testing belongs to the complexity class
BPP. Algorithms for primality testing that are in actual use are of this type,
but in 2002 it was discovered that there does exist a deterministic algorithm
that runs in polynomial time. So primality testing belongs to P. The lesson
is that it may be difficult to decide what complexity class a given problem
belongs to.

If you want to know what the factors of a non-prime integer are, the best
existing classical algorithm is known as the Number Field Sieve. Its running
time grows as 2n1/3

, which means that it requires exponential time. On the
other hand, if you make a lucky guess about the factoring, you can check in
polynomial time whether it is correct. This leads us to define the complexity
class NP, for non-deterministic polynomial, consisting of problems whose
answers can be checked in polynomial time.

Of course this does not prove that factoring a prime cannot be done
in polynomial time on a classical computer. In fact, one of the main open
problems in theoretical computer science is whether there exist problems that
belong to NP without also belonging to P. What is known is that there are
many problems that are NP complete, in the sense that if one could prove
that one of them is in P, then the two complexity classes coincide. This said,
there is close to a consensus that P 6= NP. (And also close to a consensus
that this distinction will be unaffected by quantum computation).

The BQP complexity class

Turing’s definition of ‘computable’ hinges on functions from the integers to
the integers, and you may ask if an analog computer (operating, like most
of classical physics, with real numbers) can bring changes. The standard
answer is that a physical analog computer would need a precision increasing
exponentially with the size of the input in order to give an advantage. A

56Exercise: Change the 3/4 to any number larger than 1/2. How does this affect the
complexity class of the problem?
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physical analog computer will always be subject to noise, and this prevents
the analog computer to have much impact on complexity theory. A quantum
computer shares some features with analog computers, since it takes a con-
tinuum to label its states, but on the other hand the theory of measurement
means that the measured output consists of a discrete set of possibilities. It
is not called ‘quantum’ for nothing.

Deutsch raised the question of what would happen if the Turing machine
is allowed to operate under the laws of quantum mechanics. One of his
conclusions was that a quantum Turing machine can be always be simulated
by a classical Turing machine, so the theory of quantum computation does
not affect the definition of computable functions. But he also concluded
that for certain problems the quantum Turing machine will be faster than
its classical cousin, so we have to look at the complexity classes with fresh
eyes.

Of course, the point we are driving at is that in 1994 Shor found an al-
gorithm for factoring integers whose running time on a quantum computer
grows like n3, and which returns an answer that is correct with a probability
greater than 3/4. This leads to the definition of a new complexity class BQP,
bounded-error quantum polynomial. This has now to be placed somewhere
in the hierarchy of classical complexity classes. The belief is that BQP is
larger than P and larger than BPP, but not large enough to include all of
NP. On the other hand it may include some problems outside NP. Evi-
dently, since the question whether P 6= NP is open, this is conjectural only,
but the question what a quantum computer can do is presently attracting
considerable interest.

We make three overall remarks before trying to define a quantum com-
puter. The first is that in the years that have passed since Shor’s discovery,
the number of genuinely new and interesting quantum algorithms that have
been discovered is quite small. The second is that the obvious objection to
quantum computers, that they will be prone to errors that cannot be cor-
rected, has been quite succesfully countered. The objection simply does not
hold, or at least it is not obvious that it holds. The third and final remark is
that as far as practical applications are concerned the most promising ones
seem to be quantum simulators, that is to say quantum computers designed
to simulate physically interesting quantum systems. This possibility was
first raised by Feynman, and it seems quite plausible that it will have conse-
quences for, say, quantum chemistry in the not too distant future. We will,
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however, spend the time that is left to us on the construction of a universal
quantum computer. Whether useful or not, this is a machine that sheds light
on quantum mechanics.

We have a fourth remark too. There are many choices to be made in
the architecture of the universal quantum computer. We will use the circuit

model, but other options exist. We will take the machine to operate on
qubits, but this is not necessary. Eventually we will choose one out of many
possible sets of universal gates. And so on. So the fourth remark is that
whenever we make a choice, we make it without much comment.

The circuit model

A classical computer operates on bits, represented by integers a, b, . . ., counted
modulo two. That is, the integers take the values 0 or 1 and 1+1 = 0. Phys-
ically, this may be no voltage, or some voltage. The aim is to calculate
functions of strings of zeros and ones, taking values that are again strings
of zeros and ones. The action can be broken down into elementary logical
components called gates. Examples of gates include AND, OR, and NOT,
connected by wires that are allowed to bifurcate. The AND gate accepts
two inputs a and b, and returns the output ab. The OR gate also accepts
two inputs, and returns the output a + b + ab. The NOT gate accepts a
single input a and returns a+ 1. In all cases the arithmetic is modulo two.57

From these simple ingredients one can build a universal computer. Of course
there is some physics behind, but Figure 10 is our only comment on this. As
Turing was saying, “being digital should be of more interest than being elec-
tronic”. (Soon after he said that, the transistor was invented. The physical
realization of computers is actually of considerable interest.)

A problem with the AND, OR, and NAND gates is that they are ir-
reversible. You cannot recover their inputs from their outputs. There are
thermodynamic reasons to worry about this, because irreversible evolutions
generate heat. Leclerc and Bennett showed that one can construct classical
computers that operate entirely with reversible gates. This was an important

57Exercise: Write the AND, OR, and NOT gates as logical truth tables. Write the
NAND gate (AND followed by NOT) using both notations. Then show that you can
construct OR from AND and NOT, and finally AND and NOT using only NAND gates.
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Figure 10: Two increasingly schematic pictures of the NOT gate. It includes a
transistor, a (quantum!) device that conducts currents only in the presence of a
voltage supplied by the input. A resistor is included as well.

step towards quantum computers.
A quantum computer operates by applying a reversible unitary transfor-

mation to a multi-qubit state described in a computational basis formed by
product vectors. A measurement in the computational basis is performed at
the end, in order to read the output. The unitary transformation must be
built up from a finite number of more elementary unitary transformations,
again called gates, in a way that can be efficiently described. We need a small
set of gates, but large enough so that any unitary transformation can be well
approximated. Then we have a universal quantum computer. On paper, that
is.

The problem of finding a universal set of gates is solved in three steps.
First we find a small set of unitary 2 × 2 matrices such that any unitary
2×2 matrix can be approximated, to any given precision, as a finite product
of matrices from the set. In the second step we show that any unitary
transformation acting on the full Hilbert space can be written as a string of
unitary matrices that act non-trivially only on one or two qubits at a time.
In the third step we show that it suffices to add a single two-qubit gate to
the set of one-qubit gates.

For the first step we use the set {H, T}, where H is the Hadamard gate
(67) and T is the π/8-gate

T =

(

1 0
0 σ

)

= e
iπ
8

(

e
−iπ
8 0

0 e
iπ
8

)

, σ ≡ e
πi
4 . (230)

The second equality is there only to explain the name of the gate. We can
now construct other unitaries such as Z = T 4, X = HT 4H , and so on. The
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key step in the proof of universality is to compose T and H in such a way
that the resulting unitary effects a rotation of the Bloch sphere through an
angle that is an irrational multiple of 2π. Once this is achieved the argument
proceeds along the lines that Euler used to introduce his Euler angles, and
you can go on to approximate any rotation to within some arbitrarily small
ǫ. Two unitaries U and V are said to approximate each other to within ǫ if

||U |ψ〉 − V |ψ〉||2 < ǫ (231)

for every unit vector |ψ〉. We cut a complicated story short by saying that
it is known how to take the first step, and that the number of discrete qubit
gates you need to approximate arbitrary qubit unitaries grows like a small
power of the logarithm of 1/ǫ.

The second and third steps are actually easier than the first, but we simply
give the answer. All we need to add to our generating set is the controlled-X
or CNOT gate acting on two qubits according to

|00〉 → |00〉 , |01〉 → |01〉 , |10〉 → |11〉 , |11〉 → |10〉 . (232)

The action of a gate on any state is defined by its action on the computational
basis. In words we describe the CNOT gate by saying that you apply the X
gate to the second qubit if and only if the first qubit is in the state |1〉. If
we have several qubits we can apply the CNOT gate to any pair, leaving the
others as they are.58 In the course of the calculation it can happen that the
qubits become entangled, in which case they do not have pure states of their
own, but we can still apply our gates to them. The logic is exactly the same
as when we represent an operator as a matrix.

The conclusion is that the set {H, T,CNOT} is a universal set of gates,
in the sense that it can be used to approximate every unitary acting on n
qubits. We skipped the proof, but you will probably trust the second and
third step of the argument after looking at a few examples.

When we start to combine the gates we can use at least three different
ways to describe things. We can use matrices (not recommended). One

58Exercise: Write out (232) as a matrix. Compare it with the matrices representing
X ⊗ 1 and 1⊗X . Then write out all 8× 8 matrices that describe the CNOT gate applied
to any two out of three qubits.
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alternative is to use arithmetic modulo two to describe the action on the
basis states. The one qubit gates are generated by

H|a〉 = (−)a|a〉 + |a+ 1〉 , T |a〉 = σa|a〉 , σ = e
iπ
4 . (233)

Normalization factors are understood. We can now calculate the action of
X = HZH = HT 4H in three steps.59 We obtain

|a〉 → (−)a|a〉 + |a+ 1〉 → |a〉 + (−)a+1|a+ 1〉 → |a+ 1〉 . (234)

The CNOT is often denoted by CX , for controlled-X. This prepares the
notation for handling controlled-U gates, which apply the one-qubit unitary
U to a qubit if the control qubit is in state |1〉, but leaves things alone if the
control qubit is in state |0〉. Compare Problem 3 for the Dirac notation. The
action of CX on the basis states is

CX |a, b〉 = |a, b+ a〉 . (235)

The notation becomes more cumbersome once we have to specify which, out
of many, qubit serves as the control qubit and which qubit serves as the
target.

Circuit diagrams

We now switch to circuit diagrams, in which each qubit is represented by a
horizontal line interrupted by boxes to keep track of which unitary operator
that is acting. The input is on the left and the output on the right. Thus
the sequence XXZ is written as

|Z| |X| |X|
The controlled-U gate is60

59Exercise: Do all steps explicitly, and compare with the matrix notation.
60Exercise: Construct a CZ gate from our universal set. Is it trivial to construct CU for

general U? Give a reason. (If your answer is no, rest assured that someone has done it.)
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|U |

•

If you go through a few examples you will find that the circuit diagrams are
close to self-explanatory.61 The first example shows that we can switch the
role of control and target in the definition of CX :

|H| |H|

|H| |H|
=

•

|X|

|X|

•
At first sight, this looks wrong. Since H2 = 1 it seems that we do nothing on
the first qubit to the left of the equality sign, while we certainly do something
on it to the right. The point, however, is that the matrices H ⊗H and CX

do not commute.
In the second example we construct the SWAP gate, whose action can

alternatively be written as |a, b〉 → |b, a〉:

S =

|X|

|X|

|X|

•

•

•

Once we have constructed the SWAP gate it can be used as subroutine in
larger circuit diagrams, which saves you from writing out three CNOT gates.

Note that, like the CNOT gate, the SWAP gate can be used in a classical
computer too. Classically one can use two SWAP gates to interchange the
role of control and target in a CNOT gate. The quantum computer manages
this interchange using only Hadamard gates, which act on single qubits only.

Our third example is the Toffoli gate, which has two control qubits and
one target. The action is |a, b, c〉 → |a, b, c+ ab〉. The construction to follow
makes use of the fact that, in quantum theory, NOT has a square root:

√
X = HT 2H ⇒ (

√
X)2 = HT 4H = X . (236)

61Exercise: Verify the following three circuit diagram equalities by tracing through what
happens to the computational basis states.

87



The circuit diagram that defines the Toffoli gate is62

|X|

•

•

=

|
√
X| |

√
X

−1| |
√
X|

• |X| |X|•

• • •

Like the gates X and CX the Toffoli gate can be defined also in classical
computer circuits acting on bits. You can see that if the third input bit is set
to 1 the third output bit will be the NAND of the first two inputs. Given that
the NAND gate is all you need for a universal computer this means that the
Toffoli gate is all you need to make a reversible classical computer universal.
But classically it has to be defined as a primitive, because the square root of
NOT does not exist classically.

The quantum case is different because one and two-qubit gates are enough
to ensure universality. This is very good news if you want to build a quantum
computer. One qubit gates are easier to fabricate than are two qubit gates.
Fabricating three qubit gates would be very hard.

Continuing in this way, we can build a circuit that approximates any
unitary acting on an arbitrary finite number of qubits. (I did not say it is
easy.) But we have still to discuss the sine qua non of the quantum computer:
preparation and measurement.

Preparation and readout

We make the convention that the qubit register is initialized in the state
|0, 0, . . . , 0〉. The computation therefore begins by creating some more inter-
esting state to act on. We may take it that the aim is to compute an integer
valued function f , taking an integer x as its argument. Let us assume that
x < 2n and f(x) < 2m. We then divide the register into an n qubit input

register and an m qubit output register. We may need additional work qubits
to act on, and if so we must take care that the calculation does not leave
them entangled with the input and output qubits.

62Exercise: In view of our discussion of open systems, what is the reason for the final
CNOT gate?
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We write the integer x in binary form, so that we get a sequence of no more
than n zeros and ones. By means of a unitary transformation the register is
transformed into the state |x〉n|0〉m, where |x〉 is an n-qubit state encoding
the input. The m-qubit state |0〉m is there to ensure that the transformation
is reversible, as we will see in a moment. By hook or crook, we find a unitary
transformation Uf such that

Uf |x〉n|y〉m = |x〉n|y + f(x)〉m . (237)

In particular63

Uf |x〉n|0〉m = |x〉n|f(x)〉m . (238)

This transformation is reversible, and in fact its own inverse, because

Uf |x〉n|f(x)〉m = |x〉n|f(x) + f(x)〉m = |x〉n|0〉m . (239)

A similar division of the register into an input and an output register is
needed for a reversible classical computer to work.

Pause to make sure what is being meant. Suppose we wish to compute
f(5) = 3. In binary this is f(101) = 11. It is enough to use a three qubit
input register and a two qubit output register. We need to build a unitary
transformation such that

Uf |101〉|00〉 = |101〉|11〉 . (240)

It should be clear why |f(x) + f(x)〉m = |0〉m even though f(x) + f(x) 6= 0.
It happens because the arithmetic of the ket labels is modulo 2, meaning
that we do no carrying on the ket labels. In fact f(x) + f(x) is equal to zero
modulo 2.

So far the discussion would apply also to a reversible classical computer.
But let us apply a Hadamard gate to every input qubit,

H|0〉 = |0〉 + |1〉 , H⊗2|00〉 = |00〉 + |01〉 + |10〉 + |11〉 , (241)

63Exercise: Set f(x) = x. Are we violating the no-cloning theorem? If not, why not?
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and so on for H⊗3 acting on a three-qubit Hilbert space, etc. (As usual
we ignore overall normalisation factors.) When we do go on, we obtain the
remarkable formula64

H⊗n|0〉n =
∑

x<2n

|x〉 . (242)

A single application of the unitary Uf now has the effect that

Uf(H⊗n ⊗ 1⊗m

)|0〉n|0〉m =
∑

x<2n

|x〉n|f(x)〉m . (243)

It seems as if we have computed every value of the function in a massively par-
allel computation. But the information has not yet reached its destination.
In the end we have to perform a measurement. In quantum computation this
is not just an afterthought. It is an essential part of the computation.

If we start by measuring the input register in the computational basis the
state collapses with equal probability to anyone of the states

|x〉n|f(x)〉m . (244)

We now know x, and a measurement on the output register yields the value
of the function f(x). This quantum computation therefore gives as much
information as the classical one. The one difference is that the choice of x
was made at random after the completion of the calculation (which is a bit
odd, but hardly an advantage).

But maybe we did not ask the right question? Perhaps we could design
some measurement that extracts global information about the function f ,
rather than some special value? Before asking this in earnest we practice a
little on how to prepare interesting input states. It is easy enough to design
a circuit that affects the transition |0, 0〉 → |0, 0〉 + |1, 1〉, namely

|X|

|H| •

64Exercise: Make sure that you understand this and the following formula, for instance
by writing them out for three qubits.
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This is interesting because we have created an entangled state from a sepa-
rable state. This supports the claim—whose proof I skipped—that we can
approximate arbitrary unitary transformations using only the gates H, T ,
and CX , so that we can produce any state whatsoever from the initial state
|0〉n.65

Many quantum information protocols end with a measurement in some
basis other than the computational one. In the quantum teleportation pro-
tocol Alice is asked to perform a measurement using a nice error basis, that
is to say (if she teleports qubits) in the Bell basis

|Φ±〉 = |0, 0〉 ± |1, 1〉 , |Ψ±〉 = |0, 1〉 ± |1, 0〉 . (245)

A moment’s thought shows that our insistence that the result of the quantum
computation should be read out by means of a measurement in the compu-
tational basis imposes no restriction. We can still perform a measurement
in the Bell basis if we first perform a unitary transformation that turns the
Bell basis into the computational basis, and then measure.66

The Deutsch–Jozsa algorithm

The Deutsch–Josza algorithm is a proof-of-principle, showing that there ex-
ists a problem where a quantum computer provides a speed-up compared to
what a classical computer can do. The problem it solves is not particularly
interesting in itself, in fact it is quite contrived, but the underlying idea re-
curs in more interesting algorithms. Suppose we have a function from {0, 1}
taking values 0 or 1, and a circuit that computes it, that is to say that

Uf |0〉|y〉 = |0〉|y + f(0)〉 , Uf |1〉|y〉 = |1〉|y + f(1)〉 , (246)

where y ∈ {0, 1} is arbitrary. It may be expensive to run this calculation
however. The question is: How many times do we have to run the calculation
before we know whether f(0) = f(1)? This is an example of an oracle

problem. Applying the unitary Uf is like asking an oracle for an answer.
The question is how many times we have to ask the oracle before we know

65Exercise: Design a circuit that effects the transition |0, 0, 0〉 → |GHZ〉, where the GHZ
state is |GHZ〉 = |0, 0, 0〉+ |1, 1, 1〉.

66Exercise: Design the circuit we need for this.
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the answer we want to have. In a classical computer we would have to ask
twice, but the Deutch-Josza algorithm allows a quantum computer to answer
the question with only a single application of Uf .

The trick is to make a suitable preparation before the oracle is called.
Thus

|0〉|0〉 → (H ⊗H)(X ⊗X)|0〉|0〉 = (|00〉 − |01〉 − |10〉 + |11〉 . (247)

Now we call the oracle. Denoting f(x) + 1 = f̄(x) we obtain

|0〉|f(0)〉 − |0〉|f̄(0)〉 − |1〉|f(1)〉 + |1〉|f̄(1)〉 . (248)

It is a small exercise to check this, and then to check that if f(0) = f(1) the
result is

(|0〉 − |1〉)(|f(0)〉 − |f̄(0)〉) , (249)

while if f(0) = f̄(1) it is

(|0〉 + |1〉)(|f(0)〉 − |f̄(0)〉) . (250)

Finally we apply a Hadamard gate to the input register, and make a mea-
surement of the input register. If the qubit collapses to |1〉 the function is
constant, if it collapses to |0〉 the function is not constant.67 And the oracle
was called only once, as you can see from the circuit diagram.

Uf

|X| |H|

|X| |H| |H|

Notice however that if we measure the output register we get no informa-
tion about the actual values taken by the function. At most we can say that
it is f(0) with probability one half or f̄(0) with probability one half. So it
is a trade off. We changed the question to be about a global property of the

67Exercise: Check it all, starting from the small exercise mentioned in the text.
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function. And in a sense this is the point: In a quantum computer we can
ask a wider range of questions about the function.

You may object that, when claiming that the quantum computer outper-
forms the classical one, we are to some extent comparing apples to oranges.
The answer obtained from the quantum oracle is more structured than is that
from the classical oracle, so it is not surprising that more can be done with
it. More is needed to convince us that there are tasks where the quantum
computer wins.

The need to reverse

There is a complication to be faced as well. If the function that is being
evaluated (by the oracle, or by some circuit that we have designed for the
purpose) is a complicated one, then the quantum computer will need a num-
ber of ‘work qubits’ to act on as well. If, in the course of the calculation, the
work qubits become entangled with those in the output register then we have
a problem, because then the state of the qubits in the output register is no
longer pure. Measuring the output register will provide information about
how the output is correlated to the work qubits, and not about the result of
the calculation.

Figure 11: How to disentangle the output from the machine.

This is where it becomes important that unitary transformations are re-
versible. Let the dimension of the work subspace be 2r, the dimension of the
input subspace be 2n, and the dimension of the subspace where we intend
to encode the result be 2m. The unitary operator Uf will act on the r + n
qubits forming the work and input subspaces. The next step is to copy the
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output onto the m qubits that form the output register. Using CNOT gates
this can be done without disturbing the output of the calculation. Then we
perform the inverse transformation U−1

f on the first r+n qubits. At the end
the work qubits and the input register have returned to their initial separable
states, while the output is safely registered where we want to have it. Figure
11 should make this clear.

This solves the problem, but it shows that quantum computation is twice
as expensive as you may have expected.

Shor’s algorithm

The Deutsch-Josza algorithm answers no interesting question, but it serves
as an inspiration for algorithms that do. The outstanding example remains
Shor’s algorithm for finding the two prime factors of a large number N . We
will look at it in some detail, because it is probably a very good example of
what universal quantum computers can do—if supported by classical com-
puters that do calculations on the side.

Let n be the number of binary digits of N . In the best of the known
classical factoring algorithms the number of calculational steps grows like
2n1/3

, while it grows like n3 or (with improvements) like n2 in the central
part of Shor’s algorithm. We are allowed to add classical calculations that
grow like n2, and the exponential speed-up is still there. We also note that
the problem is in NP, that is to say if it is suggested that N is equal to pq
then we can check it in polynomial time. This means that all we need is an
algorithm that gives the correct answer with a non-zero probability. If we
did not obtain the correct answer we simply run the algorithm again.

The quantum speed-up actually happens in a subroutine, where one uses
a discrete Fourier transformation to find the period of a certain function.
Before we come to that it is worthwhile to understand something about the
problem, why it is of practical interest, and how the result of the subroutine is
used to solve the problem. It may be that all useful applications of a universal
quantum computer will hinge on our ability to see the kind of questions that
quantum computers are good at, sitting inside some genuinely interesting
mathematical problem.
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Prime factorisation and RSA cryptography

First we will see why prime factorisation is of practical interest, and how it
can be reduced to the problem of finding the period of a certain function.
We will come back to quantum computing once we have the answers.

Prime factorisation plays a role in public key cryptography. The idea here
is to rely on a mathematical problem that is easy to solve one way, and
hard to solve the other way. Using factorisation of integers for this purpose
leads to RSA cryptography (for Rivest, Shamir, and Adleman, who were the
first outside the British Secret Service to come up with the idea). Imagine a
cryptographic protocol that requires a composite number N for encryption,
but the prime factorisation N = pq for decryption. Starting from two large
primes p and q the receiver announces N publicly, so that anyone can use it
for encryption. To read the encrypted message you must either know p and
q in advance, which is true only for the intended receiver of the message, or
calculate them, which will take an inordinate amount of time if you rely on
an algorithm whose running time grows exponentially with the number of
digits in N .

To see how this comes about we need some knowledge of arithmetic. First
we note that Euclid provided a very fast algorithm for finding the greatest
common divisor (a, b) of two integers. If a < b you divide b with a to obtain
the remainder r, and then observe that (a, b) = (r, a). This reduces the
size of the problem, and by repeating the process you reach the answer in
polynomial time, in fact in about the time it would take to just multiply the
two numbers together. Given any two integers a and b this algorithm also
yields two integers m and n such that

am + bn = (a, b) . (251)

If (a, b) = 1 the pair of integers have no common factor, and then they are
said to be relatively prime.

Before we continue our journey through elementary number theory, let
me say that although all the proofs we need are simple they can be quite
exhausting to follow. We are tackling a serious mathematical problem, and
it is only to be expected that this will involve some serious mathematics.You
may prefer to take it on trust, as being part of the classical pre- and post-
processing of the quantum algorithm.
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With this warning we come to modular arithmetic. Two integers are
declared to be equal modulo N if they differ by a multiple of N ,

a = b mod N ⇔ a = b+ nN . (252)

Addition and multiplication modulo N is defined in the obvious way. Now
consider two relatively prime integers a and N . From eq. (251), with N in
the role of b and with (a,N) = 1, it follows that there always exist an integer
m such that

am = 1 mod N . (253)

Hence, provided (a,N) = 1, a has an inverse in arithmetic modulo N . This
means that the set of non-zero integers relatively prime to N form a group

under multiplication modulo N . We will be interested in the order of this
group, that is to say in the number of its elements. This is given by Euler’s
totient function φ(N), defined as the number of integers smaller than and
relatively prime to N . If p and q are distinct primes the totient function is

φ(p) = p− 1 , φ(pq) = (p− 1)(q − 1) . (254)

We need only these two cases. Clearly, if we know pq and φ(pq) we can
determine p and q.

Confusingly we will also be interested in the order of an integer a, that is
to say in the smallest integer r such that

ar = 1 mod N . (255)

Given an integer a relatively prime to N the set of integers of the form ax

mod N forms a subgroup of the multiplicative group we are interested in.
The order of this subgroup is r. Lagrange’s theorem says that the order of a
subgroup always divides the order of the whole group, so r divides φ(N). In
every case it must be true that

aφ(N) = 1 mod N . (256)

This is called Euler’s theorem. It must hold, otherwise the number of ele-
ments in the group would be larger than its order.68

68Exercise: For N = 4, 5, 6, 7, 9, 10, 15, find the multiplicative inverse modulo N of every
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In our examples N will be huge. It is nevertheless a quick affair to let a
computer calculate ax modulo N . The number of multiplications needed is
kept modest if we do the calculation by repeated squaring,

a→ a2 → a22 → a23 → . . . . (257)

Then ax is created by multiplying a subset of these powers together. In this
way ax can be calculated in polynomial time on a classical computer.69

Incidentally, this gives us a hint why primality testing is easier than fac-
torisation. If there is an integer a < N such that aN−1 6= 1 modulo N then
N cannot be a prime number because a and N would have a common factor.
Unfortunately there are composite numbers that pass this test (361 = 3·11·17
is the smallest example), which is why the full story is much longer.

We now have all the number theory we need for RSA cryptography. The
protocol starts when the receiver picks two large primes p and q, and another
integer c relatively prime to (p− 1)(q− 1). She also calculates the inverse of
c in arithmetic modulo (p− 1)(q − 1). This is an integer d such that

cd = 1 mod (p− 1)(q − 1) . (258)

The product N = pq and the integer c are made public, but p, q, and d are
kept secret. Anyone wanting to send a message to the receiver converts the
message to an integer a less than N (using ASCII encoding, say), and checks
that a is relatively prime to N . Then she calculates the encrypted message

b = ac mod N . (259)

The message is easily decrypted by anyone knowing the secret integer d,
because

bd = acd = a1+n(p−1)(q−1) = a mod N . (260)

All the calculations are done in polynomial time.
What can the eavesdropper do? To compute d she needs to factor the

integer N . Mathematicians have worked on this problem since the days of

integer that has one, and count them. Verify that φ(pq) = (p − 1)(q − 1) when p and q
are distinct primes. Find examples of integers having an order lower than φ(N). Finally,
φ(403) = 360. Use this information to factor 403.

69Exercise: Calculate 221 modulo 35, using only six multiplications.
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Eratosthenes, and so far the best algorithm they have come up with runs in
exponential time. If N is large enough this suggests that the message will be
safe from eavesdroppers for many years to come. To learn what large enough
means in practice, we note that in 2016 the NSA recommended keys with at
least 3072 bits. Keep in mind that the NSA has a history of recommending
cryptos that they themselves can just break.

Actually the eavesdropper can get by with somewhat less. She only needs
to find the order of b, that is to say an integer r such that

br = 1 mod N . (261)

The order divides φ(N) = (p−1)(q−1), but may not be equal to it. Now the
publicly known integer c is relatively prime to the unknown integer φ(N).
Since r is one of the factors of the latter it follows that (c, r) = 1. It then
follows that there exists an integer d′ such that

cd′ = 1 mod r . (262)

The next point to notice is that when two integers a and b are related the
way they are in the RSA protocol then they have the same period. This
is because we are assured that integers c and d exist such that b = ac and
a = bd. This means that the integers a and b belong to the same cyclic
subgroup of the multiplicative group of integers relatively prime to N , and
their respective orders are both equal to the order of that subgroup. Hence
ar = 1 mod r. Equipped with all these assurances, and assuming that she
can find the period r in the time at her disposal, the eavesdropper performs
the calculation

bd
′

= acd′ = a1+nr = a mod N . (263)

She can now read the message at her leisure.
What is the size of the calculation Eve must do to find the period r?

It is convenient to rephrase the problem slightly by defining the function
fa(x) = ax. Then the element a is of order r if and only if the function fa(x)
is a periodic function of period r in arithmetic modulo N ,

fa(x) = ax ⇒ fa(x + r) = ax+r = ax = fa(x) . (264)
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Now the question is how hard it is to find the period of this function. Clas-
sically, the way to find the period is to evaluate fa(x) for many values of
x, until one finds a pair x1 and x2 such that fa(x1) = fa(x2). The period
will then be a divisor of x1 − x2, and by finding a few such coincidences it
is likely that the period is the largest common divisor of them all. But since
the difference fa(x1) − fa(x2) can take N different values we need to exam-
ine about N different pairs to find a coincidence. The number of different
pairs is roughly the square of the number of evaluations of fa that we per-
form, so it follows that we are likely to need

√
N evaluations of the function

before we find a single coincidence. If N ≈ 2n this means that the proce-
dure is exponential in n. And this is provably the best a classical algorithm
can do with the period finding problem. But a quantum computer offers an
exponential speed-up. A constant number of evaluations, followed by some
computational steps that take polynomial time only, suffice.

Before we turn to this, we should perhaps finish the factorisation question.
If we know φ(pq) we can factor N = pq, but there is no guarantee that the
period r equals φ(pq). It could be a divisor of φ(pq). However, suppose that
we are lucky, and that the period r we find is even. Then we can write

0 = ar − 1 mod N = (a
r
2 + 1)(a

r
2 − 1) mod N . (265)

If either a
r
2 + 1 or a

r
2 − 1 is a multiple of N then we are out of luck, and

learn nothing. But if not, the greatest common divisor of N with one of the
factors on the right hand side will be a factor of N (and the greatest common
divisor can be calculated efficiently using Euclid’s algorithm). Fortunately,
number theorists can prove that if you pick the integer a at random then
with probability 3/8 the period will be even and neither of the above factors
are multiples of N (although this theorem takes us a bit beyond Euclid).
So, once we have found the period we can factor N with probability 3/8. If
the algorithm that allowed us to find the period runs in polynomial time we
can simply repeat the procedure until we get lucky. This proves that if the
period finding problem belongs to the complexity class BQP then so does
the factoring problem.

Period finding
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We have reached the conclusion that it is of great theoretical and practical
interest to find the period of the function f(x) = ax modulo N where N is a
product of two primes and a is a given integer. Thus we ask for an integer r
such that f(x+ r) = f(x) modulo N . The hope is that quantum theory will
allow us to ask for the period of the function without actually having to ask
for the values it takes.

In the first step we realize the transformation

|0〉n̄|0〉n → |x〉n̄|0〉n →
2n̄−1
∑

x=0

|x〉n̄|f(x)〉n , (266)

where f(x) = ax and n is the smallest integer such that 2n > N . The input
register consists of n̄ qubits, and for a reason that will only transpire at the
end we choose n̄ = 2n. The transformation goes along the lines of equation
(243), but this time it is not an oracle problem. We work with a concrete
function. If the number of binary digits in N is 3072, or thereabouts, we need
many qubits for the purpose. However, on paper, making use of the fact that
the function is quite special and can be handled with repeated squaring as
in equation (257), we can do this in an efficient manner. I skip the details of
this interesting step.

To reduce clutter we now perform a measurement on the output register,
and obtain a value f(x0) for the function. This means that the n̄ qubit input
register collapses to a superposition of all the values of x that return this
value of f , namely

|x〉n̄ → |ψ〉 =
m−1
∑

j=0

|x0 + jr〉n . (267)

Here x0 is the smallest integer for which the function returns the value we
found, and m is the smallest integer such that x0 +mr ≥ 2n̄. We write it all
out for clarity, this time including the normalization:

|ψ〉 =
1√
m

(|x0〉 + |x0 + r〉 + . . .+ |x0 + (m− 1)r〉) . (268)

The unknown period r is in there, but it is not so easy to get it out. A
measurement on the input register would collapse the state to one of the m
states
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|x0 + jr〉 . (269)

This is not helpful, because the value of x0 is not known, and it would change
if we run the procedure again. So we change the question.

We need a unitary transformation that moves the unwanted integer x0

into an overall phase factor that does not affect the probability vector. The
discrete Fourier transformation in dimension d is defined by its action on the
basis states, as70

F |x〉n̄ =
1√
d

d−1
∑

k=0

ωxk|k〉n̄ , ωd = e
2πi
d . (270)

Note carefully that in the exponent of ω the integers x and k are treated as
ordinary integers. The product is nevertheless taken modulo d because ω is
a dth root of unity. In our application we set d = 2n̄. The discrete Fourier
transformation is very important in many applications, also in classical signal
processing. In fact it is important enough to deserve an acronym of its own:
DFT.

When we apply F to the input register we obtain

F |ψ〉 =
1√
2n̄m

2n̄−1
∑

k=0

m−1
∑

j=0

ω(x0+jr)k|k〉n̄ =
1√
2n̄m

2n̄−1
∑

k=0

ωx0k
m−1
∑

j=0

ωjkr|k〉n̄ . (271)

Now we perform the measurement on the input register. The probability of
obtaining the kth outcome is

pk = |〈k|F |ψ〉|2 =
1

2n̄m

∣

∣

∣

∣

∣

∣

m−1
∑

j=0

ωjkr

∣

∣

∣

∣

∣

∣

2

. (272)

This depends on the period r while x0 has disappeared, just as we wanted.
There are two questions left to address. How do we physically implement

the Fourier transformation, and how do we extract r from the probabilities?
We will see the quantum speed-up when we address the first question.

70Exercise: Prove that this is a unitary operator. Square it to see what happens. Also
verify equation (272).
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The Fourier transform: Fast and faster

We have arrived at the heart of the matter, where the quantum speed-up
happens. Acting on the components of a vector, rather than on the basis
vectors, the discrete Fourier transform in dimension d is

f̂ = Fdf ⇔ f̂j =
1√
d

d−1
∑

k=0

ωjk
d fk . (273)

It arises whenever a continuous signal has been sampled at discrete points.
A first look suggests that it requires d2 multiplications. However, classically,
the Fast Fourier Transform (or FFT) achieves the same goal with only d log d
multiplications, and the even faster quantum Fourier transform builds on that
idea. It is assumed that d = 2n. (This is the case we are interested in. If d
is not of this form we can pad the vector to be transformed with zeros until
the dimension reaches 2n for some n.) The d = 2 Fourier matrix is already
familiar to us,

F2 = H . (274)

Moving on to d = 22 we decide to label the components of the vector using
binary digits. Then we see that

F4f =











1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 1 ω2

4

1 ω3
4 ω2

4 ω4





















f00

f01

f10

f11











=











1 1 1 1
1 ω2

4 ω4 ω3
4

1 1 ω2
4 ω2

4

1 ω2
4 ω3

4 ω4





















f00

f10

f01

f11











. (275)

Remembering that ω2
4 = i2 = −1 = ω2, we see that provided we reorder

the components of the vector before applying the matrix, we can replace the
matrix F4 with

F4 →
(

F2 D2F2

F2 −D2F2

)

, where D2 =

(

1 0
0 ω4

)

. (276)

We achieve this by placing the even columns of the matrix before the odd
ones. In the vector, the even components fa0 are placed before the odd
components fa1.
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The same trick works when we double the dimension again. Before apply-
ing F8, we place the even vector components fab0 above the odd components
fab1, and we place the even columns of the matrix before the odd ones. This
has the effect that

F8 →
(

F4 D4F4

F4 −D4F4

)

, where D4 =











1 0 0 0
0 ω8 0 0
0 0 ω2

8 0
0 0 0 ω3

8











. (277)

(Yes, this becomes easier to see if you write it out explicitly, but typograph-
ically it takes a lot of space.) We now work recursively. We replace F4 with
the expression we already have. We can do this if we perform the appro-
priate reordering within the two sets of four components of the vector. So,
reordering in two steps,































f000

f001

f010

f011

f100

f101

f110

f111































→































f000

f010

f100

f110

f001

f011

f101

f111































→































f000

f100

f010

f110

f001

f101

f011

f111































. (278)

The net effect is that we have ordered the components in bit reversed order.
We can start the recursion from a Fourier matrix of arbitrary size. Moving

all the even numbered columns to the left we replace

Fd →
(

F d
2

D d
2
F d

2

F d
2

−D d
2
F d

2

)

, (279)

where the definition of the diagonal matrix Dd should be clear. The fact that
this works is known as the Danielson–Lanczos lemma, formulated back in the
days when discrete Fourier transformations were performed by humans, and
multiplication took a lot of time. It leads to the following recipe for perform-
ing the Fast Fourier Transform: Start with a vector having 2n components
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and write its components in bit reversed order. Apply F2 to all successive
pairs of components. In the second step we apply the matrix

(

1 D2

1 −D2

)

(280)

to all quartets of components. In the third step we apply

(

1 D22

1 −D22

)

(281)

to each set of 23 components. And so on. In each step we perform about d
multiplications, and we are done after n = log d steps. This is to say that
we have brought the number of multiplications down, from d2 to d log d. The
preliminary bit reversal is computationally cheap, so this is a remarkable
achievement. But it remains exponential in n.

We want more. We want the calculation to be polynomial in n. At the
same time we are willing to settle for less, because we do not need to calculate
the individual components of the Fourier transformed vector. All we need
is to calculate F |ψ〉 in eq. (271). From this we can extract at most one
component by means of a measurement.

Let us construct a circuit that does this. The case of a four qubit Hilbert
space is enough to give the idea. I first give the answer:

|x0〉
|x1〉
|x2〉
|x3〉

P

|H| •
|R1| |H|

•

|R2|
•
|R1| |H|

•

|R3|

•

|R2|
•
|R1| |H|

We have yet to define P and Rk, but it should already be clear what the
circuit looks like for any n. In particular you can write down the circuits
for n = 2 and n = 3 and play with them, until you see why they work as
advertized.

The circuit begins with a computationally cheap permutation P effecting
a qubit reversal of the input,

104



|x3x2x1x0〉 → |x0x1x2x3〉 . (282)

Then follows a number of Hadamard gates, and a number of controlled uni-
taries CRk

, where the one qubit phase gates Rk are defined as

Rk =

(

1 0
0 σk

)

, σk = e
iπ

2k . (283)

In the circuit the chosen integer k depends on the ‘distance’ to the control
qubit. This is all.

Why does this work? If we act with this circuit on an n-qubit computa-
tional basis state we will get a superposition of 2n basis states out, because
each qubit is subject to a Hadamard before we let it go. It will be an equal
weight superposition because the only amplitudes we introduce are phase
factors. The 2nth root of unity ωn = σn−1 will appear only if the last digit in
the output is 1, and then only if the last (because of the P -gate) digit of the
input is 1. The phase factor ω2

n = σn−2 will appear if the next to last digit
in the output and the last digit in the input is 1, and if the last digit in the
output and the next to last digit in the input is 1. And so on. And this is
just right for the DFT.71

It is time to count the number of gates that appear in the circuit for
arbitrary n. For the initial reordering it is enough to use n/2 SWAP gates.
Then there are n Hadamard gates, while the number of phase gates is

1 + 2 + . . .+ (n− 1) =
n(n− 1)

2
. (284)

Hence the number of gates needed to effect the quantum Fourier transform
grows like n2, a remarkable improvement compared to the classical FFT
which needs 2nn operations. It is true that we do not get as much information
out of the quantum Fourier transform as we get out of the FFT, but we do
get out all the information we need for Shor’s algorithm to work.

We are using a number of two-qubit gates here, and these are difficult
to manufacture. So while their number is small from the point of view of
complexity theory, it is large from the point of view of engineering. There
is a variant of all this which performs a measurement on each qubit, and

71Exercise: If this explanation leaves you cold, give a better one. The best way to start
may be to calculate explicitly what happens for all the eight basis states when n = 3.
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then conditions the unitary that acts on the next qubit on the result of that
measurement. But we decided at the outset to choose only one out of the
many variants of architecture for quantum computers, so we do not go into
this here.

There is a critical question to ask. When n is large we will need to
implement phase gates that rotate their qubits through very small angles.
This suggests that the quantum computer is subject to the same objection
that one can raise against classical analog computers: the precision needed
will grow with the complexity of the calculation in a way that nullifies any
advantages it may have. This question was analysed by Coppersmith, who
pointed an interesting moral. The conclusion is that small errors in the phases
will cause the probabilities in equation (272) to deteriorate somewhat, but
it will not affect the actual outcomes, which are discrete. Discrete quanta,
if you like. Indeed, one can fix a sufficiently large integer k0 and decide
not to implement any Rk with k > k0. So the surprising answer to the
critical question is that not only is there no problem, we can in effect do
the calculation with a number of gates that grows like n rather than like n2.
Ultimately it is the discreteness of the output from a quantum computer that
saves the day.

Some classical post-processing

Now that we know how to take the quantum Fourier transforms it remains
to extract the period r from the probabilities given in equation (272). The
period is what we need to factor our integer.

The easy case is when the period r divides 2n. For one thing, then we can
set n̄ = n in all the formulas above, so the size of the input register shrinks
by one half. Recalling the definition of m from equation (268) we observe
that we can set

m =
2n

r
. (285)

Now look at equation (272). We consider the expression

m−1
∑

j=0

(e
2πi
2n )jkr =

m−1
∑

j=0

(e
2πik

m )j . (286)
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But we know that

ω = e
2πi
m ⇒

m−1
∑

j=0

ωj = 0 ⇒
m−1
∑

j=0

ωjk =

{

m if k is a multiple of m
0 otherwise .

(287)
It follows that the probability pk in equation (272) vanishes unless k is a
multiple of m. We can afford to run the algorithm a few times, and determine
the greatest common divisor m of the resulting outcomes k. Then equation
(285) gives us the period r. Whatever the outcomes are, and even if N is
large, the mathematics of the last step guarantees that with high probability
we need only a few repetitions to determine r.

Let us do an example. Set N = 15 and choose a = 7, which is relatively
prime to 15. In arithmetic modulo 15 we find

a = 7 , a2 = 4 , a3 = 13 , a4 = 1 . (288)

So the period r = 4. (If you want to do modular arithmetic in your head,
think a3 · a = 13 · 7 = −2 · 7 = −14 = 1 modulo 15.) Even if we do not know
the value of r, the machine does, in some sense. When we measure on the
output register we might obtain the value f7(x) = 4, in which case the input
register is in the superposition

|ψ〉 = |2〉 + |6〉 + |10〉 + |14〉 . (289)

In fact m = 4, but this we do not know yet. The probability to obtain the
kth out of the 16 outcomes is

pk =
1

16

1

4

∣

∣

∣

∣

∣

∣

3
∑

j=0

ω4jk
16

∣

∣

∣

∣

∣

∣

2

=
1

16

1

4

∣

∣

∣

∣

∣

∣

3
∑

j=0

ωjk
4

∣

∣

∣

∣

∣

∣

2

=











1
4

if k = 0, 4, 8, 12

0 otherwise .
(290)

So there are only four possible outcomes. Say that we obtain the outcome 8.
We repeat the procedure, and obtain a different value, say 12. We compute
the greatest common divisor (8, 12) = 4. Then we have determined the
integer 16/r = 4, so that we can calculate r = 4, and from there we can
factorize 15.
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When does the easy case occur? Recalling that the period also divides
(p− 1)(q− 1), we see that the prime factors of N must be of the form 2x + 1
for some integer x. This includes the Fermat primes 22x

+ 1, of which the
only known examples are 3, 5, 17, 257, 65537. Reports that 15 = 3 ·5 has been
factored in the lab deal with the easy case.

The general case requires rather more analysis, and it is this that forces
us to use n̄ = 2n qubits for the input register. Although 2n̄/r is no longer an
integer there will be constructive interference in equation (272) for values of
k such that

k = c
2n̄

r
+ ǫ ⇔ k

2n̄
=
c

r
+

ǫ

2n̄
, (291)

where c is an integer and ǫ is small. The amplitude that occurs in equation
(272) becomes
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The peak is surprisingly sharp.72 When we have observed the kth outcome
we know the rational number k/2n̄, and going back to equation (291) we also
know that this rational number can be approximated with a rational number
having a much smaller denominator (namely r < 2n < 2n̄). As it happens
there is a branch of number theory that uses continued fractions to find
approximations of real numbers with rational numbers of small denominators.
This is a useful procedure in many contexts where one wants to compare two
incommensurable periods, say when one computes the date of Easter, and it
is necessary in order to make Shor’s algorithm work in the general case. But
I do not go through it here. I just remark that, provided the input register
contains 2n̄ qubits, a multiple of the period r can be found, efficiently and
uniquely, using continued fractions. In the end the conclusion is the same
as in the easy case: if the Fourier transformation can be done in polynomial
time then the probability that we will be done in polynomial time can be
made as high as we please. And an interesting point emerges, which is that
the analysis succeeds in identifying r precisely because the set of possible

72Exercise: For N = 21 and f(x) = 2x modulo 21, use a (classical) computer to plot
the probabilities pk that come out of Shor’s algorithm.
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measurement outcomes is discrete, or if you like because in some ways the
quantum computer is more digital than analog.

Other algorithms

The period finding core of Shor’s algorithm can be used to speed up the
solution of many other interesting problems that hinge on the structure of
commutative groups. It can for instance be used to find principal ideals and
unit groups in algebraic number theory. And it can be used to calculate
discrete logarithms in polynomial time, hence to break the widely used cryp-
tosystem due to Diffie and Hellman (and again to the British secret service).
The discrete logarithm is another example of a one way function, that is to
say a function that is easy to compute but hard to invert. We again do arith-
metic modulo some (large) integer N . If a and x are given integers it is easy
to calculate the integer ax, but if a and ax are given it is hard to calculate x.
The Diffie–Hellman scheme is a clever application of this fact. The integer
a is the message. Alice and Bob secretly choose two integers x and y that
are invertible modulo N . Alice sends the integer ax to Bob, Bob calculates
(ax)y = axy and sends it back to Alice, and Alice sends (axy)x−1

= ay back to
Bob, who can then read the message by applying his secret key y−1 to it. It
happens that the inverse of an integer modulo N can be calculated using the
Euclidean algorithm, hence in polynomial time, so Alice and Bob can do their
calculations quickly. But as far as we know, if N is large the eavesdropper
can read the message only if she has a quantum computer available.73

Still there are some public key cryptosystems that remain safe, and it
should be remembered that the rapid development of classical computers
happened because it was possible to make money out of each improvement. It
is difficult to see anyone making money out of unit groups in algebraic number
theory. At the moment it seems that the most likely practical applications
of quantum computing lie in the direction of letting one quantum system
simulate another, as originally suggested by Feynman. But the whole subject
is moving: there are small-scale quantum computers with public interfaces
on the internet.

73Exercise: Why does the eavesdropper need to compute a discrete logarithm to read
the message?
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Quantum error correction

A classical computer can easily perform Avogadro’s number of operations
without committing a single bit error. Its electronic switches are large on
the scale of the thermal fluctuations, oscillations are quickly damped out,
and whatever happens the bits remain unentangled with the environment.
Quantum gates are not that reliable, and a quantum computer able to fac-
torize a cryptographically interesting prime would need something like 109

gates. Then quantum error correction becomes essential. For several reasons
it used to be thought that quantum error correction is impossible, but Shor
and Steane surprised the world by showing that it is not.

The naive idea for error correction is to make sure that every qubit comes
in triplicate. This founders on the fact that we cannot copy an unknown
quantum state. A first attempt around this problem might be to use two
ancillas and store the state z0|0〉 + z1|1〉 as a three-qubit state,

|0〉|0〉(z0|0〉 + z1|1〉) → z0|000〉 + z1|111〉 . (293)

This violates no rules, and is indeed easily achieved by means of two CNOT
gates. We assume that at most one qubit at a time is affected by noise, so
an error to be corrected for could be the ‘bit-flip’

z0|000〉 + z1|111〉 → z0|010〉 + z1|101〉 . (294)

Now we run into the second problem. We cannot inspect a quantum state
without changing it in an irreversible way. If we measure any of the qubits
in the computational basis, the state collapses to either |010〉 or to |101〉.
Then we know that an error occurred, but we cannot restore the original
three-qubit state because all information about the amplitudes z0 and z1 has
been lost. Indeed the problem is worse, because there may be a ‘phase-flip’
error

z0|000〉 + z1|111〉 → z0|000〉 − z1|111〉 . (295)

We would not even notice this if we measure in the computational basis.
Still worse, in many ways the quantum computer behaves like an analog
computer, so the errors are not discrete. There may be a small amplitude
for an error, which then builds up during the computation.
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Let us focus on bit flip errors to begin with. We are going to cor-
rect for single bit flips affecting one qubit only, without looking at the
state to be transmitted. The key observation is that the uncorrupted state
z0|000〉 + z1|111〉 belongs to a two dimensional code subspace. A single error
transforms the state so that it sits in one out of three mutually orthogo-
nal two dimensional subspaces, all of them orthogonal to the code subspace.
This desirable situation occurs because the state to be transmitted belongs
to a 23 dimensional Hilbert space. To do the correction we introduce two
additional ancilla qubits set to |0〉 initially, and on which measurements M

will be performed. We will apply gates to the interesting qubits conditional
on the outcome of those measurements. The circuit diagram is

|X| |X| |M| |y〉
|X| |X| |M| |x〉

•
• •

• |Xxȳ|
|Xxy|
|X x̄y|

In the final round we apply gates such as Xxȳ, where as usual ȳ = y + 1 in
binary arithmetic and y is the outcome of the measurement on one of the two
ancillary qubits. You can easily check that the output is the desired—and
still unknown—state z0|000〉 + z1|111〉, also if the input is a state in which
one of the qubits has been corrupted by a bitflip, such as z0|001〉 + z1|110〉.

Of course this is only a partial success, because we still have to deal with
phase flips, and the various kinds of continuous drifts that can occur. In fact
the case we dealt with is a rather harmless one, in which the error is some
unwanted unitary transformation of a qubit. The three qubit state stays
pure. But in a system that is open to an environment the state can evolve
in many ways that do not preserve this property.

It helps to look at this a little more abstractly. Suppose that the state we
want to protect is encoded in an n-qubit state |Ψ〉, and that the relevant rest
of the world starts out in some reference state |0〉. The state is corrupted
by some unitary transformation acting on the whole Hilbert space. We can
‘discretize’ this by means of a unitary operator basis {UI} for unitary oper-
ators acting on the state we want to protect, so that the state transforms
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according to

|Ψ〉|0〉R →
∑

I

UI |Ψ〉|ψI〉R . (296)

This is completely general because we assume nothing whatsoever about the
reservoir states |ψI〉. They are neither orthogonal nor normalized. Thus
the ‘discretization’ is kind of a fake at this point. Nevertheless the unitary
operator basis will soon earn its alternative name “error basis”.

To proceed we need to assume something about the noise, and something
about the state |Ψ〉 that we are trying to protect. We need to ensure that

Tr|Ψ〉〈Ψ|U †
IUJ = δIJ . (297)

If this can be arranged the error basis gives rise to a set of mutually exclusive
alternatives, and a measurement can be devised so that the state collapses
according to

∑

I

UI |Ψ〉|ψI〉R → UI |Ψ〉|ψI〉R . (298)

Once we know the outcome we can apply the appropriate operator U †
I to the

state. The error is corrected, and never mind the reservoir state.
Concerning the noise, we assume that it acts on each qubit separately,

and moreover that it does not affect more than w qubits. Thus we assume
that we do not need the full unitary operator basis, but only elements of the
form

UI = E
(1)
I ⊗ E

(2)
I ⊗ . . .⊗ E

(n)
I , (299)

where, for each I, at most w of the unitary operators E
(i)
I differ from the

identity. Most, but not all, people who worked on this agree that this is a
physically reasonable assumption.

Now we look at (297) with new eyes. The equality would hold if |Ψ〉〈Ψ|
was replaced by the maximally mixed state. But now we have arranged
that, in any term of the trace, at most 2w of the factors contain non-trivial
error operators. We can begin by taking the partial trace of |Ψ〉〈Ψ| over the
remaining n−2w factors (those that have not been affected by the noise). It
is enough if this partial trace is the maximally mixed state in the 2w-partite
Hilbert space that is affected by the noise.
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We now specialize to the case n = 5 and w = 1, that is we aim to correct
single qubit errors only. Consider the following interesting state, in which
every computational basis state with an even number of 1s has been included,

|v0〉 = |00000〉 + |11000〉 + |01100〉 + |00110〉 + |00011〉 + |10001〉 −

−|10010〉 − |10100〉 − |01001〉 − |01010〉 − |00101〉 − (300)

−|11110〉 − |11101〉 − |11011〉 − |10100〉 − |01111〉 .
It clearly has a lot of structure. (It also has a misprint, which serves to make
Problem 5 below more realistic.) This structure is actually coming from a
discrete Heisenberg group, and this is also the way to give a more compact
description.74 There is a corresponding orthogonal state |v1〉, obtained by
switching the 0s and the 1s in |v0〉. Together they span a two dimensional
code subspace, consisting of the states

|Ψ〉 = z0|v0〉 + z1|v1〉 . (301)

You can now check that if we take the partial trace over any three out of the
five factors, there holds

Tr123|v0〉〈v0| = Tr123|v1〉〈v1| = 145 , Tr123|v0〉〈v1| = Tr123|v1〉〈v0| = 0 . (302)

I am being cavalier about normalisation factors here, and I singled out the
first three factors as an example only. The calculation is most conveniently
done by first calculating the eight scalar products 〈abc|v0〉, where a, b, c are
integers modulo 2. The scalar products 〈abc|v1〉 are obtained by switching 0
and 1, and then you can do the sum that defines the trace. Given this result
it follows that, for any state in the code subspace and regardless of which
three factors you trace out,

Tr123|Ψ〉〈Ψ| = |z0|2Tr123|v0〉〈v0| + |z1|2Tr123|v1〉〈v1| = 145 . (303)

74Exercise: Using the notation X , Y , Z, for the Pauli matrices, and a compact notation
for tensor products, show that the state is an eigenstate of the five commuting operators
XXZ1Z, ZXXZ1, 1ZXXZ, Z1ZXX , ZZZZZ.
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Given that at most one error occurs, this is all that is needed for eq. (297)
to hold. We can code a logical qubit as a state in this code subspace, and we
are assured that any single qubit error can be detected and corrected.

This is a promising start for the subject of quantum error correction. It
is also where these notes end, and I am afraid that they have exceeded the
hundred pages that I tried to limit them to.

Problem 5: Verify in complete detail my claim that the state (301) obeys equation
(297) if at most one error occurs. (Remember to correct the misprint.)
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