
QUANTUM INFORMATION This is the preliminary version from 2019.

In the 1920ies quantum mechanics was discovered, by Heisenberg, Born,
Schrödinger, and others. It was found to involve probability theory in an inti-
mate way. But classical probability theory was still in a primitive state. Kol-
mogorov gave a proper axiomatization of probability theory in the 1930ies.
Shannon introduced information theory in the 1940ies. In the following de-
cade the theory of stochastic processes saw great developments. So did ope-
rator theory, the work of Stinespring being especially important. In the
1970ies the time had come to update the probabilistic structure of quantum
mechanics. Thus the subject of quantum information was born, in the hands
of Holevo, Kraus, Lindblad, and a few others. A new ingredient was introdu-
ced when the idea of quantum computers was put on the table, by Benioff,
Deutsch, and others. The subject grew dramatically in the 1990ies largely
because experimentalists caught up with it, enabling theorists like Bennett
and Shor to assume that the theory deals with things you can actually do.
At the moment it is one of the main growth points of physics. It will take
some time before we know where it leads.

Quantum mechanics has many successes to its credit, such as enabling us
to understand the wave-particle nature of light, the structure of atoms, and
the stability of matter. Here we just take a lightning tour through quantum
information theory, assuming as little as possible in the way of prerequisites.
The course falls into four separate parts:

• Lengthy introduction

• Open systems

• Information theory

• Quantum computation

All of this to be crammed into 2 × 16 hours of teaching. To support you,
and keep you company in the evenings, you have the book by Stenholm and
Suominen, and these lecture notes. Since the book starts with a quote, I do
so too: “it would be contrary to ... the perfection of things, if there were no
chance events”. The source is the same as Stig’s and Kalle-Antti’s.
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LENGTHY INTRODUCTION

Throughout the lectures I will stress the connection to classical probability
theory rather more than the book does. The book on the other hand stresses
the connection to experiments in quantum optics much more than I will do.

The set of classical probabilities

Probability theory is simple to define mathematically if we stick to probabi-
lity distributions over a finite number n of mutually exclusive events. Then
we need n non-negative numbers summing to 1,

pi ≥ 0 ,
n
∑

i=1

pi = 1 . (1)

We can collect these numbers into a vector ~p and refer to any such vector
as a probability vector, as a probability distribution P , or—in analogy to the
quantum states that we will introduce later—as a classical state.

It is an embarrassment that the question what it means to assign the
number p1 = 0.561 (say) is controversial. Is it an objective statement about
frequencies? Or a measure of rational belief? Or what? Things are simple
only as long as we don’t ask.

A bit of extra notation is helpful. A random variable is defined as a
function that assigns real numbers to events. The random variable A takes
values ai with probabilities

pi = P (A = ai) . (2)

If we have several random variables we can define the joint probability pi,j =
P (A = ai, B = bj), which is the probability that A takes the value ai and B
takes the value bj , and the conditional probability P (A = ai|B = bj), which
is the probability that A takes the value ai given that B is known to take
the value bi. Joint and conditional probabilities are connected by Bayes’s
formula. In short hand notation

P (A,B) = P (A|B)P (B) = P (B|A)P (A) . (3)
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If there are n outcomes for the first and m for the second, the joint probability
vector carries a collective index and has nm components. We require

pi = P (A = ai) =
m
∑

j=0

pi,j , qj = P (B = bj) =
n
∑

i=0

pi,j . (4)

Probability vectors that arise in this way from a joint probability distribution
are known as marginal distributions.

The random variables may or may not be correlated. If not, they are
independent, and the probability vector for the joint event can be written as

pi,j = P (A = ai, B = bj) = P (A = ai)P (B = bj) = piqj . (5)

I stress that this equation is not true in general. Indeed, suppose n = m = 2,
and order the components of the joint probability vector lexicographically:

P0 = p0,0 , P1 = p0,1 , P2 = p1,0 , P3 = p1,1 . (6)

Now suppose that the random variables are independent, as in eq. (5). Then
the probability vectors that actually occur (the frequencies that will actually
be observed, if you look at it that way) are constrained by

P0P3 = P1P2 . (7)

If the observed frequencies do not obey this condition, you conclude that the
two random variables must be correlated.1

The set of probability vectors form a convex set. What this means is
that given two probability vectors ~p(1) and ~p(2) and a number x ∈ (0, 1), the
combination

~p = x~p(1) + (1 − x)~p(2) (8)

is a probability vector too. Conversely, given a probability vector ~p we can
ask if it can be formed as a mixture of two distinct probability vectors in
this way. If no such decomposition is possible the vector ~p is said to be pure.
Geometrically, you can think of a convex set as a set of points such that the
straight line between any pair of points in the set also belongs to the set. Of
course this assumes that we have a rule for adding points, and for drawing

1Exercise: Prove this. Note that it is an ‘if and only if’ statement.

3



straight lines between them. But this we have, because we regard our points
as vectors in a vector space of a fixed dimension n. Given a set of points you
can form the minimal convex set that contains them. This is known as their
convex hull.

The set of probability vectors is a convex set of a special kind. When
n = 3 there are three pure vectors, and every probability vector ~p can be
written as a convex combination of these pure vectors,

~p = p1







1
0
0





+ p2







0
1
0





+ p3







0
0
1





 , pi ≥ 0 , p1 + p2 + p3 = 1 . (9)

Geometrically this is a triangle, or a simplex if we keep the number of out-
comes n arbitrary.2 A convex combination, also known as a mixture, is a
quite special case of a linear combination, because the coefficients are requi-
red to be non-negative and sum to one. For simplices the decomposition of a
point into a convex combination of pure points is unique, but this is a special
feature of simplices. A square is also a convex set, but there is no unique
way of decomposing an interior point as a mixture of the four pure points at
the corners. The same is true for a circular disk, which has infinitely many
pure points. This last observation will become relevant when we come to the
quantum case.

Dynamics and distinguishability

If you want to introduce dynamics on a probability simplex, the options are
rather limited. You can use stochastic maps, given by matrices S such that
the vector ~q defined by

~q = S~p (10)

is a probability vector for every probability vector ~p.3 An example of a
stochastic map is the ‘bit flip’ matrix

2Exercise: When n = 4 the simplex is a tetrahedron, and eq. (7) describes a surface
inside a tetrahedron. Draw it! You should be able to see that it is formed from straight
lines obtained by keeping either ~p or ~q constant.

3Exercise: What conditions on the matrix elements of S ensure that this holds?
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Figure 1: We illustrate the stochastic map (11). In information theory stochastic
maps are called ‘channels’, and this is the ‘binary symmetric channel’.

S =

(

1 − p p
p 1 − p

)

, (11)

which may describe the degrading noise acting on a bit in a computer me-
mory. If we also require the stochastic maps to take pure states into pure
states, then the matrix is a permutation matrix. General stochastic maps
tend to shrink the simplex towards some fixed point, and can be combi-
ned into Markov chains.4 A Markov process is a special kind of stochastic
time development in which what happens in a given step depends only on
the result of the previous step. To see if a real physical phenomenon—like
the Brownian motion studied by Einstein—is a Markov process, one needs a
careful study of the relevant time scales.

This is a natural point to introduce the notion of distance between states,
in this case between probability vectors. The first attempt is to say that the
distance is defined using the recipe of Euclidean geometry, so that

D2(~p, ~q) =
n
∑

i=i

(pi − qi)
2 . (12)

The triangle becomes an ordinary flat triangle. But this turns out to be
unsatisfactory from two points of view. From the first point of view one
asks how easy it would be to distinguish two probability assignments from
each other using a finite number N of observations or samplings. You may
have two competing theories predicting the probability distributions ~p and
~q, respectively. You perform N measurements and obtain a frequency vector
~ν, which does not agree exactly with either prediction because of statistical

4Exercise: Apply the bit flip map (11) N times, and see what happens to the (one
dimensional) probability simplex.
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fluctuations. How many measurements do you have to perform before you
can sit judgment between the two theories? If that number is large, the
predictions are ‘close’, and we want a notion of distance that encodes this
idea. The second point of view suggests that the notion of distance should
have the property that

D(S~p, S~q) ≤ D(~p, ~q) . (13)

This means that one requires monotonicity under arbitrary stochastic maps
S. Either way, we insist that a notion of distance must mean something.
This is the operational point of view, which pervades the whole subject.

Let us look at a special example of a stochastic matrix:

S =







1 0 0
0 1 1
0 0 0





 . (14)

This is a coarse graining of the outcomes. We have decided not to keep track
of the distinction between the second and the third outcome, so certainly
distinguishability goes down if we perform the map ~p → ~q = S~p. But
Euclidean distances on a flat simplex can increase under this map, as you
can see in Figure 2. One way to handle this is to write

xi =
√
pi ≥ 0 ⇒

∑

i

pi =
∑

i

x2i = 1 . (15)

The probability simplex then looks like the positive octant of a sphere. We
define the Fisher–Rao distance dFR between two probability vectors as the
length of the shortest curve connecting them on the sphere that we just
defined. It is well known that the shortest curve between two points on the
sphere is always an arc of a great circle on the sphere, and you can easily
convince yourself that if we connect two points on an octant of the sphere
with such an arc, then the entire arc will lie within the octant. The distance
dFR between two probability distributions ~p and ~q then becomes simply the
angle between the two unit vectors they define, which is given by the formula

cos dFR =
∑

i

√
pi
√
qi . (16)

This should a familiar property of the unit sphere.
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This notion of distance behaves nicely under stochastic maps. On the
round octant of a sphere the transformation (14) is in the direction of an arc
of constant latitude, and now distances can only increase. This is true for
all stochastic maps. We omit the proof, but Figure 2 shows that it holds for
the coarse graining map.

Figure 2: Coarse graining collapses the entire simplex onto one of its edges. Euc-
lidean distances can increase under this operation—two points at distance D from
each other will find themselves at a distance D′ > D. On a round octant this
never happens.

The Fisher-Rao metric does have an operational meaning in terms of how
well one can distinguish between two probability distributions based on the
frequencies observed in a finite but large number of trials. Suppose that
there are only two outcomes, and that one of them happens with probability
p. The probability to see it happening m times if we do N samplings is

P (m) =

(

N

m

)

pm(1 − p)N−m . (17)

We get a frequency vector ~ν with components (m/N, (N − m)/N). If N
is large we expect this to be a fair approximation of the probability vector
(p1, p2) = (p, 1 − p). Indeed, after 20 years of work, Jakob Bernoulli proved
an important theorem.5

Law of Large Numbers. For every ǫ > 0 and δ > 0 the probability to obtain
the first outcome m times in N trials obeys

5Exercise: Look in a textbook on probability theory for a proof that takes less than 20
years to do.
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P
(∣

∣

∣

∣

m

N
− p

∣

∣

∣

∣

< ǫ
)

> 1 − δ , (18)

provided that N > N0 for some sufficiently large N0.

Information theory, to which we will arrive later, relies heavily on this.
Here we can make the Law of Large Numbers into a more quantitative

statement by bringing in Stirling’s formula

n! ∼ χ(n) =
√

2πn
(

n

e

)n

. (19)

This formula turns up whenever large numbers are to be counted.6 The sign
‘∼’ means that

lim
n→∞

n!

χ(n)
= 1 , (20)

and the approximation is accurate to within a percent already for n = 10.
Delicate handling of it shows that in a large number N of samplings the
probability to see the frequency vector ~ν is well approximated by

P(~ν) =

√

N

2πp1p2
e
−N

2

∑2

i=1

(∆pi)
2

pi , ∆pi = νi − pi . (21)

The sharpness of the peak varies as you move around the probability simplex.
As you can see in Figure 3, two probability assignments close to the edges of
the interval will be easy to distinguish with a modest number of samplings,
and hence we should regard them as far apart. The opposite holds for two
probability assignments close to the centre. Quantifying this leads directly
to the Fisher-Rao distance, since

1

4

(∆p)2

p
=

1

4

(

∆p√
p

)2

= (∆
√
p)2 ⇒ 1

4

2
∑

i=1

(∆pi)
2

pi
= D2

FS(~p, ~p+ ∆~p) . (22)

A similar statement holds also for more than two outcomes. (Just let the sum
go from 1 to n.) When we allow a large number of samplings this provides

6Exercise: Derive an approximation for lnn! by rewriting it as a sum and then approx-
imately as an integral. Compare to Stirling’s formula.
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a justification of the Fisher–Rao distance, at least if the distances are small.
Since we do not expect stochastic maps to increase distinguishability, we do
indeed expect that metrics quantifying the latter notion must be monotone.

Figure 3: The broader the Gaussian, the harder it is to decide if the observed
frequency matches the probability assignment we are assuming. Here N = 200,
and we have one component of the probability vector on the horizontal axis.

If we do not know what probability vector to assign to a choice between
N outcomes, we expect that the likelihood to find the probability vector in a
given region on the probability simplex is proportional to the volume of that
region. Here it clearly matters whether the simplex is flat or round. If we
use the volume element provided by the Fisher-Rao metric for the purpose,
we find that most of the volume is concentrated near the edges and vertices
of the simplex. We can take this as a reason why, in real life, most things
happen in a fairly predictable way. Random events that are evenly poised
are quite rare.7

Figure 4: It might seem as if 25 percent of all probability distributions lie in the
triangle in the middle. However, using the round metric on the simplex only 12
percent of them do.

7Exercise: Verify the calculation that goes into Figure 4.
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There are other notions of distance that are operationally meaningful,
such as the ‘taxi cab’ l1-distance

||~p− ~q||1 =
n−1
∑

i=0

|pi − qi| . (23)

On a two dimensional probability simplex ‘circles’ at constant distance from
a given point will then appear as suitably oriented hexagons.8 The taxi cab
distance is monotone under stochastic maps, and its operational meaning has
to do with how reliably two probability distributions can be distinguished by
means of a single sampling.

The quantum generalization

To generalize classical probability theory we first rewrite the definitions in
terms of diagonal matrices. We replace all probability vectors with matrices

P =







p1 0 0
0 p2 0
0 0 p3





 , P ≥ 0 , TrP = 1 . (24)

A random variable A is an otherwise unrestricted diagonal matrix,

A =







a1 0 0
0 a2 0
0 0 a3





 . (25)

The expectation value of a random variable, given a state, is then

〈A〉 = TrPA . (26)

There is a fairly obvious generalization of all this. We replace the diagonal
matrices with ‘diagonalizable’, and more particularly Hermitian, matrices.
This still leaves it open whether they should be real or complex matrices,
but it will turn out that complex numbers are the preferred choice, so let
us make it right away. A state is now a positive (and therefore Hermitian)
matrix,

8Exercise: Draw such ‘circles’ around a few selected points in the simplex. Argue that
this distance is monotone under the map (14).
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ρ = ρ† , ρ ≥ 0 , Trρ = 1 . (27)

The notation ρ ≥ 0 means that all the eigenvalues are greater than or equal to
zero. A matrix obeying all these conditions is known as a density matrix, or as
a quantum state. A random variable is an otherwise unrestricted Hermitian
matrix,

A = A† . (28)

For expectation values, we keep the classical formula (26).
Since positive operators are so important, let us state three equivalent

definitions:

ρ is Hermitian with non-negative eigenvalues ⇔

⇔ 〈v|ρ|v〉 ≥ 0 for every vector |v〉 ⇔ (29)

⇔ ρ = X†X for some bounded operator X .

It is also good to know that if A and B are positive operators then TrAB ≥ 0,
even though AB is not Hermitian unless A and B commute.

The quantum generalization is a significant one. The random variables,
and the states, now belong to a non-commutative algebra. If the matrices
act on a d dimensional Hilbert space the d − 1 dimensional classical state
space is turned into a d2 − 1 = (d − 1)(d + 1) dimensional one.9 The set of
density matrices is again a convex set. To see this we must prove that if ρ1
and ρ2 are density matrices then so is ρ, where ρ is the convex combination

ρ = xρ1 + (1 − x)ρ2 , 0 ≤ x ≤ 1 . (30)

The proof is easy given one of the three equivalent definitions of a positive
operators. So the density matrices form a convex set, just as the probability
vectors do.

9Exercise: Verify that a general matrix subject to (27) depends on d2 − 1 real parame-
ters, where d is the dimension of the complex Hilbert space.
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A remark on the Dirac notation

We will be dealing with vectors in Hilbert space, and operators acting on
them. The Hilbert space will have a finite dimension d, and an orthonormal
basis consisting of d unit vectors |ei〉. In fact it has infinitely many different
orthonormal bases. Having chosen one, we can write every vector in the form

|ψ〉 =
d−1
∑

i=0

zi|ei〉 , (31)

and every operator in the form

A =
d−1
∑

i,j=0

|ei〉Ai
j〈ej| . (32)

Frequently this is on the pedantic side, and we will often regard vectors
and operators as ordered arrays of numbers in the usual way (so that an
operator becomes a matrix). Having said this, there are situations where
things become conceptually more clear if we remember that this is just a
shorthand. And it is important to know what properties depend only on the
operator itself, and what properties depend also on the chosen basis. Being
positive is an example of the first kind, and being diagonal is an example of
the second. A Hermitian operator defines its own preferred eigenbasis, but if
you are interested in two Hermitian operators that do not commute you will
have to make the choice yourself.

The qubit

To understand what we have, set d = 2 so that we deal with two-by-two
matrices. The most general Hermitian two-by-two matrix with unit trace
can be written as

ρ =
1

2

(

1 + z x− iy
x + iy 1 − z

)

=
1

2
(1 + xσx + yσy + zσz) , (33)

where Pauli’s sigma-matrices were introduced in the last step. Think of the
triple (x, y, z) as a real vector. We call it the Bloch vector. When the Bloch
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vector is zero we have what we call the maximally mixed state. Its eigenvalues
are clearly positive. We calculate that

det ρ =
1

4
(1 − x2 − y2 − z2) . (34)

So the determinant vanishes if and only if the length of the Bloch vector
equals unity. The set of positive matrices is determined by the condition

det ρ ≥ 0 ⇔ x2 + y2 + z2 ≤ 1 . (35)

We call it the Bloch ball. Its surface is the Bloch sphere. The pure states sit
at the surface. States in the interior are known as mixed, because they can
be obtained as mixtures of pure states—in a highly non-unique fashion.

To see what goes on at the surface we note that every Hermitian matrix
can be decomposed into its eigenvectors. That is, we can write

ρ = λ0|ψ0〉〈ψ0| + λ1|ψ1〉〈ψ1| , 〈ψi|ψj〉 = δij , λ0 + λ1 = 1 . (36)

The eigenvectors are orthonormal, and the eigenvalues sum to 1 because
Trρ = 1. At the surface of the Bloch ball detρ = 0, and one of the eigenvalues
vanish. Hence we have

ρ = |ψ〉〈ψ| , (37)

for some unit vector |ψ〉. Conversely, for every unit vector |ψ〉 we will obtain
a density matrix lying on the Bloch sphere in this way. Let us consider
the most general case. Since an overall phase factor of the vector can be
chosen freely we can make things completely definite by insisting that the
first non-vanishing component is real and positive, and then we get

|ψ〉 = cos
θ

2
|e1〉 + sin

θ

2
eiφ|e2〉 , 0 ≤ θ ≤ π , 0 ≤ φ < 2π . (38)

We have chosen to parametrize the state vector with angles θ and φ with
the idea that these parameters should, in the end, serve as coordinates on a
sphere.

Putting eqs. (37) and (38) together we find
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ρ =

(

cos2 θ
2

cos θ
2

sin θ
2
e−iφ

sin θ
2

cos θ
2
eiφ sin2 θ

2

)

=
1

2

(

1 + cos θ sin θe−iφ

sin θeiφ 1 − cos θ

)

. (39)

We can now read off the Bloch vector that describes an arbitrary pure state
|ψ〉, namely

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ) . (40)

And we can draw a picture of the Bloch sphere, with some states of interest
placed where they should be.

Let us think about the basis that was implicit in the discussion. By
agreement the computational basis consists of the vectors

|e0〉 =

(

1
0

)

↔ θ = 0 , |e1〉 =

(

0
1

)

↔ θ = π . (41)

(No pedantry here.) We place them at the north and south poles of our
sphere. Another pair of orthogonal states are

1√
2

(

1
1

)

↔ (θ, φ) = (
π

2
, 0) ,

1√
2

(

1
−1

)

↔ (θ, φ) = (
π

2
, π) . (42)

The map of the Bloch sphere is ready, and we just have to fill in some physics.
Notice that orthogonal pure states always sit on antipodal points on the

sphere, as far from each other as they can be. Also that every state in the
interior can be created as a mixture of pure states in infinitely many ways.

Polarization states of a photon

We have just described the qubit, the smallest information carrying unit in
quantum information theory. Many physical systems are as simple as this.
A well known example is given by the polarization states of a photon. The
word ‘photon’ is a dangerous one. Lamb suggested that it should not be used
by anyone who does not have a special license to do so. Some people define a
photon as ‘a click in a detector’. So let us instead think of a monochromatic
electromagnetic plane wave travelling in the z-direction. While this is a
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rather different thing, the possible polarization states of the two things agree,
and this is what we want to parametrize. A polarization state of a plane wave
is an ellipse swept out by an electric field vector orthogonal to that direction.
The magnetic field sweeps out a similar ellipse. The ellipse degenerates to a
line for a linearly polarized state. Why is the set of such polarization states
equal to a sphere? The answer was given by Stokes. Going through the
details gives useful experience of how to handle qubits.

We begin with a general vector in C2. We are interested in vectors only
up to an overall normalization and an arbitrary phase factor. It is quite
convenient to remove the ambiguity by insisting that its first componenent
equals 1. This works for all vectors except for those whose first component
vanish. In C2 we miss only one state in this way, and this can be added in
later. Taking the sign ‘∼’ to mean ‘equal up to an overall complex factor’
we write

|ψ〉 ∼ cos
θ

2
|e0〉 + sin

θ

2
eiφ|e1〉 ∼ |e0〉 + tan

θ

2
eiφ|e1〉 = |e0〉 + z|e1〉 . (43)

The equality defines an arbitrary complex number z. The one-to-one corre-
spondence between pure qubit states and the surface of a sphere will turn
into the well known correspondence between the complex plane and the sur-
face of a sphere. The ‘extra’ number ∞ will have to be added to the complex
plane in order to ensure that the correspondence becomes one-to-one.

We write down the corresponding density matrix, normalizing as we go,
and read off the Bloch vector:

1

1 + |z|2
(

1
z

)

(

1 z̄
)

=
1

1 + |z|2
(

1 z̄
z |z|2

)

=
1

2

(

1 + s3 s1 − is2
s1 + is2 1 − s3

)

.

(44)
The components of the Bloch vector are denoted si, as is conventional for
the Stokes parameters we are aiming at. Clearly

s1 + is2 =
2z

1 + |z|2 s3 =
1 − |z|2
1 + |z|2 . (45)

The condition s21 + s22 + s23 = 1 is built in, because we started from a pure
state. This is the famous stereographic projection from the sphere to the
complex plane.
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So far there are no polarization ellipses in evidence. To get them in, we
perform an operation that may seem strange at first. We take the square
root of z. With the exception of the north and south poles every point on
the sphere splits in two:

z = reiα , w =
√
z = ±

√
re

iα
2 . (46)

We read off new Bloch vectors from

1

1 + |w|2
(

1 w̄
w |w|2

)

=
1

2

(

1 + x3 x1 − ix2
x1 + ix2 1 − x3

)

. (47)

We find

x± =
1

1 + r







±2
√
r cos α

2

±2
√
r sin α

2

1 − r





 . (48)

The idea now is to regard the space in which these Bloch vectors sit as a
copy of ordinary three dimensional space, think of a monochromatic plane
wave (or a photon) propagating in the z-direction, consider the intersection
between the Bloch sphere and the plane orthogonal to any of the pair of Bloch
vectors we obtained, and finally to project that circle onto the x− y-plane.10

Actually we consider a sphere of arbitrary radius R, so the equations are

±2
√
r cos

α

2
x± 2

√
r sin

α

2
y + (1 − r)z = 0 , x2 + y2 + z2 = R2 . (49)

Solve the first equation for z and insert the result into the second. Then the
sign ambiguity goes away. After some manipulations, and reintroducing the
Stokes parameters, we find that the projection onto the x− y−plane is given
by

x2

1 − s1
+

y2

1 + s1
+

4s2
1 − s21

xy =
R2

2

(1 − r)2(1 + s3)

1 − s21
. (50)

This is indeed an ellipse.
Let us now write (with a slightly unusual sign convention)

10Exercise: Draw the picture.
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(s0, s1, s2, s3) = (a21 + a22, a
2
2 − a21,−2a1a2 cos δ,−2a1a2 sin δ) . (51)

Assume a21 +a22 = 1 and choose R suitably. Then the equation for our ellipse
becomes

(

x

a1

)2

+
(

y

a2

)

− 2 cos δ

a1a2
xy = sin2 δ . (52)

Now consider a general monochromatic plane wave of fixed amplitude pro-
pagating in the z-direction,

Ex = a1 cos (τ + δ1) , Ey = a2 cos (τ + δ2) , Ez = 0 , a21+a22 = 1. (53)

Set δ = δ2 − δ1. A trigonometric exercise then verifies that the electric field
vector sweeps out precisely the ellipse described by eq. (52).

This exercise may strike you as a trick. Actually there is a deeper reason
why it works. What is really happening is that we are embedding the spin 1/2
Hilbert space C2 in the spin 1 Hilbert space C3. If the plane wave describes
a neutrino no square root would be necessary in eq. (46). If it describes a
spin 2 graviton we would need to take a fourth root. But explaining this
point would take us too far afield, so we leave neutrinos and gravitons to
their fates.

The important point is that the geography of the Bloch sphere is now
completely fixed, in any problem concerning polarisation measurements on
photons. Points at the poles of the Bloch sphere correspond to circular
polarisation, right or left. Linear polarisation occurs on its equator, with
an angle shifted 90◦ for antipodal points. Notice though that this specific
one-to-one correspondence was written by Stokes, not by God. We can (and
people sometimes do) change coordinates so that linear polarization states lie
on the Greenwich meridian, where they are described by real state vectors.
What is always true is that the linear polarization states lie on a great circle
of the sphere, with pairs of physically orthogonal states (for which the relative
angle of linear polarization is 90◦) sitting at antipodal points.

[Afterthought: It would have been better to talk about linear polarization
states, a source producing 106 photons per second, a very expensive detector
with 90 % efficiency, and two Glan-Thompson prisms, 1000 Swedish crowns
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apiece, enabling us to prepare and measure a circle’s worth of linear polariza-
tion states. The Stokes parameters are good for serious optics, but not really
needed in this course.]

Dynamics and distances on the qubit

In the classical theory dynamics is given by stochastic maps, degenerating to
permutation matrices if pure states always evolve into other pure states. In
quantum theory the general case is difficult enough to merit a chapter of its
own, ‘Open systems’. But we can understand those transformations that take
pure states to pure states. They are simply rotations of the Bloch sphere. We
obtain them by acting with a unitary matrix on the pure state vectors. To
see this it is enough to observe that we can obtain scalar products between
Bloch vectors by turning the set of operators acting on Cd into a Hilbert
space in its own right. The scalar product between operators is defined by

A ·B = TrA†B . (54)

Notice the dagger, guaranteeing that

||A||2 = TrA†A ≥ 0 . (55)

Clearly this scalar product is left invariant by

A→ UAU † , B → UBU † . (56)

The complex dimension of the Hilbert space of operators acting on a complex
Hilbert space of dimension d is d2. This is an important idea that we will
use again.

So far things do not really depend on the Hilbert space dimension d. For
d = 2 we check that if

A =
1

2

(

x3 x1 − ix2
x1 + ix2 −x3

)

, B =
1

2

(

y3 y1 − iy2
y1 + iy2 −y3

)

, (57)

then
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TrA†B =
1

2
~x · ~y . (58)

It follows that, in C2, unitary transformations can be thought of as rotations
of the Bloch ball. Moreover every rotation of the Bloch ball can be obtained
in this way, but this is a special feature of the qubit.

We have defined a notion of distance between quantum states that reduces
to the ordinary Euclidean distance on the Bloch ball, and on the probability
simplex spanned by a set of diagonal density matrices. There is no disputing
the usefulness of this, but we have already argued that if a distance is to cap-
ture the notion of statistical distinguishability it must be defined differently.
If we restrict ourselves to pure states and qubits, another notion of distance
between quantum states suggests itself, namely the length of an arc of a great
circle connecting the two points on the Bloch sphere. This is known as the
Fubini–Study distance, and denoted DFS. It is an exercise to show that it is
given by the formula

cos2DFS =
|〈ψ|φ〉|2

〈ψ|ψ〉〈φ|φ〉 , (59)

where the vectors are not necessarily normalized.11 The formula turns out
to be useful, in the same sense as the Fisher–Rao distance is useful, and it
can be used regardless of the dimension of Hilbert space.

Higher dimensions

Many of the formulas for the qubit generalize immediately to Hilbert spaces
of dimensions higher than two. Nevertheless the qubit is a misleadingly
simple example in many ways. The set of quantum states, that is positive
matrices with trace one, has d2−1 dimensions. A general density matrix can
be obtained from a diagonal one by means of a unitary transformation

ρ→ UρU † . (60)

11Exercise: Do the exercise referred to in the text. You may have to adjust the size of
the sphere.
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Because an overall phase does not matter it is the SU(d) subgroup that acts
effectively on the states. You can still think of this as a rotation in d2 − 1
dimensions, but now it is a quite special rotation. This is so because the
set of density matrices is no longer a sphere. In fact the surface of a sphere
in d2 − 1 dimensions has, in itself, d2 − 2 dimensions. But the pure states
can be described by vectors in Cd, with one of the d complex numbers being
irrelevant. So the set of pure states has only 2d − 2 dimensions, far less
than the dimension of the surface of a sphere. The set of all states is the
convex hull of the pure states, and is therefore only a subset of the ball. It
is well-nigh impossible to visualize the set of density matrices for d > 2.12

When d = 2 we expanded an arbitrary state in terms of the Pauli matrices.
A Pauli matrix has eigenvalues ±1, which means that it is both Hermitian
and unitary. There are two ways to generalize the Pauli matrices to arbitrary
dimensions, because you can regard them either as a basis for the set of all
Hermitian matrices, or as a basis for the set of all unitary matrices in the d2

dimensional Hilbert space of d by d matrices equipped with the trace inner
product (61). Saving the second way for later, we observe that for any d one
can find a set of d2 − 1 Hermitian traceless matrices such that

Trλiλj = dδij . (61)

Any d× d density matrix can then be written as13

ρ =
1

d



1 +
d2−1
∑

i=1

xiλi



 . (62)

This defines a generalized Bloch vector with components xi, although the
conditions one has to impose on this vector to ensure that ρ is positive are
distinctly unpleasant.

A couple of useful facts, that you can prove by first diagonalizing ρ: A
density matrix lies at the boundary of the set if and only if it has a vanishing
eigenvalue. A density matrix is pure if and only if Trρ2 = 1. This quantity
obeys

12Exercise: Let ρ be a Hermitian matrix obeying Trρ3 = Trρ2 = 1. Prove that ρ is a
pure state.

13Exercise: Find such a set of Hermitian matrices for d = 3.
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1 ≥ Trρ2 ≥ 1

d
. (63)

It is sufficiently important to have a name, purity.14

From now on we will be a bit vague about the dimension of the Hilbert
space in this ‘Introduction’. The dimension is arbitrary but finite when this
causes no extra trouble, but you may think in terms of qubits if you so prefer.

A preliminary theory of measurements

In classical theory it is fairly obvious what a measurement is, and what it
measures. Not so in quantum theory, and most of the discussion has to
wait until we come to ‘Open systems’. But we can make a start. Choose
any quantum random variable, that is to say a Hermitian matrix. It has a
complete set of orthonormal eigenvectors {|ei〉}d−1

i=0 , and they correspond to
the d mutually exclusive outcomes of an experiment. Given that the state of
the system is defined by a particular density matrix ρ, the probability that
a particular outcome occurs is declared to be

pi = Tr|ei〉〈ei|ρ = 〈ei|ρ|ei〉 . (64)

These numbers are non-negative because ρ ≥ 0 is a positive matrix, and they
sum to unity because

∑

i

pi =
∑

i

Tr|ei〉〈ei|ρ = Tr
∑

i

|ei〉〈ei|ρ = Trρ = 1 . (65)

Note carefully the steps in this calculation, which made use first of the li-
nearity of the trace, then of the completeness of the basis, and finally of
the normalization of the density matrix. The density matrix is not a pro-
bability distribution, but it stands prepared to give one for every Hermitian
observable that you choose to introduce.

It is important to notice that the result of a quantum measurement cannot
tell you what the state of a qubit was before the measurement, not even if you
are assured that it was in some pure state. The measurement is associated to

14Exercise: Prove these inequalities. Also write down a formula connecting TrM , TrM2,
and detM for an arbitrary two-by-two matrix M .
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an eigenbasis unrelated to the state. If you observe the outcome associated
to |e1〉, all you can say with certainty is that the state was not one of the
those orthogonal to |e1〉. Every other pure state would yield that outcome
with some probability.

The situation improves if you are given a large number N of qubits, and an
assurance that their states are identical. Then you will obtain a probability
distribution ~p over the eigenstates. A look at the Bloch sphere tells you that
this outcome is consistent with any state lying on a circle at the surface of
the Bloch sphere. If you have no assurance that the state ρ you are trying to
determine is pure, you can only conclude that ρ lies on a disk in the Bloch
ball. In order to pin down the state exactly you will need not only a supply
of many identically prepared qubits, you will also need to perform quantum
measurements associated to more than one eigenbasis.15

There remains the question about the state of the system after the mea-
surement. The answer depends. A photon detected as a click in a detector
does not exist after the measurement. In a projective or von Neumann mea-

surement corresponding to some Hermitian matrix, the state after the mea-
surement is one of the eigenstates |ei〉 of that matrix. The system ‘collapses’
to one of the eigenstates, with probabilities given by (64). Some more detail
will be added when we come to ‘Open systems’, but for now it is enough to
know that the notion of von Neumann measurements is a useful one in the
lab.

Nice error bases

Let us return to the Pauli matrices, and look at them as unitary operators.
We even give them new names:

X = σx =

(

0 1
1 0

)

Z = σz =

(

1 0
0 −1

)

. (66)

There is one more, but we can regard it as a derived quantity because

15Exercise: If your Hilbert space has dimension d, how many different measurements
would you need to determine an arbitrary state ρ, given an infinite supply of identically
prepared systems so that each measurement may be repeated to give a frequency?
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Y = σy =

(

0 −i
i 0

)

= iXZ . (67)

The action on the computational basis is

X|0〉 = |1〉 , X|1〉 = |0〉 , Z|0〉 = |0〉 , Z|1〉 = −|1〉 . (68)

X is sometimes called the bit flip, and Z is called the phase flip. Another
interesting operator in this connection is

H =
1√
2

(

1 1
1 −1

)

. (69)

It interchanges X and Z,

H2 = 1 , HXH† = Z , HZH† = X . (70)

It is called the Hadamard gate, where ‘gate’ means ‘unitary operator’ in
discussions of quantum computers.16

An important property of the set {1, X, Z,XZ} is that it forms a unitary

operator basis. This is also known as a nice error basis in quantum computing,
because such bases play a role in quantum error correction. What it means
is that there exists a group with d2 elements gi, g0 = e being the identity
element, and a set of unitary operators Ug acting on Cd, such that

Ue = 1 , gi 6= e ⇒ TrUgi = 0 , UgiUgj ∼ Ugigj . (71)

Here the sign ‘∼’ means ‘equal up to a phase factor’. It follows that U †
gi

=
Ug−1

i
. But then it also follows that

TrU †
gi
Ugi = d , gi 6= gj ⇒ TrU †

gi
Ugj = 0 . (72)

But this means that this set of unitary operators forms an orthonormal basis
in the d2-dimensional Hilbert space of all operators acting on Cd, equipped
with the natural inner product (54). Hence the name. Every operator,
whether Hermitian or unitary or none of those, can be expanded as

A =
1

d

∑

g

UgTrU †
gA , (73)

16Exercise: How do X , Z, and H rotate the Bloch sphere?
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where the sum runs over the elements in the operator basis. In the qubit
example, there are four terms.

Nice error bases exist in all dimensions. One of many possibilities goes
as follows: Introduce a basis {|i〉}d−1

i=0 in Hilbert space, and treat the labels
as integers modulo d (that is to say that i+ d = i). Let

ω = e
2πi
d . (74)

Define two unitary operators Z and X by

Z|i〉 = ωi|i〉 , X|i〉 = |i+ 1〉 . (75)

One can now prove that

Xd = Zd = 1 , ZX = ωXZ . (76)

The resulting group is called the Weyl–Heisenberg group. Up to phase factors
it has d2 group elements X iZj, and it can be shown that these group elements
form a nice error basis in dimension d.17

Composite systems

If, in classical probability theory, we look for the combined outcomes of n
events that can be either true or false, then there are two outcomes per event
but 2n possible outcomes altogether. If n is large this gives a probability
simplex of a high dimension. Quantum mechanics shows a similar exponential
growth in the dimension of Hilbert space if you put several qubits together.
The idea is that if you have a system composed of two parts, so that you can
choose to do observations either on only one of the parts or on the whole, then
the Hilbert space is the tensor product of the Hilbert spaces of the parts. One
way of constructing the tensor product is to introduce orthonormal bases in
each factor, say {|ei〉}d1−1

i=0 and {|fj〉}d2−1
j=0 , and use the d1d2 vectors |ei〉⊗ |fj〉

as an orthonormal basis for the combined system. This is a somewhat clumsy
way of expressing things, but it will do. It does not imply that every vector

17Exercise: Write the operators X and Z as matrices for d = 2, 3, 4. Write out all the
operators X iZj for d = 3, and check that they form a nice error basis.
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in the larger space is a product vector, because we can have superpositions
such as

|ψ〉 =
∑

i,j

cij |ei〉 ⊗ |fj〉 . (77)

This is not a product vector in general.18 You can put n qubits together by
iterating the idea, and you will end up with a Hilbert space of dimension 2n.

We can define operators of a special form, called local operators and
denoted A⊗B. They act on the basis states according to

A⊗ B|ei〉 ⊗ |fj〉 = A|ei〉 ⊗B|fj〉 . (78)

They obey obvious rules such as

A⊗ (B + C) = A⊗ B + A⊗ C , (A⊗ B)(C ⊗D) = AC ⊗BD . (79)

Operators of the form A⊗ 1 and 1⊗ B commute.
When working with components in a product basis we adopt a lexico-

graphical ordering of the basis vectors. Thus

|ψ1〉 =

(

a0
a1

)

, |ψ2〉 =

(

b0
b1

)

⇒ |ψ1〉 ⊗ |ψ2〉 =











a0b0
a0b1
a1b0
a1b1











, (80)

A =

(

a00 a01
a10 a11

)

, B =

(

b00 b01
b10 b11

)

⇒

(81)

A⊗ B =











a00b00 a00b01 a01b00 a01b01
a00b10 a00b11 a01b10 a01b11
a10b00 a10b01 a11b00 a11b01
a10b10 a10b11 a11b10 a11b11











.

18Exercise: For two qubits, write down the condition that this be a product vector and
compare to (7).
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We frequently abbreviate |ψ1〉⊗ |ψ2〉 to |ψ1〉|ψ2〉. More drastic abbreviations
are sometimes used, especially for qubits where one often abbreviates |0〉⊗|1〉
and X ⊗ Z (say) to |01〉 and XZ.

By inspection we see that it may be useful to index the components of
the density matrix, and other matrices, by a pair of indices. Thus we write

ρ =
d1−1
∑

i,j=0

d2−1
∑

α,β=0

|ei〉|fα〉ρiαjβ〈ej|〈fβ| , (82)

where we used both Latin and Greek indices to emphasize that the factor
Hilbert spaces may have different dimensions (although the dimensions would
be the same for the two-qubit case). We do the same for every operator. For
local operators the expressions take a quite special form. In particular

(A⊗ 1)iαjβ = Ai
jδ

α
β , (1⊗ B)iαjβ = δijB

α
β . (83)

We have constructed the Hilbert space Cd1d2 = Cd1 ⊗Cd2 . Sometimes we
will write this as H = H1⊗H2. Starting from the other end, a Hilbert space
with a dimension that is a composite number can always be decomposed
into a tensor product, but there are many different ways of doing so. A
particular way may be preferred by the physics. Suppose that Hilbert space
is four dimensional, and that we are able to identify two sets of mutually
commuting operators, each of them as rich as the set of operators on a qubit.
Then we declare them to be local operators of the special form that guarantee
that they commute, relative to a tensor product structure defined especially
for the purpose. Thus operators of the form A⊗1 and 1⊗B may be applied
at opposite ends of an optical table, while non-local operators may have been
applied to the system at an earlier stage. For instance, the system may be a
pair of photons created in a special two-photon state by a non-linear crystal.
In some experiments pairs of photons have been distributed by satellite to
locations that are very far apart, and it seems obvious that whatever is done
at one of the locations ‘commutes’ with what is done at the other location.
This explains why we refer to ‘local’ operators, because then we really mean
‘local in space’.

We have a general formula for the expectation value of any Hermitian
operator A given that the state is ρ, namely

〈A〉 = Tr(Aρ) . (84)
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But there are many situations, many more than those hinted at in the pre-
ceding paragraph, where we are only concerned with expectation values of
local operators of the form A ⊗ 1. Inspection of the formulas (83) suggests
that there may be many complexities of ρ that do not come into play when
we calculate such expectation values. We are therefore looking for a reduced

state density matrix ρ1, acting only on the first factor in the tensor product,
such that

A = A1 ⊗ 12 ⇒ Tr(Aρ) = Tr(A1ρ1) , (85)

where the matrices and the trace at the end are those relevant for the factor
Hilbert space H1. This is achieved by taking the partial trace of ρ, written

ρ1 = Tr2ρ , ρ2 = Tr1ρ . (86)

The definition of the partial trace is conveniently given in the matrix repre-
sentation (82), as

(Tr2ρ)i j =
d2−1
∑

α=0

ρiαjα , (Tr1ρ)αβ =
d2−1
∑

i=0

ρiαiβ . (87)

Clearly Trρ = Tr1Tr2ρ. One can show that ρ1, so defined, is the unique linear
operator that meets the requirement (85). The importance of the reduced
states ρ1 and ρ2 is that they encode all the information about the state ρ that
can be extracted by means of operations acting only on one of the factors of
the Hilbert space. Formulated in this way it sounds abstract, but it is in fact
what may be going on in the lab, and elsewhere.19

In calculations it is often preferable to use the Dirac notation for the
trace. Using the product basis we write

Trρ =
∑

i,j

〈i1|〈j2|ρ|i1〉|j2〉 , Tr2ρ =
∑

j

〈j2|ρ|j2〉 , Tr1ρ =
∑

i

〈i1|ρ|i1〉 . (88)

Note carefully that Trρ is a number, while Tr2ρ is an operator acting on H1.
The story does not stop at two. We can construct tensor products of an

arbitrary number of Hilbert spaces, such as H1 ⊗H2 ⊗ . . . ⊗Hn, and trace
out whatever factors we are not controlling, to obtain density matrices like

19Exercise: Compute the two partial traces of the matrix A⊗B given in (81).

27



ρ12 = Tr34ρ , (89)

where ρ acts on the four partite Hilbert space H1 ⊗ H2 ⊗ H3 ⊗ H4 in this
particular example.

Entanglement

The term ‘entanglement’ was coined by Schrödinger, in a far-seeing series of
papers in the 1930ies. We begin by considering a pure state in a bipartite
Hilbert space H1⊗H2, and ask what one can do with it using local operators
only. For simplicity we assume that both the factors have the same dimension
d. A general pure state can be written as

|Γ〉 =
1√
d

d−1
∑

i,j=0

Γij |ei〉|ej〉 . (90)

This is a product vector if there exists vectors ~α and ~β such that

Γij = αiβj . (91)

The state is then said to be separable. If it is not separable it is said to be
entangled, but entanglement is (as we will see) a question of degree. Now let
us act on the state with a local unitary U ⊗ V . The result is20

U ⊗ V |Γ〉 =
1√
d

∑

i,j

U i
kV

j
lΓ

kl|ei〉|ej〉 = |UΓV T〉 . (92)

This is alarming at first sight. Let us choose Γij = δij. This gives the
Jamio lkowski state |δ〉,

|δ〉 =
1√
d

d−1
∑

i=0

|ei〉|ei〉 . (93)

We see that

U ⊗ 1|δ〉 = |U〉 , 1⊗ V |δ〉 = |V T〉 . (94)

20Exercise: Perform the calculation, using Dirac notation very carefully.
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Everything that Alice can do acting with U ⊗ 1 can be done by Bob as well,
if he acts with 1⊗UT. Does this means that information can be transmitted
by the state in a non-local way?

Recall that all the information that Alice can extract from the state is
given by the partial trace of the density matrix, and similarly for Bob. So
we calculate

ρ1 = Tr2|δ〉〈δ| =
1

d
1 , ρ2 = Tr1|δ〉〈δ| =

1

d
1 . (95)

In both cases this is the maximally mixed state for dimension d.21 It means
that neither Alice nor Bob can make any useful prediction about the expe-
riments that they carry out on their own, using operators of the form A⊗ 1

and 1 ⊗ B respectively. This is true for Bob regardless of what Alice does
to the state, and conversely. Alice and Bob will have to cooperate, and use
non-local operations, if they want something more specific to come out of
the Jamio lkowski state. No information was transmitted in (94).

Let us now consider the reduced states of an arbitrary pure state in Cd1⊗
Cd2 , where d1 ≤ d2. We may be interested in the situation where the first
factor is, say, a qubit while the second factor describes, say, most of the rest
of the world, so there is no reason for the dimensions to be the same. Let us
first write the state as

|ψ〉 =
d1−1
∑

i=0

d2−1
∑

j=0

Γij |ẽi〉|f̃j〉 =
d1−1
∑

i=0

|ẽi〉|φ̃i〉 . (96)

The second step is always possible, but there is absolutely no reason why
the d1 states |φ̃i〉 in Cd2 should be orthonormal. We can still calculate the
partial trace. The centre piece of the calculation makes use of (88), and the
observation that

d2−1
∑

k=0

〈k2|φ̃i〉〈φ̃j|k2〉 =
d2−1
∑

k=0

〈φ̃j|k2〉〈k2|φ̃i〉 = 〈φ̃j|φ̃i〉 . (97)

We obtain

ρ1 = Tr2|ψ〉〈ψ| =
d1−1
∑

i=0

d1−1
∑

j=0

〈φ̃j|φ̃i〉|ẽi〉〈ẽj| . (98)

21Exercise: Perform the calculation. Also try the two qubit state |ψ〉 = z0|00〉+ z1|11〉.
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We now have a Hermitian d1 × d1 matrix on our hands. We diagonalize it
by introducing a new basis |ei〉. The eigenvalues will be real and positive, so
there exist positive numbers pi, summing to one, such that

ρ1 =
d1−1
∑

i=0

pi|ei〉〈ei| . (99)

The eigenbasis of ρ1 is a preferred basis for Cd1 , for any problem in which ρ1
plays a leading role. So we go back to (96) and repeat the calculation using
it, dropping the tildes as we go. This time the result (98) takes a simple
form:

|ψ〉 =
d1−1
∑

i=0

|ei〉|φi〉 ⇒ ρ1 =
d1−1
∑

i=0

d1−1
∑

j=0

〈φj|φi〉|ei〉〈ej| . (100)

But this time we are using a basis in which ρ1 is known to take the form
(99). We can therefore conclude that

〈φj|φi〉 = piδij . (101)

Rescaling the vectors |φi〉 with a factor
√
pi we have the first d1 vectors in an

orthonormal basis {|fj〉}d2−1
j=0 for Cd2 . We have therefore proved a theorem

saying that by choosing bases in the factors suitably any given pure state in
Cd1 ⊗Cd2 can be written on the form

|ψ〉 =
d1−1
∑

i=0

√
pi|ei〉|fi〉 . (102)

This standard form of |ψ〉 is called its Schmidt decomposition. The reduced
density matrices ρ1 and ρ2 have the same spectrum. Their eigenvalues pi are
entanglement invariants in the sense that they cannot be changed by local
unitary operations. A pure state is separable if the reduced states are pure.
A state is maximally entangled if the reduced states are maximally mixed.

[It would have been better to do this by means of a singular value decom-

position of the matrix C in (96). Given a matrix, Mathematica does it for
you in no time. Then I could also have explained the polar form C = RU .]
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Entanglement theory

There is much more to the story. It is usually told from the perspective
of local operations and classical communication. Then the operations are
unitary transformations and measurements associated to operators like A⊗1

and 1 ⊗ B. The parties are allowed to communicate with each other, so
that Alice can suggest to Bob which particular operation he should apply.
The theory treats local operations as if they were for free, while entangling
operations are expensive. Separable states can be transformed into each
other for free, and pure states with isospectral reduced density matrices can
be transformed into each other for free, but it is expensive to turn a separable
state into an entangled one. We can define the entanglement cost of a state
ρ as the minimum number m of maximally entangled states needed to create
n copies of ρ, or more precisely as the quotient m/n in the limit of large n.
We can define the distillable entanglement of a state ρ similarly, in terms of
the number of maximally entangled states one can create from a number of
copies of ρ. (Curiously, these are not equal.)

And we can generalize bipartite entanglement to tripartite or multipartite
entanglement. Let me just say that this is not easy. One reason is that the
Schmidt decomposition works only in the bipartite case.

The no-cloning property

Here is a simple observation one should know about: It is impossible to
construct a machine that inputs an arbitrary quantum state and outputs
two copies of the same state. Let us prove this for pure states. Our machine
effects some unitary transformation. We need a unitary transformation in a
two-particle Hilbert space H⊗H, so that

U(|ψ〉 ⊗ |0〉) = |ψ〉 ⊗ |ψ〉 , (103)

for every state |ψ〉. Let |e1〉 and |e2〉 be two orthogonal states in H. It must
be the case that

U(|e1〉 ⊗ |0〉) = |e1〉 ⊗ |e1〉 , U(|e2〉 ⊗ |0〉) = |e2〉 ⊗ |e2〉 . (104)
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Now consider the state |ψ〉 = z1|e1〉 + z2|e2〉. By linearity

U(|ψ〉 ⊗ |0〉) = U(z1|e1〉 ⊗ |0〉 + z2|e2〉 ⊗ |0〉) =

= z1U(|e1〉 ⊗ |0〉) + z2U(|e2〉 ⊗ |0〉) = z1|e1〉 ⊗ |e1〉 + z2|e2〉 ⊗ |e2〉 6= (105)

6= (z1|e1〉 + z2|e2〉) ⊗ (z1|e1〉 + z2|e2〉) = |ψ〉 ⊗ |ψ〉 .

End of proof.
Note that were it possible to clone an unknown state, we could perform a

large number of measurements on a large number of copies, and in this way
determine the state. But this way is blocked.

The no-cloning theorem is not the end of the story. We can still ask for a
unitary operator that minimizes the maximal copying error over all possible
states. The answer is known, but we go on to other matters.

Quantum teleportation

It is time to introduce Alice and Bob, the pair that does all the quantum
communication so far discussed in the literature. Alice is in possession of a
system in an unknown quantum state. She wants to transmit this state to
Bob without moving her actual system. The idea is that she simply reaches
for a classical telephone and sends instructions enabling Bob to put a system
of his in the same state. Given that unknown quantum states cannot be
copied, and given that Alice does not know what state |ψ〉 her system is in—
indeed, by the quantum theory of measurement, she cannot find it out—this
sounds like a tall order.

I will first present the solution in complete generality, and afterwards
specialize to qubits to make sure that we understand what is going on. The
starting point is a nice error basis. Suppose that {UI}d

2−1
I=0 is a nice error

basis (or, more generally, a unitary operator basis—since we are not doing
quantum error correction yet, it does not have to form a group). Using one
of these unitaries to replace the matrix Γ in (90) gives a maximally entangled
state, as you can check by taking the partial trace of |UI〉〈UI |. To be explicit
about it,
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|U〉〈U | =
1

d





∑

i,j

U ij |i〉|j〉








∑

k,l

〈k|〈l|U∗
kl



 =
1

d

∑

i,j,k,l

|i〉|j〉U ijU∗
kl〈k|〈l| .

(106)
Now take the partial traces following the recipe (87), remembering that U is
a unitary matrix. But it is also easy to see that

〈UI |UJ〉 =
1

d
TrU †

IUJ = δIJ , (107)

because we assumed that the matrices form a unitary operator basis. To
sum up, from a unitary operator basis we have created an orthonormal basis
consisting solely of maximally entangled states.22 Alice must be sophisticated
enough so that she can perform a von Neumann measurement using this basis.

Next Alice and Bob create a Jamio lkowski state, and share it out between
them. The total Hilbert space is a tensor product of three factors (of equal
dimension). Alice controls the first two factors, Bob (situated elsewhere)
controls the third. The shared entangled state sits in the tensor product of
the last two factors. The state to be teleported, |ψ〉, is in the first factor.

When the teleportation is about to start, the state is

|ψ〉1|δ〉23 = 112 ⊗ 13|ψ〉1|δ〉23 =





d2−1
∑

I=0

|UI〉12〈UI | ⊗ 13



 |ψ〉1|δ〉23 . (108)

The equality here is just an odd way to rewrite the expression for the state,
using a special basis for the H12 factor. It is an exercise to show that this
can be continued to23

|ψ〉1|δ〉23 =
d2−1
∑

I=0

|UI〉12|U †
Iψ〉3 . (109)

So far nothing has happened. But now Alice performs her von Neumann
measurement. After looking at the outcome, she finds that the state has

22Exercise: Write down the basis obtained from the nice error basis provided by the
Pauli matrices, and for the one provided by the Weyl–Heisenberg group for d = 3, in fully
explicit form.

23Exercise: Do this exercise.
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collapsed to an eigenstate in H12, namely, one of the states in the unitary
operator basis. At this point Alice reaches for the classical phone, and tells
Bob to apply one out of the d2 unitary operators to the state he controls. As
a result of this two-step process

|ψ〉1|δ〉23 → |UI〉12U †
I |ψ〉3 → |UI〉12|ψ〉3 . (110)

The transfer of the unknown qubit state |ψ〉 from Alice to Bob is complete.
Alice ends up with all the entanglement. Neither of them have gained any
information about what the state |ψ〉 is.

Now let us specialize to qubits. We start with the state

|ψ〉|δ〉 =
1√
2

(z0|0〉 + z1|1〉)(|00〉 + |11〉 =

(111)

=
z0√

2
|00〉|0〉 +

z0√
2
|01〉|1〉 +

z0√
2
|10〉|0〉 +

z0√
2
|11〉|1〉 .

We introduce the maximally entangled Bell basis

|U0〉 =
1√
2

(|00〉 + |11〉) , |U1〉 =
1√
2

(|00〉 − |11〉) ,

(112)

|U2〉 =
1√
2

(|01〉 + |10〉) , |U3〉 =
1√
2

(|01〉 − |10〉) .

A quick calculation shows that

〈U0|00〉 =
1√
2

= 〈U0|11〉 , 〈U1|00〉 =
1√
2

= −〈U1|11〉 ,

〈U2|01〉 =
1√
2

= 〈U2|10〉 , 〈U3|01〉 =
1√
2

= −〈U3|10〉 .

The remaining scalar products vanish. We can now take the step from (108)
to (109), and obtain
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|ψ〉|δ〉 =
1

2
|U0〉(z0|0〉 + z1|1〉) +

1

2
|U1〉(z0|0〉 − z1|1〉) +

(113)

+
1

2
|U2〉(z0|1〉 + z1|0〉) +

1

2
|U3〉(z0|1〉 − z1|0〉) .

A Bell measurement by Alice will not tell her what the amplitudes z0 and
z1 are, but it does tell her what action Bob must take to transform his state
into a copy of the original. The choice is between four possibilities, so the
message she sends contains exactly two classical bits, in the language we will
introduce later.

The BB84 protocol

This introduction would be incomplete if we did not give an example of a
quantum communication protocol that one can actually buy on the market.
(I do not know if the companies that sell the hardware have made profits,
but that is another matter.) It concerns cryptography. Readers of Poe and
Conan Doyle will know that encrypted messages can be cracked by statistical
analysis. There is a way of encrypting messages that will never yield to
such methods, however. Suppose Alice wishes to encrypt a message to be
sent in binary digits, such as 000111000 (or preferably something longer,
to which statistical analysis can be applied). Suppose that Alice and Bob
share a sequence of random digits of the same length, such as 101101100. (I
constructed this sequence by flipping a coin. This is not a very good method.
In fact, since random sequences are valuable, constructing them by quantum
mechanical means may be a useful application of quantum mechanics.) Alice
now adds the two sequences digit by digit, and sends the sequence 101010100
to Bob. Bob subtracts the random sequence from the sequence he received,
and obtains the sequence that Alice wanted to convey. This way of encrypting
a message is known as the Vignère cipher, and it is in principle unbreakable
because the sequence being sent shares complete randomness with the key.
The catch with the idea is that it assumes that Alice and Bob do share copies
of the same random sequene. The BB84 protocol offers a way of sending such
a random sequence over an open channel, with a built-in guarantee that Alice

35



and Bob can detect whether an eavesdropper has been listening in.
Alice starts with a secret sequence of 0s and 1s, rather longer in fact

than the one needed to encrypt the message. She selects, at random and in
secret, either X or Z, and encodes a binary digit by preparing a qubit in an
eigenstate of the gate she selected. She sends the qubit to Bob, who selects
either X or Z and measures the outcome. If they made the same choices, the
binary digit has been successfully transferred (because we are ignoring all
practical difficulties with noise in the communication channel). If not, Bob’s
digit is not at all determined by Alice’s. After doing this many times, Alice
announces, over a telephone line that anyone can listen in to, what choices
she made in the preparation. Bob replies with a list of those measurements he
made where his choice agrees with Alice’s. They both delete those elements
of the sequence for which their choices disagreed. Having done so, they share
identical random sequences, selected at random from the longer sequence
that Alice started out with.

The claim is that this is an absolutely safe way to transmit a random
sequence. To see why this is so, suppose an eavesdropper (called Eve) tries
to listen in. Since no information about the actual digits has been sent over
the telephone line, she must inform herself about the state of the qubits
that were sent. This means that she must intercept and measure a qubit.
But should she measure in the X or in the Z basis? She has to make a
choice. Sometimes her choice will not be the same as Alice’s, and then
Alice’s preparation is undone. When she sends the qubit on to Bob (to hide
the fact that she is listening in) she destroys the perfect correlation between
Alice and Bob that should have been there whenever they made the same
choices between X and Z.

This means that Alice and Bob can test whether Eve has been listening.
Alice sends a part of the shared random sequence to Bob over the public
telephone line. Bob examines it and if it agrees with what he has, he knows
that no-one has tampered with the qubit transmission. He informs Alice ac-
cordingly, and the secretive pair can use the remainder of the shared random
sequence to encipher their messages using the unbreakable Vignère cipher.

Bell inequalities

Bell inequalities were introduced in the 1960ies by Bell to show that quantum
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mechanics gives predictions that cannot be obtained from any ‘hidden vari-
able’ theory. We do not discuss hidden variables here, but it is to be noted
that the inequalities arise in classical probability theory. The quantum part
of the story is precisely that they do not hold, in situations where you might
have expected them to hold.

We begin by defining a few correlation polytopes. A polytope is the convex
hull of a finite set of points, and is bounded by a finite set of faces (called
facets if their dimension is larger than two). A simple correlation polytope is
obtained by first choosing three events ai, each of which may occur in some
experiment. We can make a truth table for the events, as follows

a1 0 1 0 0 1 1 0 1
a2 0 0 1 0 1 0 1 1
a3 0 0 0 1 0 1 1 1

(114)

The first column covers the case when none of the events happen, the second
when only a1 happens, and so on. Each column can be regarded as a vector
in a three-dimensional space, and together these vectors form the corners of a
cube—which is a polytope. If the experiment is repeated N times each event
will occur ni times, and is hence associated with a frequency νi = ni/N . The
argument to follow applies directly to the observed frequencies as well as to
the probabilities that emerge in the limit.

The possible outcomes of the N experiments, taken together, can be
labelled by three numbers pi, which by construction obey the inequalities

0 ≤ p1 ≤ 1 , 0 ≤ p2 ≤ 1 , 0 ≤ p3 ≤ 1 . (115)

This is related to a dual description of the cube in terms of these six inequali-
ties, each of which says that the cube lies on one side of some two-dimensional
plane. Every compact convex set admits two dual descriptions along these li-
nes, one of which describes the body as the convex hull of a set of pure points,
and one of which describes it as the intersection of a set of half-spaces. In
both cases we are looking for a minimal description of its kind.

Things get more interesting if there are logical connections between the
events. For instance, we can assume that the three events are mutually
exclusive, so that exactly one of the events happens in each run of the expe-
riment. Only three columns of the truth table survives, there are only three
pure points left, and the observed frequencies necessarily obey the condition

37



p1 + p2 + p3 = 1 . (116)

This is the case we started out with.
Another interesting restriction is to impose the logical condition that

a3 = a1&a2, that is to say that the event a3 is that both a1 and a2 happen.
This gives the truth table

a1 0 1 0 1
a2 0 0 1 1

a1&a2 0 0 0 1
(117)

The convex hull of the four column vectors is a polytope inscribed in the
cube. Its dual description in terms of inequalities describing the faces of the
polytope is

p3 ≥ 0 , p1 ≥ p3 , p2 ≥ p3 , (118)

p1 + p2 − p3 ≤ 1 . (119)

The last of these may be a little hard to see, but—like the other three faces—
it defines a face passing through exactly three of the vertices, namely in this
case the last three of the columns of the truth table. See Fig. 5. Slightly
more involved examples of this last kind of inequality are known as Bell

inequalities. We will see that they may fail to hold in quantum theory, and
must try to understand why.

Figure 5: A correlation polytope for three logically connected events.
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To get an interesting Bell inequality, consider eight events a1, a2, a3, a4,
a1&a3, a1&a4, a2&a3, a2&a4. The truth table will produce vectors with eight
components, in fact 16 vectors altogether, and we do not write it out here.
The inequalities of interest to us are

−1 ≤ p1,3 + p1,4 + p2,4 − p2,3 − p1 − p4 ≤ 0 (120)

−1 ≤ p2,3 + p2,4 + p1,4 − p1,3 − p2 − p4 ≤ 0 (121)

−1 ≤ p1,4 + p1,3 + p2,3 − p2,4 − p1 − p3 ≤ 0 (122)

−1 ≤ p2,4 + p2,3 + p1,3 − p1,4 − p2 − p3 ≤ 0 . (123)

You can check that they hold by making all possible truth assignments to
the four events a1, a2, a3, a4.

24

To each event ai there will correspond an observable αi taking values +1 if
the event happens, 0 if it does not. There will be corresponding expectation
values

pi = 〈αi〉 , pi,j = 〈αiαj〉 . (124)

It is customary to introduce observables Ai = 2αi − 1, and to rewrite the
inequalities in terms of

〈AiAj〉 = 〈4αiαj − αi − αj + 1〉 = 4pi,j − 2pi − 2pj + 1 . (125)

Finally we rename A3 as B1 and A4 as B2. Inequality (120) then takes the
form

−2 ≤ 〈A1B1 + A1B2 + A2B2 − A2B1〉 ≤ 2 . (126)

Written in this form it is known as the Clauser–Horne–Shimony–Holt in-
equality. It has to hold for the individual outcomes and for the observed
frequencies in any experiment measuring these random variables.

24Exercise: Do it. Also rewrite (120) in the form (126).
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Now let A1, A2 be operators corresponding to measurements that can be
made by Alice, while B1, B2 can be made by Bob. The possible outcomes
are ±1 in all cases. In a single run of the experiment only one of A1 ⊗ B1,
A1 ⊗ B2, A2 ⊗ B1, A2 ⊗ B2, can be measured. But many measurements of
each kind will be made, and it seems reasonable to assume that, once the
statistics is collected, it will be true that

〈A1B1+A1B2+A2B2−A2B1〉 = 〈A1B1〉+〈A1B2〉+〈A2B2〉−〈A2B1〉 . (127)

In quantum mechanics the left and right hand side are necessarily equal to
each other, and both can be computed once we know what state the system
is in. The argument for the CHSH inequality applies to the left hand side.
The right hand side will be measured. Its first term is evaluated by collecting
the statistics from those instances of the experiment in which the settings
were made so that A1 ⊗ B1 was measured, and so on. The system, in most
experiments, consists of a pair of photons in a carefully prepared entangled
state. In the best experiments the choice of settings is done when the pair
of photons are well on their way, and every effort is made to ensure that the
choice is made in a random fashion on both sides. But now we do have a
problem, namely Problem 1.

Problem 1: To test the CHSH inequality Alice and Bob use

A1 =

(

0 1
1 0

)

⊗ 1 , A2 =

(

0 e−iα

eiα 0

)

⊗ 1 ,

(128)

B1 = 1⊗
(

0 1
1 0

)

, B2 = 1⊗
(

0 e−iα

eiα 0

)

.

They can vary α. What do these measurements correspond to if they are measuring
photon polarization? What is the largest value they can obtain for the quantity
in the CHSH inequality? What quantum state gives this value?

Problem 2: Consider two quantum states, anywhere on the Bloch sphere. Choose
a Hermitian matrix A, and expand the two states in its eigenbasis. Calculate the
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Fisher–Rao distance between the two states, in terms of the expansion coefficients,
for the two-outcome measurement corresponding to A. Prove that by varying A
this distance can be made equal to the Fubini–Study distance, but that it cannot
be made larger.
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OPEN SYSTEMS

The theory of open systems deals with situations where the system of interest
is not fully isolated from its environment. It regards the world as divided into
a ‘system’ and a ‘reservoir’, where the latter is not controlled by the experi-
mentalist. Sometimes the reservoir is useful when one wants to manipulate
the system, and then it may be called an ‘ancilla’. If the system becomes
entangled with the reservoir the split of the whole into its parts becomes a
subtle matter. The brief account here is mostly concerned with the theory
of quantum measurements.

The chicken and the egg

Let us summarize the message of the Schmidt decomposition (102):

• Let ρ12 be a pure state on H12 = H1 ⊗ H2. Then the reduced states
ρ1 = Tr2ρ12 and ρ2 = Tr1ρ12 have the same non-zero eigenvalues.

• Given a state ρ1 on H1 there exists a Hilbert space H2 and a pure state
|ψ〉 in H12 such that ρ1 = Tr2|ψ〉〈ψ|.

In these notes density matrices were introduced first, and Hilbert space vec-
tors were added almost as an afterthought. Many accounts start at the other
end, density matrices appearing only when the state of the system has not
been specified as completely as it could be. What is the correct starting
point? The Schmidt decomposition turns this into a chicken-and-egg ques-
tion because any mixed state can be purified, and regarded as a pure state
in a larger Hilbert space partly outside our control.

Either way we have a concrete question concerning time evolution to
discuss. Were the system isolated it would evolve unitarily according to

ρ → UρU † . (129)

If the unitary is of the form U = e−iHt this becomes the differential equation

dρ

dt
= i[ρ,H ] . (130)
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We will want to know how the density matrix on H1 evolves if we extend it
to a state on the larger Hilbert space H12 = H1 ⊗H2, evolve that state with
a unitary, and take the partial trace down to H1 at the end.

CP maps

It is convenient to assume that there are no correlations between the state
and its environment to begin with. In fact we assume that the initial state
is

ρS ⊗ ρ0R , (131)

where the initial state ρ0R of the reservoir is pure

ρ0R = |R0〉〈R0| . (132)

The second assumption is harmless because we can consider a Hilbert space
large enough so that it holds. The assumption that we start out with a
product state is not harmless, but it is an interesting one to make. It holds if
the environment quickly forgets about its past interactions with the system.
To see whether this is so requires a detailed analysis of the physics. It
seems plausible that it holds if the reservoir consists of photons that quickly
disappear to very large distances.

We now evolve the state (131) with a unitary U acting on the full Hilbert
space, and then take the partial trace using an orthonormal basis for HR.
We find

ρS → TrRU
(

ρS ⊗ ρ0R
)

U † =
∑

i

〈iR|U |R0〉ρS〈R0|U †|iR〉 . (133)

The sum will have to include all non-zero terms. Whatever their number is,
the answer has an interesting form.

We define the Kraus operators Ai by

Ai = 〈iR|U |R0〉 . (134)

If you do not loose track of the fact that U operates on the Hilbert space
HS ⊗HR, it will be obvious that this is an operator on the Hilbert space of
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the system.25 By construction

∑

i

A†
iAi =

∑

i

〈R0|U †|iR〉〈iR|U |R0〉 = 〈R0|U †U |R0〉 = 1S . (135)

Conversely, it can be shown that every set of operators Ai obeying the last
equality can be obtained in this way from some unitary U .

We have arrived at the notion of a completely positive map, which is the
quantum version of the linear maps (10) that take probability vectors to
probability vectors. A map Φ taking density matrices to density matrices
is completely positive if and only if there exists a set of Kraus operators Ai

such that

ρ→ Φ(ρ) =
∑

i

AiρA
†
i where

∑

i

A†
iAi = 1 . (136)

This is clearly a linear map,

a1ρ1 + a2ρ2 → a1
∑

i

Aiρ1A
†
i + a2

∑

i

Aiρ2A
†
i . (137)

If you rearrange the density matrix so that it forms a vector with d2 compo-
nents, the CP map Φ becomes a d2×d2 matrix. If you like, it is a superoperator

acting on operators. The trace and the positivity of ρ is preserved by the
map, so it takes density matrices to density matrices.26 But positivity is not
enough. The extra ingredient leading to the Kraus form comes about in a
rather strange way, as we will see.

Positive maps and entangled states

A linear map from matrices to matrices is said to be positive if it takes
positive matrices to positive matrices. It is very difficult to describe positive
maps in general, but a simple example of a positive map is ρ → ρT. The
transposed matrix has the same spectrum as the original, so this is clearly a

25Exercise: Expand U in a product basis for the composite Hilbert space (letting |R0〉
be one of the basis vectors in one of the factors). Then calculate the Kraus operators.
Note that many different Us correspond to the same set of Ai.

26Exercise: Prove this.
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trace preserving positive map. But suppose our Hilbert space is C2⊗C2. As
usual, Alice controls only the first factor, so she performs a partial transpose

of the density matrix. That is, using the notation (82), she performs the map

ρiαjβ → ρjαiβ . (138)

A little more abstractly, this is

ρ→ ρTA . (139)

(It is understood that Alice ‘performs’ the map using pen and paper only.
It does not correspond to a physical transformation, as we will see.) Let us
take it that the density matrix is pure,

ρ = |ψ〉〈ψ| , |ψ〉 =
√
p0|0〉|0〉 +

√
p1e

iν |1〉|1〉 , p0 + p1 = 1 . (140)

The problem is that when the partial transposition is performed the spectrum
of the density matrix changes according to

(1, 0, 0, 0) → (p0, p1,
√
p0p1,−

√
p0p1) . (141)

Unless the state vector is a product vector negative eigenvalues appear. The
matrix is not a density matrix any more.27

The definition of completely positive maps avoids this difficulty. Let us
represent positive maps as d2 × d2 matrices Φ. The density matrices on
which they act to act in their turn on a Hilbert space HS. This Hilbert
space can be enlarged to a Hilbert space HS ⊗HR, but let us agree that the
second factor is irrelevant, so that we perform only positive maps of the form
Φ ⊗ 1. The partial transposition is of this form. By definition the map Φ is
said to be completely positive if Φ ⊗ 1 is positive for all possible extensions
HS → HS ⊗HR.

Stinespring’s dilation theorem: a map is completely positive and trace pre-
serving if and only if it can be written in the Kraus form (136).

This is the extra ingredient that led us to the Kraus form.

27Exercise: Do this calculation. Do the same for the case when Bob takes the partial
transpose.
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It took some twenty years for physicists to understand Stinespring’s pa-
per, and Kraus was one of the first to do so. Once you know the result, it
is easy to remember and to use. Moreover every completely positive map
can be performed in a hypothetical lab equipped to perform every unitary
transformation, in Hilbert spaces whose dimension is at most the square of
that of the Hilbert space of the physical system being studied.

There is another interesting aspect of this story. We can ask: when is
a quantum state entangled? If the state is pure the answer is simple: if its
partial trace is a mixed state. But what if the state itself is mixed? There
can be classical correlations present, and in fact there will be whenever the
state is not of the form ρA⊗ρB . A suitable definition of a separable quantum
state, whether mixed or pure, should allow for classical correlation between
the two subsystems, but no more that that. Mathematically this means that
the separable state lies in the convex hull of uncorrelated states:

Definition: a state ρ is separable if and only if it can be written as

ρ =
∑

i

piρ
A
i ⊗ ρBi , (142)

for some density matrices ρAi , ρ
B
i acting on the factors.

This definition is due to Werner.
A direct check whether a given state ρ obeys this condition is prohibitively

difficult, since we have to try all possible decompositions of this type. It is
therefore helpful to know that a state is entangled if and only if there exists
a positive but not completely positive map Φ such that Φ⊗1 turns the state
ρ into a matrix with at least one non-negative eigenvalue. This is still a hard
condition to check when the dimensions involved are large. In fact it is an
NP complete problem, in the language of complexity theory that we will
introduce later. But for two qubits it settles things.

Theorem: A state ρ is entangled if ρTA has a negative eigenvalue. For two
qubits, and for one qubit and one qutrit, this is an if-and-only-if statement.28

28Exercise: Consider the two qubit state ρ = p

2
(|00〉 + |11〉)(〈00| + 〈11|) + 1−p

4
1. For

what values of p is this an entangled state?
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Measurements

Let us agree that an isolated quantum system always evolves unitarily, while
an open system—perhaps the system is coupled to a measurement apparatus—
evolves with completely positive trace preserving maps. In the first step (136)
applies, for some choice of Kraus operators Ai. But in a measurement the
wave function must collapse to an outcome. Rushing in where angels fear to
tread, we resolve the measurement problem with a postulate:

Let there be n possible measurement outcomes. Then there are n Kraus
operators Ai. In a non-selective measurement the system changes its state
according to the CP map generated by the Ai. In a selective quantum mea-
surement the system changes its state from ρ to one of the n states

ρi =
AiρA

†
i

Tr(AiρA
†
i )
. (143)

The transition ρ→ ρi happens with probability

pi = TrAiρA
†
i . (144)

All the ρi are legitimate density matrices and the Kraus operators Ai obey
a condition ensuring that the probabilities sum to unity.

We now have two kinds of time evolution, the linear time evolutions
effected by CP maps, and the non-linear time evolution ρ→ ρi described by
the measurement postulate. An important special case is that of a projective

or von Neumann measurement. Then we choose the measurement operators
to be mutually orthogonal projection operators,

Ai = Pi = A†
i , PiPj = δijPi . (145)

The completeness property of the measurement operators implies that

∑

i

Pi = 1 . (146)

Sets of projection operators like this are obtained by choosing a Hermitian
operator, now called an ‘observable’, and performing a spectral decomposition
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A =
∑

i

λiPi . (147)

For simplicity, suppose that all eigenvalues are non-degenerate. In a non-
selective von Neumann measurement of the ‘observable’ A the state changes
according to

ρ→ ρ′ =
d
∑

i=1

PiρPi . (148)

The state has been forced to commute with A. This is in fact a CP map
effected by the d Kraus operators Pi. In a selective von Neumann measure-
ment the state collapses, and the outcome labelled λi occurs with probability
pi,

ρ→ ρi =
PiρPi

Tr(PiρPi)
, pi = Tr(PiρPi) = Tr(ρPi) . (149)

This measurement is repeatable.29 It is also highly idealized. Still the von
Neumann measurement is much beloved by people who have the task of
actually measuring things in the lab. The picture to have in mind is that
of a photon encountering a Glan–Thompson prism that lets through linearly
polarized photons only.

If a probability vector counts as a classical state, it also can collapse. A
classical probability distribution P (A) can collapse to a conditional proba-
bility distribution P (A = ai|B = bj) depending on the outcome observed for
the random variable B. But the non-selective measurement does not have
an analogue. In a non-selective classical measurement nothing happens since

∑

j

P (A = ai|B = bj)P (B = bj) = P (A = ai) . (150)

The analogy breaks down because the quantum state ρ′ obtained in (148)
may be significantly different from the state ρ. Very special cases excepted
a quantum measurement always disturbs the state, and the classical notion
of ‘conditional probability’ is no longer with us.

29Exercise: Show that the expectation value 〈A〉 = Tr(Aρ). Also show that if you repeat
the same measurement you get the same result.
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This is an important conceptual point, so let us say it in a different way.
Suppose a pure quantum state evolves under a unitary transformation,

|ψ(t)〉 = z0(t)|0〉 + z1(t)|1〉 = U(t)|ψ(0)〉 . (151)

If, at time t. we perform a measurement in this basis we find the outcome |0〉
with probability |z0(t)|2. But what is the probability to get this outcome at
time t = 1 given the outcome at t = 0? We cannot talk about the outcome
at t = 0 unless a measurement was performed at that time. But if so the
state at t = 0 changed according to

|ψ(0)〉〈ψ(0)| =

(

|z0|2 z0z̄1
z1z̄0 |z1|2

)

→ ρ(0) =

(

|z0|2 0
0 |z1|2

)

. (152)

The off-diagonal elements have disappeared, and

U(1)ρ(0)U−1(1) 6= |ψ(1)〉〈ψ(1)| . (153)

So we get into a muddle if we use equation (151) to talk about the probability
that the system ‘was’ in one of the states |0〉 and |1〉 at two different times.

We leave these questions open, and return to general measurements. The
idea to use Kraus operators to guarantee that there is some larger Hilbert
space behind us has led us to claim that a given outcome occurs with proba-
bility

pi = Tr
(

ρA†
iAi

)

,
∑

i

A†
iAi = 1 . (154)

The Kraus operators describe how the state of the system changes in a measu-
rement. But maybe we are only interested in the result of the measurement,
and therefore we define a general measurement by saying that there exists a
number of positive operators Ei, called effects, such that

Ei ≥ 0 ,
n
∑

i=1

Ei = 1 . (155)

The collection of effects is known as a POVM, which can be spelt out as ‘posi-
tive operator valued measure’. The POVM allows us to extract a probability
distribution from any density matrix,30

30Exercise: Show that this defines a probability distribution.
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pi = Tr(ρEi) . (156)

There is no requirement that TrEiEj = 0, which means that this is not
a probability distribution over mutually exclusive events, nor is there any
guarantee that we can choose a state for which p1 (say) equals 1.31 Moreover,
unless the effects are one-dimensional projectors they can be written in terms
of Kraus operators in many different ways.

Coming back to the chicken-and-egg question, following Naimark we can
regard any POVM as a von Neumann measurement by adding an ancilla
Hilbert space to the Hilbert space of the system. Let us consider the special
case of a rank one POVM, in which each of the n > d effects is of the form
Ei = |xi〉〈xi| for some vector |xi〉 obeying 〈xi|xi〉 ≤ 1, with equality only if
the effect actually is a projector. Then form the generator matrix

X =
(

|x1〉 |x2〉 . . . |xn〉
)

d×n
=













〈u1|
〈u2|

...
〈ud|













d×n

. (157)

We have arranged things so that we can think of X either as n columns or
as d rows. You can check that

XX† =
n
∑

i=1

|xi〉〈xi| =
n
∑

i=1

Ei = 1d×d . (158)

But when you think in terms of the rows, this means that you have a set of
n-dimensional vectors obeying

〈ui|uj〉 = δij . (159)

Here 1 ≤ i, j ≤ d. You can extend this set of d orthonormal row vectors to
n orthonormal row vectors by adding more rows to X , so that it becomes a
unitary matrix. We interpret it as a set of n column vectors,

31Exercise: For the qubit, choose projectors that project onto states forming a regular
triangle on the equator. Rescale them so that they form a POVM. What probability
distributions over three events can you obtain in this way?
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U =

(

|x1〉 |x2〉 . . . |xn〉
|y1〉 |y2〉 . . . |yn〉

)

n×n

. (160)

Because the matrix is unitary, the column vectors are mutually orthogonal
unit vectors {|zi〉}ni=1, yielding n projection operators {Pi}ni=1, where

|zi〉 =

(

|xi〉
|yi〉

)

, Pi = |zi〉〈zi| . (161)

This defines a von Neumann measurement in the large Hilbert space, related
by a simple projection to the POVM we started out with.32

POVMs provide an interesting perspective on quantum states, but we
hasten on to the next topic.

The Lindblad equation

A system may fail—and will fail, more or less—to be isolated because it
interacts with some ‘environment’ or ‘thermal reservoir’. In this situation
unitary time evolution is at best an approximation to what is observed. We
round off this brief introduction to the theory of open systems by giving the
generalization to quantum mechanics of the classical Markov process. If the
evolution of the system is a continuous unfolding of completely positive maps
it is described by the Lindblad equation

dρ

dt
= L(ρ) = i[ρ,H ] +

∑

i

(

LiρL
†
i −

1

2
(L†

iLiρ + ρL†
iLi)

)

. (162)

The Li are the Lindblad operators, and L stands for Liouville. The Hamilto-
nian H typically has contributions also from the terms that couple the system
to the reservoir in the evolution of the composite system. The equation ap-
plies when the system dynamics is slow compared to the correlation time
scale of the reservoir. In typical quantum optical systems, where correlations
in the radiation field leak away quickly, it has fared brilliantly.

For a careful derivation you have to look elsewhere, but to see where the
various terms come from consider a CP map

32Exercise: Do this construction explicitly for the POVM in the preceding footnote.
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E(ρ) = A0ρA
†
0 +

∑

i

AiρA
†
i = ρ + δρ , (163)

A0 = 1 + (L0 − iH)δt , Ai = Li

√
δt . (164)

One of the Kraus operators is close to the identity, while the others are close
to zero. Then

δρ = (−i[H, ρ] + L0ρ + ρL0 +
∑

i

LiρL
†
i )δt . (165)

To ensure that the trace is preserved we must have Trδρ = 0. This forces

L0 = −1

2

∑

i

L†
iLi . (166)

Dividing through by δt we arrive at the Lindblad equation. It looms large in
quantum optics, but we do not go into it any further here.

Problem 3: Consider the unitary operator

U = 1⊗ |0〉〈0| +X ⊗ |1〉〈1| (167)

acting on a two qubit Hilbert space (where X = σx). Choose the initial state to
be ρ⊗ |R0〉〈R0|, where

|R0〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉 . (168)

Construct the Kraus operators acting on ρ. What happens to the Bloch vector of

ρ when we perform the resulting CP map? To what surface in the Bloch ball of

the first qubit does the Bloch sphere of the first qubit go?
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INFORMATION THEORY

A Mathematical Theory of Communication introduced a quantity called ‘en-
tropy’. Following Boltzmann it was denoted by the letter H . The papers
were later reissued as a book, now called The Mathematical Theory of Com-

munication. Generalizing this theory to the quantum case is a subtle thing.

Information

Shannon worked at the Bell Telephone Laboratories, and his interest in com-
munication was very practical. A message is being sent, using some alphabet
of n letters. The theory (as presented here) assumes that the letters are i.i.d.,
spelt out as ‘independent and identically distributed’. That is, the probabi-
lity that the ith letter will be sent is pi, every time. We want to compress
the message as much as possible before sending it, and the first goal is to
determine how much data compression that can be achieved.

Figure 6: The problem considered by Shannon. The message is compressed at an
encoder before it is sent through a possibly noisy communication channel.

Shannon began by asking for a measure of how much ‘choice’ is invol-
ved in the selection of a letter, or how uncertain we are of the outcome of
the event. Equivalently, this is the amount of information produced when
the event happens. The measure he arrived at is a function of the proba-
bility distribution associated to some random variable. From now on then
information is quantified by the Shannon entropy
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H(~p) = −
n
∑

i=1

pi log pi . (169)

It is understood that 0 log 0 = 0. The logarithm is usually taken to be with
base 2, and then the information is measured in bits. We will slip back to
natural logarithms at some stage.33

We can argue for this measure as follows. We regard − log pi as an ad-
ditive measure of the ‘surprise’ we feel in receiving the ith letter. Then
H = 〈− log p〉 is the information received per letter, when averaged over
a long message. The interpretation makes more sense if we remember the
psychophysical law that says that human response is proportional to the lo-
garithm of the stimulus. (This is why the Greek measured the luminosity
of stars using logarithmic magnitudes.) But the real justification for the de-
finition lies in the theorems that Shannon proved. Let us place Shannon’s
noiseless coding theorem on the table right away. Then you will see that these
lecture notes carry a certain amount of information, and that Shannon’s de-
finition of information is the relevant one if you want to convert them to
JPEG format.

To introduce the theorem we first note that when we use the logarithm
with base 2 we assume that the length of the message is measured in terms
of the number of binary digits you need to encode it. This length will clearly
depend on the coding. Recall that the Morse alphabet uses dashes and dots,
with the number of dashes and dots used to encode the letter being lower
if that particular letter is in frequent use. The theorem is concerned with
the length of a message that has been encoded in an optimal way. Ignoring
some fine print, it says that if a message contains N letters chosen with
probabilities pi from an alphabet consisting of n symbols, then it can be
transmitted in the form of a string of bits of length NH(~p), but it cannot be
compressed further.

To see how the theorem comes about, consider the kind of sequences that
can arise. In particular, consider the number of sequences that contains N1

instances of the first letter in the alphabet, N2 of the second, and so on. This
number is

33Exercise: For p1 = p, p2 = 1− p, plot H(p). Then maximize the function for arbitrary
n. Also check what happens if you change the base of the logarithm to e.
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N !

N1!N2! . . .Nn!
. (170)

Using Stirling’s formula we can approximate this number, or more conve-
niently its logarithm, by

log
N !

N1!N2! . . . Nn!
≈

(171)

≈ N logN −N −
n
∑

i=1

(Ni logNi −Ni) = −
n
∑

i=1

Ni log
Ni

N
.

We assume that all the individual distinguishable sequences are equally li-
kely to occur. It then follows from the Law of Large Numbers that, with
overwhelming probability, the sequences to be encoded have

Ni

N
= pi . (172)

Inserting this in (171) we conclude that the Law of Large Numbers allows us
say that, with overwhelming probability, the sequence to be encoded can be
regarded as having been chosen from a set of

2NH(~p) (173)

typical sequences. For large N , and unless all letters are equally likely, this
is a small fraction of the number of all possible sequences (equal to nN).

We see that the compression of the message is possible because at the
encoder we can assume that we are dealing with a typical message. We do
not have to encode all the 2N messages. It is enough if the signal carries
information about which out of all the typical messages is being sent. This
is how the noiseless coding theorem arises. We also see that some fine print
must be added to the statement of the theorem, because there is a small
probability that the message is, in fact, not typical. If so we must declare an
error. However, the Law of Large Numbers guarantees that the probability
that this happens can be made as small as we please by making the message
long enough.
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Some limitations are apparent here. Let us raise some of them. To
begin with, the i.i.d. assumption may be too strong. If the message is
in English, or in any other natural language, there will in fact be strong
correlations between the various letters in the message. We could compress
the message by, say, removing all the vowels, and chances are that it would
still be decodable. Entire books have been written in this way. (Incidentally,
a theory taking the redundancies in the English language into account shows
that the amount of information present in my notes would increase if its
letters were reordered in a random way.) A second limitation of the theorem
is that it is non-constructive. It tells us that compression is possible, but
it does not provide a recipe for how to do it. Finally we notice that the
encoding cannot even start until the encoder has received a string of letters
long enough to ensure that the string is typical. Still the noiseless coding
theorem provided information theory with a very good start.

Some properties of the Shannon entropy

The Shannon entropy is a continuous and nowhere negative function of a
probability distribution ~p, taking the value zero if and only if the probability
vector is pure. It also obeys the recursion property that we illustrate in
Figure 7. The idea is that a choice can be broken down in successive choices,
so that

H
(

1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8

)

=
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= H
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8
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8
H
(

1

3
,
1

3
,

1

3

)

+
3

8
H
(

1

3
,

1

3
,
1

3

)

+
1

4
H
(

1

2
,

1

2

)

.

Supplemented by some mild extra conditions the recursion property actually
defines the function H uniquely .

A key property is concavity. Let ~p and ~q be two probability vectors, let
x ∈ [0, 1], and consider the mixture x~p+ (1 − x)~q. Then

H(x~p+ (1 − x)~q) > xH(~p) + (1 − x)H(~q) . (175)
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Figure 7: The recursion property illustrated: to the right it is used to determine
H(38 ,

3
8 ,

1
4 ) in terms of the Shannon entropy for uniform distributions.

In words, the Shannon entropy is a concave function of its arguments, which
means that a straight line between two points on its graph always lies below
the graph.34

Concave functions, or convex functions for which the direction of the
inequality is reversed, are important for many reasons. (To remember which
is which, memorize that a convex function has a convex epigraph, and think
of the epicentre of an earth quake.) Concave functions are easy to optimize.
A concave function has at most a single maximum inside its domain.

Conditional entropy, joint entropy, and mutual information

To continue, it is convenient to associate the Shannon entropy with some
particular random variable A, so that

H = H(A) = −
∑

i

P (A = ai) logP (A = ai) . (176)

If we have two random variables we have the two probability distributions
P (A) and P (B) to play with, as well as the joint and conditional probability
distributions. (At this point, please recall eq. (3), known as Bayes’ formula).

34Exercise: Calculate the matrix of second derivatives of H(p1, p2, . . . , pn). Show that
it is negative definite, and that this is enough to prove concavity. Where in these notes
have you seen this matrix before?
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Thus we have the conditional entropy

H(A|B) = −
∑

i,j

P (B = bj)P (A = ai|B = bj) logP (A = ai|B = bj) (177)

and the joint entropy

H(A,B) = −
∑

i,j

P (A = ai, B = bj) logP (A = ai, B = bj) . (178)

The joint entropy measures the uncertainty of a joint event, or equivalently
the information received when both events are found to happen. The condi-
tional entropy measures the uncertainty of the event A given that we know
the outcome of the event B, weighted over all the possible outcomes of B.

In the calculations to follow we will set

P (A = ai|B = bj) = pi|j , P (A = ai, B = bj) = pi,j , (179)

P (A = ai) = pi =
∑

j

pi,j , P (B = bi) = qi =
∑

j

pj,i . (180)

In this notation Bayes’ formula (3) takes the form

pi,j = pi|jqj = pj|ipi . (181)

For calculational convenience we will also replace the log with the natural
logarithm in all the definitions.

There are relations between the joint and conditional entropies. Using
Bayes’ formula it is easy to see that

H(A,B) = H(B) +H(A|B) = H(A) +H(B|A) . (182)

The proof consists in writing out the definition of the conditional entropy,

H(A|B) = −
∑

i,j

pi,j ln
pi,j
qj

= −
∑

i,j

pi,j(ln pi,j − ln qj) =

(183)

= −
∑

i,j

pi,j ln pi,j +
∑

j

qj ln qj = H(A,B) −H(B) .

58



If the two random variables are uncorrelated it immediately follows that
H(A|B) = H(A), so that the joint entropy is just the sum of the two entropies
for the individual random variables. We define one more useful quantity, the
mutual information

I(A : B) = H(A) +H(B) −H(A,B) . (184)

It equals zero if the events are uncorrelated.35 An important property of the
mutual information is that it is concave function. If one of its arguments is
a convex mixture ~p = x~r + (1 − x)~s then

I(~p, ~q) ≥ xI(~r, ~q) + (1 − x)I(~s, ~q) . (185)

We omit the proof, but keep it in mind. It will be useful when we have to
maximize the mutual information in one of its arguments.

There are important inequalities obeyed by the various quantities that
we have introduced. The most obvious one is

H ≥ 0 (186)

with equality only for a pure state. Two more are suggested by the interpre-
tation. The information received when a joint event happens must be greater
than that received from only one of the events, so we must have

H(A,B) ≥ H(A) . (187)

Indeed this is true. Similarly, it must be the case that the conditional entropy
obeys

H(A) ≥ H(A|B) (188)

with equality only for independent random variables A and B. To prove
this, let the random variables have the probability distributions ~p and ~q,
respectively. Using the definition, and then Bayes’s formula (3) to rewrite
the conditional probabilities, we observe that

35Exercise: Prove this. Also calculate its maximum value.

59



H(A|B) −H(A) = −
∑

i,j

qj
pi,j
qj

ln
pi,j
qj

+
∑

i,j

pi,j ln pi =

(189)

=
n
∑

i=1

m
∑

j=1

pi,j ln
piqj
pi,j

≤
n
∑

i=1

m
∑

j=1

pi,j

(

piqj
pi,j

− 1

)

= 1 − 1 = 0 .

We relied on the inequality

ln x ≤ x− 1 , (190)

which holds for all x > 0.36

Using the connection between joint and conditional entropy the property
of subadditivity follows immediately,

H(A) +H(B) ≥ H(A,B) , (191)

again with equality if and only if the random variables are independent.
Another way of saying this is that mutual information is always positive, or
equal to zero for independent events.

Without giving the story away, let me say that neither the conditional
entropy nor the conditional probability distribution have any immediate ana-
logues in the quantum case for which we are aiming. We will have to revisit
the entropy inequalites when we come to quantum information theory.

Relative entropy

Boltzmann’s H-theorem says that entropy cannot decrease as time passes. If
the passage of time is governed by stochastic maps this is not true, in general,
for the Shannon entropy. The bit-flip map (11) does increase entropy, but
the coarse-graining map (14) can increase it. The general statement is that
a stochastic map will increase the Shannon entropy, H(S~p) ≥ H(~p) for all ~p,
if and only if it has the maximally mixed probability distribution as a fixed
point.

36Exercise: Prove the inequality (190). Why is the entropy inequality (188) necessary
for the interpretation of H(A|B) to make sense?
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This is one reason to introduce the relative entropy

H(~p||~q) =
n
∑

i=1

pi ln
pi
qi
. (192)

This does have the desirable property of monotonicity under stochastic maps,
namely that

H(S~p||S~q) ≤ H(~p||~q) (193)

for every stochastic map S. We omit the proof, but we (or you) will prove
that relative entropy enjoys other interesting properties as well.

First of all it is non-negative. More than that, it obeys

H(~p||~q) ≥ 1

2

n
∑

i=1

(pi − qi)
2 . (194)

To prove this, note that any smooth function f obeys

f(x) = f(y) + (x− y)f ′(y) +
1

2
(x− y)2f ′′(ξ) , ξ ∈ (x, y) . (195)

Apply this to the function x lnx, and you get the result by summing.37

Using this result you can derive a slightly sharper version of the inequality
H(~p) ≤ lnn, as well as—by considering the relative entropy between a joint
probability distribution and the probability distribution for two independent
events—a slightly sharper version of the subadditivity inequality (191).38

We get an interpretation of relative entropy if we go back to the proba-
bility of obtaining an outcome m times in N trials with two outcomes, eq.
(17). Taking logarithms and applying Stirling’s formula we find (after some
calculation) that

ln

(

N

m

)

≈ −m ln
m

N
− (N −m) ln

N −m

N
, (196)

ln
(

pm(1 − p)N−m
)

= m ln p+ (N −m) ln (1 − p) . (197)

37Exercise: Do it!
38Exercise: Do this as well!
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Putting things together, and generalizing from the binomial to the multino-
mial distribution valid for n outcomes, we find that the probability to obtain
the frequency vector ~ν in N samplings from a probability distribution ~p obeys

P (~ν|~p) ≈ e−NH(~ν||~p) . (198)

This suggests that relative entropy is a good measure of the distinguishability
of two probability distributions. It is highly asymmetric in its arguments
however. How different is a fair coin from a biased coin that always gives
heads? Pick one of them and start flipping it to see which is which. The
number of flips you have to make before you feel sure which one you picked
depends very much on the choice.39

Error correction

So far we have focussed on data compression. We now change perspective,
and observe that removing redundancy may be a very bad idea. If a message
is phrased in a natural language it is hugely redundant—and this reduncancy
is useful in communication, because it means that errors in the transmission
are easily corrected. The misprints in these notes may be annoying, but
they are not fatal. In the real world transmission of information is always
distorted by noise. If you want to send a message from a space probe far out
in the Solar system, or if you want to build a quantum computer, this is a
key issue. The way out is to introduce reduncancies in the message, allowing
us to spot and correct errors.

To be quantitative about this we need a model for the noise. A very
simple, but useful, model is the binary symmetric channel (11). So we are
sending bits, and each bit may flip with probability p. Suppose we want
to send the message 1101. The message will come through correctly with
probability (1−p)4, which may be unacceptably low. The obvious way to deal
with this is to repeat the message three times, so that we send 110111011101.
Should an error occur in one place, we can correct it by taking a majority
vote. In fact some double errors can also be corrected for. But the length
of the message has gone up. This is bad in itself. Moreover, with increased

39Exercise: Use eq. (198) to calculate P (fair|biased) and P (biased|fair) in the example.
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length comes an increased risk of double errors, and if the error probability
is high the repetition code will be useless.40

It was once believed that the only way to combat noise is to reduce it.
For the binary symmetric channel, this means that one tries to reduce p.
But Shannon took the amount of noise as given, and asked for the minimum
amount of redundancy that will ensure that the message can be corrected
on arrival. He proved a sharp theorem about this. As for the noiseless
coding theorem the proof is non-constructive. It shows that an optimal
error-correcting code must exist, but it does not provide it.

We have passed over the question of how to actually encode messages
so that you come close to the limits set by the noiseless coding theorem.
For this you have to consult a book on information theory. But before we
come to the theorem about noisy channels we will give a simple example of
an error-correcting code that improves on the simple repetition code above.
One reason for doing so is that it will suggest ideas for error-correcting codes
to be used in quantum computers.

We again assume that we wish to send one out of 24 possible messages,
but we view the messages as linear combinations of four basis vectors in a
four dimensional subspace of a seven dimensional vector space, where the
only numbers available for the linear combinations are 0 and 1. Thus the
vector space is not R7, it is Z7

2 where Z2 denotes the integers modulo two.
To be precise, we let the four vectors be the four rows of the generator matrix

G =











1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1











. (199)

The message we wanted to send, 1101, is then sent in the form of the sequence
obtained by adding the first, second and fourth rows together, namely as
1101001. In all the 16 messages that we can send the first four entries are
the message, and the last three are to be used for correcting errors. If we
want to send a sequence a, b, c, d of four binary integers, what we actually
send is the sequence a, b, c, d, b+ c+ d, a+ c+ d, a+ b+ d, where addition is
modulo 2. Now the subspace of Z7

2 in which the code words live has been very

40Exercise: Show that the probability that the message will come out correctly is larger
than (1− p)4 only for p < 0.151. [There is something fishy about this!!!]
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carefully chosen. After staring at the basis vectors for some time one sees
that in order to transform one of the 16 possible sequences into another one
has to flip the value of at least three entries. This means that any single error
can be corrected for by selecting the one out of the 16 that differs from the
received message by a single bit flip. Hence all single errors will be corrected
for, and none of the double errors.41

But the best part of the story is the way we correct the errors. Write the
generator matrix in the formG = [1|A]. Define the 3×7 matrixH = [−AT|1].
By construction

HGT = 0 . (200)

This means that Hu = 0, where u is any linear combination of the four rows
of G, that is to say if its components form one of the 16 correct messages. If
an error occurs during the transmission the message received is given by the
components of a vector u + e, and

H(u + e) = He . (201)

The 3-component vector He is known as the error syndrome. It is easy to
check that if e has a single non-zero component then it can be reconstructed
uniquely from a knowledge of the error syndrome.42 Once this is known
we can correct the message by subtracting e from the received message (or
adding it, which is the same thing since we work with integers modulo two
all the time).

We have just described the simplest example of a Hamming code. For
messages of length 4 it works better than the repetition code, and it is evi-
dently less wasteful. We made do with less redundancy than we might have
expected. But for us the really remarkable thing about it is that we can do
the error correction without, in fact, reading the message. All we need is
the error syndrome. Once we start sending quantum messages we have to
measure the message in order to read it. This means that reading the mes-
sage changes the message. Quantum error correction has to correct messages
without reading them.

41Exercise: For what values of p is the probability that the message comes out correctly
larger than (1 − p)4 if we use this code?

42Exercise: How many single component errors are there, and how many error syndro-
mes? Check the correspondence in detail.
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Channel capacity

A channel is any medium carrying a message. Physically it may be air, an
optical fibre, or a printing press. The input of the message can be regarded as
a random variable A, whose outcomes are the letters being sent. The output
is another random variable B, whose outcomes are the letters received. The
two random variables are connected by a conditional probability distribution
P (B|A), which tells us the probability that bi is received given that aj was
sent. These conditional probabilities are the matrix elements of a stochastic
matrix, in this context often called transition probabilities. We will therefore
equate a channel with a stochastic matrix. This means that we assume the
channel to be memoryless. This may not be an accurate model of the physical
channel, because real noise often has a tendency to come in bursts, but it is
a good first approximation. The physical details of the channel are left to
the engineers.

In a noiseless channel the output is in one-to-one correspondence with the
input, which means that the stochastic matrix is a permutation matrix. A
noisy channel offers more of a challenge. Given a stochastic matrix describing
a noisy channel, we want to know the maximal rate at which information can
be sent over that channel.

The quality of the channel can be measured by the mutual information
I(A : B) between input and output. If the output is independent of the
input the mutual information vanishes. If they are perfectly correlated the
mutual information equals the information H(A) in the input. We define the
capacity of a noisy channel as

C = max I(A : B) , (202)

where the maximization is with respect to the probability distribution chosen
for the input. The stochastic matrix defining the channel is kept fixed. Cal-
culating the channel capacity is a constrained optimization problem that can
be addressed using the Lagrange multiplier method. We write the mutual
information in the form

I(A : B) = H(B) −H(B|A) . (203)

Then we set
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∑
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 = 0 .

(204)
The conditional probabilities characterize the channel and are kept constant,
but when taking the derivative we must remember that ~q = ~q(~p). Provided
that no component of ~p vanishes we obtain

∑

k

pk|i ln
pk|i
qk

= λ + 1 . (205)

The “1” on the right hand side comes out when you take the derivative of qk
with respect to pi. Fortunately we know that mutual information is concave,
so these equations determine the unique maximum. Unfortunately they are
difficult to solve.43

There is one easy case: the binary symmetric channel (11). Then there
are only two equations (204), and if you write them out you see that they
imply q0 = q1 = 1/2. After that you quickly arrive at44

C = ln 2 + p ln p+ (1 − p) ln (1 − p) . (206)

It remains to interpret this formula. For this purpose we switch back to
logarithms with base 2 (turning ln 2 into 1).

The interpretation is provided by Shannon’s theorem. It is again concer-
ned with a message containing letters chosen according to a probability dis-
tribution ~p and coded into bits. It says that a string of bits of length NH(~p)
can be coded into a string of bits of length N and transmitted through a
channel with capacity C with arbitrarily small error, provided that

H < C . (207)

IfH > C this is not possible. Actually the theorem says more, and as was the
case with the noiseless coding theorem some fine print should be attached.
It is important to realize that the theorem applies to very long and ‘typical’
sequences only. But when it applies, it tells us exactly how much redundancy

43Exercise: Show that the equations imply that λ = C − 1.
44Exercise: Do the whole calculation! If p = 0.01 and you use logarithms with base 2,

what is the channel capacity?
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that has to be added to the message in a perfect error-correcting code. With
this remarkable statement we take leave of classical information theory.

The von Neumann entropy of a quantum state

We turn to the quantum case. In our discussion of measurements we came to
the conclusion that a quantum state ρ will return a wide variety of different
probability distributions, depending on what measurement we choose to do.
Each measurement of ρ is associated to some Shannon entropy. Is there a
single one that deserves to be called ‘the’ entropy of ρ? The first observation
is that if ρ is a pure state then there is a measurement that gives zero Shannon
entropy, while other measurements give positive entropy. If ρ is a mixed
state the issue is less obvious. If you stare at a point in the Bloch ball,
and imagine the probability distribution returned during an arbitrary von
Neumann measurement (defined by a pair of antipodal points on the surface),
you see that the Shannon entropy is smallest if the measurement is performed
in the eigenbasis of the state.

We just made a move that is typical for quantum Shannon theory. We
start with a notion from the classical theory, and then we optimize it. In this
case, we optimize over all possible measurements. One observation is that
methods of optimization will be important throughout the subject.

By optimizing the Shannon entropy we arrive at the von Neumann en-

tropy

S(ρ) = −Trρ ln ρ . (208)

Calculating the logarithm, or any other reasonable function, of a positive
operator poses no problem of principle. The function is defined in the ei-
genbasis of the operator, by replacing its eigenvalues with the function of
these eigenvalues. Taking the trace that occurs in the definition of the von
Neumann entropy is even easier, because we can calculate the trace in any
basis we want. In particular, we can calculate the trace in a basis in which
ρ is diagonal. Its eigenvalues form the probability vector ~λ, and the von
Neumann entropy is the Shannon entropy of that probability vector,
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S(ρ) = −
d−1
∑

i=0

λi lnλi = H(~λ) . (209)

The suggestion to call Shannon’s information ‘entropy’ was actually made
by von Neumann, who had already studied its quantum version.

The von Neumann entropy is indeed a very distinguished Shannon en-
tropy, singled out by the state itself. We can choose an arbitrary POVM and
obtain a probability vector having many more components that the vector
~λ. Let ~p be any probability distribution returned by ρ in some measurement.
Then one can show that

H(~p) ≥ H(~λ) . (210)

The proof is not particularly difficult, but it relies on just a little more back-
ground than we have introduced in our ‘Lengthy Introduction’. Our Bloch
ball argument should make it plausible, so we leave it unproved here.

The von Neumann entropy has the obvious property that

S(ρ) ≥ 0 , (211)

with equality if and only if the state ρ is pure. But the next obvious property
is simply not true. We recall from our discussion of entanglement that we
can have a pure state ρ12 in a composite Hilbert space, and reduced states
ρ1 and ρ2 describing parts of the whole, such that

S12 = 0 , S1 = S2 ≥ 0 . (212)

We have lost the natural analogue of the obvious inequality (187). This,
however, is not a weakness. It is simply the way things are.

Strong subadditivity and quantum relative entropy

We have already noticed that some seemingly natural entropy inequalities
fail in the quantum case. There is, however, a master inequality from which
many other inequalities follow. It is called strong subadditivity. It states that

S(ρ123) + S(ρ2) ≤ S(ρ12) + S(ρ23) . (213)
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This is a deep result due to Lieb and Ruskai. Since it was first proved in
the 1970ies there have been many attempts to find a simple proof, but these
attempts have not been very successful.

The inequality can be rewritten in an interesting form if we purify the
state ρ123 by introducing a fourth factor Hilbert space such that ρ123 =
Tr4ρ1234. By assumption the four-partite state is pure, so we can rely on

S1234 = 0 S123 = S4 and S12 = S34 . (214)

Using this (and changing the label 4 → 1 at the end, to make the formula
look more natural) we find that the strong subadditivity inequality becomes

S(ρ1) + S(ρ2) ≤ S(ρ13) + S(ρ23) . (215)

For the classical Shannon entropy the inequalities S1 ≤ S13 and S2 ≤ S23

hold separately. In the quantum case they do not, but their sum does.
Many important results follow from strong subadditivity. For an easy

example, let the Hilbert space H2 be one-dimensional so that S2 = 0. The
inequality (213) then collapses too

S13 ≤ S1 + S3 . (216)

This is the subadditivity inequality.
Finally we define the quantum relative entropy in analogy to the classical

case,

S(ρ||σ) = Tr (ρ(ln ρ− ln σ)) . (217)

If [ρ, σ] 6= 0 the two density matrices do not share any common eigenbasis.
It follows that the relative entropy is an object that is hard to manipulate,
even though it is every bit as important to quantum information theory as
its classical cousin is to classical information theory. One reason for this
is a theorem due to Lindblad, who used strong subadditivity to show that
quantum relative entropy is monotone under arbitrary CP maps.

Quantum channels
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A quantum channel may be an optical fibre through which we send polarized
photons. In quantum information theory it will be modeled by a CP map.
And a main aim of quantum information theory is to define quantum channel
capacities, analogous to that of Shannon. Indeed more than one channel
capacity, because we may ask how reliably qubits can be sent through the
channel, or how reliably the qubits can be used to transmit classical bits
through it. Some quite unexpected phenomena can occur. Thus two quantum
channels may transmit more than twice the information transmitted by a
single channel, if their inputs are entangled. [But we have to interrupt the
story here, and go to the next chapter. It is scandalous that I did not arrive
at the Holevo bound...]
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QUANTUM COMPUTATION

With very little time left, we start a discussion of what may, or may not, turn
out to be the most important part of the course. Either way, it illuminates
what quantum theory is about.

Computation and complexity

In the 1930ies Turing analysed the meaning of computability. He came up
with the notion of a universal Turing machine which is supposed to be able to
compute anything that can be computed by means of algorithmic procedures.
From a modern perspective you can think of a universal Turing machine as
any existing computer, having a finite number of internal states and a finite
program but equipped with an infinite memory. Indeed the computer can
be stripped down a lot, making it very slow but still universal, in the sense
that given enough time it can mimic the actions of any other computer. It
is generally agreed that no machine, whether classical or quantum, can do
better than the Turing machine in this regard.

The universal Turing machine is used to define what we are supposed to
mean by ‘computable’. A function is said to be computable if there exists
a program for the machine which takes the argument of the function as an
input, and outputs the value of the function after a finite time. Since the
input and the output can be coded in binary digits, the function is a function
from the integers to the integers. Any question you may care to ask can be
phrased in these terms. In ASCII encoding every upper or lower case Latin
letter, Arabic numeral, question mark, and so on, is given by a 7 digit binary
integer. Two symbols are then given by a 14 digit binary integer, and so
on. Hence your question can be assigned a number, and the answer will be
a function of that number.

The story changes if we are interested in obtaining the result in reasonable
time. Suppose that the task is to multiply n× n matrices together. Procee-
ding as usual you see that this requires n3 multiplications. This gives us some
feeling for how the complexity of the calculation grows with n. We could say
that it grows like n3. Actually it is possible to improve the algorithm by tra-

71



ding some multiplications for additions, which are cheaper.45 One can set up
matrix multiplication so that that the number of multiplications grows like
n2.37, and perhaps further improvements are possible. Either way the growth
is polynomial in the size of the input. We count time in terms of the number
of computational steps needed, and say that matrix multiplication can be
done in polynomial time, or equivalently that it belongs to the complexity

class P.
As another example, consider factoring an integer N into primes, using

an algorithm that applies to any N . If we use Erathostenes’ sieve we simply
check, for every integer less than or equal to its square root, whether it divides
the given integer. Measuring the size of the integer in terms of the number n
of binary digits needed to write it down, the size of the calculation grows like
2n/2, that is to say exponentially in the size of the input. This leads us to
define the complexity class EXP, consisting of problems that can be solved
in a time that grows exponentially with the size of the input. Clearly P is
a subclass of EXP, and we do not have a proof that factorisation does not
belong to that subclass. Still the distinction between the complexity classes
is fundamental. An algorithm that belongs to P is regarded as ‘tractable’.

You can object that, as a practical matter, it is not obvious what to
choose if the choice is between an algorithm with a running time 106 +106 ·n
and another with running time e10

−6·n But this situation rarely occurs in
practice. A deeper answer is that one can build an interesting theory based
on the distinction between P and EXP. For instance, once an algorithm has
been shown to be tractable in the sense that it belongs to P, it can be called
as a subroutine in a larger program without taking the latter out of P.

Returning to the factoring of integers, we can use this problem to in-
troduce a few more complexity classes. Consider first the less ambitious
question whether a given integer is a prime or not. This is a yes/no ques-
tion. A yes/no question is said to belong to the complexity class BPP, spelt
out as bounded-error probabilistic polynomial, if there is an algorithm that
runs in polynomial time and gives the correct answer with probability equal
to 3/4.46 It turns out that primality testing belongs to the complexity class

45Exercise: For the matrices A and B in eq. (81), suppose you are given the seven
products (a00 + a11)(b00 + b11), (a01 + a11)b00, a00(b01 − b11), a11(b10 − b00), (a00 +
a01)b11, (a10−a00)(b00+ b01), (a01−a11)(b10− b11). Show that no further multiplications
are needed to construct AB.

46Exercise: Change the 3/4 to any number larger than 1/2. How does this affect the
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BPP. Algorithms for primality testing that are in actual use are of this type,
but in 2002 it was discovered that there does exist a deterministic algorithm
that runs in polynomial time. So primality testing belongs to P. The lesson
is that it may be difficult to decide what complexity class a given problem
belongs to.

If you want to know what the factors of a non-prime integer are, the best
existing classical algorithm is known as the Number Field Sieve. Its running
time grows as 2n1/3

, which means that it requires exponential time. On the
other hand, if someone suggests a factoring, you can check in polynomial
time whether this is correct. For this reason this problem is said to belong
to the complexity class NP, for non-deterministic polynomial.

Of course this does not prove that factoring a prime cannot be done
in polynomial time on a classical computer. In fact, one of the main open
problems in theoretical computer science is whether there exist problems that
belong to NP without also belonging to P. What is known is that there are
many problems that are NP complete, in the sense that if one could prove
that one of them is in P, then the two complexity classes coincide. This said,
there is close to a consensus that P 6= NP. (And also close to a consensus
that this distinction will be unaffected by quantum computation).

The BQP complexity class

Turing’s definition of ‘computable’ hinges on functions from the integers to
the integers, and you may ask if an analog computer (operating, like most
of classical physics, with real numbers) can bring changes. The standard
answer is that a physical analog computer would need a precision increasing
exponentially with the size of the input in order to give an advantage. A
physical analog computer will always be subject to noise, and this prevents
the analog computer to have much impact on complexity theory. A quantum
computer shares some features with analog computers, since it takes a con-
tinuum to label its states, but on the other hand the theory of measurement
means that the measured output consists of a discrete set of possibilities. It
is not called ‘quantum’ for nothing.

Deutsch raised the question of what would happen if the Turing machine

complexity class of the problem?

73



is allowed to operate under the laws of quantum mechanics. One of his
conclusions was that a quantum Turing machine can be always be simulated
by a classical Turing machine, so the theory of quantum computation does
not affect the definition of computable functions. But he also concluded
that for certain problems the quantum Turing machine will be faster than
its classical cousin, so we have to look at the complexity classes with fresh
eyes.

Of course, the point we are driving at is that in 1994 Shor found an al-
gorithm for factoring integers whose running time on a quantum computer
grows like n3, and which returns an answer that is correct with a probability
greater than 3/4. This leads to the definition of a new complexity class BQP,
bounded-error quantum polynomial. This has now to be placed somewhere
in the hierarchy of classical complexity classes. The belief is that BQP is
larger than P and larger than BPP, but not large enough to include all of
NP. On the other hand it may include some problems outside NP. Evi-
dently, since the question whether P 6= NP is open, this is conjectural only,
but the question what a quantum computer can do is presently attracting
considerable interest.

We make three overall remarks before trying to define a quantum compu-
ter. The first is that in the 25 years that have passed since Shor’s discovery,
the number of genuinely new and interesting quantum algorithms that have
been discovered is very small. The second is that the obvious objection to
quantum computers, that they will be prone to errors that cannot be cor-
rected, has been quite succesfully met. The objection simply does not hold,
or at least it is not obvious that it holds. The third and final remark is
that as far as practical applications are concerned the most promising ones
seem to be quantum simulators, that is to say quantum computers desig-
ned to simulate physically interesting quantum systems. This possibility was
first raised by Feynman, and it seems quite plausible that it will have conse-
quences for, say, quantum chemistry in the not too distant future. We will,
however, spend the time that is left to us on the construction of a universal
quantum computer. Whether useful or not, this is a machine that sheds light
on quantum mechanics.

We have a fourth remark too. There are many choices to be made in
the architecture of the universal quantum computer. We will use the circuit

model, but other options exist. We will take it to operate on qubits, but this
is not necessary. Eventually we will choose one out of many possible sets of
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universal gates. And so on. So the fourth remark is that whenever we make
a choice, we make it without much comment.

The circuit model

A classical computer operates on bits, represented by integers a, b, . . ., coun-
ted modulo two. That is, the integers take the values 0 or 1 and 1 + 1 = 0.
Physically, this may be no voltage, or some voltage. The aim is to calculate
functions of strings of zeros and ones, taking the values zero or one. The
action can be broken down into elementary logical components called gates.
Examples of gates include AND, OR, and NOT, connected by wires that
are allowed to bifurcate. The AND gate accepts two inputs a and b, and
returns the output ab. The OR gate also accepts two inputs, and returns the
output a+ b+ ab. The NOT gate accepts a single input a and returns a+ 1.
In all cases the arithmetic is modulo two.47 From these simple ingredients
one can build a universal computer. Of course there is some physics behind,
but Figure 8 is our only comment on this. As Turing was saying, “being
digital should be of more interest than being electronic”. (Actually, soon
after he said that, developments occurred that made his remark look rather
questionable.)

Figure 8: Two increasingly schematic picture of the NOT gate. A transistor is
a (quantum!) device that conducts currents only in the presence of the voltage
supplied by the input. A resistor is included as well.

A problem with the AND and OR gates is that they are irreversible. You
cannot recover their inputs from their outputs. There are thermodynamic

47Exercise: Write the AND, OR, and NOT gates as logical truth tables. Write the
NAND gate (AND followed by NOT) using both notations.
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reasons to worry about this, because irreversible evolutions generate heat.
Bennett, Fredkin, and Toffoli showed that one can construct classical com-
puters that operate entirely with reversible gates. This was an important
step towards quantum computers.

A quantum computer operates by applying a reversible unitary transfor-
mation to a multi-qubit state described in a computational basis formed by
product vectors. A measurement in the computational basis is performed at
the end, in order to read the output. The unitary transformation must be
built up from a finite number of more elementary unitary transformations,
again called gates, in a way that can be efficiently described. We need a small
set of gates, but large enough so that any unitary transformation can be well
approximated. Then we have a universal quantum computer. On paper, that
is.

The problem of finding a universal set of gates is solved in three steps.
First we find a small set of unitary 2 × 2 matrices such that any unitary
2×2 matrix can be approximated, to any given precision, as a finite product
of matrices from the set. In the second step we show that any unitary
transformation acting on the full Hilbert space can be written as a string of
unitary matrices that act non-trivially only on one or two qubits at a time.
In the third step we show that it suffices to add a single two-qubit gate.

For the first step we use the set {H, T}, where H is the Hadamard gate
(69) and T is the π/8-gate

T =

(

1 0
0 σ

)

= e
iπ
8

(

e
−iπ
8 0

0 e
iπ
8

)

, σ ≡ e
πi
4 . (218)

The second equality is there only to explain the name. We can now construct
other unitaries such as Z = T 4, X = HT 4H , and so on. The key step in the
proof of universality is to compose T and H in such a way that the resulting
unitary effects a rotation of the Bloch sphere through an angle that is an
irrational multiple of 2π. Once this is achieved the argument proceeds along
the lines that Euler used to introduce his Euler angles, and you can go on to
approximate any rotation to within some arbitrarily small ǫ. Two unitaries
U and V are said to approximate each other to within ǫ if

||U |ψ〉 − V |ψ〉||2 < ǫ (219)

for every unit vector |ψ〉. We cut this complicated story short by saying
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that this is possible, and that the number of discrete qubit gates you need
to approximate arbitrary qubit unitaries grows like a small power of the
logarithm of 1/ǫ.

The second and third steps are actually easier than the first, but we simply
give the answer. All we need to add to our generating set is the controlled-X
or CNOT gate acting on two qubits according to

|00〉 → |00〉 , |01〉 → |01〉 , |10〉 → |11〉 , |11〉 → |10〉 . (220)

The action of a gate on any state is defined by its action on the computational
basis. In words we describe the CNOT gate by saying that you apply the X
gate to the second qubit if and only if the first qubit is in the state |1〉. If
we have several qubits we can apply the CNOT gate to any pair, leaving the
others as they are.48 In the course of the calculation it can happen that the
qubits become entangled, in which case they do not have pure states of their
own, but we can still apply our gates to them. The logic is exactly the same
as when we represent an operator as a matrix.

The conclusion is that the set {H, T,CNOT} is a universal set of gates,
in the sense that it can be used to approximate every unitary acting on n
qubits. We skipped the proof, but you will probably trust the second and
third step of the argument after looking at a few examples.

When we start to combine the gates we can use at least three different
ways to describe things. We can use matrices (not recommended). One
alternative is to use arithmetic modulo two to describe the action on the
basis states. The one qubit gates are generated by

H|a〉 = (−)a|a〉 + |a+ 1〉 , T |a〉 = σa|a〉 , σ = e
iπ
4 . (221)

Normalization factors are understood. We can now calculate the action of
X = HZH = HT 4H in three steps.49 We obtain

|a〉 → (−)a|a〉 + |a+ 1〉 → |a〉 + (−)a+1|a+ 1〉 → |a+ 1〉 . (222)

48Exercise: Write out (220) as a matrix. Compare it with the matrices representing
X ⊗ 1 and 1⊗X . Then write out all 8× 8 matrices that describe the CNOT gate applied
to any two out of three qubits.

49Exercise: Do all steps explicitly, and compare with the matrix notation.

77



We denote the controlled-X gate by CX . This prepares the notation for
handling controlled-U gates, which apply the one-qubit unitary U to a qubit
if the control qubit is in state |1〉, but leaves things alone if the control qubit
is in state |0〉. Compare Problem 3 for the Dirac notation. The action of CX

on the basis states is

CX |a, b〉 = |a, b+ a〉 . (223)

The notation becomes more cumbersome once we have to specify which, out
of many, qubit serves as the control qubit and which qubit serves as the
target.

Circuit diagrams

We now switch to circuit diagrams, in which each qubit is represented by a
horizontal line interrupted by boxes to keep track of which unitary operator
that is acting. The input is on the left and the output on the right. Thus
the sequence XXZ is written as

|Z| |X| |X|
The controlled-U gate is50

|U |

•

If you go through a few examples you will find that the circuit diagrams are
close to self-explanatory.51 The first example shows that we can switch the
role of control and target in the definition of CX :

50Exercise: Construct a CZ gate from our universal set. Is it trivial to construct CU for
general U? Give a reason. (If your answer is no, rest assured that someone has done it.)

51Exercise: Verify the following three circuit diagram equalities by tracing through what
happens to the computational basis states.
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|H| |H|

|H| |H|
=

•

|X|

|X|

•
At first sight, this looks wrong. Since H2 = 1 it seems that we do nothing on
the first qubit to the left of the equality sign, while we certainly do something
on it to the right. The point, however, is that the matrices H ⊗H and CX

do not commute.
In the second example we construct the SWAP gate, whose action can

alternatively be written as |a, b〉 → |b, a〉:

S =

|X|

|X|

|X|

•

•

•

Once we have constructed the SWAP gate it can be used as subroutine in
larger circuit diagrams, which saves you from writing out three CNOT gates.

Note that, like the CNOT gate, the SWAP gate can be used in a classical
computer too. Moreover one can use two SWAP gates to interchange the
role of control and target in a CNOT gate. The quantum computer manages
this interchange using only Hadamard gates, which act on single qubits only.

Our third example is the Toffoli gate, which has two control qubits and
one target. The action is |a, b, c〉 → |a, b, c+ ab〉. The construction to follow
makes use of the fact that, in quantum theory, NOT has a square root:

√
X = HT 2H ⇒ (

√
X)2 = HT 4H = X . (224)

The circuit diagram that defines the Toffoli gate is52

52Exercise: In view of our discussion of open systems, what is the reason for the final
CNOT gate?
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|X|

•

•

=

|
√
X| |

√
X

−1| |
√
X|

• |X| |X|•

• • •

Like the gates X and CX the Toffoli gate can be defined also in classical
computer circuits acting on bits. A reversible classical computer needs the
Toffoli gate in order to be universal. But then it has to be defined as a
primitive, because the square root of NOT does not exist classically. In
the quantum case on the other hand one and two-qubit gates are enough to
ensure universality. This is very good news if you want to build a quantum
computer. One qubit gates are easier to fabricate than are two qubit gates.
Fabricating a three qubit gate would be very hard.

Continuing in this way, we can build a circuit that approximates any
unitary acting on an arbitrary finite number of qubits. (I did not say it is
easy.) But we have still to discuss the sine qua non of the quantum computer:
preparation and measurement.

Preparation and readout

We make the convention that the qubit register is initialized in the state
|0, 0, . . . , 0〉. The circuit therefore begins by creating some more interesting
state to act on. We may take it that the aim of the computation is to compute
an integer valued function f , taking an integer x as its argument. Let us
assume that x < 2n and f(x) < 2m. We then divide the register into an n
qubit input register and an m qubit output register. We may need additional
work qubits to act on, and if so we must take care that the calculation does
not leave them entangled with the input and output qubits.

We write the integer x in binary form, so that we get a sequence of no more
than n zeros and ones. By means of a unitary transformation the register is
transformed into the state |x〉n|0〉m, where |x〉 is an n-qubit state encoding
the input. The m-qubit state |0〉 is there to ensure that the transformation
is reversible, as we will see in a moment. By hook or crook, we find a unitary
transformation Uf such that
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Uf |x〉n|y〉m = |x〉n|y + f(x)〉m . (225)

In particular

Uf |x〉n|0〉m = |x〉n|f(x)〉m . (226)

This transformation is reversible because

Uf |x〉n|f(x)〉m = |x〉n|f(x) + f(x)〉m = |x〉n|0〉m . (227)

A similar division of the register into an input and an output register is
needed for a reversible classical computer to work.

Pause to make sure what is being meant. Suppose we wish to compute
f(5) = 3. In binary this is f(101) = 11. It is enough to use a three qubit
input register and a two qubit output register. We need to build a unitary
transformation such that

Uf |101〉|00〉 = |101〉|11〉 . (228)

It should now be clear why |f(x)+f(x)〉m = |0〉m even though f(x)+f(x) 6=
0. We do no carrying on the ket labels.

So far the discussion would apply also to a reversible classical computer.
But let us apply a Hadamard gate to every input qubit,

H|0〉 = |0〉 + |1〉 , H⊗2|00〉 = |00〉 + |01〉 + |10〉 + |11〉 , (229)

and so on. (As usual we ignore overall normalisation factors.) When we do
go on, we obtain the remarkable formula

H⊗n|0〉n =
∑

x<2n
|x〉 . (230)

A single application of the unitary Uf now has the effect that

Uf(H⊗n ⊗ 1⊗m

)|0〉n|0〉m =
∑

x<2n
|x〉n|f(x)〉m . (231)

It seems as if we have computed every value of the function in a massively pa-
rallel computation. But the information has not yet reached its destination.
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In the end we have to perform a measurement. In quantum computation this
is not just an afterthought. It is an essential part of the computation.

If we start by measuring the input register in the computational basis the
state collapses with equal probability to anyone of the states

|x〉n|f(x)〉m . (232)

We now know x, and a measurement on the output register yields the value
of the function f(x). This quantum computation therefore gives as much
information as the classical one. The one difference is that the choice of x
was made at random after the completion of the calculation (which is a bit
odd, but hardly an advantage).

But maybe we did not ask the right question? Perhaps we could design
some measurement that extracts global information about the function f ,
rather than some special value? Before asking this in earnest we practice a
little on how to prepare interesting input states. It is easy enough to design
a circuit that affects the transition |0, 0〉 → |0, 0〉 + |1, 1〉, namely

|X|

|H| •

This is interesting because we have created an entangled state from a sepa-
rable state. This supports the claim—whose proof I skipped—that we can
approximate arbitrary unitary transformations using only the gates H, T ,
and CX , so that we can produce any state whatsoever from the initial state
|0〉n.53

Many quantum information protocols end with a measurement in some
basis other than the computational one. In the quantum teleportation pro-
tocol Alice is asked to perform a measurement using a nice error basis, that
is to say (if she teleports qubits) in the Bell basis

|Φ±〉 = |0, 0〉 ± |1, 1〉 , |Ψ±〉 = |0, 1〉 ± |1, 0〉 . (233)

A moment’s thought shows that our insistence that the result of the quantum

53Exercise: Design a circuit that effects the transition |0, 0, 0〉 → |GHZ〉, where the GHZ
state is |GHZ〉 = |0, 0, 0〉+ |1, 1, 1〉.
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computation should be read out by means of a measurement in the compu-
tational basis imposes no restriction. We can still perform a measurement
in the Bell basis if we first perform a unitary transformation that turns the
Bell basis into the computational basis, and then measure.54

The Deutsch–Jozsa algorithm

The Deutsch–Josza algorithm is a proof-of-principle, showing that there ex-
ists a problem where a quantum computer provides a speed-up compared to
what a classical computer can do. The problem it solves is not particularly
interesting in itself, in fact it is quite contrived, but the underlying idea re-
curs in more interesting algorithms. Suppose we have a function from {0, 1}
taking values 0 or 1, and a circuit that computes it, that is to say that

Uf |0〉|y〉 = |0〉|y + f(0)〉 , Uf |1〉|y〉 = |1〉|y + f(1)〉 , (234)

where y ∈ {0, 1} is arbitrary. It may be expensive to run this calculation
however. The question is: How many times do we have to run the calculation
before we know whether f(0) = f(1)? This is an example of an oracle

problem. Applying the unitary Uf is like asking an oracle for an answer.
The question is how many times we have to ask the oracle before we know
the answer we want to have. In a classical computer we would have to ask
twice, but the Deutch-Josza algorithm allows a quantum computer to answer
the question with only a single application of Uf .

The trick is to make a suitable preparation before the oracle is called.
Thus

|0〉|0〉 → (H ⊗H)(X ⊗X)|0〉|0〉 = (|00〉 − |01〉 − |10〉 + |11〉 . (235)

Now we call the oracle. Denoting f(x) + 1 = f̄(x) we obtain

|0〉|f(0)〉 − |0〉|f̄(0)〉 − |1〉|f(1)〉 + |1〉|f̄(1)〉 . (236)

It is a small exercise to check this, and then to check that if f(0) = f(1) the
result is

54Exercise: Design the circuit we need for this.
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(|0〉 − |1〉)(|f(0)〉 − |f̄(0)〉) , (237)

while if f(0) = f̄(1) it is

(|0〉 + |1〉)(|f(0)〉 − |f̄(0)〉) . (238)

Finally we apply a Hadamard gate to the input register, and make a mea-
surement of the input register. If the qubit collapses to |1〉 the function is
constant, if it collapses to |0〉 the function is not constant.55 And the oracle
was called only once, as you can see from the circuit diagram.

Uf

|X| |H|

|X| |H| |H|

Notice however that if we measure the output register we get no infor-
mation about the actual values taken by the function. We get an outcome
which with probability one half is f(0) and with probability one half is f̄(0),
but we do not know which is which. So it is a trade off. We changed the
question to be about a global property of the function. And in a sense this
is the point: In a quantum computer we can ask a wider range of questions
about the function.

Prime factorisation and RSA cryptography

The Deutsch-Josza algorithm answers no interesting question, but it serves
as an inspiration for algorithms that do. The outstanding example remains
Shor’s algorithm for finding the two prime factors of a large number N . This
is indeed an interesting problem, that may well not belong to the classical
complexity class P. Shor’s algorithm does the factorisation in a time that
grows like n3 or (with improvements) like n2, where n is the number of binary
digits of N . More precisely, the factorisation relies on a subroutine that finds
the period of a certain function. Shor’s algorithm provides an exponential

55Exercise: Check it all, starting from the small exercise.
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speed-up of this subroutine. Once this period is known, a classical computer
finishes the factorisation in polynomial time. Perhaps one can describe Shor’s
achievement by saying that he found an example of the kind of questions
that quantum computers are good at, sitting inside a genuinely interesting
mathematical problem.

Part of the excitement is that prime factorisation plays a role in public

key cryptography. The idea here is to rely on a mathematical problem that
is easy to solve one way, and hard to solve the other way. Using factori-
sation of integers for this purpose leads to RSA cryptography (for Rivest,
Shamir, and Adleman, who were the first outside the British Secret Service
to come up with the idea). Imagine a cryptographic protocol that requires a
composite number N for encryption, but the prime factorisation N = pq for
decryption. Starting from two large primes p and q the receiver announces
N publicly, so that anyone can use it for encryption. To read the encrypted
message you must either know p and q in advance, which is true only for
the intended receiver of the message, or calculate them, which will take an
inordinate amount of time if you rely on an algorithm whose running time
grows exponentially with the number of digits in N .

To see how this comes about we need some knowledge of arithmetic. First
we note that Euclid provided a very fast algorithm for finding the greatest
common divisor (a, b) of two integers. If a < b you divide b with a to obtain
the remainder r, and then observe that (a, b) = (r, a). This reduces the
size of the problem, and by repeating the process you reach the answer in
polynomial time. Given any two integers a and b this algorithm also yields
two integers m and n such that

am + bn = (a, b) . (239)

If (a, b) = 1 the pair of integers have no common factor, and then they are
said to be relatively prime.

Before we continue our journey through elementary number theory, let
me say that although all the proofs we need are simple they can be quite
exhausting to follow for the greenhorn. So I recommend that you take them
on trust, as being part of the classical pre- and postprocessing of the quantum
algorithm. We are tackling a very serious mathematical problem, and it is
only to be expected that this will involve some serious mathematics.

With this warning we come to modular arithmetic. Two integers are
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declared to be equal modulo N if they differ by a multiple of N ,

a = b mod N ⇔ a = b+ nN . (240)

Addition and multiplication modulo N is defined in the obvious way. Now
consider two relatively prime integers a and N . From eq. (239), with N in
the role of b, it follows that there always exist an integer m such that

am = 1 mod N . (241)

Hence, provided (a,N) = 1, a has an inverse in arithmetic modulo N . In
other words, the set of integers relatively prime to N form a group under
multiplication modulo N . We will be interested in the order of this group,
that is to say in the number of its elements. This is given by Euler’s totient

function φ(N), defined as the number of integers smaller than and relatively
prime to N . If p and q are distinct primes the totient function is

φ(p) = p− 1 , φ(pq) = (p− 1)(q − 1) . (242)

We need only these two cases. Confusingly we will also be interested in the
order of an integer a, that is to say in the smallest integer r such that

ar = 1 mod N . (243)

Given an integer a relatively prime to N the set of integers of the form ax

mod N forms a subgroup of order r. Lagrange’s theorem says that the order
of a subgroup always divides the order of the whole group, so r divides φ(N).
In every case it must be true that

aφ(N) = 1 mod N . (244)

This is called Euler’s theorem. It must hold, otherwise the number of ele-
ments in the group would be larger than its order.56

In our examples N will be huge. It is nevertheless a quick affair to let a
computer calculate ax modulo N . The number of multiplications needed is
kept modest if we do the calculation by repeated squaring,

56Exercise: For N = 4, 5, 6, 7, 9, 10, 15, find the multiplicative inverse modulo N of every
integer that has one, and count the latter. Verify that φ(pq) = (p− 1)(q − 1) when p and
q are distinct primes. Find examples of integers having an order lower than φ(N).
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a→ a2 → a2
2 → a2

3 → . . . . (245)

Then ax is created by multiplying a subset of these powers together. In this
way ax can be calculated in polynomial time on a classical computer.

Incidentally, this gives us a hint why primality testing is easier than fac-
torisation. If there is an integer a < N such that aN−1 6= 1 modulo N then
N cannot be a prime number. Unfortunately there are composite numbers
that pass this test (361 = 3 · 11 · 17 is the smallest example), which is why
the full story is much longer.

We now have all the number theory we need for RSA cryptography. The
protocol starts when the receiver picks two large primes p and q, and another
integer c relatively prime to (p− 1)(q− 1). She also calculates the inverse of
c in arithmetic modulo (p− 1)(q − 1). This is an integer d such that

cd = 1 mod (p− 1)(q − 1) . (246)

The product N = pq and the integer c are made public, but p, q, and d are
kept secret. Anyone wanting to send a message to the receiver converts the
message to an integer a (using ASCII encoding, say), and checks that a is
relatively prime to N . Then he calculates the encrypted message

b = ac mod N . (247)

The message is easily decrypted by anyone knowing the secret integer d,
because

bd = acd = a1+n(p−1)(q−1) = a mod N . (248)

All the calculations are done in polynomial time.
What can the eavesdropper do? To compute d she needs to factor the

integer N . Mathematicians have worked on this problem since the days of
Eratosthenes, and so far the best algorithm they have come up with runs in
exponential time. If N is large enough this suggests that the message will be
safe from eavesdroppers for many years to come. To learn what large enough
means in practice, we note that in 2016 the NSA recommended keys with at
least 3072 bits. Keep in mind that the NSA has a history of recommending
cryptos that they themselves can just break.
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Actually the eavesdropper can get by with somewhat less. She only needs
to find the order of b, that is to say an integer r such that

br = 1 mod N . (249)

The order divides φ(N) = (p−1)(q−1), but may not be equal to it. Now the
publicly known integer c is relatively prime to the unknown integer φ(N).
Since r is one of the factors of the latter it follows that (c, r) = 1. It then
follows that there exists an integer d′ such that

cd′ = 1 mod r . (250)

The next point to notice is that when two integers a and b are related the
way they are in the RSA protocol then they have the same period. This
is because we are assured that integers c and d exist such that b = ac and
a = bd. This means that the integers a and b belong to the same cyclic
subgroup of the multiplicative group of integers relatively prime to N , and
their respective orders are both equal to the order of that subgroup. Hence
ar = 1 mod r. Equipped with all these assurances, and assuming that she
can find the period r in the time at her disposal, the eavesdropper performs
the calculation

bd
′

= acd
′

= a1+nr = a mod N . (251)

She can now read the message at her leisure.
What is the size of the calculation Eve must do to find the period r?

It is convenient to rephrase the problem slightly by defining the function
fa(x) = ax. Then the element a is of order r if and only if the function fa(x)
is a periodic function of period r in arithmetic modulo N ,

fa(x) = ax ⇒ fa(x + r) = ax+r = ax = fa(x) . (252)

Now the question is how hard it is to find the period of this function. Clas-
sically, the way to find the period is to evaluate fa(x) for many values of x,
until one finds a pair x1 and x2 such that fa(x1) = fa(x2). The period will
then be a divisor of x1−x2, and by finding a few such coincidences it is likely
that the period is the largest common divisor of them all. But since the diffe-
rence fa(x1)−fa(x2) can take N different values we need to examine about N
different pairs to find a coincidence. The number of different pairs is roughly
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the square of the number of evaluations of fa that we perform, so it follows
that we are likely to need

√
N evaluations of the function before we find a

single coincidence. If N ≈ 2n this means that the procedure is exponential in
n. And this is provably the best a classical algorithm can do with the period
finding problem. But a quantum computer offers an exponential speed-up. A
constant number of evaluations, followed by some computational steps that
take polynomial time only, suffice.

Before we turn to this, we should perhaps finish the factorisation question.
Since we have no guarantee that the period r equals φ(pq), we are not yet
able to solve for p and q. However, with some further number theoretical
manipulations that we do not go into, it can be shown that if we pick the
integer a at random then knowing the period of f(x) = ax modulo N will
enable us to factor N = pq with a probability no smaller than 1/2. Hence,
if the period finding problem belongs to the complexity class BQP, so does
the factoring problem. I will focus exclusively on period finding from now
on.

Shor’s algorithm

I will be a little sketchy about Shor’s period finding algorithm. The hope
is that we can find a way of asking for the period of the function without
actually having to ask for the values it takes. In the first step we realize the
transformation

|x〉n|0〉n′ →
2n−1
∑

x=0

|x〉n|f(x)〉n′ , (253)

where f(x) = ax and n′ is the smallest integer such that 2n′

> N . This is
not an oracle problem. We work with a concrete function. If the number
of binary digits in N is 3072, or thereabouts, we need many qubits for the
purpose. However, on paper, ingenuity supported by repeated squaring, as
in eq. (245), enables us to do this in an efficient manner. I skip the details
of this interesting step.

To reduce clutter we now perform a measurement on the output register,
and obtain a value f(x0) for the function. This means that the n qubit input
register collapses to a superposition of all the values of x that return this
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value of f , namely

|ψ〉 = |x〉n →
m−1
∑

j=0

|x0 + jr〉n . (254)

Here m is the smallest integer such that x0 +mr ≥ 2n. The unknown period
r is in there, but it is not so easy to get it out. A measurement on the input
register would collapse the state to one of the m states

|x0 + jr〉 . (255)

This is not helpful, because the value of x0 is not known, and it would change
if we run the procedure again. So we change the question.

We need a unitary transformation that moves the unwanted integer x0
into an overall phase factor that does not affect the probability vector. The
discrete Fourier transformation in dimension 2n is defined by its action on
the basis states, as

F |x〉n =
1√
2n

2n−1
∑

k=0

ωxk|k〉n , ω = e
2πi
2n . (256)

Note carefully that in the exponent of ω the integers x and k are treated as
ordinary integers. The product is nevertheless taken modulo 2n because ω is
a 2nth root of unity. (And we could have made the definition in an arbitrary
dimension. We choose it to be 2n because this is what we want.)

When we apply F to the input register we obtain

F |ψ〉 =
1√
2nm

2n−1
∑

k=0

m−1
∑

j=0

ω(x0+jr)k|k〉m =
1√
2nm

2n−1
∑

k=0

ωx0k
m−1
∑

j=0

ωjkr|k〉n . (257)

Now we perform the measurement on the input register. The probability of
obtaining the kth outcome is

pk = |〈k|F |ψ〉|2 =
1

2nm

∣

∣

∣

∣

∣

∣

m−1
∑

j=0

ωjkr

∣

∣

∣

∣

∣

∣

2

. (258)

This depends on the period r while x0 has disappeared, just as we wanted.
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There are two questions left to address. How do we physically implement
the Fourier transformation, and how do we extract r from the probabilities?
We will see the quantum speed-up when we address the first question, but
first we deal—too sketchily—with the second. It ends with an interesting
moral.

The easy case of the second question is if the unknown period r divides 2n.
Recalling that the period also divides (p− 1)(q− 1), we see that this implies
that the prime factors of N are of the form 2x + 1 for some integer x. (This
includes the Fermat primes 22x + 1, of which the only known examples are
3, 5, 17, 257, 65537. Reports that 15 = 3 · 5 has been factored in the lab deal
with the easy case.) Anyway, because ω2n = 1 we see that the amplitudes in
(258) will add up if kr is a multiple of 2n, while destructive interference will
occur otherwise. Thus, when the measurement results in the kth outcome
it tells us the value of the integer 2n/r up to an unknown multiple. If we
run the whole procedure again, we will get the value of 2n/r multiplied with
another unknown multiple. Running the whole procedure a few times and
taking the greatest common divisor of the received k-values determines 2n/r,
and hence r. We are finally done, and if the Fourier transformation can be
done in polynomial time we are done in polynomial time.

Although this was the easy case, it may be a little difficult to follow, so
let us do an example. Set N = 15 and choose a = 7, which is relatively prime
to 15. In arithmetic modulo 15 we find

a = 7 , a2 = 4 , a3 = 13 , a4 = 1 . (259)

So the period r = 4. (If you want to do this calculation in your head, think
a4 = a3 · a = 13 · 7 = −2 · 7 = −14 = 1 modulo 15.) Even if we do not know
the value of r, the machine does, in some sense. When we measure on the
output register we might obtain the value f7(x) = 4, in which case the input
register is in the four qubit state

|ψ〉 = |2〉 + |6〉 + |10〉 + |14〉 . (260)

So m = 4. The probability to obtain the kth out of the 16 outcomes is

pk =
1

16

1

4

∣

∣

∣

∣

∣

∣

3
∑

j=0

ω4jk
16

∣

∣

∣

∣

∣

∣

2

=
1

16

1

4

∣

∣

∣

∣

∣

∣

3
∑

j=0

ωjk
4

∣

∣

∣

∣

∣

∣

2

=











1
4

if k = 0, 4, 8, 12

0 otherwise .
(261)
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Here we relied on ω4
16 = ω4, as well as on the key formulas

ω = e
2πi
N ⇒

N−1
∑

j=0

ωj = 0 ⇒
N−1
∑

j=0

ωjk = Nδjk . (262)

Say that we obtain the outcome 8. We repeat the procedure, and obtain a
different value, say 12. We compute the greatest common divisor (8, 12) = 4.
Then we have determined the integer 16/r = 4, so that we can calculate
r = 4. Whatever the outcomes are, and even if N is large, the mathematics
of the last step guarantees that with high probability we need only a few
repetitions to determine r.

If the prime factors are not of the form 2x + 1 the story is more involved,
and hinges on continued fractions. This is a chapter of number theory that
allows us to approximate arbitrary numbers with rational numbers having
the smallest possible denominators, given the degree of approximation we
want. An interesting point emerges, which is that the analysis succeeds in
identifying r precisely because the set of possible measurement outcomes is
discrete, or if you like because in some ways the quantum computer is more
digital than analog. Unfortunately, here we must cut the story short by
saying that the conclusion is the same as in the easy case: if the Fourier
transformation can be done in polynomial time then the probability that we
will be done in polynomial time can be made as high as we please.

The Fourier transform: Fast and faster

We have arrived at the heart of the matter, where the quantum speed-up
happens. Acting on the components of a vector, rather than on the basis
vectors, the discrete Fourier transform is

f̂ = FN f ⇔ f̂j =
1√
N

N−1
∑

k=0

ωjk
N fk . (263)

It arises whenever a continuous signal has been sampled at discrete points.
A first look suggests that it requires N2 multiplication. However, classically,
the Fast Fourier Transform achieves the same goal with only N logN mul-
tiplications, and the even faster quantum Fourier transform builds on that
idea. It is convenient to assume that N = 2n. (If not, pad the vector to be
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transformed with zeros until the dimension reaches 2n.) The N = 2 Fourier
matrix is already familiar to us,

F2 = H . (264)

Moving on to N = 22 we decide to label the vector using binary digits. Then
we see that

F4f =











1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 1 ω2

4

1 ω3
4 ω2

4 ω4





















f00
f01
f10
f11











=











1 1 1 1
1 ω2

4 ω4 ω3
4

1 1 ω2
4 ω2

4

1 ω2
4 ω3

4 ω4





















f00
f10
f01
f11











. (265)

Remembering that ω2
4 = i2 = −1 = ω2, we see that provided we reorder

the components of the vector before applying the matrix, we can replace the
matrix F4 with

F4 →
(

F2 D2F2

F2 −D2F2

)

, where D2 =

(

1 0
0 ω4

)

. (266)

We achieve this by placing the even columns of the matrix before the odd
ones. In the vector, the even components fa0 are placed before the odd
components fa1.

The same trick works when we double the dimension. Before applying F8,
we place the even vector components fab0 above the odd components fab1,
and we place the even columns of the matrix before the odd ones. This has
the effect that

F8 →
(

F4 D4F4

F4 −D4F4

)

, where D4 =











1 0 0 0
0 ω8 0 0
0 0 ω2

8 0
0 0 0 ω3

8











. (267)

(Yes, this becomes easier to see if you write it out explicitly, but typographi-
cally it takes a lot of space.) We now work recursively. We replace F4 with
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the expression we already have. We can do this if we perform the appro-
priate reordering within the two sets of four components of the vector. So,
reordering in two steps,































f000
f001
f010
f011
f100
f101
f110
f111































→































f000
f010
f100
f110
f001
f011
f101
f111































→































f000
f100
f010
f110
f001
f101
f011
f111































. (268)

The net effect is that we have ordered the components in bit reversed order.
We can start the recursion from a Fourier matrix of arbitrary size. Moving

all the even numbered columns to the left we replace

FN →
(

FN
2

DNFN
2

FN
2

−DNFN
2

)

, (269)

where the definition of the diagonal matrix DN should be clear. The fact
that this works is known as the Danielson–Lanczos lemma, and leads to the
following recipe for performing the Fast Fourier Transform: Start with a
vector having 2n components and write its components in bit reversed order.
Apply F2 to all pairs of components. In the second step we apply the matrix

(

1 D2

1 −D2

)

(270)

to all quartets of components. In the third step we apply

(

1 D22

1 −D22

)

(271)

to each set of 23 components. And so on. In each step we perform about N
multiplications, and we are done after n = logN steps. That is to say that
we have brought the number of multiplications down, from N2 to N logN .
The preliminary bit reversal is computationally cheap, so this is a remarkable
achievement. But it remains exponential in n.
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We want more. We want the calculation to be polynomial in n. At the
same time we are willing to settle for less, because we do not need to calculate
the individual components of the Fourier transformed vector. All we need
is to calculate F |ψ〉 in eq. (257). From this we can extract at most one
component by means of a measurement.

Let us construct a circuit that does this. I first give the answer for a four
qubit Hilbert space,

|x0〉
|x1〉
|x2〉
|x3〉

P

|H| •
|R1| |H|

•

|R2|
•
|R1| |H|

•

|R3|

•

|R2|
•
|R1| |H|

It should be clear from this what the answer is for any n. In particular you
can write down the circuits for n = 2 and n = 3 and play with them, until
you see why they work as advertized.

The circuit begins with a computationally cheap permutation effecting a
qubit reversal of the input,

|x3x2x1x0〉 → |x0x1x2x3〉 . (272)

Then follows a number of Hadamard gates, and a number of controlled uni-
taries CRk

, where the one qubit phase gates Rk are defined as

Rk =

(

1 0
0 σk

)

, σk = e
iπ

2k . (273)

In the circuit the chosen integer k depends on the ‘distance’ to the control
qubit. This is all.

It is time to count the number of gates that appear in the circuit for
arbitrary n. Clearly there are n Hadamard gates, while the number of phase
gates is

1 + 2 + . . .+ (n− 1) =
n(n− 1)

2
. (274)
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Hence the number of gates needed to effect the quantum Fourier transform
grows like n2, a remarkable improvement compared to the classical FFT
which needs 2nn operations. It is true that we do not get as much information
out of the quantum Fourier transform as we get out of the FFT, but we do
get out all the information we need for Shor’s algorithm to work.

There is a critical question to ask. When n is large we will need to
implement phase gates that rotate their qubits through very small angles.
This suggests that the quantum computer is subject to the same objection
that one can raise against classical analog computers: the precision needed
will grow with the complexity of the calculation in a way that nullifies any
advantages it may have. This question was analysed by Coppersmith. Unfor-
tunately our discussion of the final steps of the algorithm was too sketchy for
use to give the details, but the conclusion is that the success probability of
the algorithm is quite insensitive to small errors in the phase gates . Indeed,
one can fix a sufficiently large integer k0 and decide not to implement any
Rk with k > k0. So the surprising answer to the critical question is that not
only is there no problem, we can in effect do the calculation with a number of
gates that grows like n rather than like n2. Ultimately it is the discreteness
of the output from a quantum computer that saves the day.

Other algorithms

The ideas behind Shor’s algorithm can be adapted and generalized to speed
up the solution of a range of very interesting problems, such as finding prin-
cipal ideals and unit groups in algebraic number theory. It can also be used
to break several but not all public key cryptosystems. However, it should
be remembered that the rapid development of classical computers happened
because it was possible to make money out of each improvement. It is dif-
ficult to see anyone making money out of principal ideals. A quite different
algorithm, due to Grover, gives a quadratic speed-up in a search problem,
and there are also algorithm to speed up tasks like simulated annealing. At
the moment it seems that the most likely practical applications lie in the
direction of letting one quantum system simulate another, as originally sug-
gested by Feynman.
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Quantum error correction

A classical computer can easily perform Avogadro’s number of operations
without committing a single bit error. Its electronic switches are large on
the scale of the thermal fluctuations, oscillations are quickly damped out,
and whatever happens the bits remain unentangled with the environment.
In a quantum computer error correction is essential. For several reasons it
used to be thought that quantum error correction is impossible, but Shor
and Steane surprised the world by showing that it is not.

The naive idea for error correction is to make sure that every qubit comes
in triplicate. This founders on the fact that we cannot copy an unknown
quantum state. A first attempt around this problem might be to use two
ancillas and store the state z0|0〉 + z1|1〉 as a three-qubit state,

|0〉|0〉(z0|0〉 + z1|1〉) → z0|000〉 + z1|111〉 . (275)

This violates no rules, and is indeed easily achieved by means of two CNOT
gates. We assume that at most one qubit at a time is affected by noise, so
an error to be corrected for could be the ‘bit-flip’

z0|000〉 + z1|111〉 → z0|010〉 + z1|101〉 . (276)

Now we run into the second problem. We cannot inspect a quantum state
without changing it in an irreversible way. If we measure any of the qubits
in the computational basis, the state collapses to either |010〉 or to |101〉.
Then we know that an error occurred, but we cannot restore the original
three-qubit state because all information about the amplitudes z0 and z1 has
been lost. Indeed the problem is worse, because there may be a ‘phase-flip’
error

z0|000〉 + z1|111〉 → z0|000〉 − z1|111〉 . (277)

We would not even notice this if we measure in the computational basis.
Still worse, in many ways the quantum computer behaves like an analog
computer, so the errors are not discrete. There may be a small amplitude
for an error, which then builds up during the computation.

Let us focus on bit flip errors to begin with. We are going to cor-
rect for single bit flips affecting one qubit only, without looking at the
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state to be transmitted. The key observation is that the uncorrupted state
z0|000〉 + z1|111〉 belongs to a two dimensional code subspace. A single error
transforms the state so that it sits in one out of three mutually orthogo-
nal two dimensional subspaces, all of them orthogonal to the code subspace.
This desirable situation occurs because the state to be transmitted belongs
to a 23 dimensional Hilbert space. To do the correction we introduce two
additional ancilla qubits set to |0〉 initially, and on which measurements will
be performed. We will apply gates to the interesting qubits conditional on
the outcome of those measurements. The circuit diagram is

|X| |X| |M | |y〉
|X| |X| |M | |x〉

•
• •

• |Xxȳ|
|Xxy|
|X x̄y|

In the final round we apply gates such as Xxȳ, where as usual ȳ = y + 1 in
binary arithmetic and y is the outcome of the measurement on one of the two
ancillary qubits. You can easily check that the output is the desired—and
still unknown—state z0|000〉 + z1|111〉, also if the input is a state in which
one of the qubits has been corrupted by a bitflip, such as z0|001〉 + z1|110〉.

Of course this is only a partial success, because we still have to deal with
phase flips, and the various kinds of continuous drifts that can occur. In fact
the case we dealt with is a rather harmless one, in which the error is some
unwanted unitary transformation of a qubit. The three qubit state stays
pure. But in a system that is open to an environment the state can evolve
in many ways that do not preserve this property.

It helps to look at this a little more abstractly. Suppose that the state we
want to protect is encoded in an n-qubit state |Ψ〉, and that the relevant rest
of the world starts out in some reference state |0〉. The state is corrupted
by some unitary transformation acting on the whole Hilbert space. We can
‘discretize’ this by means of a unitary operator basis {UI}, so that the state
transforms according to
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|Ψ〉|0〉R →
∑

I

UI |Ψ〉|ψI〉R . (278)

We can do this because we assume nothing whatsoever about the reservoir
states |ψI〉. They are neither orthogonal nor normalized. Thus the ‘discre-
tization’ is kind of a fake at this point. Nevertheless the unitary operator
basis will soon earn its alternative name “error basis”.

To proceed we need to assume something about the noise, and something
about the state |Ψ〉 that we are trying to protect. We need to ensure that

Tr|Ψ〉〈Ψ|U †
IUJ = δIJ . (279)

If this can be arranged the error basis gives rise to a set of mutually exclusive
alternatives, and a measurement can be devised so that the state collapses
according to

∑

I

UI |Ψ〉|ψI〉R → UI |Ψ〉|ψI〉R . (280)

Once we know the outcome we can apply the appropriate operator U †
I to the

state. The error is corrected, and never mind the reservoir state.
Concerning the noise, we assume that it acts on each qubit separately,

and moreover that it does not affect more than w qubits. Thus we assume
that

UI = E
(1)
I ⊗ E

(2)
I ⊗ . . .⊗ E

(n)
I , (281)

where at most w of the unitary operators E
(i)
I differ from the identity. Most,

but not all, people who worked on this agree that this is a physically reaso-
nable assumption.

Now we look at (279) with new eyes. The last equality would hold if
|Ψ〉〈Ψ| were the maximally mixed state. But now we have arranged that,
in any term of the trace, at most 2w of the factors contain non-trivial error
operators. Therefore it is enough if the partial trace over the remaining n−2w
factors (those that have not been affected by the noise) is a maximally mixed
state.

We now specialize to the case n = 5 and w = 1, that is we aim to correct
single qubit errors only. Consider the following interesting state, in which
every computational basis state with an even number of 1s has been included,
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|v0〉 = |00000〉 + |11000〉 + |01100〉 + |00110〉 + |00011〉 + |10001〉 −

−|10010〉 − |10100〉 − |01001〉 − |01010〉 − |00101〉 − (282)

−|11110〉 − |11101〉 − |11011〉 − |10100〉 − |01111〉 .

It clearly has a lot of structure. This structure is actually coming from a
discrete Heisenberg group, but we pass lightly over that. There is a corre-
sponding orthogonal state |v1〉, obtained by switching the 0s and the 1s in
|v0〉. Together they span a two dimensional code subspace, consisting of the
states

|Ψ〉 = z0|v0〉 + z1|v1〉 . (283)

You can now check that if we take the partial trace over any three out of the
five factors, there holds

Tr123|v0〉〈v0| = Tr123|v1〉〈v1| = 145 , Tr123|v0〉〈v1| = Tr123|v1〉〈v0| = 0 . (284)

I am being cavalier about normalisation factors here, and I singled out the
first three factors as an example only. The calculation is most conveniently
done by first calculating the eight scalar products 〈abc|v0〉, where a, b, c are
integers modulo 2. The scalar products 〈abc|v1〉 are obtained by switching 0
and 1, and then you can do the sum that defines the trace. Given this result
it follows that, for any state in the code subspace and regardless of which
three factors you trace out,

Tr123|Ψ〉〈Ψ| = |z0|2Tr123|v0〉〈v0| + |v1|2Tr123|v1〉〈v1| = 145 . (285)

Given that at most one error occurs, this is all that is needed for eq. (279)
to hold. We can code a qubit as a state in this code subspace, and we are
assured that any single qubit error can be detected and corrected.

This is a promising start for the subject of quantum error correction. It
is also where these notes end, since the ambition was to keep them to 100
pages. If they have no other merit, at least they are a success in this regard.
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