SOME PROBLEMS TO SOLVE

A. By inspection of Maxwell's equations show that the dimension of c is that of length/time. Starting from the equations in SI units, rescale **E** and **B** with dimensionful constants so they get the same dimension.

B. Assuming that Stokes' theorem holds in three dimensions prove that Gauss' theorem holds in two dimensions. (Hint: In two dimension there is a unique direction normal to any given vector.)

C. Prove entry 5 in Jackson's list of properties of the delta function (p. 26).

D. An analytic function is a complex valued function on a two dimensional plane such that it depends only on the particular combination z = x + iy, $\Phi(x, y) = \Phi(x + iy) = \Phi(z)$. Prove that every such function is a solution of the two dimensional Laplace equation.

E. Use the chain rule for derivatives to express the two dimensional Laplace operator in polar coordinates $(x = r \cos \phi, y = r \sin \phi)$.

F. The Poisson equation $\nabla^2 \Phi = 4\pi G \rho_{\rm m}$, where $\rho_{\rm m}$ is the mass density, occurs in Newton's theory of gravity. Show that the potential

$$\Phi(x, y, z) = -\frac{GM}{\sqrt{x^2 + y^2 + (|z| + a)^2}}$$
(1)

comes from an infinitely thin disk of matter (that is, roughly, a spiral galaxy).

G. Create an electric field inside an spherical cavity. You can choose the boundary conditions freely. Can you choose them so that a test charge has a stable equilibrium position at the centre of the cavity? Anywhere in the interior of the cavity?

Ga. In his eq. (1.58) Jackson includes an integral. He says it is easy to show that it evaluates to 4π . Verify this.

H. A small charge q sits outside a spherical conductor of large total charge Q and radius R. The charges have the same sign. At (roughly) what distance d from the centre will the charge feel no force?

Ha. Two conducting planes are placed at x = 0 and at y = 0. The potential on the planes is kept at zero. Place a single charge somewhere in the positive quadrant of the (x, y)-plane. Use the method of images to calculate the electric potential in that quadrant.

Hb. Consider two conducting spheres, radii a and b, distance between centres c, the first sphere at $\Phi = 0$, the other at $\Phi = V$. Place imaginary charges inside the spheres until the boundary conditions hold, in a stepwise procedure so that the first imaginary charge ensures that $\Phi = V$ on the second sphere, the second charge is inside the first sphere and compensates for the first charge so that $\Phi = 0$ on the second sphere. Go on in this way. It is enough to do the first few steps, but after each step you should use a computer to plot the potential at the surface of the first sphere, for suitable values of the parameters. This will give you a feeling for how quickly the procedure converges.

Hc. Derive Jackson's eq. (2.13) from his eq. (2.12), in full detail.

I. Compute the first five Legendre polynomials by applying Gram-Schmidt orthogonalization to the polynomials 1, x, x^2 , x^3 , x^4 . Also show that you recover the first five Legendre polynomials by expanding the generating function $g(t,x) = (1 - 2xt + t^2)^{-1/2}$ to fourth order in t.

J. Show that the Legendre polynomial $P_l(x)$ has exactly *l* zeroes in the interval.

K. Find the electric field outside a spherical conductor placed in a constant electric field in two ways: using the method of images, and using an expansion in spherical harmonics.

L. In Problem 2.16 Jackson gives an explicit solution for the electric potential inside a square, with a constant charge density there. Is this formula practically useful for plotting the potential? If it is, plot it!

M. Compute the first non-vanishing multipole moments for i) two charges q at $(\pm a, 0, 0)$, charge -2q at (0, 0, b) ii) four charges q at $(\pm a, \pm a, 0)$, two charges -2q at $(0, 0, \pm b)$. Check your results.

N You have a supply of point charges $\pm q$. Place such point charges at the corners of a regular octahedron. You can make the monopole moment vanish. Can you make the dipole moment vanish? The quadrupole moment? Repeat the same exercise for a regular cube.

O. For a dipole field, locate those points in space where the field points in a direction orthogonal to the dipole vector.

P. A rectangular prism has a square base of area A and a very small height h. Make a cavity of this form inside a dielectric. What is the electric field inside the cavity if the constant **D** in the dielectric is parallel to the height of the cavity? If **D** is orthogonal to the height?

Q. Model an atom as a homogeneous sphere of negative charge, and a pointlike nucleus. Assuming a reasonable size, what electric field strength would be needed to shift the nucleus out to one tenth of the radius?

R. For pure nitrogen the following data were obtained (in 1934):

1 0	0			/
Temperature ($^{\circ}C$):	23.8	23.8	23.8	23.8
Pressure (atm)	1.02	57.5	221.6	1011.6
Density (kg/m^3)	1.18	66.04	236.1	578.0
Dielectric constant	1.00052	1.03109	1.11413	1.29633

Check how well this agrees with the Clausius-Mossotti equation.

S. Define a vector potential on a region of space strictly outside the z-axis, such that $\mathbf{A}(\mathbf{x})$ is independent of z, gives a vanishing magnetic field, and cannot be gauge transformed to zero. What is its physical interpretation?

T. Solve the Lorentz equation for a charged particle in a homogeneous magnetic field. Based on this solution, would you expect a plasma to be diamagnetic? Paramagnetic?

U. The energy of a magnetic dipole placed in a static magnetic field is $U = -\mathbf{m} \cdot \mathbf{B}$. There are three cases: permanent magnets (\mathbf{m} constant), paramagnets and diamagnets ($\mathbf{m} = k\mathbf{B}$ with k > 0 for paramagnets and k < 0 for diamagnets). For each case investigate whether you can choose $\mathbf{B}(\mathbf{x})$ such that a stable equilibrium position for the dipole exists.

V. Consider the discontinuous function $\Psi(\mathbf{x}, t) = \Theta(f(\mathbf{x}, t))\psi(\mathbf{x}, t)$, where Θ is the step function (equals 1 if f > 0, 0 if f < 0). Find the conditions on f and ψ that ensure that we have a solution of the wave equation.

W. Using the retarded Green function solve the inhomogeneous wave equation

$$\Box \psi = \Theta(t) F(t) \delta^{(3)}(x) .$$
⁽²⁾

("Alice sits at the origin and starts talking at t = 0.") Does the solution make sense?

X. In a *d*-dimensional space the Green function for the Laplace equation is (up to a constant) $G(r) = 1/r^{d-2}$. Prove that $\delta(r-t)/r^{d-2}$ is a Green function for the wave equation if and only if d = 3.

Y. Draw a map of spacetime in which the *x*-axis and the *t*-axis appear orthogonal. Also draw a lightcone from the origin. Now perform a Lorentz boost.

Draw the x'-axis and the t'-axis on the map. How do they relate to the light cone?

Z. Consider a scalar field having the form

$$\phi(x) = \frac{1}{r^2}$$
, $r^2 = x^2 + y^2 + z^2$. (3)

Perform a Lorentz boost in the t - x-plane, and express the new function ϕ' that you obtain in this way as a function of the coordinates (t, x, y, z). What does the new function look like?

Å. Consider the electromagnetic field from a point charge at rest at the origin,

$$E_i(x) = \frac{1}{r^3} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \qquad B_i(x) = 0 .$$
(4)

Perform a Lorentz boost in the t - x-plane. Compute the electromagnetic field you obtain, and express it as a function of the coordinates (t, x, y, z).

Ä. Repeat exercise Å, but now for the electromagnetic field

$$E_2 = \cos(t - x)$$
 $B_3 = \cos(t - x)$, (5)

all other components vanishing.

Äa. Prove that Maxwell's equations are not invariant under the Galilei transformation $t \to t' = t$, $\mathbf{x} \to \mathbf{x}' = \mathbf{x} + \mathbf{v}t$.

 $\ddot{\mathbf{O}}$. Use the expression for the energy density of the electromagnetic field to argue that the electric field in a wave sent out in all directions by a localized source falls off like 1/r.