
COMMENTS ON JACKSON September 27, 2024

These notes are meant as a running commentary on Jackson, chapters 1 to 7
and chapter 11. They will replace the usual lectures, and contain a fairly large
number of exercises and problems. The idea is that you should try those and
send them to me. Then you will receive detailed comments on your attempts.
This is actually an old idea associated to the name ‘Hermods’, meaning that
we throw fifty years of pedagogical development to the winds.

Grades are given based on how many solutions you send in. If I have
critical comments on them you can simply try again, but you must follow
Feynman’s recipe for problem solving:

• 1: Write down the problem.

• 2: Think very hard.

• 3: Write down the solution.

Steps 1 and 3 are very important.
Some of the contents of the course should be familiar from earlier courses,

but Jackson treats things in more depth. His book is not easy to read. He
presents the subject, and seems unconcerned about what parts are easy to
explain. Excellent introductory books include

• E. M. Purcell: Electricity and Magnetism, Berkeley physics course 1965.

• R. P. Feynman, R. B. Leighton, and M. Sands: The Feynman Lectures

on Physics Vol II, Addison-Wesley 1963.

The subject is presented from a modern (2022) point of view in

• R. M. Wald: Advanced Classical Electromagnetism, Princeton UP 2022.

Assuming for the sake of the argument that the University had not decided
to abolish the library, a visit to it would reveal that many other excellent
books exist.
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INTRODUCTION
The partial differential equations first came

to theoretical physics as a servant, but by

degrees it became its master.

Albert Einstein

Maxwell’s equations for the electromagnetic field are

∇ · B = 0 Gilbert’s law (1)

∇× E + ∂tB = 0 Faraday’s law (2)

∇ · E =
1

ǫ0
ρ Gauss’ law (3)

∇× B − 1

c2
∂tE = µ0J Ampère-Maxwell’s law , (4)

where c2 = 1/ǫ0µ0. I use the notation

∂t =
∂

∂t
. (5)

The charge density ρ = ρ(x, t) and the current density J = J(x, t) give a
complete account of all charges. For consistency they must obey1

∂tρ+ ∇ · J = 0 . (6)

This is known as the equation of charge conservation.
Given a solution of Maxwell’s equations the force acting at position x on

a test particle carrying a small charge q is given by Lorentz’ equation

F(x, ẋ, t) = q(E(x, t) + ẋ ×B(x, t)) , (7)

where ẋ is the velocity of the particle. A complete theory needs dynamical
equations for ρ and J, consistent with charge conservation and also with
Lorentz’ equation. Setting ρ and J to zero leads to an interesting theory in
itself.

1Exercise: Prove this. If you have forgotten about div, grad, and curl, read on, then
go back and prove this.

2



Units

The dimension of the constant c must be [metre/second], otherwise the left
hand sides of eqs. (2) and (4) would be mutually inconsistent. Its numerical
value in these units—close to 3 · 108—can be fixed by experiments.2 On the
other hand the constants ǫ0, µ0 depend on the unit system chosen for the elec-
tric and magnetic fields. To make this choice one begins by making contact
with the mechanical units through Coulomb’s law: using Maxwell’s equa-
tions one can show (and we will) that the force between two static charges
at distance r metres from each other is

F =
1

4πǫ0

qq′

r2
. (8)

Therefore the dimension of q2/ǫ0 is that of [kg×metre3/second2], but the
dimension and numerical value of ǫ0 will depend on the unit adopted for
charge. There is a similar story for µ0. Incidentally the dimension of q2/ǫ0
is the same as the dimension of hc, where h is Planck’s constant. It follows
that q2/ǫ0hc is a dimensionless number—and an interesting one, if q stands
for the charge of the electron.

In the SI system, which we will use, one makes the arbitrary choice

ǫ0 =
107

4πc2
, µ0 = 4π · 10−7 . (9)

This comes from having adopted the Ampère as a basic unit for current,
in terms of the force acting between two parallel wires. To reach the more
intelligent Gaussian unit system one sets F = qq′/r2, insists that the electric
and magnetic fields have the same dimension, and makes sure that the only
constants that appear in the equations are c and 4π. The factor of 4π is
there essentially because the unit sphere has area 4π. Trying to suppress it
in the equations will make it pop up somewhere else.

Some everyday quantities come out as everyday numbers in Gaussian
units. In my home the geomagnetic field is about half a Gauss, and about 50

2Exercise: Show that the dimension of c must be that of length/time. Then start from
Maxwell’s equations in SI units and rescale E and B with dimensionful constants so that
they get the same dimension. Can you do further rescalings so that ǫ0 and µ0 disappear
from the equations?
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microteslas in SI units. The Gaussian system also has the obvious advantage
that the man-made constants ǫ0 and µ0 do not appear.

Jackson switches to Gaussian units later in the book. He has a nice
discussion of units on pp. 775-784. The papers by Birge that he cites are
also very readable, and you can consult more recent references if you wish.3

Vectors and vector fields

It is important to feel comfortable with vector analysis. A boldface letter
denotes a vector, say

E = exEx + eyEy + ezEz . (10)

The alternative notation Ei to denote a vector does not enter Jackson’s book
until he comes to some of the trickier calculations involving magnetic fields,
but—under the name of Cartesian tensors—it plays an essential role in spe-
cial relativity. If the basis vectors are understood one can think of a vector
as an array of numbers,

E =







Ex

Ey

Ez





 = Ei . (11)

As it stands this is sloppy but useful. The index i now runs from 1 to 3.
Finally, E(x) = Ei(x) is a vector field, a vector defined at each point of space,
and can be partially visualized by its field lines, which go through the points
in the direction of the vector defined there.

The differential operator ∇ is called “nabla”, Hebrew for the musical
instrument known in English as “psalter”—because this is what the symbol
looked like to Maxwell, who knew his Bible. When it acts on a function it
gives the gradient of the function, which is the vector field

∇f = ex∂xf + ey∂yf + ez∂zf = ∂if . (12)

Nabla operates on a vector field E in two different ways. The divergence of
E is the function

3Reference: J. de Boer, On the history of the quantity calculus and the International

System, Metrologia 31 (1995) 405.
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∇ · E = ∂xEx + ∂yEy + ∂zEz = ∂iEi . (13)

I am assuming a Cartesian coordinate system. If you wish to use spherical or
cylindrical coordinates you can consult Jackson’s back pages. For the index
notation we have adopted the Einstein summation convention, according to
which a repeated index occurring in some term of an equation is always
summed over. The rotation or curl of E is the vector field

∇× E =







∂yEz − ∂zEy

∂zEx − ∂xEz

∂xEy − ∂yEx





 = ǫijk∂jEk . (14)

Note the cyclic pattern. Note also that the notation has been streamlined
to fit a three dimensional space, and that we sum over j and k in the index
notation. The object ǫijk is defined by ǫ123 = 1 and by being totally anti-
symmetric, that is to say it changes its sign whenever the order of two indices
is switched (so that for example ǫ132 = −1, ǫ312 = 1, and ǫ112 = 0).

Applying nabla repeatedly we obtain the Laplace operator

∇2 = ∇ · ∇ = ∂2
x + ∂2

y + ∂2
z = ∂i∂i . (15)

It turns functions into functions and vectors into vectors. (It could look quite
complicated, had we not agreed to use a Cartesian coordinate system.) In a
purely automatic manner one proves the identities

∇× (∇f) = 0 = ǫijk∂j∂kf , ∇ · (∇×E) = 0 = ∂i(ǫijk∂jEk) (16)

∇× (∇× E) = ∇(∇ ·E) −∇2E . (17)

Because they are written in boldface they hold in all coordinate systems. It
is instructive to prove the identity (17) in the tensor formalism. We then
rely on the ǫ–δ identity

ǫijkǫkmn = δimδjn − δinδjm , (18)

where the Kronecker delta was introduced.4 The calculation goes

4Exercise: Prove the ǫ–δ identity (preferably without thinking). To see if it is useful
or not, prove eq. (17) without relying on this identity.
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ǫijk∂j(ǫkmn∂mEn) = ǫijkǫkmn∂j∂mEn =

(19)

= (δimδjn − δinδjm)∂j∂mEn = ∂i∂jEj − ∂j∂jEi .

Vector analysis

We will be interested in three theorems that relate the integral over a region
to an integral over its boundary. The first theorem, which has no name,
states that the integral of a gradient of a function along a curve C depends
only on the end points x1 and x2 of the curve, not on where the curve goes
in between. So

∫

C
∇f · dl = f(x2) − f(x1) . (20)

(You are supposed to remember how curve and surface integrals are defined,
in particular that dl is a vector directed along the tangent vector of the
curve.5) An equivalent way of stating this result is to say that the integral
of a gradient along a closed curve vanishes. (Why is it equivalent?) The
wonderful thing is that the converse holds: If the integral along every closed
curve vanishes the vector field is necessarily a gradient,

∮

C
A · dl = 0 ⇔ A = ∇f , (21)

or more completely in words: The integral of a vector field A vanishes around

every closed loop if and only if that vector field is a gradient of a function.
This function is determined up to an arbitrary constant. In the proof one
picks an arbitrary point x1 and defines the function f by means of

f(x) =
∫

x

C
A · dl , (22)

where the curve starts at x1 and ends at x. The definition does not depend
on the choice of the curve because A is such that its integral along any

5Exercise: If you feel unsure, let f = x2yez and let C be the curve σ(t) = (sin t, cos t, t),
0 ≤ t ≤ 2π. Compute

∫

C ∇f · dl, as a curve integral, and check that eq. (20) comes out.
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closed curve vanishes, and the dependence on x1 is only through an additive
constant that leaves the gradient of f unaffected.

There is some fine print that we ignore: The functions have to be differ-
entiable and the curve has to be smooth enough so that the integrals exist.

The next theorem is

Stokes’ theorem: For every surface S with boundary C and for every vector

field A there holds

∫

S
(∇× A) · da =

∮

C
A · dl . (23)

The surface area element is da = ndS, where n is the unit normal vector of
the surface. There is a sign which is determined by the right hand thumb
rule. A closed surface is one without any boundary, and it follows that the
integral of the curl of a vector field over any closed surface S vanishes. Again
the converse holds: If the integral over every closed surface vanishes the

vector field is necessarily a curl,

∀S :
∮

S
B · da = 0 ⇔ B = ∇×A . (24)

The vector field A is determined up to a gradient of an arbitrary function.
You may think that these theorems are useless in practice: for a given

vector field we will never be able to test if the integral vanishes around every
closed loop, or over every closed surface. But sometimes we can. Stokes’
theorem says that the integral over every closed loop will vanish if the vector
field has vanishing curl. Then the converse of the first theorem ticks in to
show (modulo the fine print) that

∇× A = 0 ⇔ A = ∇f . (25)

Here there is some fine print that can be important. We have tacitly assumed
that every closed curve bounds a surface lying entirely inside the space. This
can fail. If space is like the surface of a cylinder then curves winding around
the cylinder cannot be shrunk to a point without leaving the cylinder. Such
closed curves are said to be non-contractible. This is an interesting caveat,
and we will actually come across it in our discussion of magnetism.

The third and final theorem is
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Gauss’ theorem: For every volume V with boundary S and for every vector

field B there holds

∫

V
∇ ·B dV =

∮

S
B · da . (26)

The right hand side is known as the flux of B through S.6 7 If a vector field
B has vanishing divergence its flux through every closed surface that bounds
a volume vanishes, and the converse of Stokes’ theorem then ensures that
there exists a vector field A such that

∇ · B = 0 ⇔ B = ∇× A . (27)

Using Stokes’ and Gauss’ theorems one can formulate Maxwell’s equations
in words, and recapture Faraday’s intuitions about the electromagnetic field.
For instance we can say that “the integral of the electric field along any
closed loop plus the time derivative of the flux of a magnetic field through
any surface spanned by that loop equals zero”.8

Field lines and gauge theories

Faraday’s intuitions were based on the field lines that are used to visualize
the electric and magnetic fields. Here some caution is called for. The electric
field (say) does give a vector attached to every point in space, but that
vector does not sit “in” space. When we draw it as if it did, we are really
depicting the vector along which an electrically charged test particle would
accelerate. Still, all of Faraday’s intuitions have proved true. It would be
hard to convince a plasma physicist that a magnetic field line, vibrating
under tension, is not really there.

The mysterious unobservable potentials A and Φ that lie behind the fields
moved to the centre stage when the ideas of electrodynamics developed into
Yang–Mills theories, providing accurate theories for the strong and weak

6Exercise: Again, if you feel unsure about this, compute the flux of the vector field
v = 3xyex + xz2ey + y3ez through the unit sphere.

7Exercise: Assume Gauss’ theorem. Prove that
∫

∇Φ dV =
∮

ΦndA, where n is the
normal vector of the (closed) boundary of V .

8Exercise: Formulate all of the Maxwell equations as well as the equation of charge
conservation in words like this, and draw suitable illustrations.
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interactions of elementary particle physics. The precise mathematical lan-
guage that makes complete sense of all this is provided by the theory of fibre
bundles.9

Preview: Statics and media

The first five chapters in Jackson are concerned with the time independent
field generated by static charges and steady currents. Statics is important
because it decides the possible equilibrium states of a dynamical theory.
And it can get quite intricate, because we may have only limited knowledge
of where the charges inside a piece of material are located. This becomes
particularly clear if we consider charges placed on an idealized conductor,
inside of which the charges can move freely. In an equilibrium situation the
charges do not move, which means that they cannot be subject to any net
forces. But the forces are given by Lorentz’ equation (7) and depend on
the electric field that we are trying to solve for. The key to this problem
is in Jackson’s Figure I.4, where the integral form of Maxwell’s equations
is used to study discontinuities in the fields across the boundary of some
medium. In equilibrium we must have E = 0 inside the conductor. Charges
will pile up on its surface, and the analysis shows that the electric field can
have discontinuities there. The details, including the explanation of why the
charges stay on the surface of the conductor, are in chapters 1 and 2.10

Figure 1: A discontinuity in the electric field at the surface of a conductor, man-
ifesting itself as a surface charge.

Going from idealized conductors to other naturally occurring materials

9Reference: For a first introduction see the Appendix in R. Penrose: Fashion, Faith,

and Fantasy, Princeton UP, 2016. See also C. Rovelli: Why gauge?, Found. Phys. 44

(2014) 91.
10Exercise: Derive the connection between surface charges and discontinuities in E,

using eq. (3) and Figure 1.
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things become more complex. Only a part of the charge distribution can be
controlled externally, while another part is distributed throughout some piece
of matter in some manner not known in detail. This leads to the introduction
of the fields D and H, discussed by Jackson in his chapters 4 and 5.

Preview: Dynamics

It is important to recognize that the electromagnetic field lives a life of its
own, also when the right hand sides vanish. But to see this we have to move
beyond statics. If we set ρ = 0 and J = 0 and take a quick look at the
equations, something remarkable emerges: Applying a curl to Faraday’s law,
and recalling that all the right hand sides of Maxwell’s equations now vanish,
we can derive the equation

∇2E − 1

c2
∂2

t E = 0 . (28)

The components of E (and by a similar calculation the components of B)
obey the wave equation, describing the propagation of waves with velocity
c ≈ 3 · 108 m/s. The numerical coincidence between the constant c and the
velocity of light was noted by Kirchhoff. Maxwell analyzed things further,
and then made the comment:

We can scarcely avoid the inference that light consists in the transverse undulations

of some medium which is the cause of electric and magnetic phenomena.

The idea of a medium as a cause of electromagnetic phenomena was eventu-
ally dropped.11 Hertz took a minimalist position:

To the question “What is Maxwell’s theory ?” I know of no shorter or more definite

answer than the following: —Maxwell’s theory is Maxwell’s system of equations.

So equations (1)–(4) and (28) still stand, and optics has become a part of
electrodynamics.12

11Reference: For an interesting account by a participant in the revolution, see A. Einstein
and L. Infeld: The Evolution of Physics, Simon and Schuster, New York 1938.

12Exercise: Derive eq. (28) from eqs. (1)–(4). You will not feel quite the thrill that
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We get some insight into the difference between static and dynamic sit-
uations if we return to Jackson’s Figure I.4. We can just as well apply the
argument not to the boundary of a medium but to an arbitrary surface in
space, letting ρ and J vanish for the sake of the argument. Applying Jack-
son’s argument when ρ = 0 we find that

∇ · E = 0 ⇒ E⊥ is continuous , (29)

where E⊥ stands for the electric field along the normal of the surface. It is a
more delicate matter to study

∇× E = −∂tB . (30)

In a static situation the right hand side vanishes, and the conclusion will be
that the tangential component E|| is continuous as well. But in a dynamic
situation the term ∂tB needs watching. It can become infinite, and in fact
proportional to a Dirac delta function. If so there will be a contribution to the
surface integral over the thin strip in Jackson’s argument, and the tangential
component of E will be discontinuous. The conclusion is that Maxwell’s vac-
uum equations allow discontinuous solutions, but only in the time dependent
case. A closer investigation will show that these discontinuities move with
the speed c.13

Figure 2: How a discontinuity in the tangential component of the electric field
can arise across a moving boundary.

In fact we are familiar with this kind of discontinuities. Switch on the
light in a dark room. There will then be a surface in space, moving outwards
from the light bulb with the speed of light, along which the electric and
magnetic fields are discontinuous. Moreover the discontinuity is of a special

Maxwell felt, but it is nice anyway.
13Exercise: Spell out this argument as far as you can, relying on Jackson’s page 26.
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kind. According to our analysis the normal components of the fields must
be continuous, while the components of the fields along the surface, that is
to say orthogonal to the direction of the propagation of the wave, can be
discontinuous. This is why Maxwell talked about transverse undulations,
rather than longitudinal undulations as in sound waves.

Idealizations

Jackson gives a thoughtful account on the limits of applicability of the theory.
Let me add that there have been many attempts to make sense of the notion
of an electrically charged point particle. The idea is to set

ρ(x, t) = qδ(x − x(t)) , (31)

where δ denotes Dirac’s delta function. This can be regarded as describing
a test particle not affecting the electromagnetic field. The trajectory x(t) of
the particle is then determined by Lorentz’ equation (7). Alternatively we
can regard the trajectory x(t) of the particle as given and use our expression
for ρ, together with a suitable current J, on the right hand side of Maxwell’s
equations. This works well, for instance when describing the electromagnetic
waves emitted by a charge driven by external forces. However, trying to solve
Maxwell’s and Lorentz’ equations together as a coupled system, using this
Ansatz, leads to inconsistencies. The theory demands a continuous model
for ρ and J. Still we will find the “point particle” useful as a mathematical
tool. What we cannot do is to use classical electrodynamics to explain why
electrical charge appears in discrete amounts in Nature.

In recent years the centre of gravity in fundamental physics has moved
towards classical field theory (and more specifically to general relativity) . As
a result there has been significant progress on these questions lately, making
the final chapter in Jackson’s book look somewhat dated.14

Apology

14Reference: S. E. Gralla, A. I. Harte, and R. M. Wald, A rigorous derivation of the

electromagnetic self-force, Phys. Rev. D80 (2009) 024031.
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Still classical electrodynamics is not a very active research area. On the
other hand Maxwell’s equations, together with a proper (perhaps quantum
mechanical) description of charged matter, covers basically all of physics from
the scale of atoms to the scale of bacteria, inclusive. At smaller scales the
nuclear forces begin to be important. At larger scales gravity kicks in. But
if you want to explore any phenomenon in between electrodynamics is the
only force that counts. Frictional forces, van der Waals forces, light, electron-
ics, and more, are manifestations of electromagnetism. As a service science,
electrodynamics stands supreme. Also, among the fundamental forces, elec-
trodynamics is unique in that there is a large range of observed phenomena
for which the classical version is relevant, and a large range for which the
quantum version is needed. With the nuclear forces all is quantum, with
gravity all is classical.

Fundamental research is often defended by quoting the famous answer to
a politician who asked what use one can make of it: “What is the use of a
new-born baby?” (Or maybe the answer was: “Sir, one day you will tax it!”
The story is often told of Gladstone and Faraday, and if you cannot recall
who Gladstone was, never mind). The point is that the story concerns re-
search into the electromagnetic field—and the range of practical applications
that this research eventually turned out to have is simply fantastic. Our
technological civilization rests on it.

Problem 1: Write a careful account of Cavendish’s experiment, described
in Jackson’s Figure I.1. Emphasize the theory behind it. You may be in-
terested to know that the “draughtsman”, mentioned in the caption, was
commissioned by Maxwell himself.
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ELECTROSTATICS

Statics is important to dynamics because it decides the possible equilibrium
states of the theory. The basic ideas of electrostatics are spelled out in
Jackson’s chapter 1.

In electrostatics the electric field can be regarded as simply a device
encoding the force that acts on a static test charge. This force is due to
the presence of some other static charges. For one charge placed at the
origin there is a radial electric field

Er =
q

4πǫ0

1

r2
⇔ E =

q

4πǫ0

x

r3
. (32)

If there are several charges, at positions xi, one obtains the total electric field
at position x by just adding the electric fields due to each individual charge,

E(x) =
1

4πǫ0

∑

i

qi
x − xi

|x − xi|3
. (33)

This is called the Principle of Superposition. For a continuous charge distri-
bution the sum becomes an integral,

E(x) =
1

4πǫ0

∫

d3x′ ρ(x′)
x − x′

|x − x′|3 . (34)

These formulas are well supported by experiments. But since we have al-
ready denied the existence of “point charges” it is legitimate to ask what
the status of this derivation is. The answer will turn out to be that eq.
(34) results from taking the inverse of the Laplace operator using a Green
function consistent with the boundary conditions at hand, and then applying
this inverse operator to the charge distribution. To see all this we turn to
Maxwell’s equations.

A static solution of Maxwell’s equations

In the time independent case the electric and magnetic fields decouple, so we
only have to deal with
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∇×E = 0

∇ ·E = 1
ǫ0
ρ .

(35)

Stokes’ theorem says that because the electric field has vanishing curl it is
the gradient of some function Φ = Φ(x), known as the electric potential. We
can then rewrite the equations as











E = −∇Φ

∇2Φ = − 1
ǫ0
ρ .

(36)

The equation for Φ is known as Poisson’s equation. It is the basic equation
in Newtonian gravitation too, except that then ρ has a sign since the mass
density is never negative.

The equations are linear in the unknown E, or Φ. Therefore solutions can
be added, the Principle of Superposition holds, and it is enough to understand
the solution for a single charge, conveniently placed at the origin. We know
what E we want, and a small calculation shows that

−∇
(

1

r

)

=
x

r3
. (37)

So we have found the electric potential for the electrostatic field from a point
charge. Thus what we need to show is that

Φ =
q

4πǫ0

1

r
⇔ ∇2Φ = − 1

ǫ0
ρ , (38)

where ρ is a peculiar charge density describing a single charge q placed at
the origin. It vanishes everywhere except at the origin itself, where it is
presumably infinite.

It is easy to see that

r 6= 0 ⇒ ∇2
(

1

r

)

= 0 . (39)

What I mean by “easy to see” is that it is easy to check. We apply the
derivatives to the function, collect terms, and find that they cancel.15 The

15Exercise: Check equations (37) and (39), using Cartesian coordinates for the
calculation.
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terms will have some power of r in the denominator, which means that our
equations are ill-defined when r = 0. But then for a point charge, ρ is
“infinite” at the origin, and this is not (yet) well defined either. We have to
do some work in order to fully define ρ for the point charge.

What we do know about ρ is that











r 6= 0 ⇒ ρ(x) = 0

∫

V ρ dV = q ,
(40)

where V is any volume containing the origin. So we have to show that
−ǫ0∇2Φ has the same properties, for the potential Φ we have chosen. But
this is easy. We can safely assume that V is a round ball centred at the origin,
since the integrand vanishes elsewhere. Then we apply Gauss’ theorem to
convert the volume integral to an integral over the surface of the ball:

∫

⊙

(

−ǫ0∇2Φ
)

dV = − q

4π

∫

⊙
∇2

(

1

r

)

dV =

(41)

= − q

4π

∮

S
∇
(

1

r

)

· da =
q

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ
r2

r2
= q .

This does it. The expression (−ǫ0∇2Φ) has exactly the same properties as
does the charge density ρ we postulated, hence they are equal, and eqs. (35)
hold.

Delta functions and distributional solutions

At this point it is convenient to introduce delta functions. A delta function,
in one dimension, is defined as an object δ(x− a) such that

∫ ∞

−∞
f(x)δ(x− a)dx = f(a) , (42)

for all functions f(x) subject to some restrictions. A delta function is in itself
not a function, it is a distribution and always occurs inside an integral. Notice
that a delta function does not exist in isolation. It is always defined relative
to some particular class of functions f(x) that one allows in the integral.
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It is assumed that an integral in which a delta function occurs can be
subject to all the usual manipulations such as changes of variables,

∫ ∞

−∞
f(x)δ(ax)dx =

∫ ∞

−∞
f(x/a)δ(x)

dx

|a| =
1

|a|f(0) . (43)

This is written symbolically as δ(ax) = δ(x)/|a|. We also insist that partial
integration is as simple as it can be,

∫ ∞

−∞

df

dx
δ(x)dx = −

∫ ∞

−∞
f(x)

d

dx
δ(x)dx . (44)

Reading this backwards gives a meaning to the derivative of a delta function.
In fact it can be differentiated an arbitrary number of times. For our purposes
the properties of the delta function are given by Jackson on p. 26.16

The calculation we did can now be described by saying that we set the
charge density of a point charge placed at the origin to

ρ(x) = qδ(x) = qδ(x)δ(y)δ(z) . (45)

(In the second step Cartesian coordinates are used. Changing variables to
spherical polar coordinates is of course possible but requires a little care, and
we will come back to it.) We then carefully checked that this is exactly what
appears on the right hand side of Gauss’ law.

We proceeded to show that the function

G(x) =
1

r
(46)

obeys

∇2G(x) = −4πδ(x) . (47)

This is called the fundamental solution of Poisson’s equation. If we shift the
origin it is usually called a Green function:

G(x,x′) =
1

|x − x′| ⇒ ∇2G(x,x′) = −4πδ(x − x′) . (48)

16Exercise: Prove entry 5 in Jackson’s list of properties of the delta function (p. 26).
Do it for some some simple function first, say for f(x) = ax.
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This is now a function of two points in space, but like a delta function it
is an object that is really supposed to sit inside an integral. The point is
that with a Green function in hand we can solve Poisson’s equation for an
arbitrary charge density ρ. The solution is

Φ(x) =
∫

d3x′
1

4π
G(x,x′)

ρ(x′)

ǫ0
=
∫

d3x′
1

4πǫ0

ρ(x′)

|x − x′| . (49)

This is an integral that we can do, given ρ. In this sense it is explicit.
Applying the gradient operator to it we recover the electrostatic field (34).
And if we apply the Laplace operator we get

∇2Φ(x) =
∫

d3x′
∇2G(x,x′)ρ(x′)

4πǫ0
= −

∫

d3x′
δ(x − x′)ρ(x′)

ǫ0
= −ρ(x)

ǫ0
.

(50)
We have found a solution for the electric field generated by a static charge
distribution, but it remains to show that the solution is unique. Concerning
Green functions we will have more to say later, for now we just observe
that—like the delta function—a Green function is really a distribution, not
a function. It is always meant to occur inside an integral.

Lower dimensional electrostatics

We take time out for a look in lower dimensions, since it provides useful
experience with delta functions. It is also useful when we consider electric
charges confined to a very thin wire or a very thin surface. We approximate
‘very thin’ with ‘infinitely thin’, and suppose that we are close enough to the
line or surface where the charge is concentrated so that we can assume the line
to be straight and the surface to be plane. When the only relevant directions
are normal to the line, or surface, we are in effect doing electrostatics in a
space of only two, or one, dimensions.

Gauss’ theorem holds in all dimensions, so for a point charge q (placed
at the origin) it remains true that

∮

S
E · da =

q

ǫ0
, (51)
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where the integration is over a “sphere” surrounding the origin. If the dimen-
sion d = 2 this sphere is a circle, if d = 1 it consists of two points equidistant
from the charge. Since the area of the sphere grows like rd−1 we conclude
that the strength of the electric field falls like

E ∼ 1

rd−1
. (52)

If d = 2 we get for the electric field and the potential from a point charge
that

E ∼ 1

r
, Φ ∼ ln r , r =

√

x2 + y2 . (53)

This is singular at the origin, but less so than in three dimensions. The same
behaviour will be observed close to a line charge in d = 3.

If d = 1, or if we are close to a surface charge in three dimensions, the
electric field does not fall off with distance at all. It still points away from
(or towards) the charge though, so it changes sign there. Indeed

E =











q
2ǫ0

if x > 0

− q
2ǫ0

if x < 0 .
(54)

This step function is the derivative of the potential, and hence the potential
has a kink at the position of the charge. The charge density is the derivative
of a step function, hence it vanishes everywhere except at the origin, and
there it is “infinite”. It looks suspiciously like a delta function, and in fact
it is. If we have a step function ǫ(x) which jumps from −1/2 to +1/2 at the
origin we can do a partial integration to see that

∫ ∞

−∞
f(x)

dǫ(x)

dx
dx =

1

2
(f(∞) − f(−∞) −

∫ ∞

−∞

df

dx
ǫ(x)dx =

(55)

=
1

2
(f(∞) − f(−∞)) − 1

2

(

∫ ∞

0

df

dx
dx −

∫ 0

−∞

df

dx
dx

)

= f(0) .

This calculation proves that the derivative of the step function is a perfectly
respectable one dimensional delta function, provided only that we restrict
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ourselves to functions f(x) that have finite limits as x→ ±∞. This restric-
tion on the functions that are allowed in the integral is actually part of the
definition of the delta function.17

Uniqueness of the solution

We now come back to the main track. The physical fact that we build on is
Coulomb’s law, and nothing more. We want to show that this is equivalent
to Maxwell’s static equations (35). We have shown consistency. But when
we bring in differential equations we also raise the spectre of unphysical
solutions. Do Maxwell’s equations admit solutions that contradict Coulomb’s
law, as well as solutions that agree with it?

To investigate this, suppose that we have two different solutions for the
same charge distribution. The linearity of the equation then admits the
deduction











∇2Φ1 = − 1
ǫ0
ρ

∇2Φ2 = − 1
ǫ0
ρ

⇒ ∇2(Φ1 − Φ2) = 0 . (56)

Thus what we need to prove uniqueness is that

∇2Φ = 0 ⇒ Φ = 0 . (57)

It will turn out that this is true provided we add the extra condition that
Φ → 0 as r → ∞. This assumption makes physical sense (“we can ignore any
charges or electric fields sitting far away from the region of interest”). The
fact that extra assumptions have to be brought in is typical of laws formulated
in terms of differential equations. Newton’s laws do not in themselves predict
that the orbit of Mars is an ellipse. You have to add initial conditions saying
that at this moment in time Mars is at this position and travels with this
velocity. Similarly, extra conditions will be needed to get definite statements
out of Poisson’s equation. One has to analyze the partial differential equation

17Exercise: The Poisson equation ∇2Φ = 4πGρm, where ρm is the mass density, occurs
in Newton’s theory of gravity. Choose Φ(x, y, z) = −GM(x2 + y2 + (|z| + a)2)−1/2, and
show that this potential arises from an infinitely thin disk of matter (that is, roughly, a
spiral galaxy).
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in detail in order to see precisely what kind of conditions that will make
the solution unique. In this way partial differential equations (PDEs) differ
from ordinary differential equations (ODEs). There are general theorems
about existence and uniqueness of solutions that apply to all ODEs. There
is nothing quite like that for PDEs. To quote Fritz John, one of the great
experts on PDEs:

The constraints imposed by a partial differential equation on its solutions (like

those imposed by the environment on a living organism) have an infinite variety

of consequences, local and global, equalities and inequalities.

After this dark remark we turn to a study of the Laplace equation

∇2φ = 0 . (58)

Solutions of this equation are known as harmonic functions. We are going
to establish a very important property that will enable us to produce the
required uniqueness proof with both hands in our pockets.

• The Laplace equation has the Mean Value Property that

∇2Φ = 0 ⇔ Φ(x) =

∫

S ΦdS
∫

S dS
, (59)

where the integration is over any sphere S centred at x.

At any point the value assumed by Φ equals the average of the values it
assumes on a sphere surrounding the point, and this is true for every such
sphere.

Suppose first that we have proved this. It follows that

• The Laplace equation obeys the Maximum Principle: if the Laplace
equation holds within a bounded volume V then any local maximum
or minimum of the function must occur on the boundary of the volume.

This is obvious: if a local maximum occurs at a point in the interior we
could surround that point with a very small sphere. On that sphere the
values assumed by the function are smaller than the maximum, hence the
average over that sphere cannot be equal to the value at the point, which
contradicts the Mean Value Property.

21



• If ∇2Φ = 0 in a region and if Φ = 0 on the boundary surrounding that
region it must be true that Φ = 0 throughout the region.

This is is true because the Maximum Principle says that the maximum and
the minimum of the function are both equal to 0.

• The solution of the Laplace equation in a region is uniquely determined
by the values of the function on the boundary surrounding the region.

This follows because the difference of two such solutions vanishes at the
boundary, and then it vanishes everywhere.

The values of Φ on the boundary surrounding a region in which the
Laplace equation is to be solved are known as Dirichlet conditions. Dirich-
let conditions determine the solution uniquely. Moreover it turns out that
the solution is always very regular (infinitely differentiable, and expressible
by convergent power series), except possibly at the very boundary where
the Dirichlet conditions are imposed. The boundary conditions themselves
are allowed to be quite irregular functions, for instance they need not be
continuous.18

The problem we want to solve is only a little different. We were imposing
the Laplace equation over all space. The claim is that the solution Φ = 0 is
unique if the function goes to zero at infinity. To prove that the value of Φ(x)
is smaller than any given ǫ, surround the point x with a very large sphere.
If the sphere is large enough the values assumed by Φ on that sphere will
be smaller than ǫ. So will the average over that sphere. By the Mean Value
Property it follows that Φ(x) < ǫ, and this is true for all ǫ, hence Φ = 0.

It remains to prove the Mean Value Property. But this is easy. First of all
it is trivial in one dimension, where vanishing second derivative means that
the function is linear. When we average a function Φ over a sphere we obtain
a function of the position x of the centre of the sphere and of its radius r,
namely

MΦ(x, r) =

∫

S ΦdS
∫

S dS
=

1

4π

∫

ΦdΩ , dΩ = dθdφ sin θ . (60)

18Exercise: An analytic function is a differentiable complex valued function on a two
dimensional plane such that it depends only on the particular combination z = x + iy,
Φ(x, y) = Φ(x + iy) = Φ(z). Prove that every such function is a solution of the two
dimensional Laplace equation.
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Factors of r cancel since the surface element of the sphere S contains a factor
of r2. To see how the dependence on x and r comes in we write this formula
in full detail,

MΦ =
1

4π

∫ π

0

∫ 2π

0
Φ(x+ r cosφ sin θ, y + r sinφ sin θ, z + r cos θ)dΩ . (61)

If we make the sphere very small the average will approach the value at the
centre arbitrarily closely,

lim
r→0

MΦ(x, r) = Φ(x) . (62)

Now we take the derivative with respect to r, and afterwards we reinstate
the factors of r to have everything written in proper vector form:

∂rMΦ(x, r) =
1

4π

∫

∂rΦdΩ =
1

4πr2

∫

S
∇Φ · da . (63)

Inside the integral the derivative with respect to r was traded for the gradient
scalared with the unit normal vector of the sphere. Now we apply Gauss’
theorem to convert this into an integral over a ball and use the fact that Φ
solves the Laplace equation:

∂rMΦ(x, r) =
1

4πr2

∫

⊙
∇2ΦdV = 0 . (64)

Hence the average does not depend on the radius of the sphere—it equals
the average over an arbitrarily small sphere, and hence it equals the value of
Φ at the centre. The proof is complete.19

Green functions for pedestrians

Green functions play an important role throughout Jackson’s book, and a
pedestrian look at what they are may be helpful. They are, in fact, inverses
of linear partial differential operators. Suppose we are given the equation

19Exercise: Create an electric field inside a spherical cavity. You can choose the bound-
ary conditions freely. Can you choose them so that a test charge has a stable equilibrium
position at the centre of the cavity? Anywhere in the interior of the cavity?
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∇2Φ(x) = f(x) , (65)

where f(x) is a known function. That is, we continue to use the Laplace
operator as an example even though the ideas are more general. We want to
find an inverse of the operator so that

Φ(x) = “
1

∇2
f(x) ” =

∫ ′
G(x,x′)f(x′)d3x′ . (66)

This requires that the Green function G obeys

∇2G(x,x′) = δ(x,x′) . (67)

The question is whether such an inverse exists, and if so if it is unique.20

The operators are linear, and the functions on which the operators act
are best thought of as vectors in some (infinite dimensional) function space.
This means that we can get a feeling for things by recalling the conditions
under which a matrix M has a unique inverse, that is when we can write

n
∑

j=1

Mijvj = fi ⇔ vi =
n
∑

j=1

M−1
ij fj . (68)

Instead of integrals we have finite sums, but the ideas are the same.
The inverse will fail to exist if the determinant is zero. Another way of

saying this is that the inverse will fail to exist if there exist vectors u such
that

n
∑

j=1

Mijuj = 0 . (69)

What do we do if this happens? If the eigenvectors of M are orthogonal
to each other we can restrict ourselves to a subspace of the original vector
space. We can define a unique inverse matrix M−1 restricted to the subspace
orthogonal to all zero eigenvectors. With this understanding eq. (68) is
perfectly legitimate whenever f belongs to that subspace. Having defined
M−1 we get solutions to Mv = f of the form

20Exercise: Rewrite eq. (65) as
∫

′

M(x,x′)Φ(x′)d3x′ = f(x) for some distribution
M(x,x′). This distribution is the ‘matrix’ that we are trying to invert.
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vi =
n
∑

j=1

M−1
ij fj + ui . (70)

Here u is any vector obeying Mu = 0, but this ambiguity disappears if we
insist that v must lie in a subspace that contains no such vectors (excepting
the zero vector).

For the Laplace operator we do have a problem with zero eigenvalues,
because there do exist functions F such that

∇2F (x) = 0 . (71)

Therefore the Green function we have used so far is under suspicion. The
most general Green function associated to the Laplace operator is of the form

G(x,x′) =
1

|x − x′| + F (x,x′) . (72)

Provided that F (x,x′) solves the Laplace equation this is a Green function
obeying

∇2G(x,x′) = ∇′2G(x,x′) = −4πδ(x,x′) . (73)

The freedom in choosing the function F reflects the freedom in choosing
boundary conditions. Previously we could afford to set F = 0 because we
were interested in situations where the field vanishes at infinity, and we re-
stricted ourselves to the space of regular functions falling off sufficiently fast
at infinity. When you add two such functions you get a third function of this
type, so this is indeed a linear subspace of the space of all functions.

In the general boundary value problem we may have to impose other
restrictions on the space of allowed functions. Effectively we will use the
homogeneous solution F to adapt the Green function to the problem at
hand. This may sound obscure when you hear it for the first time, but it
will become very clear when we come to the method of images in Jackson’s
chapter 2.

Another look at the boundary value problem
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We discussed conditions under which solutions of the Laplace equation are
unique using the Mean Value Principle. This is not only elegant, it is practi-
cally useful too, as becomes clear in Jackson’s section 1.13 where he presents
a numerical method for how to solve the equation. But Jackson himself dis-
cusses uniqueness of the solutions along different lines, using Green functions.

First we bring in Green’s identity. Because of Gauss’ theorem there holds,
for arbitrary functions f and g on a region V with boundary S, that

∫

V
(f∇2g−g∇2f)dV =

∫

V
∇·(f∇g−g∇f)dV =

∮

S
(f∇g−g∇f) ·da . (74)

Before making use of it we change the integration variable to x′. Then we
set f(x′) = Φ(x′) and g(x′) = G(x,x′), where

∇′2Φ(x′) = − 1

ǫ0
ρ(x′) , ∇′2G(x,x′) = −4πδ(x,x′) . (75)

The left hand side of Green’s identity then evaluates to

−4πΦ(x) +
1

ǫ0

∫

V
G(x,x′)ρ(x′)dV ′ . (76)

The right hand side becomes
∮

(Φ(x′)∇′G(x,x′) −G(x,x′)∇′Φ(x′)) · da′ . (77)

Now comes the trick. We assume that we can choose the so far arbitrary
function F in the definition of the Green function so that the Green function
vanishes on the boundary S of the region we consider. Then one of the terms
in the surface integral vanishes. When we collect things together Green’s
identity gives us the equation

Φ(x) =
1

4πǫ0

∫

G(x,x′)ρ(x′)dV ′ − 1

4π

∮

S
Φ(x′)∇′G(x,x′) · da′ . (78)

Provided we can actually find the function F that we want, this is a fully
explicit formula for the potential inside the volume in terms of the known
charge density and the Dirichlet boundary conditions on the potential.

A variation is possible, where we choose the function F so that the normal
derivative of the Green function vanishes on the boundary. Then we obtain
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Φ(x) =
1

4πǫ0

∫

G(x,x′)ρ(x′)dV ′ +
1

4π

∮

S
G(x,x′)∇′Φ(x′) · da′ . (79)

This is a fully explicit formula where the potential is determined by the
normal derivative of the potential on the boundary, that is to say by Neumann

boundary conditions. In electrostatics the physics typically requires Dirichlet
conditions, but Neumann conditions are important in other theories where
the Laplace equation figures (for instance in hydrodynamics, if the velocity
field of the fluid can be described as the gradient of a velocity potential).

The bounding surface S may be disconnected—it may for instance consist
of two concentric spheres, in which case the region lies in between. And in
fact the outer sphere may be moved to infinity, in which case the condition
that the potential vanishes at infinity serves as the appropriate Dirichlet
condition at that end. We just have to insist that the boundary on which the
conditions are set really does enclose the region where we want to solve the
equation. We can impose Dirichlet conditions on one part of the boundary
and Neumann conditions on another, but trying to impose both conditions at
the same point will in general lead to inconsistencies. Evidently so, because
once Dirichlet conditions (say) are imposed, the field including the Neumann
conditions are completely determined so the latter can no longer be chosen
freely.

In practice the explicit formulas in terms of the adapted Green function
are difficult to use. If the boundary has an involved shape it will become
very hard to solve for the function F , which is what we need to adapt the
Green function. But for ‘nice’ boundaries we will see that the method of
images can make life very easy.

Meanwhile we repeat the main mathematical message of this chapter:

Consider a closed surface S enclosing a region. Suppose ∇2Φ = 0 throughout

this region. Then Φ is uniquely determined by either Dirichlet or Neumann

conditions on S.

Problem 2: Consider an arbitrary vector field V = V(x). By suitably
restricting its behaviour at infinity prove that you can find a function f and
a vector field A such that the equation V = ∇f + ∇×A holds.
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ELECTROSTATIC AND MAGNETOSTATIC ENERGY

We now start an argument that will add some ‘reality’ to the electric field.
The idea is to associate energy, and eventually momentum, to the field itself.
To justify this idea we must go beyond statics, so we include a few things
from chapters 5 and 6 as well—although the full justification will have to
wait until we have introduced some ideas from relativity theory.

Electrostatic self-force

First let us consider the force experienced by a charged body placed in an
electrostatic field E(x). The body is described by a charge density ρ(x),
vanishing outside the body. Lorentz’ force law tells us that the total force
acting on the body is

F =
∫

ρ(x)E(x) d3x . (80)

The total electric field is a superposition E = Eext +Eself of an external field
Eext and the field Eself created by the body itself. But it is easily seen that
the self-field does not contribute to the force. Equation (34) tells us that the
self-force is

Fself =
∫

ρ(x)Eself(x) d3x =
1

4πǫ0

∫

ρ(x)ρ(x′)(x − x′)

|x − x′|3 d3xd3x′ = 0 . (81)

The last step follows because the integrand changes sign when we exchange
x and x′. Hence there is no self-force in electrostatics. The same argument
shows that there is no self-force in Newtonian gravity either. In full electro-
dynamics, where moving charges can radiate, there is a non-trivial self-force
that has been understood only fairly recently. But as long as we stay within
the confines of electrostatics we can ignore self-forces and self-fields.

Electrostatic energy
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We want an expression for the amount of energy stored in a configuration of
electric charges. To begin with, the work done on an electric point charge
when we move it—slowly, so that it does not radiate—from A to B in an
external static electric field E is easily computed. We do not have to worry
about any self-force, and Lorentz’ force law gives

W = −
∫ B

A
F · dl = −q

∫ B

A
E · dl = q

∫ B

A
∇Φ · dl = q(ΦB − ΦA) . (82)

This gives physical meaning to potential differences, but not to the actual
value of the potential itself (a point that worried Maxwell somewhat). Note
the key assumption that the internal energy of the point charge itself is
unchanged while it is being transported from A to B.

We can now ask how much energy one has to supply in order to create a
configuration of several point charges by moving them in from infinity (far
away). The answer becomes a sum over all pairs of charges,

W =
1

4πǫ0

∑

pairs

qiqj
|xi − xj |

=
1

8πǫ0

∑

i6=j

qiqj
|xi − xj |

. (83)

But how to compute the energy stored in a continuous charge distribution?
This question leads through deep waters to a suggestive answer. We plunge
in with the Ansatz

W =
1

8πǫ0

∫ ∫ ′ ρ(x)ρ(x′)

|x − x′| d3xd3x′ . (84)

This is the analogue of our double sum for point charges, except that we did
not restrict the integrals so as to exclude the interaction of a charge with
itself. For the point charges these terms must be excluded if one is to avoid a
meaningless answer. In the continuous case we just continue to swim. Using
the solution (49) for the electric potential in the first step, we transform the
expression to

W =
1

2

∫

ρ Φ d3x = −ǫ0
2

∫

∇2ΦΦ d3x =

(85)

=
ǫ0
2

∫

∇Φ · ∇Φ d3x =
ǫ0
2

∫

E ·E d3x .

29



In the middle of the calculation a partial integration was performed, and it
was assumed that the surface term vanishes provided it is evaluated on a very
large sphere. Thus there was a faintly non-local flavour to the calculation.

It seems that the electric field in itself carries energy, and indeed that
there is a local energy density

w(x) =
ǫ0
2
E(x) · E(x) . (86)

Moreover the new answer is better than eq. (83), because it is never negative.
It is easy to track down the reason for the discrepancy. Equation (83)

takes only the interaction energy into account, while our final expression
includes self-energy contributions. Indeed, the electric field from two point
charges is

E =
q1

4πǫ0

x − x1

|x − x1|3
+

q2
4πǫ0

x − x2

|x − x2|3
. (87)

Squaring that, eq. (86) gives the energy density as

w =
1

32π2ǫ0

(

q2
1

|x − x1|4
+

q2
2

|x − x2|4
+

2q1q2(x − x1) · (x − x2)

|x − x1|3|x − x2|3
)

. (88)

The last term is the interaction energy density. Integrating it over all space
gives the total interaction energy21

Wint =
q1q2

16π2ǫ0

∫

(x − x1) · (x − x2)

|x − x1|3|x − x2|3
d3x =

=
q1q2

16π2ǫ0

∫

∇
(

1

|x − x1|

)

· ∇
(

1

|x− x2|

)

d3x =

(89)

= − q1q2
16π2ǫ0

∫

1

|x − x1|
∇2

(

1

|x − x2|

)

d3x =

=
q1q2
4πǫ0

∫

1

|x − x1|
δ(3)(x − x2)d

3x =
1

4πǫ0

q1q2
|x1 − x2|

.

21Exercise: Justify the step between line two and line three in the calculation that
follows.
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Here the partial integration led to a surface term that obviously vanishes.
The result agrees with eq. (83). If we decide to include the self-energy terms
in the energy density, the total energy will diverge. In fact you will encounter
the integral

W ∼
∫ ∞

0

r2

r4
dr = ∞ . (90)

It would take an infinite amount of energy to squeeze a sensible charge dis-
tribution into a point charge. Which is as good a reason as any to exclude
point charges from the theory.

It then seems reasonable to adopt the expression

W =
ǫ0
2

∫

V
E · E dV (91)

as the energy stored in the charge density that gives rise to the electrostatic
field in question.

The capacitance matrix

Here is an example to illustrate some of the preceding ideas. Consider N ideal
conductors placed somehow in space, held at constant potentials Vi that can
be chosen arbitrarily. We know that outside the conductors there exists a
unique solution for a static electric field vanishing at infinity. This can be
realized by placing appropriate amounts of charge Qi on the conductors.
We would have to know the detailed geometry of the conductors in order to
calculate these charges, but we can make some general statements about them
and about the energy stored in the configuration. To begin with, let Φj be a
solution of the Laplace equation in the empty space outside the conductors,
such that Φj = 1 on the jth conductor and Φj = 0 on the remaining N − 1
conductors (and such that Φj → 0 at infinity). Then we denote the total
charge on the ith conductor in that solution by Cij . The solution we actually
want can be found by superposing such solutions. Indeed, if the conductors
are held at arbitrary potentials Vj then the charge on the ith conductor is

Qi =
N
∑

j=1

CijVj . (92)
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One of our expressions for electrostatic energy tells us that the energy stored
in this configuration is

W =
1

2

∑

i,j

CijViVj . (93)

It is then an exercise to show that the elements of the capacitance matrix
obey22

Cij = Cji , Cij =











≥ 0 if i = j

≤ 0 if i 6= j
,

N
∑

j=1

Cij ≥ 0 . (94)

To prove that the capacitance matrix whose matrix elements are the Cij is
symmetric you may use Green’s identity (74), and you will then understand
why this identity is sometimes referred to as Green’s reciprocation theorem.

A variational principle

The notion of electrostatic energy can be put to immediate use. Let us have
another look at the energy or Dirichlet integral

W [Φ] =
ǫ0
2

∫

V
E ·E dV =

ǫ0
2

∫

V
∇Φ · ∇Φ dV . (95)

In a wide variety of circumstances the static equilibrium state of some system
can be found by minimizing its energy function. Suppose that the volume
V is free of charges, and that the potential on its boundary S is fixed by
Dirichlet boundary conditions. Then we can ask what choice of the function
Φ inside V minimizes the energy integral?23 If you know how to do it, the
question is easily answered. We are looking for that function Φ for which

I[Φ + δΦ] − I[Φ] = 0 , (96)

22Exercise: Prove these statements. To prove the inequalities you can appeal to the
maximum principle.

23Exercise: Show that a function that minimizes the energy integral cannot have a strict
maximum inside the domain V . Then suppose that Φ = 0 on the boundary of V , and
show that Φ(x) = 0 is the only function that minimizes the energy integral.
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where the variation δΦ is a small but otherwise arbitrary function on V ,
except that we assume that δΦ = 0 on the boundary because there the value
of Φ is fixed by the boundary conditions. With this understanding it is easy
to bring the variation to the form

I[Φ + δΦ] − I[Φ] = ǫ0

∫

V

(

∇ · (δΦ∇Φ) − δΦ∇2Φ
)

dV . (97)

(We calculate to first order in δΦ. If you are unfamiliar with this kind of
calculation, just ignore it and go directly to the result.) Using Gauss’ law,
and then the fact that δΦ = 0 on the boundary S, this is

I[Φ + δΦ] − I[Φ] = ǫ0

∫

S
δΦ∇Φ · da − ǫ0

∫

V
δΦ∇2ΦdV = −

∫

V
ǫ0δΦ∇2ΦdV.

(98)
The energy integral has a minimum for those functions Φ such that the left
hand side vanishes. The only way that this can happen for arbitrary choices
of the variation δΦ inside the volume is that

∇2Φ = 0 . (99)

In this way we see that Maxwell’s electrostatic vacuum equation follows from
minimization of the electrostatic energy.

In this calculation we assumed Dirichlet boundary conditions. Neumann
boundary conditions, in which the normal derivative of the potential on
the boundary are specified, can be handled by a slight modification of the
argument.24

Now let us add a fixed charge density ρ inside the volume V , and look
for the minimum of the integral

W [Φ] =
1

2

∫

V
(2Φρ− ǫ0∇Φ · ∇Φ) dV . (100)

Assume Dirichlet boundary conditions and repeat the previous argument.
We then find that the integral takes its minimum value for those functions
Φ that obey Poisson’s equation

ǫ0∇2Φ + ρ = 0 . (101)

24Exercise: In section 1.12 Jackson handles the Neumann conditions by adding a surface
term to the energy integral. Spell this out in detail.
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This way of looking at things is very useful in situations where V or ρ are such
that we are unable to solve Poisson’s equation. We just choose any function Φ
depending on a number of free parameters α1, α2, . . . , αn. Then we compute
the integral numerically and get an answer as a function of these parameters.
Finally we minimize the resulting function I = I(α1, α2, . . . , αn) with respect
to those parameters. The result will give our best approximation of the true
Φ. With a computer we can afford a fairly large number of parameters, and
some judgment in the choice of trial functions will often result in strikingly
good approximations (as you can see in the example illustrated by Jackson’s
Figure 1.9.).

The energy integral is useful in another way. You may have noticed that
we have avoided the question of the existence of a solution. How general
can we make the boundary conditions, and still obtain an analytic harmonic
function in the interior? One way to address this question is to focus on the
existence of a minimum of the energy integral (95). But it required eminent
mathematicians to work out the details, so we stay away from them.

The energy in the magnetic field

In the vacuum case, assuming all time derivatives vanish, the magnetic field
obeys











∇×B = 0

∇ · B = 0 .
(102)

This is exactly the same equations as the electrostatic ones (35) when ρ = 0,
so we expect the energy stored in the magnetic field to be

W =
1

2µ0

∫

B ·B dV . (103)

We have to argue for this conclusion in a different way though, because
the electric and magnetic fields couple to charges in very different ways.
The magnetic component of the Lorentz force is orthogonal to the direction
of motion, and hence it does no work. It follows that eq. (82) remains
valid in the presence of a magnetic field, so it does not cost any energy
to move a charge around in a purely magnetic field. On the other hand
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Ampère’s law (4) shows that magnetic fields are created by currents, that is
by charges in motion. A time independent magnetic field is not really in a
static equilibrium state, it is in a steady state. It costs work to build up the
currents that are responsible for a magnetic field.

Figure 3: The magnetic field created by a circular current.

We can produce an argument for eq. (103) by considering magnets com-
posed of small circular current loops, with field lines as in Figure 3. When
we add to an existing magnetic field by moving such a current loop in from
infinity the magnetic field threading through the loop has to change. By
Faraday’s law (2) this creates an electric field around the loop, which means
that there is an emf—an electromotive force—acting on the current. To keep
the current stable we have to do work against this force. It is this work that
is eventually stored in the magnetic field that we are creating.25 This time
we do not have to worry about the self-energy of the charges, but we can
no longer make the comfortable assumption that the internal energy of the
transported objects stays unchanged during transport. Jackson provides the
quantitative details in his section 6.2.

Local conservation of electromagnetic energy

Jackson’s section 6.7 gives a simple and convincing argument for the energy
densities we have put on the table. Let us look at the local energy density

25Exercise: Argue that the field from a current loop must look qualitatively as shown in
Figure 3. Also consider the sign of the effect described, that is show that it costs energy
to strengthen a magnetic field by moving a current loop in from infinity.
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w(x, t) =
1

2

(

ǫ0E · E +
1

µ0
B · B

)

. (104)

To deserve the name “energy density” this quantity must be locally con-
served, that is to say that any change in total energy inside an arbitrary
volume must happen either because work is done on it, or because energy is
flowing in or out through the boundary of the volume.

Figure 4: Local energy conservation: energy can flow in or out of every volume
element.

A quick calculation using Maxwell’s equations shows that26

∂tw =
1

µ0
∇ · (B ×E) − E · J . (105)

Judging from Figure 4 this is exactly what we want. We define Poynting’s

vector field

S(x, t) =
1

µ0

E ×B = ǫ0c
2E× B . (106)

This can be regarded as quantifying the energy flow in a time dependent
situation. In this way we obtain local energy conservation in the form

∂tw + ∇ · S = −J · E . (107)

The term on the right hand side represents work done on the electromagnetic
field at a point.

To see the Poynting vector field in action, consider an electric current j
through a wire with radius a and conductivity σ. See Figure 5. The electric

26Exercise: Do it!
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Figure 5: The energy budget in an electric wire. (The radius of the cylinder is
slightly exaggerated.) Please add the Poynting vector field to the picture!

field is directed along the wire and obeys Ohm’s law in the form j = σE.
The strength of the magnetic field is determined by the flux through the
cylinder bounding the wire, and is given by B = µ0ja/2. The magnitude of
the normal component of the Poynting vector at the surface of the cylinder
is then aj2/2σ.27 Integrating over the surface of a cylinder of length l we find

∫

C
S · da = −aj

2

2σ
2πal = −j

2

σ
πa2l = −

∫

V

j2

σ
dV . (108)

This is the Joule heat dissipated in the wire, and indeed the energy is supplied
by the Poynting vector field. It should be noted though that the energy
is flowing into the wire from a direction that you may find unexpected.28

For such reasons one can contemplate some changes in the definition of the
Poynting vector fields. Adding the curl of some arbitrary vector field to
the Poynting vector will not affect the conservation law (107), since the
divergence of a curl is zero. Later on in the course we will appeal to an
external judge—general relativity theory—to support Poynting’s unchanged
definition.

The case for energy carried by the fields themselves is already quite strong.
For Maxwell it was natural to think that energy was carried by an elastic
ether. When the ether theory was dropped it was suggested by some that
energy can be attributed only to a configuration of charges as a whole, but

27Exercise: Verify this, and redraw Figure 5 so that it shows how electromagnetic energy
is entering the cylinder. Be careful with the logic behind the picture.

28Exercise: Place an electric point charge at the centre of the circular current loop shown
in Figure 3. Sketch the energy flow, as given by the Poynting vector field.
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the notion of localized energy eventually carried the day.29 For gravity, as
described by general relativity, the corresponding questions are still open.

Problem 3: The earth has a negative surface charge, giving rise to an
average surface electric field of around 100 V/m reaching some way up in the
atmosphere. It also has a dipole magnetic field, and it rotates around an axis
aligned with that dipole. Suppose the magnetic field reverses. (Apparently it
does, now and then.) How is the rotation rate affected by the surface electric
field?

29Reference: Two brilliant textbooks taking different sides of the issue are M. Mason and
W. Weaver: The Electromagnetic Field, Chicago 1929, and M. Abraham and R. Becker:
Classical Electricity and Magnetism, London 1937.
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SOLVING BOUNDARY VALUE PROBLEMS

Jackson devotes chapter 2 to a small catalogue of exact solutions of electro-
static boundary value problems. This is a useful thing to have, before turning
to numerical solutions.

Ideal conductors

The method of images illuminates almost all the issues we came across when
discussing Green functions and boundary conditions. It is easy to see how
boundary conditions can arise. In an electrolyte some of the charges are free
to move, and in a metal some of the negative charges are free to move. In an
ideal conductor all charges are completely free to move. We place a charge
outside it, and wait for an equilibrium to set in. But we do not know in
advance what the charge distribution will look like on the conductor. We do
know, however, that in equilibrium there cannot be any electric field inside,
otherwise the charges would start to move and equilibrium would be lost.
To prevent this from happening the free charges will move to the surface of
the conductor, and stay there. (We will see later why they do not leave the
conductor.) In any solution of Maxwell’s equations the tangential component
of the electric field must be continuous on the surface. This means that once
equilibrium has set in the potential will be constant all over the conductor,
including its boundary. The surface is now an equipotential surface, and we
have arrived at a Dirichlet problem. Once we have the unique solution the
surface charge distribution can be calculated from the known discontinuities
in the normal component of the electric field. (In a real metal, say copper,
the surface charge is concentrated not to an infinitely thin shell but to a
surface layer that is a few Ångströms across.)

The method of images

The problem is: We place a distribution of charges outside an infinite con-
ducting plane. When the charges inside the conductor have moved to their
equilibrium position, what is the electric field?
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Figure 6: The external charge is fixed. Equilibrium sets in when the charges on
the conductor have moved to positions that we do not know in advance.

As stated this looks difficult, because we don’t know the equilibrium
distribution of the charges. We reformulate the question as: Solve the Poisson
equation in the half-space x > 0, with the boundary condition Φ(0) = 0.
To solve this, it is enough to find the appropriate Green function, or in
other words to solve the problem for a single point charge sitting outside the
conductor. Recall that the potential Φ(x) from a point charge placed at x′

is

Φ(x) =
q

4πǫ0
G(x,x′) , (109)

up to an irrelevant additive constant. In this formula the Green function
G(x,x′) must obey the appropriate boundary conditions, that is to say we
have to choose the function F (x) in eq. (72) so that the Green function
vanishes on the boundary of the region we consider, in particular at x = 0.
But this is trivial in this example. Let the source point x′ be placed at x = a,
y = z = 0. Then the appropriate inverse of the Laplace operator is

G(x,x′) =
1

√

(x− a)2 + y2 + z2
− 1
√

(x+ a)2 + y2 + z2
. (110)

This vanishes at x = 0, it falls to zero at infinity, and the second term is
in fact a well defined function solving the Laplace equation throughout the
region of space that we are interested in (that is, x > 0).

Equation (110) is exactly what we arrive at if we imagine that the con-
ductor is a mirror, with an image charge placed behind it. As a matter of
fact the electric field vanishes behind the mirror, but we use the field from
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Figure 7: An electric field outside a conducting plane. Just set the part to the
left of the plane to zero. (This is Figure 57 in Jeans’s book.)

the image charge only in the region outside the conductor. Figure 7 says it
all.

With the solution in hand we can easily calculate the equilibrium surface
charge density σ on the conductor. Let the external point charge have charge
q. Then we simply evaluate

σ = ǫ0(discontinuity of electric field) = −ǫ0∂xΦ (111)

at x = 0, obtaining30

σ = − 1

2π

aq

(a2 + y2 + z2)3/2
. (112)

The problem is solved.31

Figure 8: The method of images applied to a spherical conductor.

30Exercise: Do the derivation in detail. Also calculate the total surface charge on the
conductor.

31Exercise: Two conducting planes are placed at x = 0 and at y = 0. The potential
on the planes is kept at zero. Place a single charge somewhere in the positive quadrant
of the (x, y)-plane. Use the method of images to calculate the electric potential in that
quadrant.
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A slightly more involved example is that of a charge placed outside a
spherical conductor. Here we proceed using a little guesswork, armed with
the knowledge that if we find a solution such that Φ = 0 on the surface of
the sphere (and Φ → 0 at infinity) then we know that it is the only solution.
That is to say, a wrong guess will reveal itself, and force us to try again. It
seems clear that we should place the image charge on the line connecting the
position of the true charge to the centre of the sphere. Keeping both the
position and the charge of the image otherwise open, we will then have the
potential

Φ =
1

4πǫ0





q
√

(x− d)2 + y2 + z2
+

q′
√

(x− d′)2 + y2 + z2



 . (113)

Then we must choose d′ and q′ such that Φ = 0 at the surface of the sphere.
Since Φ is a function of the position on the sphere, while we have only two
parameters to choose, it is not obvious that a solution exists at all. Still we
make one further guess. Clearly d′ must grow with R and shrink with d. It
must also have the dimension of length. The simplest choice is

d′ =
R2

d
. (114)

Plug this into eq. (113) and set x2 + y2 + z2 = R2. This will lead to the
equation

q√
R2 + d2 − 2dx

= − q′
√

R2 + R4

d2 − 2R2

d
x

= −dq
′

R

1√
d2 +R2 − 2dx

. (115)

We are in luck. The solution is

q′ = −R
d
q . (116)

A certain resemblance to the theory of Möbius transformations acting on
analytic functions will suggest itself here, if you know about these things.32

32Exercise: Show that a sphere is like a plane. That is, given a unit sphere, place the
origin of the coordinate system on its surface, perform the transformation xi → x′i = xi/r

2,
and see where the sphere ends up.
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There are many other examples where the method of images is useful.33

Catalogues of problems that can be solved this way have been constructed by
taking any electrostatic field, finding its equipotential surfaces, and declaring
that they be the surface of some conductor.

The work function

We are now in position to understand why the electric charges on a conductor
do not leave its surface to disappear into space. In fact, a piece of metal has
a ‘work function’ telling us how much work that has to be supplied in order
to remove electrons from it. Jackson’s section 2.3 tells the story in brief.

Consider a spherical conductor with radius R and net charge Q, and a
charge q (of the same sign) outside it, sitting fixed at a distance d from the
centre of the sphere. The idea is to use the method of images to show that if q
is sufficiently close to the surface of the conductor then it is in fact attracted

by it. To do so we split the total charge on the conductor as

Q = q′ + (Q− q′) , (117)

where q′ is the image charge of the charge outside. The charge q is attracted
by the image charge, and repelled by an effective charge

Q− q′ = Q+
R

d
q (118)

that we can regard as sitting at the centre of the sphere.34 For the force
acting on the charge outside Coulomb’s law now gives

F =
q

4πǫ0

(

Q+ R
d
q

d2
−

Rq
d

(d− R2

d
)2

)

. (119)

We apply a little polish, and obtain

F =
1

4πǫ0

q

d2

(

Q− R3q

d(d2 − R2)2
(2d2 − R2)

)

. (120)

33Exercise: Derive Jackson’s eq. (2.13) from his eq. (2.12), in full detail.
34Exercise: Exactly why can we do this? Spell out the justification carefully.
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When d >> R the first term dominates, and we get the usual Coulomb
repulsion. However, when d is close to R the second term dominates. The
charge outside is attracted to the image charge, which in this case lies close
to the surface of the conductor—or, in reality, the charge is attracted to the
surface charge that has built up below it. See Jackson’s Figure 2.5 for some
quantitative details.35

Orthogonal functions and separation of variables

Now for something completely different. Recall that the set of all functions
defined on some domain, and obeying suitable conditions, can be regarded
as a vector space. In vector spaces the first move is always to define an or-
thonormal basis. The Dirac notation is particularly clear about this. Denote
a column vector by |V 〉, and the corresponding row vector by 〈V |. (In quan-
tum mechanics the vectors are usually complex, and a complex conjugate
is involved in the definition of the bras. Our vectors are usually real.) An
orthonormal basis—or ON basis for short—is defined as a set of vectors |ei〉
obeying

〈ei|ej〉 = δij (121)

∑

i

|ei〉〈ei| = 1 , (122)

where 1 is the identity operator and the sum has to extend over sufficiently
many vectors to ensure that the second condition holds (namely over d vec-
tors, if the dimension of the space is d). With this in place any vector can
be expressed, uniquely, as a linear combination of the basis vectors:

|V 〉 =
∑

i

|ei〉〈ei|V 〉 =
∑

i

ci|ei〉 , ci = 〈ei|V 〉 . (123)

In function spaces the vectors are actually functions f, g, . . . and so on.
Functions (on some specified domain) are vectors because the linear combi-
nation c1f + c2g is again a function (on the same domain). We also need

35Exercise: A small charge q sits outside a spherical conductor of large total charge Q
and radius R. The charges have the same sign. At (roughly) what distance d from the
centre will the charge feel no force?
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a definition of the scalar product of two functions, and this will involve an
integration over the domain. For concreteness, let us assume that we are
dealing with functions defined on the interval x ∈ [a, b], and define the scalar
product as

f · g =
∫ b

a
f ∗(x)g(x)dx . (124)

Complications can arise here. We must restrict ourselves to functions such
that this integral exists. This is still a large, and in fact infinite dimensional,
vector space. An ON basis {un}∞n=0 must therefore have an infinite number
of elements. In perfect analogy with eqs. (121)–(122) they must be chosen
so that

∫ b

a
u∗n(x)um(x)dx = δn,m (125)

∞
∑

n=1

un(x)u∗n(x′) = δ(x, x′) . (126)

The delta function appears here because it is in fact the identity operator on
the function space—and as we know we may have to impose some restrictions
on the allowed functions in order to make sure that the delta function is well
defined. If everything works out correctly it is easy to check that any function
f can be expressed, uniquely, as36

f(x) =
∞
∑

n=1

cnun(x) , cn =
∫ b

a
u∗n(x)f(x)dx . (127)

Concerning the various traps that can be there, to do with convergence of
sums and integrals, we simply observe that in these notes we will be dealing
only with function spaces and sets of orthonormal functions that have been
very thoroughly studied, so that in fact no problems arise. (In Jackson’s
book, the main examples are trigonometric functions, spherical harmonics,
and Bessel functions.)

The method of separation of variables uses suitable ON bases in the space
of functions in order to convert the hard problem of solving a PDE to the
comparatively easy problem of solving a set of ordinary differential equations.

36Exercise: If you feel the least bit unsure, check this.

45



It works only if it is possible to adapt the choice of basis functions to the
problem—to the Laplace operator and its boundary conditions—in a suitable
way. A case that works is that of Cartesian coordinates. So, consider

(∂2
x + ∂2

y + ∂2
z )Φ(x, y, x) = 0 . (128)

The idea is to look for special solutions, of the form

Φ(x, y, z) = X(x)Y (y)Z(z) , (129)

and hope that there are sufficiently many such solutions so that one can form
an ON basis from them. If so the general solution of the Laplace equation can
be expressed as a linear combination of such solutions, and the coefficients
in the expansion are determined by the boundary conditions. As always we
rely on the fact that if we find a solution to the boundary value problem then
we already know that is is unique.

For Cartesian coordinates the story is simple. Using our Ansatz we ob-
serve that

0 =
1

Φ

(

∂2
xΦ + ∂2

xΦ + ∂2
xΦ
)

=
1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2
. (130)

Of the three terms on the right hand side the first is a function only of x,
the second only of y, and the third only of z. The only way the sum can
vanish is for all three terms to be constant. Thus we arrive at three ordinary
differential equations

1

X

d2X

dx2
= k1 ,

1

Y

d2Y

dy2
= k2 ,

1

Z

d2Z

dz2
= k3 . (131)

Plugging the solutions into the Ansatz (129) we obtain solutions of the
Laplace equation provided only that the constants obey

k1 + k2 + k3 = 0 . (132)

This is useful whenever the boundary of the region where we want to find a
solution to the boundary value problem is simply described in terms of Carte-
sian coordinates. A rectangular box is an example (discussed in Jackson’s
section 2.9).
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In general the method can be applied if there is a coordinate system
adapted to the boundary conditions such that the separation of the variables
works when the Laplace operator is expressed in these coordinates. Cartesian
coordinates, spherical polars, and quite a few others will do. Note also that
the solutions come out as infinite power series, so their usefulness depends
on how quickly these series converge.37

The electric field outside a sharp edge

An interesting application of the method of separation of variables can be
found in Jackson’s section 2.11. We imagine that there are two conducting
half-planes kept at constant potential V and meeting at an angle β. See
Figure 9. We will be interested in the behaviour of the electric field close to
the corner, and we will find that the answer depends critically on whether the
angle at the corner is acute or obtuse. To get a well defined Dirichlet problem
we would need to specify boundary conditions also on a surface surrounding
the corner, but we will permit ourselves to keep this vague. This means that
our solution will contain some undefined constants.

Figure 9: The behaviour of the electric field at the corner, or tip, will depend
critically on whether the angle β is acute (at a corner) or obtuse (at a tip).

Cylindrical coordinates (r, φ, z) where x = r cosφ, y = r sin φ clearly
suggest themselves. The Laplace equation becomes38

37Exercise: In his Problem 2.16 Jackson gives an explicit solution for the electric po-
tential inside a square, with a constant charge density there. Is this formula practically
useful for plotting the potential? If it is, plot it!

38Exercise: If you feel unsure about this, derive this from the chain rule ∂/∂x =
∂ρ/∂x ∂/∂ρ + ∂φ/∂x ∂/∂φ etc. For your information, there is a better way to do it
(using tensor calculus).
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∇2Φ = (∂2
x + ∂2

y + ∂2
z )Φ =

1

r

∂

∂r

(

r
∂Φ

∂r

)

+
1

r2

∂2Φ

∂φ2
+
∂2Φ

∂z2
= 0 . (133)

Evidently the z-direction is of no interest, so we ignore it and treat the
problem as two dimensional. Then we try the Ansatz

Φ(x, y) = R(r)Ψ(φ) . (134)

With perhaps a little trial and error separation of variables works nicely:

r2

Φ
∇2Φ =

r

R

d

dr

(

r
dR

dr

)

+
1

ψ

d2Ψ

dφ2
= 0 . (135)

The first term depends only on r, the second only on φ, so we obtain two
ODEs whose general solutions can be written down by inspection:

1

ψ

d2Ψ

dφ2
= −ν2 ⇒











Ψ = A0 +B0φ if ν = 0

Ψ = Aν cos νφ +Bν sin νφ if ν 6= 0
(136)

r

R

d

dr

(

r
dR

dr

)

= ν2 ⇒ R(r) = arν + br−ν . (137)

To find the general solution for R(r) we used trial and error, together with
the theorem that says that the general solution of a second order ODE has
two arbitrary constants, and no more.

The arbitrary constant coming from the separation of variables has been
denoted by ν2, because negative values are not of interest. We see this when
we impose the boundary conditions

Φ(r, 0) = Φ(r, β) = V . (138)

First of all this forces Aν = 0. But it also forces us to assume that ν2 is
non-negative and ν is quantized,

ν =
nπ

β
. (139)
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Finally we insist that Φ(0, φ) = V , forcing b = 0. This leaves us with an
infinite number of solutions of the form Rn(r)Ψn(φ). The solution we want
is a superposition

Φ(r, φ) = V +
∞
∑

n=1

anr
nπ
β sin

(

nπφ

β

)

. (140)

Had we imposed boundary conditions also on the circle r = constant the
constants an would have been fully determined.

Figure 10: How the electric field lines behave at a corner, or at an edge. (These
are Figures 24 and 25 in Jeans’s book.)

However, we are interested in the situation close to the corner (ρ ≈ 0).
Unless the neglected boundary conditions are very special this means that
the potential there will be given by

Φ(ρ, φ) ≈ V + a1r
π
β sin

πφ

β
, (141)

where a1 is some non-vanishing constant. The potential is not observable,
but the electric field is. It will be given by

Er = −∂rΦ ≈ −πa1

β
r

π
β
−1 sin

πφ

β
(142)

Eφ = −1

r
∂φΦ ≈ −πa1

β
r

π
β
−1 cos

πφ

β
. (143)

This is where it matters if the angle is acute (β < π) or obtuse (β > π).
In the former case we have a corner, and the electric field goes to zero as
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r → 0. In the latter case we have a sharp edge, and the electric field diverges.
Indeed, by inspection we see that

β > π ⇒ lim
r→0

Er = lim
r→0

= ∞ . (144)

The sharper the edge, the stronger the divergence. This can be intuitively
understood in terms of the behaviour of the electric field lines. See Figure
10.

Strong electric fields are anything but harmless if they arise in air. A
strong electric field will ionize air and cause currents to flow. This is how
lightning rods work. Of course lightning rods are three dimensional objects,
but we expect the general conclusions to survive also in this dimension. (They
do, but the details are a bit complicated. See Jackson’s section 3.4.) The
field at the tip of a needle-shaped conductor will be very strong. If the needle
is surrounded by air there will be ionization of the air, followed by an electric
discharge. Lightning has struck.39

The intuition behind this result is that electric lines of force crowd to-
gether around edges and tips. Using the same pictorial argument you can see
that electric field lines will crowd together around any tall object standing
on a plain, if there is a thundercloud above. See Figure 11.

Figure 11: A tall object below a thundercloud. (This is Figure 26 in Jeans’s
book.)

Problem 4: Consider two conducting spheres, radii a and b, distance be-
tween centres c, the first sphere at Φ = 0, the other at Φ = V . Place

39Reference: For an interesting discussion of thunderstorms, see The Feynman Lectures

Vol II, Chapter 9.
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imaginary charges inside the spheres until the boundary conditions hold, in
a stepwise procedure so that the first imaginary charge is inside the second
sphere and ensures that Φ = V on its surface, the second charge is inside the
first sphere and compensates for the first charge so that Φ = 0 on the first
sphere. Go on in this way. It is enough to do the first few steps, but after
each step you should use a computer to plot the potential at the surface of
the first sphere, for suitable values of the parameters. This will give you a
feeling for how quickly the procedure converges.
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SPHERICAL HARMONICS AND MULTIPOLES

In spherical polar coordinates the Laplace operator becomes

∇2 = ∂2
r +

2

r
∂r +

1

r2
△S , (145)

where

△S = ∂2
θ + cot θ∂θ +

1

sin2 θ
∂2

φ (146)

is known as the Laplacian on the unit sphere.40 You can derive this in various
ways. Let me make a little advertisement for the course in relativity at this
point. There you will learn elementary tensor calculus. In particular you will
learn that the Laplace equation can be written as

∇2f =
1√
g
∂i

(√
ggij∂jf

)

, (147)

where gij is the inverse of a symmetric matrix gij and g is the determinant
of gij. The matrix gij is known as the metric tensor. If you use Cartesian
coordinates in flat space the metric tensor is equal to the Kronecker delta,
gij = δij . If you use spherical polar coordinates it is equal to

gij =







1 0 0
0 r2 0
0 0 r2 sin2 θ





 . (148)

Assuming for the sake of the argument that you have taken a relativity course
it is trivial to see this, and then you can derive the form of the Laplace
equation in your head.41

Solutions of the Laplace equation and the rotation group

40Exercise: Apply the Laplace operator to rn and r−n−1, and notice that they behave
in the same (simple) way.

41Exercise: Suppose you have not taken the relativity course. Just accept my claims,
and show that Eq. (147) gives the Laplace equation using spherical polars.
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Let us try to find all solutions of the Laplace equation that are regular at the
origin. “Regular at the origin” means that the function can be expanded in
a power series

f(x) = c0 + cixi + cijxixj + cijkxixjxk + . . . , (149)

where Einstein’s summation convention was used.42 In the expansion the
terms have been grouped into homogeneous functions in a natural way. A
function is homogeneous of order ℓ if it has the property that

f(λx, λy, λz) = λℓf(x, y, z) (150)

for every real number λ. For instance, the function f (3)(x) = cijkxixjzk is
homogeneous of order 3 and conversely every regular function homogeneous
of order 3 can be written in this way.

Now suppose that we do a rotation around the origin. Then the function
f(x), with all its bumps and features, will turn into a different function
f ′(x) = f(R−1x), where R is a rotation matrix. I hope it is obvious that
if you perform a rotation a function homogeneous of order ℓ will turn into
another function that is again homogeneous of order ℓ. It then follows from
Eq. (149) that the action of a rotation on our general function f has been
broken down so that it acts on small pieces, each of which transform into
themselves under rotations.

Now we would like to know how many functions that exist at each ‘level’
ℓ, that is to say we want to count the number of free parameters at each
level. For instance, the most general polynomial homogeneous of order 2 is

a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz + a6yz . (151)

So there are six free parameter in this case. This is the same number of pa-
rameters as in a symmetric three by three matrix, not coincidentally because
in the expansion (149) the ‘matrix’ cij is symmetric.43 It is actually easy to
do the counting at arbitrary ℓ. Indeed, looking at Figure 12 you should be
able to convince yourself that there will be

42Exercise: Prove that if f(r, θ, φ) is a solution of the Laplace equation then so is

F (r, θ, φ) = a
r f(a2

r , θ, φ), where a is a constant having the dimension of length. Can you
see why, if f is regular at the origin, F is said to be regular at infinity?

43Exercise: Why is it symmetric? Next, identify the parameters ai with specific com-
ponents of cij . Give a similarly explicit treatment of level 3.
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1 + 2 + . . .+ (ℓ+ 1) =
(ℓ+ 2)(ℓ+ 1)

2
(152)

coefficients at level ℓ. But now suppose that we insist that the function f
is a solution of the Laplace equation. Applying the Laplace operator to a
function homogeneous of order ℓ will result in a polynomial of order ℓ − 2,
and by the same argument this polynomial will have ℓ(ℓ − 1)/2 terms.44

Its coefficients must be set to zero. Hence we have to impose this many
conditions on the (ℓ+ 2)(ℓ+ 1)/2 coefficients we started out with. It follows
that the number of free parameters that describe a solution of the Laplace
equation homogeneous of order ℓ and regular at the origin is

(ℓ+ 2)(ℓ+ 1)

2
− ℓ(ℓ− 1)

2
= 2ℓ+ 1 . (153)

Figure 12: Counting the number of terms in a homogeneous polynomial in three
variables.)

A useful way to summarize this discussion is as follows: The space of
regular solutions of the Laplace equation is infinite dimensional, since an
infinite number of parameters is needed to specify a particular solution. Be-
cause the solutions can be superposed this space is a vector space V. Under
the action of the rotation group it breaks down into an infinite sequence of
vector spaces of dimension 2ℓ+ 1, each of which transforms into itself under
rotations. Hence we have

V = R1 ⊕R3 ⊕R5 ⊕ R7 ⊕ . . . . (154)

44Exercise: There is a gap in the logic here. Can you see it? Can you fill it?
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In the quantum mechanical theory of angular momentum we are led to con-
sider also half integer values of ℓ, but this can be ignored here.

Spherical harmonics

Having divided the vector space of solutions of the Laplace equation into
subspaces R2ℓ+1 of dimension 2ℓ+1, we want to find a suitable basis in each
subspace. We will make use of the spherical Laplacian △S for this purpose.
Each subspace will be provided with a basis consisting of its eigenfunctions.
The eigenfunctions Yℓ,m are known as spherical harmonics. They obey

△SYℓ,m = −ℓ(ℓ + 1)Yℓ,m , (155)

and they form a complete orthonormal set of functions in terms of which
any regular function on the sphere can be expanded.45 If you did the first
exercise in this chapter you can see why such eigenfunctions will be useful
when we look for solutions of the Laplace equation in space.

For given ℓ there will be 2ℓ+1 different orthogonal eigenfunctions labelled
by m, and there are some choices to be made there. The standard choice
uses complex valued functions. There is nothing wrong with that. Suppose
you have the usual real and orthogonal vectors ex, ey, ez spanning R3. You
can, if you want, replace two of them with the complex conjugate vectors

e+ =
1

2
(ex + iey) , e− =

1

2
(ex − iey) . (156)

They are orthonormal in the sense that 〈e+|e−〉 = e∗
+ · e− = 0, and you can

expand any real vector x as

x = xex + yey + zez = (x− iy)e+ + (x+ iy)e− + zez . (157)

You see that x is real because, in the complex basis, two of its components
are complex conjugates of each other.

We proceed similarly with the spherical harmonics, which are defined by

45Exercise: Suppose that ψ(θ, φ) is an eigenfunction of △S . Consider the integral
∫

∇ψ ·
∇ψ dS over the unit sphere, and prove that the eigenvalue must be negative.
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Yℓ,m(θ, φ) =

√

√

√

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm

ℓ (cos θ)eimφ . (158)

Some signs may differ from author to author. I use Jackson’s conventions.
The Pm

ℓ are associated Legendre polynomials. P 0
ℓ = Pℓ are the Legendre

polynomials. Considered as functions of x the latter obey the differential
equation

d

dx

[

(1 − x2)
dPℓ

dx

]

+ ℓ(ℓ+ 1)Pℓ = 0 . (159)

We intend to set x = cos θ and we therefore require the functions to be finite
on the interval [−1, 1]. Then we find (if we do the necessary work) that ℓ
has to be a non-negative integer, and then the Legendre polynomials can be
defined recursively by

P0(x) = 1 , P1(x) = x , (ℓ+ 1)Pℓ+1 = (2ℓ+ 1)xPℓ − ℓPℓ−1 . (160)

You will have to consult Jackson for the properties of the associated Legen-
dre polynomials. The spherical harmonics are orthonormal functions on the
sphere in the sense that

∫ 2π

0

∫ π

0
Y ∗

ℓ′,m′(θ, φ)Yℓ,m(θ, φ) sin θdθdφ = δℓ,ℓ′δm,m′ . (161)

Moreover (unless ℓ = 0) they come in complex conjugate pairs,

Yℓ,−m = (−1)mY ∗
ℓ,m . (162)

Here are the first few spherical harmonics explicitly, in spherical polars and
in Cartesian coordinates:

Y0,0 = 1√
4π

Y1,1 = −
√

3
8π

sin θeiφ = −
√

3
8π

1
r
(x+ iy)

Y1,0 =
√

3
4π

cos θ =
√

3
4π

1
r
z

Y2,2 =
√

15
32π

sin2 θe2iφ =
√

15
32π

1
r2 (x

2 − y2 + 2ixy)

Y2,1 = −
√

15
8π

sin θ cos θeiφ = −
√

15
8π

1
r2 (xz + iyz)

Y2,0 =
√

5
4π

(3
2
cos2 θ − 1

2
) =

√

5
4π

1
r2 (z

2 − 1
2
x2 − 1

2
y2)

(163)
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The complex conjugate ones are not listed. To see the structure, close your
eyes to normalisation factors and overall signs. Notice that

Yℓ,0(θ, φ) =

√

2ℓ+ 1

4π
Pℓ(cos θ) . (164)

The functions Yℓ,0, or equivalently the Legendre polynomials, are enough
to expand any axially symmetric function on the sphere, that is to say any
function that is unchanged if you rotate the sphere around the (conventionally
chosen) z-axis.46

The real functions Yℓ,0 are sometimes called zonal harmonics, because
their zeroes occur at special values of the latitude. When m 6= 0 you can
form tesseral harmonics like (Y1,1 − Y1,−1) and i(Y1,1 + Y1,−1), real functions
that have zeroes at constant longitude as well.

A generating function for the Legendre polynomials

An interesting way to define the Legendre polynomials is to define a gener-

ating function of two variables, and then to expand it in a Taylor series in
one of them, as follows:

g(t, x) ≡ 1√
1 − 2xt+ t2

=
∞
∑

n=0

∂n
t g(0, x)

n!
tn . (165)

Here there is the common abuse of notation that ∂tg(0, x) means the deriva-
tive of g(t, x) with respect to t, evaluated at t = 0. The series converges if
|t| < 1. Calculating the first few terms one becomes convinced that47

g(t, x) =
∞
∑

n=0

Pn(x)tn , (166)

where the Pn(x) are the usual Legendre polynomials defined by the recursion
relation (160). A proof can be obtained by noting that

(1 − 2xt+ t2)∂tg + (t− x)g = 0 . (167)

46Exercise: Given equations (161) and (164), prove that
∫ 1

−1
Pℓ(x)Pℓ′dx = 2/(2ℓ+1)δℓ,ℓ′.

47Exercise: Do it, at least up to fourth order.
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If we insert the expansions of g and ∂tg and manipulate the resulting sums
a little we find that the coefficients Pn(x) obey the recurrence relation (160)
that defines the Legendre polynomials.48

Now the generating function g(t, x) should remind you of something.

Expanding the fundamental solution

Consider the fundamental solution of the Laplace equation—the key to elec-
trostatics, if you like. Letting γ be the angle between the vectors x and x′ it
can be written as

Figure 13: The angle γ. We illustrate the case r = r>, r′ = r<.

1

|x − x′| =
1√

r2 + r′2 − 2rr′ cos γ
. (168)

Suppose that r > r′. Then we can rewrite this as

1

|x − x′| =
1

r

1
√

1 − 2 cos γ r′

r
+
(

r′

r

)2
. (169)

But this is precisely our generating function g(t, x) for the Legendre polyno-
mials, with x = cos γ and t = r′/r. So we conclude that

1

|x − x′| =
1

r

∞
∑

ℓ=0

Pℓ(cos γ)

(

r′

r

)ℓ

. (170)

48Exercise: Do it! (Psychologically, the previous exercise is probably more convincing.)
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The series converges because we assumed that r′/r < 1. It could be that we
want to make the opposite assumption, so our result is often written on the
form

1

|x − x′| =
1

r>

∞
∑

ℓ=0

Pℓ(cos γ)

(

r<

r>

)ℓ

. (171)

The notation should be self-explanatory. However, we will mostly be inter-
ested in the case when the observation point x lies far outside the source
point x′, so the previous form is good enough for us.

The result (170) has only one drawback, which is that it is not expressed
in a suitable coordinate system. What we need is an addition theorem for
spherical harmonics. Let the directions of the vectors x and x′ be defined

by the angles (θ, φ) and (θ′, φ′), respectively. Then, if γ is the angle between

the vectors, it holds that

Pℓ(cos γ) =
4π

2ℓ+ 1

l
∑

m=−ℓ

Y ∗
ℓ,m(θ′, φ′)Yℓ,m(θ, φ) . (172)

You will find the proof in Jackson’s section 3.6. Let us check if it is reasonable
by setting ℓ = 1. To define γ we introduce two unit vectors,

n = sin θ cosφex + sin θ sin φey + cos θez (173)

and similarly for n′. Then

cos γ = n · n′ = . . . = cos θ cos θ′ + sin θ sin θ′ cos (φ− φ′) , (174)

where a trigonometric identity was employed in the intermediary step. Using
the expressions for Y1m we will be able to confirm that indeed49

4π

3

(

Y ∗
1,−1(θ

′, φ′)Y1,−1(θ, φ) + Y ∗
1,1(θ

′, φ′)Y1,1(θ, φ) + Y ∗
1,0(θ

′, φ′)Y1,0(θ, φ)
)

=

(175)

= cos γ = P1(cos γ) .

49Exercise: Carry out all these steps.
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So the addition theorem seems plausible. For the full proof I refer to Jackson.

The multipole expansion

We are ready to analyze a charge distribution ρ(x). We assume it vanishes
outside some sphere of a fixed radius, and fix an origin at the centre of that
sphere. We want to know the electric potential and the electric field outside
the sphere, and especially at large distances. Hence we would like to expand
Φ(x) as a power series in 1/r.

We have all the tools. We simply apply the addition theorem to eq. (170)
and stick the result into the general solution for the potential:

Φ(x) =
1

4πǫ0

∫ ρ(x′)

|x − x′| d3x′ =

(176)

=
1

ǫ0

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

1

2ℓ+ 1

∫

r′ℓY ∗
ℓ,m(θ′, φ′)ρ(x′) d3x′

Yℓ,m(θ, φ)

rℓ+1
.

Whatever the charge distribution is, each integral will produce a number
that we can call qℓm. Hence we have shown that the potential admits of an
expansion in the form

Φ(x) =
1

ǫ0

∞
∑

ℓ=0





ℓ
∑

m=−ℓ

qℓm
2ℓ+ 1

Yℓ,m(θ, φ)

rℓ+1



 . (177)

The series begins with a monopole term falling off like 1/r, then comes a
dipole term falling off like 1/r2, a quadrupole term falling off like 1/r3, and
so on. Some knowledge of Greek will tell you what the higher order terms
are called.

An important fact that you should not overlook is that each individual
term (with ℓ fixed) is in itself a solution of the Laplace equation.50

For many purposes it is preferable to have the result expressed in Carte-
sian coordinates. We then get the multipole expansion in the form

50Exercise: If this is not completely obvious, then verify it!
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Φ(x) =
1

4πǫ0





q

r
+

p · x
r3

+
1

2

∑

i,j

Qij

xixj − 1
3
δijr

2

r5
+ . . .



 , (178)

where the monopole charge and the dipole vector are

q =
∫

ρ(x) d3x and p =
∫

xρ(x) d3x , (179)

and the quadrupole tensor is

Qij =
∫

(

3xixj − r2δij
)

ρ(x) d3x ⇒ Qii = 0 . (180)

We see that the ℓ = 2 subspace of the space of functions on the sphere is
not built from arbitrary second order polynomials in x/r, y/r, z/r. To give a
solution of the Laplace equation they must be restricted in such a way that
the tensor Qij is traceless. This is in fact ensured by the definition (180).51

We do not go to higher order in these notes, but many people do. Quan-
tum chemists may need to consider (say) octupole–hexadecapole interactions
betwen molecules when they study crystal structures. The Gravity Recovery
and Climate Experiment used satellites to monitor the first 2159 multipole
moments of the gravitational potential of the Earth, enough to see the time
dependence caused by the seasonal melting of the polar caps.

More about the multipoles

It is important to realize that the multipole moments depend on the choice
of origin for our coordinate system, so they are to some extent arbitrary.
However, the lowest non-vanishing multipole does not depend on the coor-
dinate system, and is an intrinsic property of the charge distribution. As an
example, suppose that the monopole term vanishes, and shift the origin with
a constant vector x0. (This is a passive coordinate transformation, in the
language we will use later.) We then find

51Exercise: Given this understanding you can simplify eq. (178). How? Is it a good
idea?
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p =
∫

xρ(x) d3x → p′ =
∫

xρ(x + x0) d3x =
∫

(x − x0)ρ(x) d3x =

(181)

=
∫

xρ(x) d3x− x0

∫

ρ(x) d3x = p − qx0 .

If the monopole charge q vanishes the dipole moment is unaffected by the
change of origin.52 When, in a book, you see that the electric quadrupole
moments of atomic nuclei have been measured and tabulated, what is be-
ing meant is the quadrupole moment relative to the centre of the charge
distribution evaluated in a specified angular momentum eigenstate.53

Figure 14: A pure dipole field. (This is Figure 18 in Jeans’ book.)

If you know all the multipoles you can reconstruct the charge distribution.
If the charge distribution is far away, your detectors will be able to detect
only a certain number of terms—first the monopole, then the dipole, and
so on. Of course the detector will be sensitive only to the electric field, not
to the potential itself. So we have to take the gradient of Φ to obtain the
multipole expansion of the electric fied. For the dipole term this results in

52Exercise: Prove that if q = 0 and p = 0 then the quadrupole tensor is invariant under
this change of origin.

53You are given the multipole moments relative to a certain origin. Shift the origin
using a constant vector x0. Compute the quadrupole moment relative to the new origin.
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E = −∇
(

1

4πǫ0

p · x
r3

)

=
1

4πǫ0

(

3x p · x
r5

+
1

r3
p

)

=
/

n =
x

r

/

=

(182)

=
1

4πǫ0

3n p · n − p

r3
.

It falls with distance as 1/r3. This is what a polar molecule (with zero total
charge) looks like from far away. In itself this electric field is a solution of
Maxwell’s vacuum equations, and it is interesting to know what it looks like.
See Figure 14.

Some intuition for how dipoles behave is useful. If you place one in a
homogeneous external electric field it will not be subject to a force, but it
will be subject to a torque. You can test your intuition of this behaviour
against the expression for the energy of a charge distribution placed in a
slowly varying electric field that Jackson derives in his section 4.2. The
expression is

W =
∫

ρ(x)Φ(x) d3x ≈ qΦ(0) − p ·E(0) − 1

6

∑

i,j

Qij∂iEj(0) . (183)

Here the charge distribution is represented by q, pi, and Qij , and its aim in
life is to minimize this energy.

For the exercise class:

• Compute the first five Legendre polynomials by applying Gram-Schmidt
orthogonalization to the polynomials 1, x, x2, x3, x4.

• Show that you recover the first five Legendre polynomials by expanding
the generating function g(t, x) = (1− 2xt+ t2)−1/2 to fourth order in t.

• Find the electric field outside a spherical conductor placed in a constant
electric field in two ways: using the method of images, and using an
expansion in spherical harmonics.
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• Compute the first non-vanishing multipole moments for i) two charges
q at (±a, 0, 0), charge −2q at (0, 0, b) ii) four charges q at (±a,±a, 0),
two charges −2q at (0, 0,±b). Check your results.

• You have a supply of point charges ±q. Place such point charges at
the corners of a regular octahedron. You can make the monopole mo-
ment vanish. Can you make the both the monopole and the dipole
moment vanish? If so, can you make the quadrupole moment vanish
too? Repeat the exercise for a regular cube.

• For a dipole field, locate those points in space where the field points in
a direction orthogonal to the dipole vector.
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ELECTROSTATICS IN MEDIA

Faraday performed a series of experiments in which he started with a con-
denser consisting of two conducting plates, and then inserted slabs of insu-
lating materials between the plates. The geometry, charges and potentials
are as in Figure 15, and the capacitance of the condenser is defined to be

C ≡ Q

∆Φ
=

Q

Φ2 − Φ1
. (184)

If there is vacuum between the plates Maxwell’s equations tell us that

C =
Q

Ed
=
Aǫ0
d

. (185)

Faraday found that when a slab of insulator was inserted between the plates
the capacitance changed to

C =
Aǫ

d
, (186)

where the dielectric constant ǫ depends on the material and the temperature.54

We see from Table 1 that ǫ > ǫ0.

Figure 15: A condenser, with and without a slab of dielectric material inserted.

For a crystalline material such as quartz the dielectric constant depends
on how the slab is cut out of the material, in other words it depends on
direction. There are also non-linear crystals in which the capacitance, and
with it the dielectric constant, depends on the charge Q on the plates and
not only on the material itself. These will be ignored here.

54Exercise: How would you do the experiment, i.e. how would you control ∆Φ and Q?
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Table 1: Dielectric constants for some materials.

Substance ǫ/ǫ0

Air gas, 0◦ C 1.00059

HCl gas, 0◦ C 1.0046

Water gas, 110◦ C 1.0126

liquid, 20◦ C 80

Ammonia liquid, −34◦ C 22

Paraffin solid, 20◦ C ≈ 2.3

Pyrex glass solid, 20◦ C 4.00

The task now is to develop a phenomenological theory for these phenom-
ena, and then to explain why it works, in the sense that we would like to
calculate the dielectric constant and its dependence on temperature in terms
of the microscopic properties of the material.

The displacement field

An ad hoc modification of the theory that covers the facts is































∇ · D = ρ

∇×E = 0

D = ǫE .

(187)

Here ρ is that part of the charge density that is under the control of the
experimenter. There are also bound charges inside the dielectric material,
but they are not included in ρ since the material is neutral on average. The
field D is called the displacement field, and it is connected to the electric field
by a constitutive relation D = D(E). We have assumed the latter to be just
a linear relation. This works well for many materials but fails completely for
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a non-linear crystal.
It is still true that E = −∇Φ, and in the set up of the experiment the

potential difference can be obtained by integrating along the fringe fields
outside the dielectric. However, when ǫ > ǫ0 we see that the electric field
is actually not as strong as we would expect given the amount of charge Q
that has been placed on the plates. If we believe in the molecular theory of
the material (not so self evidently true in Faraday’s time) it is easy to see
why this could be so. The individual molecules are neutral, but they will
be distorted to dipoles by the imposed electric field. Hence there is a dipole

density P(x) inside the material. Accepting this, we find that the electric
potential inside the dielectric must be

Φ(x) =
1

4πǫ0

∫

(

ρ(x′)

|x − x′| +
P(x′) · (x − x′)

|x − x′|3
)

d3x′ . (188)

Here, and in what follows, ρ refers to the charges under our control. There
is no net contribution to the charge density from the molecules inside the
dielectric anyway. Now we observe that

x − x′

|x − x′|3 = − x′ − x

|x − x′|3 = ∇′
(

1

|x − x′|

)

. (189)

So we perform a partial integration and drop the surface term since P(x) = 0
far away. The result is

Φ(x) =
1

4πǫ0

∫

ρ(x′) −∇′ · P(x′)

|x − x′| d3x′

⇒ (190)

∇ · E = −∇2Φ =
1

ǫ0
(ρ−∇ ·P) .

We rewrite this result on the form

∇ · (ǫ0E + P) = ρ , (191)

and we are almost done. We define the displacement field as

D = ǫ0E + P , (192)
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and make the assumption that the polarisation density depends linearly on
the electric field,

P(x) = ǫ0χ(x)E(x) (193)

(as seems reasonable if the material is isotropic and the electric field not too
strong). We then arrive at the phenomenological equations (187), with the
dielectric constant appearing in the constitutive relation defined by

ǫ(x) = ǫ0(1 + χ(x)) . (194)

Note that the dielectric constant ǫ is allowed to depend on position, otherwise
we would be unable to deal with inhomogeneous materials. In the time
dependent case it will also depend on the frequency of the applied fields. We
will have to return to this point.

We can now see how to explain the experiments with the condenser.
Suppose that there is a small gap between the dielectric and the plates, and
introduce a volume element that straddles a piece of the boundary of the
dielectric. There are no visible charges ρ there, hence ∇ ·D = 0. Given this,
we find when we integrate over the volume element that

∫

V
∇ · E dV = − 1

ǫ0

∫

V
∇ · P dV = − 1

ǫ0

∫

inside
P · da 6= 0 . (195)

(To picture the volume element, return to Figure 1.) This means that a
surface charge is present, even though it is not included in ρ. We can now
see why the capacitance went up: Viewed from the inside of the material
the total charge on the plates is effectively reduced, and with it the electric
field inside the material as well as the potential difference between the plates.
Had we used an ideal conductor for the slab of material there would have
been no electric field inside, and we would have reached the limit ǫ = ∞.

Electrostatic boundary value problems in media

Provided the dielectric constant is independent of position electrostatics in
a medium is no more difficult than electrostatics in a vacuum. In particular
the usual uniqueness theorem applies.
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A step in the direction of inhomogeneous media is to assume that we are
dealing with two regions with different values of the constant ǫ. To deal with
this we need to know what discontinuities in the fields that are allowed by
the equations. One finds that the normal component of the displacement
field is continuous (or has a discontinuity caused by a visible surface charge
σ), and similarly the tangential component of the electric field is continuous.
In equations, if ǫ1, ǫ2 are the dielectric constants of the two media and if the
normal vector n21 is directed towards the second medium,

(D2 − D1) · n21 = σ , (E2 − E1) × n21 = 0 . (196)

The equations do not demand more than this, which means that the nor-
mal component of E and the tangential component of D will typically be
discontinuous.

It is instructive to reconsider the problem of a single point charge q placed
in a medium filling the region x < 0 and having dielectric constant ǫ1, while
a medium with dielectric constant ǫ2 fills the region x > 0. We use the
method of images. First we write down a solution that is to be valid for
x < 0. When doing so we are allowed to add an image charge q′ in the
second medium. Then we write down a solution valid for x > 0. There
are no charges present in this region, but we are allowed to place an image
charge q′′ in the first medium, and this image charge does not have to be
the same charge as the point charge that is actually there. Assuming for
simplicity that all three charges sit at distance d from the ‘mirror’ we still
have two free parameters q′ and q′′ to play with. Thus equipped we try to
meet the continuity requirements (196). If we find a solution we know it is
the correct one, because the solution is unique. And we do find a solution.
In Figure 16 we see the expected discontinuity of E in the normal direction
at the boundary.55

Another problem considered in Jackson’s section 4.4 is that of a sphere
whose interior has a different dielectric constant than that of its exterior. It
is further assumed that the electric field tends to a constant E0 at infinity.
You can test your intuition for how things should behave by asking yourself
if the electric field inside the sphere is weaker or stronger than E0.

55Exercise: Go through the details! In Figure 16, on what side of the boundary is the
dielectric constant the largest?
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Figure 16: The method of images when there is a medium behind the mirror.
(This is Figure 43 in Jeans’ book.)

Energy density in dielectrics

We found formula (86) for the energy density in the electrostatic field by
considering the energy needed to create a certain configuration of charges.
We need to revisit this if we are inside a dielectric. We assume that the
dielectric body is rigid, so that no mechanical work comes into the picture.
Adding a small amount of charge δρ requires an amount of work

δW =
∫

Φδρ dV =
∫

Φδ∇ · D dV =
∫

Φ∇ · δD dV . (197)

We perform a partial integration and drop the surface term (because the
charge distribution is assumed to be localized). Then

δW = −
∫

δD · ∇Φ dV =
∫

E · δD dV . (198)

At this point things can get very complicated because we need a constitutive
relation between D and E. We stick to the simple assumption that D = ǫE,
where the dielectric constant may depend on position but does not depend
on E. Then we find

E · δD = ǫE · δE =
ǫ

2
δ(E · E) =

1

2
δ(E · D) . (199)

The total amount of work needed to build up the charge density ρ inside the
dielectric is then

70



W =
1

2

∫

E · D dV . (200)

However, we must be careful when we interpret this conclusion.
We have overlooked the fact that the dielectric constant depends on the

temperature, which in its turn will be affected by the changing electric field.
To make sure that ǫ does not depend on the field we must therefore allow
heat to flow into or out of the system in order to keep the process isothermal.
Thermodynamically, equation (200) does not refer to the total energy U
stored in the field. It refers to the free energy

F = U − TS . (201)

The free energy is defined in such a way that isothermal changes in the free
energy are caused purely by work, in other words it represents the maximum
amount of work that can be extracted from the system. In the usual notation
of thermodynamics the work term is given by E · dD, and the free energy
obeys

dF = dU − d(TS) = TdS + E · dD − d(TS) = E · dD − SdT . (202)

For an isothermal process dT = 0, and only the work term remains.

What is the electric field anyway?

Reflecting on what matter is you realize that it consists of electrically charged
electrons and nuclei. This means that the ‘true’ electric field is subject to
dramatic variations once you reach length scales of 10−14 metres or there-
abouts. The macroscopic field E that we are dealing with in this chapter
shows no such variations. Hence it must be obtained by some kind of aver-
aging procedure. The averaging is spatial. Time averaging is not, or should
not be, necessary because microscopic time variations are uncorrelated over
the distances involved in the spatial averaging. There are three length scales
to be kept in mind, the size d of the atoms, the scale L over which averaging
is performed, and the size R of the dielectric body we are interested in. It is
assumed that
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d << L << R . (203)

It is reasonable to assume that L is around 100 Å, so that a volume of size L3

contains around a million atoms. This is nicely consistent with the fact that
visible light is reflected and refracted by dielectrics as if they were continuous
media, while X-rays reveal the microscopic structure. Notice that the size
of the volume element is selected so that it is microscopically large—we can
perform reliable averaging over it—and macroscopically small— it will be
regarded as an infinitesimal volume element when we do calculus with the
macroscopic field. Of course it is not a priori obvious that this makes sense,
but it does, in many circumstances.

The averaging is performed using test functions f(x) that are approxi-
mately equal to one in regions of a diameter L, and fall smoothly to zero
soon after that. So for an arbitrary function F of space and time we define

〈F (x, t)〉 =
∫

d3x′f(x′)F (x − x′, t) . (204)

Fortunately this averaging is linear in the quantity to be averaged, and there-
fore it commutes with the taking of derivatives:

∂i〈F (x, t)〉 = 〈∂iF (x, t)〉 , ∂t〈F (x, t)〉 = 〈∂tF (x, t)〉 . (205)

Hence we can get Maxwell’s equations for the averaged field E by averag-
ing over Maxwell’s equations for the microscopic fields. The details are in
Jackson’s section 6.6.

The averaged macroscopic field E is relevant for a charged particle passing
quickly through the medium, but we will have to think carefully when we try
to understand the polarisation density in terms of properties of the individual
molecules in the medium. The molecules develop a dipole moment because
they are in an electric field, but the electric field that distorts them is quite
different from the averaged macroscopic field E.

The field acting on a molecule in the medium

We now take up the challenge of calculating the field that acts on an indi-
vidual molecule in the material between the condenser plates. The idea is to
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surround the molecule with a sphere large enough so that we can treat the
charges in the exterior of the sphere with the usual averaging. If E is the
averaged field, then the electric field Emol felt by the molecule at its centre is

Emol = E +

(

exact field created by
charges in the ball

)

−
(

contribution to E by
charges in the ball

)

. (206)

It would seem that the second term on the right hand side would be difficult
to compute. However, if we regard the molecules within the ball as electric
dipoles all we have to do is to take the average of the contribution from all of
them. Notice that when we compute this average we will ignore all surface
effects, so taking this average is rather different from calculating the total
average field E.

An electric dipole within the ball gives rise to a dipole field

Edipole = − 1

4πǫ0

(

r2p− 3x p · x
r5

)

. (207)

Let us look at its x-component

Ex = − 1

4πǫ0

1

r5

(

(y2 + z2 − 2x2)px − 3xypy − 3xzpz

)

. (208)

Now we take the average 〈Ex〉. If the medium is isotropic no particular
direction is singled out by the average, and it must hold that

〈x2〉 = 〈y2〉 = 〈z2〉 , 〈xy〉 = 〈xz〉 = 0 . (209)

Hence this averaged field is zero in an isotropic medium. Jackson also cites a
calculation showing that it vanishes in a crystal with cubic symmetry. Hence
we set the second term on the right hand side of equation (206) to zero.

The third term on the right hand side was computed in Jackson’s section
4.1. Let the ball have radius L and let it enclose all the relevant charges.
For the purposes of this calculation let us change the notation and let E

be the electric field that we want to average over the ball. If there are no
charges present the average equals the value taken by E at the centre of the
ball, whatever that is.56 If there is a non-vanishing charge density ρ within

56Exercise: Why?
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the ball we must perform an integral that we can transform into a surface
integral because the integrand is a gradient:

∫

ball
E dV = −

∫

ball
∇Φ dV = −

∫

sphere
ΦR2ndΩ . (210)

You may recall the statement from an exercise in connection with Gauss’
theorem. Actually there are three integrals, one for each component. As
usual

Φ(x) =
1

4πǫ0

∫

d3x′
ρ(x′)

|x − x′| . (211)

We obtain

∫

ball
E dV = − R2

4πǫ0

∫

d3x′ ρ(x′)
∫

n dΩ

|x − x′| . (212)

Now we observe that the components of the normal vector to the sphere, n,
lie in the l = 1 subspace of the space of functions on the sphere. So in the
rightmost integral we can expand 1/|x− x′| in spherical harmonics and be
confident that only the l = 1 term contributes to the integral. Thus

∫

n dΩ

|x − x′| =
r′

R2

∫

n cos γ dΩ . (213)

If we remember the formulas for n, cos γ, and dΩ a short calculation gives57

∫

n cos γ dΩ =
4π

3

x′

r′
. (214)

Putting it all together

∫

ball
E dV = − 1

3ǫ0

∫

ρ(x′)x′ d3x′ = − 1

3ǫ0
p , (215)

where p is the dipole moment of the charges with respect to the centre of
the ball.

We now return to eq. (206), and revert to the notation that E denotes
the averaged field. When we average over the ball we must divide by its
volume, so we obtain

57Exercise: Do it!
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Emol = E + 0 −
−1
3ǫ0

p

4πL3

3

, (216)

or better, if we introduce the polarisation density P,

Emol = E +
1

3ǫ0
P . (217)

This is the formula we will work with in order to build a microscopic theory
of the dielectric constant.

Microscopic theory of the dielectric constant

We are now ready to start the development of a theory to explain the numbers
that appear in Table 1. We assume that the medium is built out of molecules.
There are two main cases to consider: Non-polar molecules like O2 and N2

that have zero dipole moments in the absence of an external field, and polar

molecules like H2O that have non-zero intrinsic dipole moments. If we have
a large number of polar molecules in zero field their dipole moments will
average to zero, but if an external field is present they will align themselves
to produce a non-zero average. The alignment can be destroyed by collisions,
which means that it will be a function of temperature. This case is briefly
discussed in Jackson’s section 4.6. Here we discuss only the case of non–polar
molecules.

To get a first feeling for how much the molecules are likely to be deformed
by the applied electric field, let us model a hydrogen atom as a homogeneous
sphere of negative charge −q and a moveable nucleus of charge +q. Suppose
the radius of the sphere is a = 1 Ångström. If the nucleus is displaced to sit
at distance b from the centre it will be attracted back to the centre by an
electric field whose strength comes out to be, in SI units,58

E ≈ 1011 · b
a

V

m
. (218)

This is huge. As it happens the strongest electric field so far generated in
the lab was about 1011 Volts per metre. It was produced in a volume of one

58Exercise: Check this calculation.
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cubic micrometre by focused laser beams, and lasted for around a picosecond.
The comforting conclusion is that under ordinary circumstances the atoms
and the molecules inside the medium are likely to be only slightly deformed.
Thus the dipole approximation is likely to be very accurate and the effect
likely to be linear in the electric field.

For an individual molecule we make the Ansatz that its dipole moment
will be given by

pmol = ǫ0γEmol . (219)

We can ask a quantum chemist to calculate γ for the molecule in question,
but we will be able to make interesting predictions by simply assuming that
such a constant exists. The polarisation density in the medium is then

P = N〈pmol〉 (220)

where N is the number of molecules per unit volume. We also know from
eq. (217) how to relate Emol to the averaged electric field E. So we obtain
the equation

P = Nγ
(

ǫ0E +
1

3
P

)

. (221)

In the macroscopic theory we related E and P by the equation P = ǫ0χeE,
so we can now read off that

χe =
Nγ

1 − 1
3
Nγ

. (222)

Recalling that ǫ = ǫ0(1 + χe) this can be rewritten as

γ =
3

N

ǫ− ǫ0
ǫ+ 2ǫ0

. (223)

This is known as the Clausius–Mossotti equation. Even if we do not know
the value of the molecular constant γ we can now make predictions about
how the dielectric constant varies with density.

You may be slightly worried about what happens at high densities, when
Nγ reaches 3. The answer is that the simple assumptions we made when we
derived the equation will fail well before we reach that point.
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Problem 5: For pure nitrogen the following data were obtained (in 1934):59

Temperature (◦C): 23.8 23.8 23.8 23.8
Pressure (atm) 1.02 57.5 221.6 1011.6
Density (kg/m3) 1.18 66.04 236.1 578.0
Dielectric constant 1.00052 1.03109 1.11413 1.29633

Check how well this agrees with the Clausius-Mossotti equation. How well
does the ideal gas law work at these pressures?

59Reference: For a slightly earlier review see A. Michels and C. Michels, Phil. Trans.
Roy. Soc. A231 409.
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MAGNETOSTATICS

The equations of magnetostatics are











∇×B = µoJ

∇ ·B = 0 .
. (224)

Note that ∇ · J = 0, so the currents have to form closed loops (or perhaps
they disappear to infinity). To these equations we add the Lorentz force
acting on an electrically charged test particle,

F = qv × B . (225)

Notice the dramatic departure from old ideas about how forces act. The
force is not central and it does no work on the test particle.

In electrostatics the first move is to solve one of the equations for the
electric field in terms of the potential function. We proceed similarly here:

∇ ·B = 0 ⇒
∮

S
B · da = 0 ⇒ B = ∇× A (226)

for all closed surfaces S and for some vector field A called the vector potential.
Like the electric potential it is not a directly observable object, but the
ambiguities in its definition are more serious. In fact, given any function
Ψ(x), the vector field

A′(x) = A(x) + ∇Ψ(x) (227)

gives rise to the same magnetic field as does A(x), and hence it gives rise
to the same observable force on test particles. The transformation A → A′

is known as a gauge transformation. It leaves the magnetic field invariant,
or in other words the magnetic field is gauge invariant. The integral of the
vector potential around any closed loop in space is gauge invariant as well,
and by hypothesis so are all physical effects.

The option to change the vector potential with the gradient of an arbitrary
function can be put to immediate use. Suppose that ∇ · A 6= 0. Performing
a gauge transformation to a physically equivalent vector potential A′ we find
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∇ · A′ = ∇ · A + ∇2Ψ . (228)

Let us choose the arbitrary function Ψ to be

Ψ(x) =
1

4π

∫ ∇′ · A(x′)

|x − x′| d3x′ ⇒ ∇2Ψ = −∇ · A . (229)

With this choice

∇ · A′(x) = 0 . (230)

That is to say, in the equivalence class of vector potentials that give rise to
the same magnetic field we have found one representative whose divergence
vanishes. We do not have to go through the work of actually finding a
function Ψ. It is enough to know that we can make make this choice, which
is known as imposing the Coulomb gauge.

From now until further notice we assume that we have imposed the
Coulomb gauge. Hence

∇ · A = 0 . (231)

Having disposed of the equation ∇·B = 0, and having imposed the Coulomb
gauge, the remaining magnetostatic equation is

∇× B = ∇× (∇× A) = ∇(∇ · A) −∇2A = −∇2A = µoJ . (232)

This is just three copies of Poisson’s equation for the vector potential. Pro-
vided the current vanishes at infinity we know that the unique solution is

A(x) =
µ0

4π

∫

J(x′)

|x − x′|d
3x′ . (233)

The magnetic field is easily computed using the formula B = ∇× A. This
is—in a way—the general and complete solution of the equations of magne-
tostatics. But as you know from the theory of electrostatics the story has
barely begun.

Two simple examples
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As the first example of how to compute the magnetic field from a fixed
current, let us consider a current running along a straight line along the
z-axis. Thus

Jz(x) = Iδ(x)δ(y) , Jx = Jy = 0 . (234)

This example suffers from the problem that the current does not vanish at
infinity. Hence we have to keep our eyes open when we proceed.

The magnetic field is most easily found by noting that the field lines have
to form circles around the z-axis, and the strength of the magnetic field is
determined by the current passing through a surface spanned by such a circle.
Indeed, using Stokes’ theorem,

I =
∫

S
J · da =

1

µ0

∫

S
(∇× B) · da =

1

µ0

∫

∂S
B · dl =

2πr

µ0
Bφ . (235)

So the solution is

Bφ =
Iµ0

2π

1

r
, Br = Bz = 0 . (236)

The picture is clear.

Figure 17: Magnetic field around an infinitely long straight current.

The general solution (233) was derived under the assumption that the
current distribution is localised, so there may be a problem if we apply it
to the present case. It turns out that the problem is mild, and it can be
dealt with. With an arbitrary constant added eq. (233) gives for the only
non-vanishing component of the vector potential that
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Az(x) =
µ0

4π

∫

Iδ(x′)δ(y′)dx′dy′dz′
√

(x− x′)2 + (y − y′)2 + (z − z′)2
+ constant =

(237)

=
µ0

4π

∫ ∞

−∞

dz′√
r2 + z′2

+ constant =
µ0

2π
lim

L→∞

∫ L

0

dz′√
r2 + z′2

+ constant .

The integral is divergent. We sidestep this difficulty by means of the constant.
Let it depend on L. This is allowed because the Coulomb gauge is still
preserved. Then

Az(x) = lim
L→∞

(

Iµ0

2π

∫ L

0

dz′√
r2 + z′2

+ k(L)

)

=

= lim
L→∞

(

Iµ0

2π

[

ln (z′ +
√
r2 + z′2)

]L

0
+ k(L)

)

.

With a suitable choice of k(L) this becomes

Az = −Iµ0

2π
ln r ⇒ Bφ = (∇× A)φ =

Iµ0

2π

1

r
, (238)

in full agreement with what we had before.60

So much for the magnetic field from an infinite straight wire. The next
example to be considered is the magnetic field from a circular current loop.
This is conceptually straightforward since the current distribution is now
localized, but it is technically somewhat tricky because there is no obvious
way to choose a coordinate system for this problem. Choosing spherical
polars the solution comes out in terms of elliptic integrals. Jackson provides
the details in section 5.5. They confirm that Figure 3 is qualitatively correct.

Asymptotics of the static magnetic field

60Exercise: You may or may not feel that this is a convincing derivation. If not, calculate
B from A before performing the integral. Then perform the modified integral that you
obtain in this way.
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We now ask what the magnetostatic field looks like far away from its sources.
One part of the answer is obvious. In vacuum the magnetostatic field obeys
the same equations as does the electrostatic field, so the terms in the multi-
pole expansion will be the same as well. However, the coefficients in front of
the various terms carry information about the sources of the field, and here
there will be significant differences. Since there are no magnetic monopoles
the expansion will start with a dipole term:

B =
µ0

4π

3x m · x − r2m

r5
+ quadrupole + . . . . (239)

Our question is how the dipole vector m can be calculated from the currents
that are sourcing the field. We assume that we can find a closed surface
surrounding the system such that all currents vanish outside it.

It is convenient to do the calculation for the vector potential in the
Coulomb gauge, so we go back to the general solution and do the expan-
sion as

A =
µ0

4π

∫

J(x′)

|x − x′|d
3x′ =

µ0

4π

∫

J(x′)

(

1

|x| +
x · x′

|x|3 + . . .

)

d3x′ . (240)

It turns out that the boldface vector notation leads to some obscurities, so
we will gradually switch to the index notation that we briefly described in
our Introduction. (Jackson does that too.)

We begin with an identity:

∇ · (xiJ) = (∇xi) · J + xi∇ · J = Ji . (241)

In the second step we used ∇ · J = 0, as well as ∂jxi = δij . It follows that

∫

Ji(x
′)

|x| d3x′ =
1

|x|
∫

Ji(x
′)d3x′ = 0 , (242)

since the current is localised and we are integrating a total divergence. This
confirms that there is no monopole term present in the field.

For the dipole term we employ the identity

∇ · (xixjJ) = xjJi + xiJj . (243)
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This means that when we are inside an integral over all space we can write
xjJi = −xiJj for any localised distribution of currents.

For a pure dipole field the ith component of the vector potential is

Ai(x) =
µ0

4π

x

|x|3 ·
∫

x′J ′
i d3x′ . (244)

Not only are we edging towards index notation, we also introduced the no-
tational device that J ′

i ≡ Ji(x
′). To proceed we go all the way. We use

Einstein’s summation convention to deal with scalar products and the ǫ–δ
identity (18) to deal with repeated vector products. We calculate that

x ·
∫

x′J ′
i = xj

∫

x′jJ
′
i = /using the identity (243) / =

= −1

2
xj

∫

(x′iJ
′
j − x′jJ

′
i) = /using the ǫ–δ identity backwards/ = (245)

= −1

2
xj

∫

ǫijkǫkmnx
′
mJ

′
n = −1

2
ǫijkxj

∫

ǫkmnx
′
mJ

′
n .

We need a name here. We define the magnetic dipole moment m by

mk =
1

2

∫

ǫkmnxmJn(x) d3x ⇔ m =
1

2

∫

x × J(x) d3x . (246)

This understood we have proved that, in the Coulomb gauge, a magnetic
dipole field is given by

A(x) =
µ0

4π

m × x

|x|3 . (247)

The currents influence the dipole field to exactly the extent that they influ-
ence the magnetic dipole moment m.

With the solution for the vector potential in hand it remains to show
that the magnetic dipole field is that given by eq. (239), with the precise
definition of m that we came up with here. I leave that to you.61 And I leave
the magnetic quadrupole field to its fate.

61Exercise: Do it using index notation!
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Three magnetic dipole moments

We have seen that, far away from their sources, the electric and magnetic
fields look the same apart from the fact that the magnetic monopole field
vanishes. The sources influence the dipole fields only to the extent that they
influence the dipole moments, which are given respectively by

p =
∫

xρ(x) d3x and m =
1

2

∫

x × J(x) d3x . (248)

There are three memorable cases of magnetic dipoles to discuss.

Figure 18: A current forming a loop in a plane.

First, consider a current in a wire confined to a two dimensional plane,
with the geometry sketched in Figure 18. The magnetic moment will point
along the z-axis (say). Regardless of the shape of the curve we find that

mz =
I

2

∮

wire
(x × dl)z = I × (area spanned by the loop) . (249)

A nice result.
The next case is a swarm of point charges. We assume that each individual

particle moves on some trajectory xn = xn(t), where the index labels the
particles rather than the components of the vectors. As a result there is an
electric current distribution

J(x) =
∑

particles

qnvnδ(x − xn) . (250)

Because of the delta functions the integral that we need to perform is trivial,
and we find
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m =
1

2

∑

particles

qnxn × vn =
∑

particles

qn
2mn

Ln , (251)

where Ln is the angular momentum of the nth particle. If the particles have
the same mass mn = m and charge qn = q we get the simple formula

m =
q

2m
L , (252)

where L is the total angular momentum of the swarm.
We have to be careful if we stick this result into equation (233). The

particle positions in equation (250) are time dependent, and therefore so is
the current. Hence this is not really a problem in magnetostatics. However,
since we are considering a “swarm” of particles the result can nevertheless
be correct on the average. Jackson brings up this difficulty in his section 5.2,
but defers the solution to the exercises in his chapter 14.

The third case is the observed magnetic moment of an electron with
charge e and spin S. It is

m ≈ 2
e

2m
S ≈ 2.00231930436

e

2m
S . (253)

The first approximation (to the truth) can be derived (as an exact result)
from the Dirac equation, and the second from QED. The factor of 2 is some-
what curious, and is known as the gyromagnetic ratio of the electron. It
may amuse you to know that, according to relativity theory, an electrically
charged spinning black hole also has a gyromagnetic ratio of 2 even though
it resembles an electron in no other respect.62

The force acting on a magnet

So far we have not even mentioned magnets. It is a bit like giving ‘Hamlet’
with the main character excluded. As a preliminary step to remedy this
omission, let us compute the force acting on a magnet when placed in an
external magnetic field. In the calculation we will regard the magnet as a
localised current distribution leaving a dipole moment m as a fingerprint

62Reference: D. Garfinkle and J. Traschen, Gyromagnetic ratio of a black hole, Phys.
Rev. D42 (1990) 419.
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when viewed at a distance. We will see that under reasonable assumptions
it is enough to know that fingerprint.

We assume that the field is slowly varying, so that we can use the first
order Taylor expansion

Bi(x) = Bi(0) + x · (∇Bi)|0 , (254)

where the derivative is evaluated at x = 0. The force acting on a current
distribution is

F(0) =
∫

J(x) ×B(x) d3x . (255)

Plugging our expression for B(x) into this we see that the term Bi(0) does
not contribute, because we have already shown that the integral over any
component of the conserved current J vanishes. So we obtain

Fi =
∫

ǫijkJj(x)xm(∂mBk)|0 d3x = ǫijk(∂mBk)|0

∫

xmJj(x) d3x . (256)

But in the course of the calculation (245) we proved that

Vn

∫

xnJjd
3x = −ǫjrsVrms (257)

for an arbitrary vector Vn. (We gave the argument for the vector xn, but
it applies to arbitrary vectors.) Now we have two epsilon symbols in the
formula for the force, and it is only a question of applying the ǫ–δ identity
to arrive at63

Fi = ∂i(Bkmk) ⇔ F = ∇(m · B) . (258)

In words, in a constant magnetic field there is no force acting on the magnet.
In a slowly varying magnetic field only the dipole moment of the magnet
matters.

We see that the motion of a permanent magnet in a magnetic field vary-
ing slowly on the length scale defined by the magnet is determined by the
potential energy

63Exercise: Do it!
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U = −m · B . (259)

Experimentalists have devised very many ways to create magnetic fields with
all sorts of properties, but you can now easily prove that it is impossible to
create a static magnetic field that will make a permanent magnet hang freely
in the air.64 Of course, you should not believe everything you prove.65

In agreement with intuition we find that there is no net force acting on
magnetic dipole in a homogeneous magnetic field. On the other hand it is
well known that magnetic dipoles such as compass needles are subject to a
torque when placed in a static magnetic field. The details are in Jackson’s
section 5.7.

Looking for magnetic monopoles

At the end of section 5.7 Jackson briefly alludes to an interesting argument
concerning the magnetic moment µp possessed by the nucleus of the hydrogen
atom. It was suggested by no less a luminary than Schwinger that they are
caused by magnetic monopole charges located within the proton. To refute
this suggestion Jackson compares the evaluation of the integral (210) with
the corresponding integral in magnetostatics.

To understand the argument, notice that the electron has an intrinsic
magnetic moment µe, and it interacts with the magnetic field of the proton
through the hyperfine structure term

Hhfs = −µe ·B(x) (260)

in the Hamiltonian. The contribution averages to zero for a dipole field, so
we consider the field B only in a region near the nucleus, where the dipole
approximation fails. This region is so small that the s-wave wave function ψ
is about constant there, so the contribution to the energy is

64Exercise: Consider permanent magnets (m constant), paramagnets and diamagnets
(m = kB with k > 0 for paramagnets, k < 0 for diamagnets). For each case investigate
whether you can choose B(x) such that a stable equilibrium position for the dipole exists.

65Reference: The simulation shown on 3dhouse.se/ingemar/exjobb/exjobb.html agrees
accurately with what Axel Erbing saw in the lab. See his Master’s thesis, available on the
same page.
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∆E =
∫

r<R
ψ∗(x)Hhfsψ(x) d3x ≈ −|ψ(0)|2 µe ·

∫

r<R
B(x) d3x . (261)

But if this magnetic field arises from magnetic monopole charges confined
inside the nucleus then our result (215) applies to the integral that remains.
We then obtain

∆E =
µ0

3
|ψ(0)|2µe · µp . (262)

Putting in the numbers one finds that the resulting energy splitting of the
hydrogen ground state corresponds to a wavelength of 42 cm. But no such
line is present in the spectrum, so Schwinger must be wrong.

To get a correct result we have to do the integral under the assumption
that the magnetic field is generated by electric currents confined inside the
nucleus. As a first step

∫

r<R
B(x) d3x =

∫

r<R
∇×A d3x = R2

∫

n× A dΩ . (263)

This we can related to the currents using our solution for A, eq. (233). The
calculation is an exercise.66 The result is

∫

ball
B dV =

2µ0

3
m . (264)

This is what we have to insert into eq. (261) if we assume that the magnetic
field is created by electric currents rather than by magnetic charges. The
beauty of the argument is that no detailed information about these currents
is needed. Comparing to eq. (262) we see that the energy splitting changes
sign. More importantly there is an extra factor of 2, so the calculation
predicts—correctly—that there is a 21 cm line in the hydrogen spectrum.

Magnetism in media

When we consider the magnetic field in a medium there is a twist right at
the beginning. The magnetostatic equations must be modified in order to

66Exercise: Do it! (It is OK to look in Jackson.)
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account for a magnetic dipole density M inside the medium. When doing
this one arrives at











∇× H = J

∇ · B = 0
(265)

where the macroscopic field H is related to the magnetisation M by

H =
1

µ0
B − M ⇔ B = µ0H + µ0M . (266)

We have to convert the last equation into a constitutive relation B = B(H)
before we can use this system.

Now this looks completely backwards compared to the electrostatic equa-
tions

∇ · D = ρ , ∇×E = 0 , D = ǫ0E + P , D = D(E) . (267)

So does the terminology that you may come across:

E : electric field H : magnetic field

D : displacement field B : magnetic induction .

To see why things are presented this way, ask how you would create the
fields to some specification. You would probably create the electric field by
choosing the electric potential. Hence the emphasis on E = −∇Φ. But you
would create the magnetic field by choosing some external currents, hence
the emphasis on H. That is to say, E and H are the fields you can easily
control. You will be able to detect a changing B by the electromotive force it
induces in a coil through Faraday’s law. This explains the terminology (that
I prefer to avoid).

Concerning the constitutive relation that we seek, there are many cases
where the simple assumption

B = µH (268)
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works, with a magnetic permeability µ that depends on position but not on
H. However, this constant can now take either sign. In vacuum, µ = µ0. In
diamagnets µ < µ0. Then the molecules do not have permanent magnetic
moments, but when H is switched on various atomic currents react by oppos-
ing the field. In paramagnets µ > µ0. Then there are permanent molecular
magnetic moments, typically coming from the electrons in incompletely filled
atomic shells. When H is switched on these tend to line up with with H,
and support it.67

Ferromagnets and hysteresis phenomena

Then we come to the difficult case of ferromagnets, including iron, nickel,
and cobalt. Their molecules have permanent magnetic moments that line
up with each other also in zero field due to involved quantum mechanical
effects. However, the domains in which this happens may be microscopically
large but macroscopically small. In a piece of naturally occurring iron the
magnetic moments from these domains tend to average out, and there is no
net magnetisation of the piece of iron. It is however possible to line up the
domains with each other by means of a magnetic field, and they will then
tend to stay aligned also when the field is removed.

Parenthetically we remark that there exist materials where molecular
electric dipole moments do line up in zero field in an analogous way. They
are called ferroelectrics by analogy, but do not include iron. They are not
so easy to find because electric dipoles in air are quickly neutralized by free
charges. The first ferroelectric material (the Rochelle salt) was discovered in
1920.

Coming back to the magnetisation of iron, we imagine an experiment in
which a piece of iron is subjected to a changing external field H, controlled
by a current going through a coil. There is another coil coupled to a gal-
vanometer, allowing us to detect any changes in the total field B through
the induced emf. See Figure 19.

What one typically finds is something like the curves shown in Figure 20.

67Exercise: Solve the Lorentz equation for a charged particle in a homogeneous mag-
netic field. Based on this solution, would you expect a plasma to be diamagnetic or
paramagnetic?
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Figure 19: H is changed by sending a controlled current J through a coil, and the
resulting changes in B are measured using a second coil.

We start with no net magnetic field. When H is first applied the observed
magnetic flux increases slowly until we reach point a on the curve. It increases
sharply after that, and it is easy to guess that this happens because entire
domains of aligned dipoles switch directions inside the material. Eventually
all the domains have flipped, and saturation is reached, at b. If we try to
reverse the process by decreasing the strength of the applied H then the
domains stay aligned all the way down to zero field, and start to reverse
only when the direction of H has been switched, at c. So the process is in
fact not reversed, instead the material has been trapped in a hysteresis loop
b–c–d–e–b. It does not return to the origin of the diagram.

Figure 20: A hysteresis loop is created.

The domain flips are known as Barkhausen jumps, after the person who
first heard them. Namely, in the experiment he connected the second coil to
an amplifier and a pair of earphones, and literally heard the flips happen.
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Reflecting on this phenomenon you can see why we have referred to B =
B(H) as a constitutive relation rather than as a function. It may very well
not be a single valued function, and it can depend on the previous history of
the material. To emphasise that this is a possibility to be reckoned with the
constitutive relations are often written using square brackets as B = B[H]
and D = D[E]. We are, however, now infringing on solid state physics, and
stop here.

For the exercise class:

• Jackson, Problem 5.1.

• Consider two curves in space, C : xi(s) and C ′ : x′i(s
′). They are circles

topologically. Define the linking number m as follows: Deform one of
the curves to a circle, and count the number of times the second curve
passes through the disk spanned by that circle, counting +1 if it passes
in the direction of the normal of the disk and −1 if it passes in the
other direction. Use your knowledge of magnetostatics to prove that

m =
1

4π
ǫijk

∫

C

∫

C′

(xi − x′i)dljdlk
|x− x′|3 . (269)

• Define a vector potential on a region of space strictly outside the z-axis,
such that A(x) is independent of z, gives a vanishing magnetic field
outside the z-axis, and cannot be gauge transformed to zero. Discuss
the last point in some detail, and give a physical interpretation.68

68Reference: When you are done, consult T. T. Wu and C. N. Yang, Concept of non-

integrable phase factors and global formulation of gauge fields, Phys. Rev. D12 (1975)
3845.

92



SPECIAL RELATIVITY

From now on I will use Gaussian units, just as Jackson does in his chapter
11. Using what we will soon call Cartesian tensors Maxwell’s equations then
read

∂iBi = 0 Gilbert’s law (270)

ǫijk∂jEk +
1

c
∂tBi = 0 Faraday’s law (271)

∂iEi = 4πρ Gauss’ law (272)

ǫijk∂jBk −
1

c
∂tEi =

4π

c
ji Ampère-Maxwell’s law . (273)

If you look in a quantum field theory book you will likely find that it uses a
‘rationalized’ version of Gaussian units, in which the factor of 4π is treated
differently. The constant c takes the value 300 000 km/s.

Some questions at issue

As you probably know special relativity was discovered through a careful
analysis of the transformations leaving Maxwell’s equations invariant.69 The
question answered, or rather side-stepped, by Einstein was: 300 000 km/s
relative to what? But there was another issue that other people had already
spent hard work on. To see what it was, consider a charged particle moving
with constant velocity v through a magnetic field. Because it is moving it
feels a Lorentz force. But we have learned from Newton that only relative
velocities can be observed. So let us consider a charged particle at rest, and
let the magnet move with velocity −v. The relative velocity is unchanged,
so again the particle should feel a force. But since it is now at rest this

69Reference: A. Einstein: Zur Elektrodynamik bewegter Körper, Annalen der Physik 17

(1905) 891.
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means that a moving magnet must give rise to an electric field, not just a
magnetic field. Newton’s ideas further suggest that if we know the magnetic
field from a magnet at rest then we should be able to find the fields from a
magnet moving at constant velocity by applying a simple transformation to
the static magnetic field. Thus the question answered by Lorentz and others
was: What is that transformation?

At the time all of this required clear thinking and hard work. If you invest
in some mathematics first, it takes no effort. Einstein is supposed to have
complained that he did not understand relativity theory anymore, once the
mathematicians took it in hand. But it did not take him long to realize that
tensor calculus is a good thing.

What is a transformation, anyway?

Our first task is to understand what is being meant when we say that a set
of equations is invariant under a transformation. Suppose we fix Cartesian
coordinates in space, so that points can be identified by their coordinates.
Given a point x we define a new point x′ by

x′ = x + a , (274)

where a is a constant vector. Equation (274) then describes a translation in
space. We call it an active transformation. Actually there is another way to
read the same equation. We can agree that all points in space are fixed, but
that we change the coordinate system so that the point that had coordinates
x now gets the new coordinates x′. This is a passive coordinate transfor-
mation. Special relativity is often presented as being concerned with how a
phenomenon looks like when viewed from different ‘reference frames’. But
here we are more interested in the fact that it also claims that if there exists
a solution of Maxwell’s equations describing (say) a static charge distribu-
tion, then there must exist a solution describing a charge distribution moving
with constant velocity. Hence we take the active point of view throughout
the chapter, and the coordinate system is fixed once and for all.

Now consider a function of space and time, such as ρ(x, t). Given a
transformation like the one above we can then introduce a new function ρ′

by means of the equation
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ρ′(x′, t) = ρ(x, t) . (275)

In words, the new function takes the same value at the point x′ as the old
function did at the point x. To be explicit about it,

ρ′(x + a, t) = ρ(x, t) ⇔ ρ′(x, t) = ρ(x − a, t) . (276)

We have moved the charge density to a new position. Let us apply the same
transformation to the electric field,

E′(x, t) = E(x − a, t) , (277)

and similarly for the magnetic field B and for the current density j. You
can now check that Maxwell’s equations are invariant under translations in
space, which means that if (E,B, ρ, j) is a solution of Maxwell’s equations,
so is (E′,B′, ρ′, j′).

Next, consider the Galilei transformation

x′ = x + vt , t′ = t , (278)

where v is a constant velocity vector. Suppose that the function ρ(x) de-
scribes a static charge distribution. Then the new function ρ′(x, t) = ρ(x−vt)
is a charge distribution moving with constant velocity. Perform the same
transformation of the electric and magnetic fields. It will then be found that
Maxwell’s equations are not invariant under this transformation.70 Special
relativity is a response to this quandary. It deals with transformations of a
four dimensional spacetime, with a fourth coordinate x0 = ct.

Tensors

The tool we need now is called tensors. For definiteness, suppose that space—
or rather, spacetime—has four dimensions, so that each point can be uniquely
described by four coordinates x0, x2, x2, and x3. We collect the coordinates
into a vector xα, where the index α ranges from 0 to 3. We are interested

70Exercise: Check that Maxwell’s equations are invariant under translations, and that
Faraday’s law is invariant under the Galilei transformation proposed in Jackson’s section
5.13.
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in linear transformations, possibly including a constant shift, so we assume
that

xα → x′α = x′α(x) =
3
∑

β=0

Λα
βx

β + aα . (279)

This is a matrix equation. You may wonder why I write one index ‘upstairs’
and one index ‘downstairs’. The reason begins to emerge when we compute
how derivatives transform. Using the chain rule we get

∂′α ≡ ∂

∂x′α
=

3
∑

β=0

∂xβ

∂x′α
∂

∂xβ
=

3
∑

β=0

(Λ−1)β
α

∂

∂xβ
. (280)

We see that a gradient vector transforms in a different way than does the
coordinate vector.

We will use Einstein’s summation convention from now on, with one
important extra rule. It will be true by convention that

(Λ−1)β
α∂β ≡

3
∑

β=0

(Λ−1)β
α

∂

∂xβ
. (281)

The new rule is that repeated indices (implying a sum) are only allowed if
one of them is upstairs and the other downstairs. It is forbidden to write
expressions like (Λ−1)β

α∂α. The reason why will soon become clear.
Now we want a rule to tell us how various objects defined on the space

transform when the active transformation is carried through. First, a scalar

function is by definition a function that transforms according to

φ′(x′) = φ(x) . (282)

The new function takes the same value at the new point as the old function
did at the old point. Second, a contravariant vector field is a set of four
functions that transform according to

V ′α(x′) =
∂x′α

∂xβ
V β(x) = Λα

βV
β(x) . (283)

A component of the new vector takes a value at the new point which is a
linear combination of the values taken by the old vector components at the
old point.
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Third, a covariant vector field is a set of four functions that transform
according to

U ′
α(x′) =

∂xβ

∂x′α
Uβ(x) = (Λ−1)β

αUβ(x) . (284)

We can take scalar products between contravariant and covariant vectors,

U ′
αV

′α = Uβ(Λ−1)β
αΛα

γV
γ = Uβ(Λ−1Λ)β

γV
γ = Uβδ

β
γV

γ = UαV
α . (285)

The result is indeed a scalar function. Contravariant and covariant vectors
are analogous to Dirac’s bras and kets in quantum mechanics. It is not
possible to define a scalar product between (say) two covariant vectors.71

In quantum mechanics we often define vectors that belong to tensor prod-
ucts of vector spaces, such as |ψ〉 ⊗ |φ〉. In tensor calculus we can define
tensors with an arbitrary number of indices. Sticking to two indices to begin
with, we find three different kinds of such tensors. Contravariant tensors
transforming according to

T ′αβ(x′) = Λα
µΛβ

νT
µν(x) , (286)

covariant tensors transforming according to

T ′
αβ(x′) = (Λ−1)µ

α(Λ−1)ν
βTµν(x) , (287)

and mixed tensors transforming according to

T ′α
β(x′) = Λα

µ(Λ
−1)ν

βT
µ
ν(x) . (288)

The generalisation to an arbitrary number of indices should be clear.
Two tensors of the same kind can be added together, but it is forbidden

to add tensors of different kinds because the index structure of each term in
a tensor equation must be the same. There are two different ways to get a
new tensor from a pair of old ones. We can use outer multiplication. As an
example,

Tαβγ = UαVβγ = VβγUα (289)

71Exercise: What would go wrong if we applied the Einstein convention to the (forbid-
den) expression UαV α? Equivalently, why did Einstein forbid us to write such things?
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is a covariant tensor with three indices. We can also use contraction, that is
to say we can sum over a pair of (suitably placed) indices. Thus

T γ
α = SαβU

βγ (290)

is a mixed tensor with two indices. Since we already concluded that a gradient
transforms like a vector we can also obtain tensors with an extra covariant
index by taking a derivative. Thus

Tαβγ(x) = ∂αSβγ(x) (291)

is a covariant tensor field with three indices. Here, however, a word of warning
is necessary: This last construction works only because the matrix Λα

β is
independent of the coordinates. More work is needed if this is not true.72

In general the order of two downstairs or upstairs indices matters. That
is to say, Tαβ is not in general equal to Tαβ . If it is true that

Tαβ = Tβα (292)

then the tensor is said to be symmetric. If

Tαβ = −Tβα (293)

it is antisymmetric. Any tensor can be divided into a symmetric and an
anti-symmetric part,

Tαβ = T(α,β) + T[α,β] , T(αβ) = T(βα) , T[αβ] + T[βα] = 0 . (294)

For tensors with two and three indices, respectively, we have

T[αβ] =
1

2
(Tαβ − Tβα) (295)

T[αβγ] =
1

6
(Tαβγ + Tβγα + Tγαβ − Tβαγ − Tγβα − Tαγβ) . (296)

72Exercise: Check carefully that VβT
βα is a contravariant vector. What can go wrong

if you apply this argument to ∂βT
βα?
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The number of components in a tensor with two indices is 42 (or d2 if the
indices go from 1 to d). If the tensor is symmetric the number of independent
components drops to ten, if it is anti-symmetric it drops to six.73

The actual values taken by the components of a tensor at some given
point can be changed by an active (or passive) transformation. But there is
an exception to this rule, namely the Kronecker delta that can be defined by

δα
β =

{

1 if α = β
0 if α 6= β .

(297)

These values cannot be changed by any transformation because

δ′αβ = Λα
µ(Λ−1)ν

βδ
µ
ν = Λα

µ(Λ−1)µ
β = δα

β . (298)

For this reason the Kronecker delta is said to be an invariant tensor.74

This concludes our discussion of tensors in general. We can easily include
spacetime translations in the discussion, but had we allowed more general
transformations than those given by a constant matrix in equation (279)
we would faced a lengthy discussion about how spatial derivatives can be
included in the tensor formalism. Since we restricted the allowed transfor-
mations in the way we did we can omit this. In fact, we will go the other
way and restrict the allowed transformations even further. As a result we
will obtain additional invariant tensors to play with, and we will need these
in order to formulate Maxwell’s equations in tensor language.

Cartesian tensors

We now turn to Maxwell’s equations as given in equations (270)–(273). The
Latin indices there run from 1 to 3, but that is a minor difference. More
striking is that the equations seem to violate the rule that you cannot repeat
two downstairs indices in the same term of an equation. Indeed, all the
indices are downstairs. What is the magical ingredient that allows us to do
this?

73Exercise: Count the number of independent components in a totally anti-symmetric
tensor with either three or four indices (given that the dimension is four).

74Exercise: Prove that the Kronecker delta is an invariant tensor also if do not assume
that the transformation xα → x′α = x′α(x) is linear, as we did in equation (279).
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The answer is the tensor

gij =







1 0 0
0 1 0
0 0 1





 . (299)

We require that this tensor be invariant. This means that we restrict the
allowed transformations so that

g′ij = Λi
kΛ

j
lg

kl . (300)

In matrix notation this becomes

1 = Λ1ΛT ⇔ ΛT = Λ−1 . (301)

So we have restricted ourselves to transformations given by orthogonal ma-
trices Λ. As you know (?) these are all rotations and all reflections, and
nothing else.

There is an additional invariant tensor gij that is the inverse of gij, in the
sense that

gikg
kj = δj

i . (302)

It is known as the metric tensor. The idea is that the length squared of a
contravariant vector can now be defined as

||v||2 = gijv
ivj . (303)

This is a scalar function, just as the scalar product between a covariant and
a contravariant vector is a scalar function.

The metric tensor blurs the distinction between covariant and contravari-
ant vectors. Given a contravariant vector vi we can define a contravariant
vector vi, and conversely, through

vi = gijv
j ⇔ vi = gijvi . (304)

Because of our choice of the metric tensor the components of vi and vi

are identical. At this point then we can decide to disregard the distinc-
tion between upstairs and downstairs, place all indices downstairs, and agree
that Einstein’s summation convention now applies to expressions like vivi =
vig

ijvj . In fact it would be snobbish not to do this.
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This is the justification for writing Maxwell’s equations in the form (270)–
(273). Note carefully however that this works only because we work in a
Cartesian coordinate system and because we restrict ourselves to transfor-
mations that are either rotations or reflections (or translations).

Our metric tensor gij = δij is an invariant tensor under rotations and
reflections. But it is worth noticing that the ǫ-tensor works a little differently.
We find (and we now brutally place all indices downstairs)

ǫ′ijk = ΛimΛjnΛkrǫmnr = det Λ ǫijk . (305)

If you think about it this is essentially the definition of the determinant of
a matrix.75 But for an orthogonal matrix Λ we have det Λ = ±1, where the
plus sign applies to rotations and the minus sign to reflections. Hence the
ǫ-tensor is an invariant tensor under rotations, but not under reflections. To
ensure that Maxwell’s equations are invariant under reflections we must have

E ′
i(x

′) = ΛijEj(x) B′
i(x

′) = det Λ ΛijBj(x) . (306)

This means that the electric field changes sign under the transformation
x → −x, but the magnetic field does not. This is often expressed by saying
that the magnetic field is a pseudo-vector, not a vector.

If you think pseudo-vectors are awkward you can work with proper vectors
and tensors throughout by defining

Fij = ǫijkBk ⇔ Bi =
1

2
ǫijkFjk . (307)

The anti-symmetric tensor Fij has three components, just like the magnetic
field, but it is a genuine tensor transforming as

F ′
ij(x

′) = ΛimΛjnFmn(x) , (308)

regardless of whether Λ gives a rotation or a reflection. We can then rewrite
Maxwell’s equations as76











∂iBi = 0 ∂iEj − ∂jEi + 1
c
∂tFij = 0

∂iEi = 4πρ ∂jFij − 1
c
∂tEi = 4π

c
ji .

(309)

75Exercise: If you do not see it immediately, prove it!
76Exercise: Again, if it is not obvious to you, prove it!
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This way of writing them is actually the first step towards writing the equa-
tions in a form that makes their behaviour under Lorentz transformations
obvious.

Invariance of Maxwell’s equations

Now we are coming to the point of this apparent digression from the subject.
We want to write Maxwell’s equations in a way that makes their behaviour
under Lorentz transformation transparent, and we will use tensors on a four
dimensional spacetime for this purpose. We have already collected the coor-
dinates into a 4-vector,

xα =

(

x0

x

)

=

(

ct
x

)

. (310)

It seems reasonable to do the same for the charge density and the current,

Jα =

(

ρ
j/c

)

. (311)

But what do we do about the six components in the electric and the magnetic
field? They will be joined together to form a tensor with six components,
and an anti-symmetric tensor Fαβ = −Fβα fits the bill. So we define the
Maxwell tensor

Fαβ =

(

0 F0i

Fi0 Fij

)

=

(

0 −Ei

Ei ǫijkBk

)

. (312)

You can now check that the first pair of Maxwell’s equations in (309), that
is Gilbert’s and Faraday’s laws, take the elegant form77

∂αFβγ + ∂γFαβ + ∂βFγα = 0 . (313)

The remaining pair is not so easily handled though.

77Exercise: Prove that the left hand side is a totally anti-symmetric tensor with three
indices, hence that it has four components. Then prove that these components are precisely
the two Maxwell equations that I claim they are.
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We have to follow the rules, which means that if we want to contract a
tensor with a gradient then that tensor must have an index upstairs. The
only choice in sight is to set

∂βF
αβ = 4πJα . (314)

But we have not defined F αβ. We must find a way to raise the indices on
Fαβ . We introduce a metric tensor gαβ to do this, and define

F αβ = gαγgβδFγδ . (315)

The obvious option, to set gαβ equal to a Kronecker delta, does not work. To
recover the remaining Maxwell equations from equations (312), (315), and
(314) requires the definition78

gαβ =











−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











= gαβ . (316)

With this metric tensor we have succeeded in rewriting Maxwell’s equations
in tensor form.

To repeat, Maxwell’s equations are











∂αFβγ + ∂γFαβ + ∂βFγα = 0

∂βF
αβ = 4πJα

. (317)

Some things are now obvious. For instance, here is the proof that the equa-
tions imply charge conservation:

4π∂αJ
α = ∂α∂βF

αβ = 0 . (318)

If it escapes you why this is obvious, here is the complete argument:

∂α∂βF
αβ = ∂β∂αF

βα = −∂α∂βF
αβ ⇒ ∂α∂βF

αβ = 0 . (319)

78Exercise: Check this. This is one of the most interesting signs in physics. A less
interesting sign is an overall change of sign of gαβ. Convince yourself that this is allowed.
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First the names of the summation indices were changed, then we used the
fact that F αβ is anti-symmetric while ∂β∂α = ∂α∂β. This is a standard trick
in many tensor calculations. It is similarly easy to show that the components
of Fαβ obey the wave equation whenever Jα = 0.79

Lorentz transformations

Now we are in position to see what kind of transformations that leave Maxwell’s
equations invariant. Since we brought the metric tensor (316) into the equa-
tions the transformations that take solutions of Maxwell’s equations to other
solutions of Maxwell’s equations must have the property that

Λα
γΛ

β
δg

γδ = gαβ . (320)

A little reflection will tell you that this includes all rotations in space. They
are given by matrices of the form

Λ =

(

1 0
0 R

)

, (321)

where R is an orthogonal matrix. The more interesting ones mix space and
time together. You can check that one possibility is

Λα
β =











coshα sinhα 0 0
sinhα coshα 0 0

0 0 1 0
0 0 0 1











, (322)

where α is a real number. This is called a Lorentz boost. It transforms the
spacetime point xα to a new point x′α according to

x′α = Λα
βx

β , (323)

or more explicitly (remembering that x0 = ct)

ct′ = coshα ct+ sinhαx x′ = sinhα ct+ coshα x (324)

79Exercise: Do it, in at most two lines.
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together with y′ = y, z′ = z.80

The four dimensional space whose coordinates are xα and whose metric
tensor is gαβ is known as Minkowski space. I will assume that you know the
rest of the story, and stop here.81 The point is that the story is forced on us
if we insist on writing Maxwell’s equations in tensor form.

The stress-energy tensor of the electromagnetic field

We now take up the question how our proposed formula for the energy in an
electromagnetic field is to be transcribed into tensor notation. In Gaussian
units

E =
1

8π

∫

(E · E + B · B) d3V . (325)

In special relativity energy is to be regarded as the fourth component of a
four-vector

P α =

(

E
pi

)

. (326)

The space over which we integrate in eq. (325) is a three dimensional hyper-

surface in a four dimensional spacetime. As such it has a (future directed)
normal vector nα, see Figure 21. We choose our space to be defined by t = 0,
and then the normal vector has a single non-vanishing component. When
we integrate over the volume we are really computing the flux of a four-
vector field through a hypersurface, so the volume element must ‘point’ in
some direction. Putting these ingredients together we expect to obtain our
four-vector as

P α =
∫

T αβnβ dV =
∫

T α0 dV . (327)

Here T αβ is a tensor that we must choose so that

80Exercise: Draw a diagram of the (ct, x)–plane showing how points are transformed
as you vary α. Compare with a similar drawing of how the (x, y)–plane behaves under
rotations.

81Exercise: If you need a reminder, replace the parameter α with the parameter v =
c tanhα in equation (324). What is the interpretation of v?
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Figure 21: Space at time t = 0 as a three dimensional hypersurface, and its normal
vector.

T 0βnβ = T 00 =
1

8π
(E · E + B · B) =

1

8π
(F0iF0i + FijFij) . (328)

Moreover local energy conservation must be built in. That is to say, in
vacuum we must have

∂γT
γ0 = ∂tT

00 + ∂iT
i0 = 0 . (329)

Hence the components T iβnβ = T i0 must yield our expression for the energy
density flow of the field, otherwise known as the Poynting vector. At the end
the components T 0i and T ij must be given some interpretation too.

The tensor T αβ is known as the energy-momentum tensor, or sometimes as
the stress-energy tensor for reasons having to do with the components T ij .
To understand the latter we need a small excursion into fluid mechanics.
Consider an arbitrary volume V immersed in the fluid. It is subject to two
kinds of forces, volume forces Fi that act on every particle in the volume, and
surface forces that are the stresses exerted on the volume by the surrounding
fluid. By a clever argument of Cauchy’s—he considered the forces acting on
a volume element small enough so that volume forces can be ignored—it can
be shown that this force is linear in the normal vector ni of surface.82 That
is to say, the surface forces are given locally by

fi = Tijnj , (330)

where Tij is known as the stress tensor. In equilibrium the forces have to
balance, so we obtain the two equations

∫

V
Fi dV +

∫

∂V
Tijnj dS = 0 (331)

82Reference: See The Feynman Lectures Vol II, Chapter 31.
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∫

V
ǫijkxjFk dV +

∫

∂V
ǫijkxjTkrnr dS = 0 . (332)

The first tells us that (in equilibrium) the volume element does not accelerate,
the second that it does not start to rotate. Begin with the first equation and
apply Gauss’ theorem:

∫

V
(Fi + ∂jTij) dV = 0 . (333)

But the volume V can be chosen arbitrarily, so we conclude that

Fi + ∂jTij = 0 . (334)

This is known as the equation of momentum balance. If the electromagnetic
field carries momentum, we expect a similar equation to turn up in Maxwell’s
theory. Now let us consider the second equilibrium equation. Treating it in
the same way we obtain

∫

V
(ǫijkxjFk+∂r(ǫijkxjTkr) dV = 0 ⇒ ǫijk(xjFk+xj∂rTkr+Tkj) = 0 . (335)

Using the equation of momentum balance this reduces to

ǫijkTjk = 0 ⇔ Tij = Tji . (336)

The stress tensor must be a symmetric tensor, otherwise all the fluid elements
would start to rotate on their own initiative. See Figure 22.

Coming back to the stress-energy tensor T αβ of the electromagnetic field,
if its spatial components are to give us a symmetric stress tensor then the full
stress-energy tensor must be symmetric too. And it is not so hard to guess
what it must be. It has to be quadratic in the field strength, and it needs
two indices. There are only two obvious terms with these properties that we
can form, and we expect the stress-energy tensor to be a linear combination
of the two. Thus

T αβ = a1F
α
γF

γβ + a2η
αβFγδF

αβ . (337)

Now we calculate

FγδF
γδ = FijF

ij + 2F0iF
0i = . . . = −2(EiEi − BiBi) (338)
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Figure 22: The surface forces acting on a small fluid element. If Txy 6= Tyx it
would start to rotate.

and similarly

F 0
γF

0γ = EiEi. (339)

We must ensure that the energy density T 00 comes out correctly. Recalling
that η00 = −1 we are led to propose that the stress-energy tensor of the

electromagnetic field is

T αβ =
1

4π

(

F αγF β
γ −

1

4
ηαβFγδF

γδ
)

. (340)

To make local conservation of energy come out correctly, in accordance with
equation (329), the components T i0 must equal the Poynting vector. And
indeed83

T i0 = − 1

4π
FijF0j =

1

4π
ǫijkEjBk . (341)

A calculation using the tensor formulation of Maxwell’s equations shows that

∂γT
γβ = JγF

γβ . (342)

I leave that to you as an exercise.84

83Exercise: Check all the statements in this paragraph.
84Exercise: Using the tensor formulation, prove that the energy-momentum tensor of

the electromagnetic field obeys ∂γT
γβ = JγF

γβ. When you have done this, you know how
to handle indices.
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But there is more to the story than energy conservation. In components
we obtain

∂γT
γ0 = JγF

γ0 ⇒ ∂tu(x) + ∇ · S = −J · E (343)

∂γT
γi = JγF

γi ⇒ ∂tSi + ∂jTji = −ρEi − ǫijkJjBk , (344)

where the Maxwell stress tensor is

Tij = − 1

4π

(

EiEj −
1

2
δijE

2 +BiBj −
1

2
δijB

2
)

. (345)

The first conservation equation is our familiar formulation of local conserva-
tion of energy. The second equation reveals that the Poynting vector plays
a dual role, because Si = T i0 = T 0i can be interpreted either as the en-
ergy density flow or as the momentum density of the electromagnetic field.
In relativity theory these two are the same thing (up to factors of c). The
stress tensor plays a role in the local balance of momentum, and it provided
Maxwell with the means to banish action-at-a-distance from physics.85

We need to add two remarks. First, in relativity theory every kind of
matter has a stress-energy tensor associated to it. A very special property
of the electromagnetic stress-energy tensor is that

ηαβT
αβ = T α

α = 0 . (346)

This is actually a good way to remember the factor “−1/4” in the definition.
The second remark is that our identification of the local energy density

and the local energy flow in electrodynamics can now be set on a firm footing,
if we bring in the ideas of General Relativity. To do so we rewrite Maxwell’s
equations in a way that allows spacetime to be curved, so that gαβ is no
longer equal to the Minkowski space metric tensor. This gives

1√−g∂β(
√
−gF αβ) = 0 , Fαβ = ∂αAβ − ∂βAα . (347)

85Exercise: Calculate Tij for a purely electric field. Choose coordinates so that the
x-axis lies along the electric field. Can you interpret the result?
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Here g is the determinant of the spacetime metric, which is negative, hence
the sign under the square root. To complete the theory we write down
Einstein’s field equations for the metric tensor. It takes the form

Gαβ(g, ∂g, ∂∂G) =
8πG

c4
Tαβ . (348)

Here Gαβ is a tensor formed from the metric tensor and its first and second
derivatives. It would take us too far afield to explain the details here. The
point is that on the right hand side we find the stress-energy tensor of the
electromagnetic field, and it can be shown that equation (340) is the only
possibility that is consistent with Maxwell’s equations (347). This is to say
that coupling to gravity resolves the ambiguities we encountered when we
tried to define the energy density of the electromagnetic field.

A derivation of Lorentz’ equation

In the earlier parts of these notes we concluded that the electromagnetic
field carries energy and momentum. The arguments we used were based on
Lorentz’ equation (7), which tells us how the field does work on charged
particles. But now there is a new claim: When coupling electromagnetism
to gravity Einstein’s general relativity theory demands that there is a stress-
energy tensor associated to the electromagnetic field. Moreover it has to
take the specific form (340). The momentum density appears as part of this
stress-energy tensor, and turns out to equal the Poynting vector field that
we had arrived at already. Moreover the Poynting vector obeys the balance
equation (344). But the right hand side of this equation tells us that the
momentum density is changing because of a force exerted on the matter, as
described by ρ and Ji. This is to say that the electromagnetic field acts on
matter with a force per unit volume equal to

fi = ρEi + ǫijkJjBk . (349)

In effect, this is Lorentz’ equation. We can therefore claim that the latter is
a consequence of the way in which electromagnetism couples to gravity.

For the exercise class:
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• Consider a scalar field having the form

φ(x) =
1

r2
, r2 = x2 + y2 + z2 .

Perform a Lorentz boost in the t−x-plane, and express the new function
φ′ that you obtain in this way as a function of the coordinates (t, x, y, z).
What does the new function look like?

• Consider the electromagnetic field from a point charge at rest at the
origin,

Ei(x) =
1

r3







x
y
z





 Bi(x) = 0 .

Perform a Lorentz boost in the t− x-plane. Compute the electromag-
netic field you obtain, and express it as a function of the coordinates
(t, x, y, z).

• Repeat the previous exercise for the electromagnetic field

E2 = cos (t− x) B3 = cos (t− x) ,

all other components vanishing.
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THE WAVE EQUATION

We have a satisfactory theory of the Laplace equation and of the Laplace
equation including sources, also known as Poisson’s equation. To tackle
electrodynamics we need an equally satisfactory theory of the wave equation

2Ψ =
(

∂2
x + ∂2

y + ∂2
z −

1

c2
∂2

t

)

Ψ(x, y, z, t) = 0 (350)

and of the wave equation driven by sources,

2Ψ(x, y, z, t) = −4πf(x, y, z, t) . (351)

The operator on the left hand side is known as the d’Alembert operator. It
plays a starring role throughout the second half of Jackson’s book, but all I
can do here is to collect a few highlights.

The wave equation in 1 + 1 dimensions

We begin in 1 + 1 dimensions, where the wave equation is

(

∂2
x −

1

c2
∂2

t

)

Ψ(x, t) = 0 . (352)

This is just about the simplest of all second order partial differential equa-
tions, and was first studied by d’Alembert in connection with the vibrating
string. It is interesting to compare and contrast its general solution with the
general solution of the two dimensional Laplace equation. We solve the wave
equation by transforming to the new variables

u = x− ct , v = x+ ct . (353)

The equation becomes

∂u∂vΨ(u, v) = 0 . (354)

The general solution is therefore

Ψ(x, t) = f(v) + g(u) = f(x+ ct) + g(x− ct) . (355)
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Two free functions appear in it. These functions can be quite general. We
can regard the formula as defining a generalized or weak solution of the wave
equation even if f and g are not differentiable.

To get a completely specified problem we supplement the equation with
initial data specified at t = 0. Let

Ψ(x, 0) = u0(x) , ∂tΨ(x, 0) = u1(x) . (356)

Here u0, u1 are functions that we can choose as we please. Then we consider
the system of equations











u0(x) = f(x) + g(x)

u1(x) = cf ′(x) − cg′(x) .
(357)

The solution is











f(x) = 1
2
u0(x) + 1

2c

∫ x u1(s)ds

g(x) = 1
2
u0(x) − 1

2c

∫ x u1(s)ds .
(358)

The free functions appearing in the general solution are then completely
fixed, and the solution to our Cauchy problem is

Ψ(x, t) =
u0(x+ ct) + u0(x− ct)

2
+

1

2c

∫ x+ct

x−ct
u1(s)ds . (359)

This is known as d’Alembert’s formula. Once the initial data are specified,
so is the solution, for all times.

Let us compare this with the general solution of the Laplace equation

(

∂2
x + ∂2

y

)

Φ(x, y) = 0 . (360)

We know that the general solution can be characterized by fixing the values
of the function on a boundary completely surrounding the region in which the
solution is being sought, or alternatively by fixing the normal derivative on
the boundary. For the wave equation we specify both, but not on a boundary
surrounding the region. See Figure 23. The nature of the solutions is also
very different. Solutions of the wave equation need not even be continuous.
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Figure 23: The boundary value problem for the Laplace equation, and the Cauchy
problem for the wave equation. In the latter case the region where the initial data
determine the solution is known as the Cauchy development.

For the Laplace equation the solution in the interior is the real part of an
analytic function, the most regular kind of function known to mathematics.86

Plane waves and spherical waves

We can put the 1 + 1 dimensional solution to work right away. First of all it
describes plane waves in any higher dimension—just assume that the solution
is to depend on only one of the spatial coordinates. This is important because
any propagating wave in three dimensions will look like a plane wave within
a small region far away from the source of the radiation.

But we can also apply d’Alembert’s solution to spherically symmetric
waves in three dimensions. Suppose that we are looking for solutions of the
wave equation that do not depend on the angular coordinates at all. So we
assume Ψ = Ψ(r, t). If the dimension of space equals d the wave equation
reduces to

(

∂2
r +

d− 1

r
∂r

)

Ψ =
1

c2
∂2

t Ψ . (361)

86Exercise: You could imagine trying to solve the Laplace equation too as an initial value
problem. Find a solution of the wave equation obeying Ψ(x, 0) = A cosnx/n and ∂tΨ = 0
at t = 0. Then find a solution of the Laplace equation obeying Φ(x, 0) = A cosnx/n and
∂yΦ = 0 at y = 0. You can choose n to be any integer. Why is this solution of the Laplace
equation useless in practice?
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We compare this with the identity

∂2
r (r

aΨ) = ra

(

∂2
rΨ +

2a

r
∂rΨ +

a(a− 1)

r2
Ψ

)

. (362)

If we set a = 1 and d = 3 we see that the equation for spherical waves
becomes

∂2
r (rΨ) =

1

c2
∂2

t (rΨ) . (363)

The general solution of this equation is easily obtained from d’Alembert’s
formula. In fact it is

Ψ =
1

r
f(r + ct) +

1

r
g(r − ct) , (364)

where f and g are arbitrary functions. There is still a significant difference
between one and three dimensions though, because when r is large the func-
tion Ψ itself falls off like 1/r. See Figure 24, where f has been set to zero in
order to get a purely outgoing wave.

Figure 24: Plane waves and spherical waves depend on initial data that can
be chosen to be discontinuous, and then the discontinuities propagate through
spacetime. But the discontinuities in the spherical wave fall off with distance.

It is clearly a pleasant surprise that the physical dimension d = 3 turns
out to be especially simple to treat.87 As in the one dimensional case, the

87Exercise: Try the more general Ansatz Φ = c1r
aΨ + c2r

a+1∂rΨ where Ψ = Ψ(r, t)
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spherical wave can be turned on and turned off at will. One consequence, as
will become clear when we study the Green function, is that when someone
plays the piano you hear each note distinctly and only once. Given that sound
waves obey the wave equation this simply would not be true in a space of
only two dimensions, where the effect of each individual note would ‘ring on’
in a way that would disturb the pleasure. We say that the three dimensional
wave equation obeys Huygens’s principle in its strong form, while the two
dimensional wave equation does not. Exactly what we mean by this phrase
will become clear soon (although for two dimensions you will have to consult
Jackson’s problem 6.1.a). A condition that can be imposed in any dimension
is that there are no waves propagating into the past, a seemingly obvious
statement that will require a condition on the Green function.

Green functions for the wave equation

To solve the initial value problems that we will encounter we want to have
the ‘inverse’ of the d’Alembert operator at hand. That is to say, we want to
find a Green function G(x, x′) such that

2G(x, x′) = δ(x, x′) , (365)

where the argument consists of Minkowski space coordinates, that is to say
it includes both space and time. We have to carefully specify the condi-
tions under which the inverse exists and is unique because, like the Laplace
equation, the wave equation admits homogeneous solutions.

In his section 6.4 Jackson’s opening move is a Fourier transformation with
respect to time. He defines

Ψ̃(x, ω) =
∫ ∞

−∞
Ψ(x, t)eiωt dt . (366)

This turns the wave equation into the Helmholtz equation,

(

∇2 − 1

c2
∂2

t

)

Ψ(x, t) = 0 ⇔
(

∇2 +
ω2

c2

)

Ψ̃(x, ω) . (367)

solves the d dimensional wave equation. In what dimensions can you arrange that Φ solves
the 1 + 1 dimensional wave equation?
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Then Jackson reaches the answer rather quickly. We will however proceed in
a more direct manner here.

Recall that the aim is to be able to write the solution of the inhomoge-
neous equation

2Ψ = f (368)

on the form

Ψ(x, t) =
∫

G(x, t;x′, t′)f(x′, t′) d3x′dt′ . (369)

Now the source f(x, t) may have the property that f = 0 for t < 0. Then we
are interested in the situation that there are no waves present when t < 0,
and that the disturbance propagates outwards from the source with the speed
c. Hence we insist that

G(x, t;x′, t′) = 0 if t < t′ +
|x − x′|

c
. (370)

The particular Green function that obeys this condition is called the retarded

Green function, and denoted Gret. It has the property that we see the effects
of a change in the source only after it has happened. There is an advanced

Green function as well, in which we see them only before it has happened.
Mathematically, both are legitimate, but the retarded Green function is bet-
ter adapted to the physics. Either way, we know from our discussion of the
Laplace operator that, because homogeneous solutions exist, it is necessary
to impose some conditions before we can invert the operator.

We now recall Huygens’ principle in its strong form. The signal from the
source should be heard only once. To build this in we also impose

G(x, t;x′, t′) = 0 if t > t′ +
|x − x′|

c
. (371)

If this can be arranged then the retarded Green function must take the form

Gret(x, t;x
′, t′) = g(x,x′)δ

(

t− t′ − |x − x′|
c

)

. (372)

For dimensional reasons the function in front has to have the dimension of
inverse length, and because of translational symmetry it can only depend on
|x − x′|. So we have reached the Ansatz
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Gret(x, t;x
′, t′) =

δ
(

t− t′ − |x−x′|
c

)

|x − x′| . (373)

It only remains to check that this function (or distribution) obeys 2G = δ.
This is a straightforward calculation, especially since we can use spherical

polar coordinates for the calculation. Nothing depends on the angles, so what
we do is to observe that88

2Gret(r, t) =
(

∇2 − 1

c2
∂2

t

) δ
(

r
c
− t

)

r
= ∇ ·

(

1

r
∇δ + δ∇

(

1

r

))

− 1

c2
δ′′

r
=

(374)

=
1

r
∇2δ + 2∇

(

1

r

)

· ∇δ + δ∇2
(

1

r

)

− 1

c2
δ′′

r
= . . . = δ∇2

(

1

r

)

.

But we know that ∇2(1/r) = −4πδ(3)(x), so—after adjusting a constant—we
have verified that

2Gret(r, t) = −4πδ(4)(x, t) . (375)

The conclusion is that, once we have imposed the condition that causes come
before effects, the Green function (373) has the property that

2Ψ = f ⇔ Ψ(x, t) = − 1

4π

∫

Gret(x, t;x
′, t′)f(x′, t′) d3x′dt′ . (376)

When we apply this to radiation problems in electrodynamics we will come
to appreciate the meaning of the ‘retarded’ condition much better.

Monopole and dipole radiation

Let us consider the simplest possible source of radiation: We choose it to be
a function of the form f(x, t) = F (t)δ(3)(x). Using the expression for the
retarded Green function we immediately obtain the signal

88Exercise: Fill in the dotted part of the calculation.
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Ψ(x, t) = − 1

4π

F (t− r/c)

r
. (377)

Wherever we are we can read off what happened at the origin, but only with a
time delay, and the strength of the signal decreases linearly with the distance
r. It travels with velocity c, which in this application may be thought of as
the velocity of sound.

With a view to what happens in electrodynamics, let us now consider
a dipole source. We place one monopole source at the origin and one of
opposite signature at a point displaced with ǫ along the z-axis, so that the
source is

s(x, t) = F (t)δ(3)(x) − F (t)δ(3)(x′) , x′ = x − ǫ







0
0
1





 . (378)

We take the limit ǫ→ 0 in such a way that f(t) = ǫF (t) remains finite. Again
applying the retarded Green function we obtain, in this limit, the signal89

Ψ(x, t) =
cos θ

4π
∂r

(

f(t− r/c)

r

)

= −cos θ

4π

(

f ′(t− r/c)

cr
+
f(t− r/c

r2

)

.

(379)
The point to notice here is that there are two quite different regions of space
to pay attention to, the near zone where the second term dominates and in
which we observe the field from an oscillating dipole, and a far zone at large
r in which only the first term matters and we see radiation falling off with
distance in the way we expect it to do. As we will soon see, in electrodynamics
there are no monopole sources, and hence there is always a near zone and a
far zone to consider.

Electromagnetic radiation

Now for a first look at the electromagnetic case. In vacuum the components
of the electric and magnetic fields obey the wave equation, with c = the
speed of light. In the presence of sources Maxwell’s equations imply

89Exercise: Show this, using some care.
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2E = − 1

ǫ0

(

−∇ρ− 1

c2
∂tJ

)

(380)

2B = −µ0∇× J . (381)

If we know how the sources ρ and J behave we can calculate the electric and
magnetic fields. For example

B(x, t) = Bin(x, t)−
1

4π

∫

Gret(x, t;x
′, t′)(−µ0∇′ × J(x′, t′)) dt′d3x′ . (382)

Here the in-field Bin is any solution of the homogeneous equation 2B = 0.
It is not ‘caused’ by the sources. We set it to zero for simplicity, that is
Bin = 0 from now on, and turn to the interesting second term. Because of
the delta function in the definition of Gret, eq. (373), we can do the integral
over t′ directly, but once this is done the quantities in the integrand have to
be evaluated at the retarded time

tret = t′ = t− |x− x′|
c

. (383)

With this understanding our solution for the magnetic field is

B(x, t) =
µ0

4π

∫

[∇′ × J′]ret
|x − x′| d3x′ . (384)

For the electric field we obtain in a similar way that

E(x, t) =
1

4πǫ0

∫

[

−∇′ρ′ − 1
c2
∂′tJ

′
]

ret

|x − x′| d3x′ . (385)

Because the integrands are to be evaluated at the retarded time, it takes a
little effort to get used to these formulas.

Physically it is clear what is going on. The fields evaluated at some
observation point x at time t is affected by the behaviour of the sources in
the past, and more precisely by their behaviour on the past lightcone of the
observation point. See Figure 25.

We still have to be careful when manipulating the formulas. In particular
it should be kept in mind that
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Figure 25: At the point x we detect radiation from accelerated charges crossing
the backwards lightcone at some retarded time.

[∇′ρ′ ]ret 6= ∇′ [ρ′ ]ret . (386)

To see why, we write things out. It will be convenient to introduce

R = |x − x′| , eR =
x − x′

|x − x′| . (387)

The point is that [ρ′(x′, t′)]ret depends on x′ in two different ways. Indeed

∇′ [ρ′(x′, t′) ]ret = ∇′ρ′
(

x′, t− R

c

)

=

(388)

= [∇′ρ′]ret + [∂t′ρ
′]ret ∇′

(

t− R

c

)

= [∇′ρ′]ret +
eR

c
[∂t′ρ

′]ret .

After performing a similar calculation for the current we can conclude that

[∇′ρ′]ret = ∇′ [ρ′]ret −
1

c
[∂t′ρ

′]ret eR (389)

[∇′ × J′]ret = ∇′ × [J′]ret +
1

c
[∂t′J

′]ret × eR . (390)

These are the expressions that we must use in the integrands of equations
(384 - 385).

You will observe that the solution contains a factor falling off like 1/r in
the integrand. Nevertheless, in the static case the solution must reduce to our
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previous solutions for the electric and magnetic fields from static sources,90

even though the latter fall off like 1/r2. However, you will also recall that
it is easier to obtain the static solutions if we first solve for the electric
potential and for the vector potential. Radiation problems can be handled
in an analogous way, and we turn to this task next.

For the exercise class:

• Consider a three dimensional surface in spacetime, given by some func-
tion f(x, t) = 0. What conditions do you have to impose on the hyper-
surface in order to guarantee that there exists a solution of the wave
equation which is zero on one side of this ‘hypersurface’, and non-zero
on the other? Give two interesting examples.

• Consider the driven harmonic oscillator

ẍ+ ω2
0x = f(t) .

Using Fourier transformation find a Green function GR(t) obeying

G̈R + ω2
0GR = δ(t) , GR(t) = 0 if t < 0 .

Use it to write down the general solution for the driven harmonic oscilla-
tor. Repeat the exercise for the damped and driven harmonic oscillator

ẍ+ γẋ+ ω2
0x = f(t) , γ > 0 .

How much of this can you do if you replace the condition on the Green
function with the condition GA = 0 for t > 0?

• In a d-dimensional space (d > 2) the Green function for the Laplace
equation is (up to a constant) G(r) = 1/rd−2. Prove that δ(r− t)/rd−2

is a Green function for the wave equation if and only if d = 3.

• Jackson, problem 6.1.

90Exercise: Verify that it does.
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RADIATION IN THE LORENZ GAUGE91

Let us now come to grips with electromagnetic radiation making full use of
the vector potential, the tensor formalism, and (of course) Gaussian units.

The vector potential, tensorially

Maxwell’s equations are the two tensor equations











∂βF
αβ = 4πJα

∂αFβγ + ∂γFαβ + ∂βFγα = 0 .
(391)

Next we bring in a kind of generalized Stokes’ theorem, valid in any dimen-
sion. It says that

Fαβ = −Fβα

∂αFβγ + ∂γFαβ + ∂βFγα = 0











⇔ Fαβ = ∂αAβ − ∂βAα . (392)

This is to say that such a vector field Aα exists if and only if there exists
a tensor Fαβ obeying the stated conditions. That vector field is determined
only up to a gradient because

∂αAβ − ∂βAα = 0 ⇔ Aα = ∂αΛ (393)

for an arbitrary function Λ. The theorem holds in any dimension provided
only that every loop can be contracted to a point, and it is easy to prove in
one direction. We take the other direction on trust.92

This solves one out of the two Maxwell equations. The other becomes

∂βF
αβ = ∂β(∂αAβ − ∂βAα) = −2Aα + ∂α(∂βA

β) = 4πJα . (394)

91Reference: This is not a misprint. See H. Kragh, Ludvig Lorenz on Light and Elec-

tricity, arXiv:1803.06371.
92Exercise: We know that the existence of the vector potential A follows from the

condition ∇ ·B = 0. Show that this is a consequence of the theorem in the text.
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If the ambiguity in Aα can be utilized to ensure that

∂ ·A = ∂αA
α = 0 (395)

then the equation left to solve is

2Aα = −4πJα . (396)

If the sources are known the solution is

Aα(x) =
∫

Gret(x; x
′)Jα(x′) d4x′ . (397)

It is over. But we have to go over the argument again, first to see how it
is connected to the familiar vector formulation of Maxwell’s equations, and
then to make sure that we can indeed assume that ∂ · A = 0.

Translation

The components of Jα are J0 = ρ and J i = Ji/c. So it is immediately clear
that

∂αJ
α = 0 ⇔ ∂tρ+ ∇ · J = 0 . (398)

A little more care is needed to see how the electric potential enters the tensor
equations. Set

Aα = (A0,A) . (399)

Recall that the claim that the electric field is the gradient of a function
rested on the assumption that ∇ × E = 0, which is true only in the static
case. According to how the 4-vector potential was introduced we now have

Ei = Fi0 = ∂iA0 − ∂0Ai (400)

Bi =
1

2
ǫijkFjk = ǫijk∂jAk . (401)

So the magnetic field is indeed given as the curl of the spatial part of Aα.
Remembering that ∂0 = 1/c ∂t we define its time component as

124



A0 = −Φ , (402)

and obtain for the electric field that

E = −∇Φ − 1

c
∂tA . (403)

The last term was missing in the static case.93 94

The Lorenz gauge

When doing magnetostatics we found it convenient to impose the Coulomb
gauge ∇ · A = 0. We reached this gauge by solving Poisson’s equation for a
suitable function Λ to be added to any vector potential that does not obey
this condition. We could repeat this maneouvre here, but we would prefer
to impose the Lorenz gauge

∂ ·A = ∂αA
α = ∇ · A− 1

c
∂tA0 = ∇ · A +

1

c
∂tΦ = 0 . (404)

Can this always be done? To answer this question we argue as follows: First
we use Maxwell’s equations to show that

2∂ · A = −4π∂αJ
α = 0 . (405)

Hence, in every solution of Maxwell’s equations, the field ∂ · A obeys the
homogeneous wave equation also in the presence of sources. But this means
that we can impose the condition ∂ ·A = 0 as part of the initial conditions for
Maxwell’s equations, and then the wave equation guarantees that ∂ · A = 0
for all times.

It is worth noting though that imposing the Lorenz gauge is a somewhat
different matter from that of imposing the Coulomb gauge. With suitable
boundary conditions the condition ∇·A = 0 determines the vector potential
uniquely. But consider the 4-vector potentials Aα and A′

α, where

93Exercise: In Gaussian units Faraday’s law reads ∇ × E + 1/c ∂tB = 0. Derive eq.
(403) directly from this.

94In vacuum a plane electromagnetic wave is defined by E = (f(z−ct), g(z−ct, 0), where
f and g are arbitrary functions. Show that you obtain a solution of Maxwell’s equations
with a suitable choice of B. Also find the four vector potential Aα.
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A′
α = Aα + ∂αΛ . (406)

Suppose that ∂ · A = 0. Provided that the function Λ is a solution of the
homogeneous wave equation, 2Λ = 0, the gauge transformed vector potential
will also obey the Lorenz condition, ∂ · A′ = 0. This subtlety has quite a
few consequences in quantum electrodynamics, but we do not have to worry
about it here.

We then have only the wave equation left to solve. In the Lorenz gauge the
general solution to Maxwell’s equations driven by known sources is derived
from the 4-vector potential

Aα(x) = Aα
hom(x) +

∫

Gret(x, x
′)Jα(x′) d4x′ =

(407)

= Aα
hom(x) +

∫

[Jα(x′)]ret
|x − x′| d3x′ ,

where Aα
hom is any solution of the vacuum equations (with no sources).

Unfortunately we do not have the time needed to do much with this
formula. It would take us into the second half of Jackson.

Radiation from accelerated charges

Figure 25 remains relevant: At a given point the solution is affected by the
sources only by their behaviour on the past light cone of that point. But
this raises many questions. In space, the electric field lines emanating from
a static charge point straight out from (or into) the charge. This is natural.
But we found, by Lorentz transforming that solution, that the electric field
lines continue to point out from the momentary position of the charge also
when it is moving with constant velocity. See Jackson’s Figure 11.9 and our
Figure 26. The direction of the field lines seems to have nothing to do with
the position of the charge at the retarded time. There is actually no problem
with this. If the particle moves with constant velocity its position at any
time is predictable at the retarded time.

Continuing this train of thought, we may consider the electric field lines
emanating from an electric charge that was moving with constant velocity

126



Figure 26: At any given time the field lines from a charged particle moving with
constant speed point straight out from its present position.

Figure 27: If a particle suddenly changes its speed it will be necessary to connect
the field lines (at t = 0) in a way that is left for you as an exercise.

until some time t0 < 0 in the past (taking t = 0 to be the present), then
decelerated sharply, and became static shortly after. This is depicted in
Figure 27. On reflection one sees that, at t = 0, there will be a sphere around
the position of the charge where the electric field lines point radially outwards
from the charge the way they do in electrostatics. There will also be a slightly
bigger sphere such that none of the points outside it have been reached by
the information that the charge stopped moving at t = t0. In this region
the field lines must be pointing out from the position that the charge would
have reached, had it continued to move with constant velocity. Jackson’s
Figure 11.9 also shows that they crowd together along the directions that
are orthogonal to the velocity vector. But the field lines must exist also in
between the spheres. Thinking this through one realises that there must be
a shell of transverse electric fields moving out with the speed of light from
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the final position of the electric charge.95 96 This explains why an electric
charge must emit radiation when it changes its state of motion.

It is important to see how the amplitude of the fields fall off with distance.
For a static charge the inverse square law holds, so the electric field E from
a charge e is E ∼ e/r2. If we assume (as turns out to be correct) that the
radiation fields coming from an accelerated particle depend linearly on its
acceleration a, dimensional analysis shows that

E ∼ ea

rc2
. (408)

Since the amplitude falls off only like 1/r this means that electromagnetic
radiation can travel long distances before it becomes too weak to detect.97

Radiation in the Coulomb gauge

While the Lorenz gauge is very useful in radiation problem, it is still true
that we can fix the gauge freedom by imposing the Coulomb gauge ∂iAi = 0
also in the time dependent case. But then there is an apparent paradox when
we look at Maxwell’s equations, because the time derivatives drop out of one
of them:

2A0 − ∂0(∂iAi − ∂0A0) = ∇2A0 = −4πJ0 (409)

2Ai − ∂i(∂jAj − ∂0A0) = 2Ai + ∂i∂0A0 = −4πJi . (410)

This means that the time component A0 is now determined by Poisson’s
equation also in the time dependent case. Thus, at a given time it is deter-
mined by what the source is doing at the same instant of time. Does this
contradict relativistic causality?

95Exercise: Make a sketch showing how the electric field lines in Figure 27 must be
completed, and verify that there is a shell of transverse radiation moving outwards with
the speed of light.

96Reference: If you failed to do the exercise, take a look at R. Y. Tsien, Pictures of

dynamic electric fields, Am. J. Phys. 40 (1972) 46. You will find this and many other
illuminating illustrations there.

97Exercise: Apply local conservation of energy to a spherical electromagnetic wave.
Show that the amplitudes of the fields in the wave must fall off like 1/r, and hence that
radiation fields do not follow the inverse square law.
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The answer is no, because the physics is determined by the electric and
magnetic fields, not by the vector potential directly. If we work out the
electric field in the Coulomb gauge we find (in Gaussian units and in short
hand notation)

Ei = Fi0 = ∂iA0 − ∂0Ai = ∂iA0 + ∂0
1

2
(4πJi + ∂i∂0A0) =

=
4π

2
∂0Ji + ∂i

1

2
(2A0 + ∂0∂0A0) = (411)

=
4π

2
∂0Ji + ∂i

1

2
∇2A0 =

4π

2
(∂0Ji − ∂iJ0) .

We made use of both of the Coulomb gauge equations, eq. (410) in the third
step and (409) in the last. The result is exactly the same as the one we had in
equation (385), which was derived without introducing the vector potential
at all.98 The non-locality present in Poisson’s equation affects only gauge
dependent quantities, not the gauge invariant electric field.

The Hertz dipole

It would be a pity not to include the radiation from an oscillating dipole here,
even though Jackson has it in his chapter 9. We use the simple strategy of
writing down an Ansatz for the field, and we check at the end that it is indeed
the field we want. First we introduce a function

f = f (t− r/c) (412)

where r is the distance from the origin. In this connection it is known as the
Hertz potential. For the vector potential A we try

Ax = Ay = 0 , Az =
f ′

cr
. (413)

By construction this solves the wave equation. In the Lorenz gauge the
electric potential is then given by

98Exercise: To see that they are the same you have to decipher the notation. Do that.
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1

c
∂tΦ = −∂zAz = −∂r

∂z
∂rAz . (414)

This is solved by

Φ =

(

f ′

cr
+
f

r2

)

z

r
. (415)

Hence we have a solution of Maxwell’s equations, with the Lorenz gauge built
in. Switching to spherical polars, also for the vector field A, we obtain

Ar =
f ′

cr
cos θ Aθ = −f

′

cr
sin θ Φ =

(

f ′

cr
+
f

r2

)

cos θ , (416)

all other components zero. From this we compute the electric and magnetic
fields using the familiar formulæ

B = ∇× A , E = −1

c
∂tA −∇Φ . (417)

The result is

Er =

(

2f ′

cr2
+

2f

r3

)

cos θ Eθ =
f ′′

c2r
sin θ +

(

f ′

cr2
+
f

r3

)

sin θ (418)

Bφ =

(

f ′′

rc2
+

f ′

r2c

)

sin θ , (419)

all other components vanishing.
We can now investigate this field in the near zone and in the far zone. In

the near zone the terms with the highest power of r in the denominator will
dominate, so we have

Er ≈
2f

r3
cos θ Eθ ≈

f

r3
sin θ Bφ ≈ f ′

r2c
sin θ . (420)

This is the field created by an electric dipole at the origin with dipole mo-
ment f along the z-axis, together with a magnetic field created by a current
directed along the z-axis. If we choose the function f to be periodic we con-
clude that the source of our electromagnetic field is an oscillating dipole. To
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be able to delineate the near zone with some precision, let us assume that
the time dependence is sinusoidal, f = A sin (ωt− kr). For the orders of
magnitude we then find that

f ′ ∼ ωf =
c

λ
f , f ′′ ∼ ω2f =

c2

λ2
f . (421)

By inspection we see that we are in the near zone if r << λ.
If r >> λ we are in the far zone. Then the terms with the lowest power

of r in the denominator dominate, and we have

Eθ ≈
f ′′

rc2
sin θ Bφ ≈ f ′′

rc2
sin θ , (422)

all other components approximately vanishing. This is a transverse elec-
tromagnetic field whose amplitude is proportional to the acceleration of the
oscillating dipole and inversely proportional to the distance from the source.99

Problem 6: Show that a possible choice of the vector potential is

Aα =
∫ 1

0
sxβFβα(sx) ds . (423)

This is known as the Poincaré gauge, for which xαAα = 0.

99Exercise: Check that this field does obey Maxwell’s equations. Where is the source?
Also calculate the Poynting vector in the far zone, and hence derive an expression for the
energy flow there.
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PLANE ELECTROMAGNETIC WAVES

We turn our attention to plane electromagnetic wave propagating in linear
media, D = ǫE and B = µH. Locally any electromagnetic wave looks plane,
so this is an interesting case. When the wave meets a boundary where the
dielectric constant changes a part of the wave is reflected while another part
enters the other medium with a changed direction. The latter phenomenon is
called refraction. We want a quantitative theory of reflection and refraction.

I will use Gaussian units throughout.

Monochromatic plane waves

Let us assume that ǫ and µ are constant as functions of space. It is still
important to remember how they arise. In the medium ǫ (and perhaps also
µ) differs from 1 due to interaction with molecules. The latter can be thought
of as harmonic oscillators, with various resonance frequencies. This means
that ǫ = ǫ(ω) will depend on the frequency ω of the wave. We therefore
begin by isolating the part of the wave that has a definite frequency, known
as a monochromatic wave.

We do this by means of a Fourier transformation in time, so that

Ẽ(x, ω) =
∫ ∞

−∞
E(x, t)eiωt dt ⇔ E(x, t) =

1

2π

∫ ∞

−∞
Ẽ(x, t)e−iωt dt (424)

and similarly for B. We assume that we are in a linear medium with ǫ and
µ being constants, drop the tildes, and obtain Maxwell’s equations for the
Fourier transformed fields in the form

∇ · E = 0 ∇× E− i
c
ωB = 0

∇ · B = 0 ∇× B + i
c
ωµǫB = 0

. (425)

From this we obtain Helmholtz’ wave equation for E,

∇2E(x, ω) +
1

c2
ω2µǫE(x, ω) = 0 , (426)
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and similarly for B.
To describe the plane wave solutions we introduce three constant unit

vectors ǫ1, ǫ2, and n. Using k = kn we find the solutions of the wave
equation to be

E = ǫ1E cos (k · x − ωt+ phase) (427)

B = ǫ2B cos (k · x − ωt+ phase′) , (428)

where

k2 =
ω2µǫ

c2
. (429)

The full set of Maxwell’s equations relate the electric and magnetic fields to
each other. One finds that the phases that occur in the solutions are the
same,

phase′ = phase , (430)

the amplitudes are related by

B =
√
µǫE , (431)

and the unit vectors that we have introduced must form an orthonormal set,

n · ǫ1 = n · ǫ2 = ǫ1 · ǫ2 = 0 . (432)

Figure 28: The three orthogonal vectors associated to a linearly polarized plane
wave.
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Thus the wave oscillates (along the ǫi) in a direction that is orthogonal to
the direction of propagation (along n), and the electric and magnetic fields
are orthogonal to and in phase with each other.100

The phase velocity of the wave is

vp =
c

√
µǫ

=
c

n
, (433)

where we defined the index of refraction

n =
√
µǫ . (434)

The velocity vp is called the phase velocity for a reason. The point is that
if we consider a wave propagating through a dielectric medium then the
dielectric constant, and hence the index of refraction, will be a function of ω.
When this happens the phase velocity depends on the frequency of the wave,
and is not necessarily equal to what we would like to call the velocity of the
wave packet that we obtain by superposing waves of different frequencies.

Polarisation

There is more structure to be noticed. We begin by writing down two linearly
independent solutions for the electric field,

E1 = E1ǫ1 cos (k · x − ωt)

(435)

E2 = E2ǫ2 cos (k · x − ωt+ phase) .

The corresponding magnetic fields are easily written down when one wants
them. These solutions are said to be linearly polarized because they oscillate
in some constant direction. The general solution is a linear combination of
the two. And unless the phase is set to zero, the direction of the electric field
will rotate in the (ǫ1, ǫ2)–plane. This gives rise to elliptic polarizations, as
well as two circularly polarized fields. See Figure 29.

100Exercise: Prove that Maxwell’s equations do what I just claimed.
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Figure 29: Linear, elliptical, and circular polarisation of an electromagnetic wave.
For simplicity I have set E1 = E2 in the solution. In the picture the relative phase
varies between 0 and π/2.

For serious calculations it is advisable to switch to a complex notation.
We set

E = Re
[

ǫ1αe
i(k·x−ωt)

]

(436)

where α is a complex number. Because the equations are linear in E and B

we get, for instance,

∇× (Re[E]) = Re[∇× E] . (437)

That is to say, we can do all the calculations using complex fields, and extract
real parts at the end. But here we stick to real fields throughout.

Reflection and refraction

It is time to let a plane wave hit the (plane) boundary between two different
media, say air and water. The light rays are directed orthogonally to the
surfaces of constant phase. When they hit the boundary at an angle θi some
of them will be reflected and some of them will cross the boundary at an
angle θr called the angle of refraction. Snell’s law for how θi and θr are
related in terms of the index of refraction for the two different media is an
immediate consequence of the wave description of light. See Figure 30.

But there is more to this. We want to derive the relative amplitudes of the
incoming, reflected, and refracted waves. Moreover we want to investigate
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Figure 30: How to derive Snell’s law. The wavelength depends on the index of
refraction as λ = 2πc/nω.

the effects of the polarisation of the incoming light. Polarisation will be
important because the calculation is an exercise in using what we know:
that the normal components of D and B, and the tangential components
of E and H, are continuous across the boundary. This gives two cases to
consider, when E is tangential to the boundary and when B is tangential to
the boundary. Afterwards a superposition can be made. For the details of
the calculation, see Jackson’s sections 7.1-4.

The results can be stated as follows: Let E0, E
p
0rime, E

′′
0 be the ampli-

tudes of respectively the incoming, refracted, and reflected field. When E is
tangential to the boundary

E ′
0

E0

=
2n cos θi

n cos θi + µ
µ′

√

n′ 2 − n2 sin2 θi

(438)

E ′′
0

E0

=
n cos θi − µ

µ′

√

n′ 2 − n2 sin2 θi

n cos θi + µ
µ′

√

n′ 2 − n2 sin2 θi

.

When B is tangential to the boundary

E ′
0

E0
=

2nn′ cos θi

µ
µ′
n′ 2 cos θi + n

√

n′ 2 − n2 sin2 θi

(439)
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E ′′
0

E0
=

µ
µ′
n′ 2 cos θi − n

√

n′ 2 − n2 sin2 θi

µ
µ′
n′2 cos θi + n

√

n′ 2 − n2 sin2 θi

.

There is interesting physics in these formulas.101 Let us just mention that the
case n > n′ clearly deserves further thought. It has interesting applications
when you try to transmit light through a pipe made of some suitable dielectric
material. Again I have to refer to Jackson for the details.

A Gaussian beam

The plane waves are clearly of physical interest, and locally every wave looks
like a plane wave. But it would be interesting to see a wave transporting a
finite amount of energy, looking perhaps like the beam from a laser. This
actually forces us to make the wave non-monochromatic, but we can stay
with monochromatic waves if we make the paraxial approximation. Let us
consider the scalar wave equation, and make the Ansatz

Ψ(t, x, y, z) = ψ(x, y, z)ei(kz−ωt) . (440)

This should be a beam propagating close to the z-axis. We now make the
approximation that

|∂2
zψ| << k|∂zψ| . (441)

Dropping the ∂2
zψ–terms from the wave equation for Ψ we find that it turns

into

i∂zψ = − 1

2k
(∂2

x + ∂2
y)ψ . (442)

This is the paraxial approximation to the wave equation. It also happens to
be the Schrödinger equation for a free particle in the plane. A solution is
easily seen to be

ψ =
1

w2
0 + 2iz/k

exp

(

− x2 + y2

w2
0 + 2iz/2

)

. (443)

101For the second case, find an angle such that there is no reflection. What are the
broader implications of this for the fabrication of sunglasses?
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The parameter w0 is called the waist of the beam, and it has to be significantly
larger than the wavelength in order for the paraxial approximation to hold
good.102 And this is as far as we will go into laser physics, and as close as
we will get to the interesting subject of diffraction (in Jackson’s chapter 10).

Problem 7: Derive equations (439) in full detail, starting from Jackson’s
Figure 7.6b.

102Exercise: Check the statements made here, and plot the intensity of the wave for a
some selected values of w0.
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ELECTRODYNAMICS IN MEDIA

We are now in position to ask what happens inside a medium when we
no longer assume that everything is static. In particular we can consider
electromagnetic waves propagating in media.

A model for the medium

In the spirit of our treatment of electrostatics in media we try to get by
with a very simple model of how the electrons inside the medium respond
to an imposed electric field. What we do want the model to catch is the
fact that the response depends on the frequency of the time-varying electric
field. So we will consider a single Fourier mode E(ω,x). We assume that the
electrons are bound to their positions with harmonic forces, which means
that they respond as damped harmonic oscillators. They oscillate around
their equilibrium positions according to

m(ẍ + γ0ẋ + ω2
0x) = −eE(x, t) . (444)

For simplicity we assume that the amplitude is small enough so that we can
regard the electric field as being constant in space. For later purposes it is
also important to record that it is reasonable to assume that γ0 << ω0.

If we Fourier transform over time and consider a single mode we can solve
the harmonic oscillator equation to obtain the resulting dipole moment

p(ω) = −ex(ω) =
e2

m

E(ω)

ω2
0 − ω2 − iωγ0

. (445)

In the static limit, ω = 0, this reproduces eq. (219). We will assume that the
medium is sufficiently dilute so that we can ignore the distinction between
the macroscopic field E and the field Emol that actually acts on the molecules.
Our focus will be on the fact that the response of the medium depends very
much on how close the frequency of the wave is to the eigenfrequency ω0 of
the oscillator.

Now there will be Z electrons per molecule, each contributing to the
dipole moment according to the above. We take it that fi of those electrons
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can be described as oscillators of eigenfrequency ωi. Evidently

∑

i

fi = Z . (446)

Finally there will be N molecules per unit volume. Following the discussion
in the static case we calculate the total contribution to the dielectric constant,
and end up with

ǫ(ω) = ǫ0 +
Ne2

m

∑

i

fi

ω2
i − ω2 − iωγi

. (447)

Because we assumed γi << ωi this is close to being real for most frequencies,
but when the applied frequency ω is close to a resonance frequency ωi damp-
ing does become important. When we come to wave propagation we will be
especially interested in how the real part varies with ω. Regions where its
derivative is negative are called regions of anomalous dispersion, for a reason
that will become clear when we discuss the group velocity of the wave.103

Low and high frequency behaviour

What happens in the limit when the frequency of the applied field goes
to zero depends on whether there is a resonant frequency with ω0 = 0, or
not. If there is, then there are free electrons present and the medium is a
conductor. If there is not, then the medium is an insulator and our formula
for ǫ(ω) becomes a formula for the molecular polarizability that appears in
the Clausius–Mosotti equation,

γmol =
e2

ǫ0m

∑

i

fi

ω2
i

. (448)

To get a feeling for its magnitude we assume that the frequencies appearing
here are of the order of the frequencies of light emitted by atoms, say 1016

s−1. If so the electronic contribution to γmol should be about 10−29 m3, or
about one Ångström cubed, which is reasonable.104

103Exercise: Suppose that there is only one term in the sum. When exactly is the
derivative of Re[ǫ(ω)] equal to zero? When is it negative?

104Exercise: Check this, and compare to Problem 5.
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If there are free electrons present the term with eigenfrequency zero is
singled out for special attention. We get

ǫ(ω) = ǫ0 +
Ne2

m

if0

ω(γ0 − iω)
+
Ne2

m

∑

i>0

fi

ω2
i − ω2 − iωγi

=

(449)

= i
Ne2f0

mω(γ0 − iω)
+ ǫb ,

where ǫb is defined to include all the contributions from the bound electrons.
Let us focus on the first term, which is singular in the static limit. To under-
stand its significance we look at the Ampère-Maxwell equation, which is the
one where the electric current makes its appearance. Inside a conductor we
can use Ohm’s law J = σE, where σ is the conductivity. If the displacement
field D varies like e−iωt we obtain

∇×H = J + ∂tD = −iω
(

ǫ+ i
σ

ω

)

E . (450)

The fit with equation (449) is perfect provided we regard the dielectric con-
stant ǫ as coming from the bound electrons. Once we have set ǫ = ǫb the
conductivity must be

σ =
Ne2f0

m(γ0 − iω)
. (451)

This is the Drude model for the electrical conductivity. To do better one has
to bring quantum mechanics in.

At the other end of the spectrum, when the applied frequency is clearly
higher than all the vibration frequencies in the medium, we obtain

ǫ(ω) = ǫ0

(

1 − ω2
p

ω2

)

, (452)

where

ω2
p =

NZe2

ǫ0m
. (453)
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The frequency ωp depends on the total number NZ of electrons per volume,
and is known as the plasma frequency of the medium. In a plasma all the
electrons are free and we are always in the high frequency limit as defined
here, whereas we have to have ω >> ωp if a dielectric medium is to be
described by this limit.

Our all too brief account of the mechanism behind the interaction of light
and matter is at its end.105

Dispersion and group velocity

We now return to equation (433), which gives the phase velocity of a single
frequency or monochromatic plane wave propagating through a medium. For
many kinds of media we can assume that µ ≈ µ0, but as we have just seen
we expect ǫ to be a non-trivial function of ω. To begin with we assume that
it has no imaginary part, that is to say that the damping can be neglected.
According to our assumptions about the medium this will be true except
close to the resonance frequencies where anomalous dispersion occurs. But
we still have a non-trivial relation between the frequency ω and the wave

number k to deal with, namely

ω =
ck

√

µǫ(ω)
=

ck

n(ω)
. (454)

Given that the index of refraction n depends on ω there is a relation between
the frequency and the wave number, which we write in the form

ω = ω(k) . (455)

As you can deduce from Jackson’s Figures 7.8 and 7.9 this can be a highly
non-trivial function. (Solving for k = k(ω) would be less useful for now.)

We are now in a position to superpose solutions with different frequencies,
and form wave packets

Ψ(x, t) =
∫ ∞

−∞
A(k)ei(kx−ω(k)t) dk . (456)

105Reference: A nice survey is V. Weisskopf, How light interacts with matter, Scientific
American 1968 no 3 p. 61.
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At a given time this is a wave packet having some shape as a function of x.
But as the wave propagates the speed of propagation depends on k, which
means that some Fourier components move faster than others, and so the
shape of the wave changes with time. However, as long as the wave is a
recognizable peculiarity travelling through the medium, we want to know
the speed it is travelling at, and the speed with which energy is transported.

So we take a close look at the wave packet (456). Its initial shape can be
anything, and the Fourier components are moving with different speeds. Let
us however look at the interesting case when the function A(k) is strongly
peaked around some special wave number k = k0. Then we can expand

ω(k) = ω(k0) +
dω

dk |k0

(k − k0) + . . . , (457)

and we can ignore the higher order terms. Let us denote

vg =
dω

dk |k0

. (458)

We can now approximate

Ψ(x, t) ≈
∫ ∞

−∞
A(k)ei(kx−ω0t−vg(k−k0)t) dk =

(459)

= ei(k0x−ω0t)
∫ ∞

−∞
A(k)eik(x−vgt) dk = ei(k0x−ω0t)Ψ(x− vgt, 0) .

We see that the initial shape of the pulse is moving with the velocity vg,
which is known as the group velocity.106

In the first successful experiment to determine the speed of light Fizeau
used a rotating toothed wheel. Light pulses passing through an opening
between the teeth would be reflected by a mirror 8.6 km away. Depending
on the speed of light and the angular velocity of the wheel the light would
then either pass through or be blocked on its way back. In this way the
velocity of light in air was found to be close to 3.15 · 108 m/s, which was an
improvement on the value obtained by astronomers. The modern value for

106Exercise: Superpose the two waves a cos (ω1t− k1x) and a cos (ω2t− k2x) and suppose
that the difference ω1 −ω2 is small. Can you recognize a version of the group velocity? If
the energy density is proportional to the amplitude squared, how fast does it travel?
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the velocity of light in vacuum is c = 299792458 m/s (exactly, by definition
of the metre). The point here is that Fizeau actually determined the group
velocity of light in air.

A localized wave packet that is slowly deformed as it travels is only a
special case of a dispersive wave, that is to say a wave where the crests move
with a speed that depends on the frequency. An example worth watching is
provided by surface waves propagating on water that is deep enough com-
pared to the wavelength so that the waves are unaffected by the bottom of
the lake. You can create such waves by throwing a pebble into the lake. The
initial disturbance is complicated, but as it moves outwards the low frequency
components travel the fastest. What you will then see is a system of rings in
which new waves appear at the rear, travel through the group, and disappear
at the front. The waves are roughly sinusoidal but the wavelength grows in
the outwards direction. In this situation the group velocity determines the
speed with which regions of constant wave number spread, as well as the
speed with which such waves propagate energy.107 Since this is not equal
to the speed with which waves of constant wave number travel you have to
watch the phenomenon closely in order to see what is going on.108

Dispersion of electromagnetic waves

We now focus on plane electromagnetic waves in a medium with index of
refraction equal to n = n(ω). First we will compare the phase velocity to the
group velocity. Recall that the phase velocity is

vp =
ω(k)

k
=

c

n(ω)
. (460)

We expect the index of refraction to be larger than one, so the phase ve-
locity should be smaller than c. Phase velocities larger than c would not
necessarily cause any raised eyebrows, because we cannot send signals using

107Exercise: These waves obey the equation ω2 = gk where g = 9.82 m/s2. Compare the
group velocity to the phase velocity.

108Reference: For the theory you can consult J. Lighthill: Waves in Fluids, Cambridge
UP 1978.
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an infinitely long wave train with a fixed frequency.109 The group velocity is
more interesting. We find

vg =
1

dk
dω |k0

=
1

d
dω

(

nω
c

)

|k0

=
c

n+ ω dn
dω

. (461)

Typically this is smaller than the phase velocity. However, we recall that
when the frequency of the wave is close to a resonance frequency in the
medium then we are in a region of ‘anomalous dispersion’ where dn/dω is
negative. (See Jackson’s Figures 7.8 and 7.9.) When this happens the group
velocity is larger than the phase velocity. In fact, it may even be larger than
c, and this does cause raised eyebrows. It seems appropriate to end these
notes with an attempt to travel faster than light, so let us look into this a
little.

Figure 31: In an ordinary material the real part of the dielectric constant behaves
according to the dashed curve. If the population of the energy levels has been
inverted it will behave according to the black curve.

First of all the modern physicist is not confined to use materials that are
easily found in nature. It is possible to create materials that behave quite
differently from the illustrations shown by Jackson. One way to achieve
this is by means of optical pumping, which requires us to think in quantum
mechanical terms. Each atom in the medium has a discrete set of energy
levels, and under normal circumstances one expects the number of filled
levels to be proportional to the Boltzmann factor e−En/kT . For moderate
temperatures the ground state is the most populated one. Optical pumping

109Exercise: Post a large number of people equipped with semaphors along a straight
line. How can they be used to create a wave travelling faster than light?
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is a way to invert the population so that most of the atoms are in some
excited state. A passing light wave will cause them to revert to the ground
state through stimulated emission. Then our idea of damping is stood on its
head, since the medium actually delivers energy to the wave. A useful model
of what is going on is obtained by sticking to equation (447), but letting f
be negative. The result (for one oscillator) is illustrated in Figure 31. Where
the derivative is strongly positive we can create light pulses whose group
velocity is very low. When we are well below the resonance frequency we
find ourselves in a transparent band where the group velocity is larger than
the phase velocity, and the phase velocity is larger than c because n < 1.

Playing tricks like that, it is quite possible to obtain well defined wave
packets that in a sense move faster through the medium than they would
move in vacuum. Figure 32 is supposed to give the story away.110 There
have been some quite dramatic claims in this direction. The winner is the
claim by Heitmann and Nimtz, stating that Mozart’s 40th symphony was
sent through a tunnel of length 114 mm at a speed of 4.7 c.111

Figure 32: The dashed profile has propagated through vacuum. The smaller
profile has propagated through the medium, and on the face of it it looks as if it
has travelled faster than c. If the group velocity is negative it may even be said to
exit the medium (a thin slab) before it has entered it.

These claims fade a little under scrutiny. The time advance achieved for
Mozart’s symphony was less than a nanosecond, far too short to be notice-
able. Worse, the signal transmitted was for all practical purposes analytic.
Predicting it a nanosecond in advance from a low order Taylor series expan-
sion poses no problem at all. The pride of wave physics is that it admits

110Exercise: A locomotive moves at constant speed 100 km/s from Stockholm to Alvesta,
pulling six wagons when it starts off. How can you make the velocity of the centre of mass
of the train exceed 100 km/s?

111Reference: W. Heitmann and G. Nimtz, Phys. Lett. A196 (1994) 154.
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propagating discontinuities and the question at issue—if you want to chal-
lenge the supremacy of the magical velocity c—is whether such discontinuities
can propagate faster than c. The answer is no, as you can see in Jackson’s
section 7.11. Hence the consensus is that relativity is not under threat.112

I should have had more to say, but I end here.113

Problem 8: In equation (456) set A(k) = Ae−σ(k−k0)2 . Expand ω(k) to first
order in k and calculate Ψ(x, t). Then expand to second order in k and see
what happens.

112Reference: For a review of these things, see R. Y. Chiao and A. M. Steinberg, Tun-

neling times and superluminality, Progress in Optics 37 (1997) 347.
113There is a beautiful book containing much more: P. W. Milonni: Fast Light, Slow

Light, and Left–Handed Light, IOP Publishing, Bristol 2005.
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